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ABSTRACT 
While being quite successful in providing keyword based access to web 
pages, commercial search portals, such as Google, Yahoo, AltaVista, 
and AOL, still lack the ability to answer questions expressed in a 
natural language. In this paper, we present a probabilistic approach to 
automated question answering on the Web. Our approach is based on 
pattern matching and answer triangulation. By taking advantage of 
the redundancy inherent in the Web, each answer found by the 
system is triangulated (confirmed or disconfirmed) against  other 
possible answers. Our approach is entirely self-learning: it does not 
involve any linguistic resources, nor it does require any manual 
tuning. Thus, the propose approach can easily be replicated in other 
information systems with large redundancy. 

1. INTRODUCTION 
The goal of question answering (QA) is to identify and present 

to the user an actual answer to a question formulated in a natural 
language (e.g. English), rather than identifying documents that may 
be topically related to the question or may contain the answer. In 
contrast to the earlier QA approaches that rely on laboriously 
created linguistic resources, “shallow” approaches that use only 
simple pattern matching and inherent redundancy of such large 
repositories as, for example World Wide Web, have been recently 
successfully tried.  Dumais et. al [2] presented a Web based QA system 
that uses simple combinatorial permutations of words (so called “re-
writes”) and a set of 15 handcrafted semantic filters to achieve a 
striking accuracy: Mean Reciprocal Rank (MRR) of 0.507, which can 
be roughly interpreted as “in average” the correct answer being the 
second answer found by the system. Our work expands [2] by 
allowing automatic identification and train ing a set of patterns, 
which are more powerful than simple re-writes. We also explore the 
idea of using similar pattern matching algorithms on the Web to 
validate semantic categories of the answers (e.g. for a question “In 
which city Eiffel Tower is located?” the semantic category is city.) 
Our approach relies only on simple machine learning techniques, 
rather than on manually crafted rules or expensive linguistics 
resources.   

2. ALGORITHMS 
The general idea behind the proposed approach is pattern matching.  
For example, an answer for the question “Who is the CEO of IBM?” 
can be found in a sentence “The CEO of IBM is Samuel Palmisano.” 
which matches a pattern \Q is \A where \Q is a question part (“The 
CEO of IBM”) and \A  = “Samuel Palmisano“ is the text that forms 
a candidate answer. We automatically create and train up to 200 
patterns for each question type (such as what is, what was, where is, 
etc.) based on training data set consisting of Q/A pairs. Through 
training, each pattern is assigned the probability that the matching 
text contains the correct answer. This probability is used in the 
triangulation (confirming/disconfirming) process that re-ranks the 
candidate answers.  \A, \Q, \T, \p (punctuation mark) \V and * (a 
wildcard that matches any words) are the only special symbols used in 

our pattern language so far. Our approach allows adding more 
symbols if needed. 

2.1 Question Answering Steps  
Answering the question “In which city is Eiffel Tower located?” 

demonstrates the steps of our algorithm, omitting some details due to 
the space limitations.  

Type Identification. The question itself matches the pattern 
In which \T is \Q \V, where \T  = “city” is the semantic category of 
the expected answer, \Q = “Eiffel Tower” is the question part, and \V 
is a past tense verb, used in some types of the questions. We use 
freely available trainable part of speech (POS) tagger [6] to interpret  
questions only. Its use is needed only for a small minority of question 
types. The web pages are not tagged while searching for the answers.   

Query modulation converts each answer pattern (e.g. \Q is \V 
in \A) into a query for a general purpose search engine (GPSE). For 
example, the AltaVista query would be “ “Eiffel Tower is” NEAR 
located”. 

Answer Matching. The sentence “Eiffel Tower is located in 
the center of Paris, the capital of France.” would result in a match 
and creating a candidate answer “ the center of Paris, the capital of 
France” with a corresponding probability of contain ing a correct  
answer (e.g. .5) obtained previously for each pattern by training as 
discussed below. 

Answer Detailing forms more candidate answers by taking 
subphrases from the init ial candidate answers. Our subphrases do not 
exceed 3 words (not counting “stopwords” such as a, the, in, on) and 
do not cross punctuation marks. Each sub-phrase candidate answer is 
assigned the same score as the original candidate answer multiplied by 
the proportion of the length of the subphrase (measured in words) 
relatively to the original match. In our example that would be 
“center” (.125), “Paris” (.125), “capital” (.125), “France” (.125), 
“center of Paris” (.5), “capital of France” (.5). 

The algorithm stops querying GPSE when a specified number of 
web pages has been scanned (1000 in this study). If there fewer than 
expected (here 200) candidate answers found, the algorithm resorts 
to a “fall back” approach as in [2]: it creates candidate answers from 
each sentence of the snippets returned by GPSE and applies answer 
detailing to them. If there are still not enough candidates, the system 
automatically relaxes the modulated query (by removing most 
frequent on the Web words first) until enough many hits are returned 
by GPSE. This way, it can simplify a question “Who still makes rod 
hockey games?” to “Who still makes rod hockey?” 

Triangulation. The candidate answers are triangulated 
(confirmed or disconfirmed) against each other, as detailed in the 
next section, then  re-ordered according to their final score.  

Semantic Filtering. The system performs a search on the 
Web for confirming the semantic type of the top 20 candidates, by 
following the same steps as if it were answering the question “What is 
Paris?” and expecting an answer a city. For example, the sentence 
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“Paris, a city of dreams, can be amazing at night.” matches the 
following WHAT-IS answer pattern: \Q ,  \A *. Several matches may 
be required to establish that “Paris”  is indeed a city until the desired 
certainly  is reached. The task of confirmation is easier than 
answering since the sought answer is already known (“a city”). We 
did not involve any manually crafted semantic filters reported in 
prior studies [2] such as those dealing with numbers, proper names, 
and monetary values.  

2.2 Triangulation 
Triangulation, a term widely used in intelligence and  

journalism, stands for confirming or disconfirming facts using 
multiple sources. We went one step further than using frequency 
counts explored earlier in [2] and tried a more fine-grained 
triangulation process. Our algorithm can be demonstrated by the 
following intuitive example. Imagine that we have two candidate 
answers for the question “What was the purpose of Manhattan 
Project?”  1) “To develop a nuclear bomb” and 2) “To create a 
nuclear weapon.” Those two answers should reinforce (triangulate) 
each other since they are semantically similar, however a 
straightforward frequency count approach would not pick this 
similarity. The advantage of triangulation over simple frequency 
counting is  stronger for less “factual” questions, those that may 
allow variation in the correct answers. This includes such frequent 
types as definitions and “how to” questions.  Although, there are 
many known measures of semantic similarity between words and 
phrases, for simplicity, we used relative significant overlap 
in the current implementation: 

 sim (a1, a2) = so(a1, a2)/(length(a1)+length(a2)), where 
so(a1,a2) is the number of words that  are present in both a1 and a2, 
that are not stopwords and not the words from the question part . In 
the above example sim = 1/(3+3). We are currently exploring more 
“semantic” measures, e.g. those produced from mutual co-occurrence 
statistics. The resulting score for each candidate answer st(a) after 
triangulation is computed by summation: 
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all original (before detailing) answers and s(a) is the original score. 

2.3 Scalability and Responsiveness 
Since our objective was to explore the feasibility of the approach, we 
were not that much concerned with real-time responsiveness. Our 
proof of concept prototype finds an answer within minutes. The 
bottleneck is fetching the content of Web pages, which  can be 
parallelized on multiple workstations that would send to the central 
server only the identified candidate answers, as for example has been 
successfully demonstrated in [4]. Another solution is to have direct 
access to GPSE index and cache, which may be, for example, feasible 
when QA system is an internal part of it. 

2.4 Pattern Training 
For each training Q/A pair, the system requests web pages from 

GPSE that have both the question (Q)  and the answer (A), 
preferably in proximity. Each sentence containing both Q and A is 
converted into a candidate pattern by replacing Q-part (e.g. “Eiffel 
Tower”)  with \Q symbol and the answer (“Paris”) with \A. Once a 
specified number of candidate patterns is identified (200 in our 

experiments), more patterns are generated through a recursive 
“generalization” process of replacing words with wildcards and 
forming substrings containing both \Q and \A. Sequences of adjacent 
wildcards are merged and all the wildcards next to \A are removed 
since redundant. The obtained top most frequent 500 patterns are 
trained for the probability of matching the text that includes a 
correct answer by the modulation and matching process similar to 
the described above. The fall back approach probabilities are also 
similarly trained.  Unsupervised pattern training approach on the 
Web was first proposed by [7] but they did not use wildcards nor the 
fall back approach. 
3. EMPIRICAL EVALUATION AND 
CONCLUSIONS 

We used TREC Q/A data sets [5] from 1999 to 2002 for 
training,  except the year 2001, which we used for testing in order to 
compare to the prior results. We achieved mean reciprocal rank of 
the answer (MRR) of 0.314, which is smaller than reported in [2], 
but seemingly better (although not directly comparable due to 
different testing methodologies) to the results reported with the 
other approaches [3][1] that were completely trainable (not relying 
on hand-crafted rules). We believe that the lower results are due to 
our use of  AltaVista instead of Google and due to the fact that we did 
not use any manually crafted semantic filters. Without them, [2] 
reported MRR of 0.416. Also, our test  set had only a few questions 
that may benefit from our automated semantic filter. It  included 
mostly clearly defined answers, the scenario when our triangulation 
mechanism does not have much of an advantage over simple 
frequency count. We have not yet comprehensively tested each 
component separately . Nevertheless, we believe that our preliminary 
results are encouraging since our approach does not require any 
manual tuning, thus replicable by follow-up studies and easily 
implemented in other open domain knowledge 
management/search/retrieval systems. Our empirical pilot study with 
users searching the Web for the answers to the given questions is 
currently on the way. The preliminary feedback from several uses 
who tried it so far is also encouraging. 
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