
Self-Learning Web Question Answering System
Dmitri Roussinov

Arizona State University
P.O Box 873606
Tempe, AZ, 85287

(480)965-8488
dmitri.roussinov@asu.edu

Jose Robles
Arizona State University

P.O Box 873606
Tempe, AZ, 85287

(480)965-3252
Jose.Robles@asu.edu

ABSTRACT
While being quite successful in providing keyword based access to web
pages, commercial search portals, such as Google, Yahoo, AltaVista,
and AOL, still lack the ability to answer questions expressed in a
natural language. In this paper, we present a probabilistic approach to
automated question answering on the Web. Our approach is based on
pattern matching and answer triangulation. By taking advantage of
the redundancy inherent in the Web, each answer found by the
system is triangulated (confirmed or disconfirmed) against other
possible answers. Our approach is entirely self-learning: it does not
involve any linguistic resources, nor it does require any manual
tuning. Thus, the propose approach can easily be replicated in other
information systems with large redundancy.

1. INTRODUCTION
The goal of question answering (QA) is to identify and present

to the user an actual answer to a question formulated in a natural
language (e.g. English), rather than identifying documents that may
be topically related to the question or may contain the answer. In
contrast to the earlier QA approaches that rely on laboriously
created linguistic resources, “shallow” approaches that use only
simple pattern matching and inherent redundancy of such large
repositories as, for example World Wide Web, have been recently
successfully tried. Dumais et. al [2] presented a Web based QA system
that uses simple combinatorial permutations of words (so called “re-
writes”) and a set of 15 handcrafted semantic filters to achieve a
striking accuracy: Mean Reciprocal Rank (MRR) of 0.507, which can
be roughly interpreted as “in average” the correct answer being the
second answer found by the system. Our work expands [2] by
allowing automatic identification and train ing a set of patterns,
which are more powerful than simple re-writes. We also explore the
idea of using similar pattern matching algorithms on the Web to
validate semantic categories of the answers (e.g. for a question “In
which city Eiffel Tower is located?” the semantic category is city.)
Our approach relies only on simple machine learning techniques,
rather than on manually crafted rules or expensive linguistics
resources.

2. ALGORITHMS
The general idea behind the proposed approach is pattern matching.
For example, an answer for the question “Who is the CEO of IBM?”
can be found in a sentence “The CEO of IBM is Samuel Palmisano.”
which matches a pattern \Q is \A where \Q is a question part (“The
CEO of IBM”) and \A = “Samuel Palmisano“ is the text that forms
a candidate answer. We automatically create and train up to 200
patterns for each question type (such as what is, what was, where is,
etc.) based on training data set consisting of Q/A pairs. Through
training, each pattern is assigned the probability that the matching
text contains the correct answer. This probability is used in the
triangulation (confirming/disconfirming) process that re-ranks the
candidate answers. \A, \Q, \T, \p (punctuation mark) \V and * (a
wildcard that matches any words) are the only special symbols used in

our pattern language so far. Our approach allows adding more
symbols if needed.

2.1 Question Answering Steps
Answering the question “In which city is Eiffel Tower located?”

demonstrates the steps of our algorithm, omitting some details due to
the space limitations.

Type Identification. The question itself matches the pattern
In which \T is \Q \V, where \T = “city” is the semantic category of
the expected answer, \Q = “Eiffel Tower” is the question part, and \V
is a past tense verb, used in some types of the questions. We use
freely available trainable part of speech (POS) tagger [6] to interpret
questions only. Its use is needed only for a small minority of question
types. The web pages are not tagged while searching for the answers.

Query modulation converts each answer pattern (e.g. \Q is \V
in \A) into a query for a general purpose search engine (GPSE). For
example, the AltaVista query would be “ “Eiffel Tower is” NEAR
located”.

Answer Matching. The sentence “Eiffel Tower is located in
the center of Paris, the capital of France.” would result in a match
and creating a candidate answer “ the center of Paris, the capital of
France” with a corresponding probability of contain ing a correct
answer (e.g. .5) obtained previously for each pattern by training as
discussed below.

Answer Detailing forms more candidate answers by taking
subphrases from the init ial candidate answers. Our subphrases do not
exceed 3 words (not counting “stopwords” such as a, the, in, on) and
do not cross punctuation marks. Each sub-phrase candidate answer is
assigned the same score as the original candidate answer multiplied by
the proportion of the length of the subphrase (measured in words)
relatively to the original match. In our example that would be
“center” (.125), “Paris” (.125), “capital” (.125), “France” (.125),
“center of Paris” (.5), “capital of France” (.5).

The algorithm stops querying GPSE when a specified number of
web pages has been scanned (1000 in this study). If there fewer than
expected (here 200) candidate answers found, the algorithm resorts
to a “fall back” approach as in [2]: it creates candidate answers from
each sentence of the snippets returned by GPSE and applies answer
detailing to them. If there are still not enough candidates, the system
automatically relaxes the modulated query (by removing most
frequent on the Web words first) until enough many hits are returned
by GPSE. This way, it can simplify a question “Who still makes rod
hockey games?” to “Who still makes rod hockey?”

Triangulation. The candidate answers are triangulated
(confirmed or disconfirmed) against each other, as detailed in the
next section, then re-ordered according to their final score.

Semantic Filtering. The system performs a search on the
Web for confirming the semantic type of the top 20 candidates, by
following the same steps as if it were answering the question “What is
Paris?” and expecting an answer a city. For example, the sentence

400

“Paris, a city of dreams, can be amazing at night.” matches the
following WHAT-IS answer pattern: \Q , \A *. Several matches may
be required to establish that “Paris” is indeed a city until the desired
certainly is reached. The task of confirmation is easier than
answering since the sought answer is already known (“a city”). We
did not involve any manually crafted semantic filters reported in
prior studies [2] such as those dealing with numbers, proper names,
and monetary values.

2.2 Triangulation
Triangulation, a term widely used in intelligence and

journalism, stands for confirming or disconfirming facts using
multiple sources. We went one step further than using frequency
counts explored earlier in [2] and tried a more fine-grained
triangulation process. Our algorithm can be demonstrated by the
following intuitive example. Imagine that we have two candidate
answers for the question “What was the purpose of Manhattan
Project?” 1) “To develop a nuclear bomb” and 2) “To create a
nuclear weapon.” Those two answers should reinforce (triangulate)
each other since they are semantically similar, however a
straightforward frequency count approach would not pick this
similarity. The advantage of triangulation over simple frequency
counting is stronger for less “factual” questions, those that may
allow variation in the correct answers. This includes such frequent
types as definitions and “how to” questions. Although, there are
many known measures of semantic similarity between words and
phrases, for simplicity, we used relative significant overlap
in the current implementation:

 sim (a1, a2) = so(a1, a2)/(length(a1)+length(a2)), where
so(a1,a2) is the number of words that are present in both a1 and a2,
that are not stopwords and not the words from the question part . In
the above example sim = 1/(3+3). We are currently exploring more
“semantic” measures, e.g. those produced from mutual co-occurrence
statistics. The resulting score for each candidate answer st(a) after
triangulation is computed by summation:

∑
≠∈

⋅=
aaOa

ii
t

ii

aasimasas
,

),()()(, where O is the set of
all original (before detailing) answers and s(a) is the original score.

2.3 Scalability and Responsiveness
Since our objective was to explore the feasibility of the approach, we
were not that much concerned with real-time responsiveness. Our
proof of concept prototype finds an answer within minutes. The
bottleneck is fetching the content of Web pages, which can be
parallelized on multiple workstations that would send to the central
server only the identified candidate answers, as for example has been
successfully demonstrated in [4]. Another solution is to have direct
access to GPSE index and cache, which may be, for example, feasible
when QA system is an internal part of it.

2.4 Pattern Training
For each training Q/A pair, the system requests web pages from

GPSE that have both the question (Q) and the answer (A),
preferably in proximity. Each sentence containing both Q and A is
converted into a candidate pattern by replacing Q-part (e.g. “Eiffel
Tower”) with \Q symbol and the answer (“Paris”) with \A. Once a
specified number of candidate patterns is identified (200 in our

experiments), more patterns are generated through a recursive
“generalization” process of replacing words with wildcards and
forming substrings containing both \Q and \A. Sequences of adjacent
wildcards are merged and all the wildcards next to \A are removed
since redundant. The obtained top most frequent 500 patterns are
trained for the probability of matching the text that includes a
correct answer by the modulation and matching process similar to
the described above. The fall back approach probabilities are also
similarly trained. Unsupervised pattern training approach on the
Web was first proposed by [7] but they did not use wildcards nor the
fall back approach.
3. EMPIRICAL EVALUATION AND
CONCLUSIONS

We used TREC Q/A data sets [5] from 1999 to 2002 for
training, except the year 2001, which we used for testing in order to
compare to the prior results. We achieved mean reciprocal rank of
the answer (MRR) of 0.314, which is smaller than reported in [2],
but seemingly better (although not directly comparable due to
different testing methodologies) to the results reported with the
other approaches [3][1] that were completely trainable (not relying
on hand-crafted rules). We believe that the lower results are due to
our use of AltaVista instead of Google and due to the fact that we did
not use any manually crafted semantic filters. Without them, [2]
reported MRR of 0.416. Also, our test set had only a few questions
that may benefit from our automated semantic filter. It included
mostly clearly defined answers, the scenario when our triangulation
mechanism does not have much of an advantage over simple
frequency count. We have not yet comprehensively tested each
component separately . Nevertheless, we believe that our preliminary
results are encouraging since our approach does not require any
manual tuning, thus replicable by follow-up studies and easily
implemented in other open domain knowledge
management/search/retrieval systems. Our empirical pilot study with
users searching the Web for the answers to the given questions is
currently on the way. The preliminary feedback from several uses
who tried it so far is also encouraging.

4. REFERENCES
[1] Agichtein, E., Lawrence, S., Gravano, L. Learning Search

Engine Specific Query Transformations for Question
Answering. 10th WWW Conference, 2001.

[2] Dumais, S., Banko, M., Brill, E., Lin, J., and Ng, A. Web
Question Answering: Is More Always Better? ACM
Conference on Information Retrieval, 2002.

[3] Radev, D., Fan, W., Qi, H., Wu, H., Grewal, A. Probabilistic
Question Answering on the Web. 11th WWW Conf. 2002.

[4] Surdeanu, M., Moldovan, D. and Harabagiu, S. Performance
Analysis of a Distributed Question Answering System', IEEE
Transactions on Parallel and Distributed Systems, June 2002.

[5] Voorhees, E. and Harman, D., Eds. Proceedings of the Tenth
Text REtrieval Conference (TREC 2001).

[6] Brill, E.. Transformation-based error-driven learning and
natural language processing: A case study in part of speech
tagging. Computational Linguistics, 21(4):543--566, 1995.

[7] Ravichandran, D., & Hovy, E. Learning surface text patterns
for a question answering system. In Proceedings of the 40th
Annual Meeting of the ACL, pages 41-47.

Copyright is held by the author/owner(s).
WWW 2004, May 17-22, 2004, New York, NY USA.
ACM xxx.

401

