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Abstract

In this paper, we consider the set & = a(e® K e¥) where a(g) is the abelian part in
the Cartan decomposition of g. This is exactly the support of the measure intervening in
the product formula for the spherical functions on symmetric spaces of noncompact type.
We give a simple description of that support in the case of SL(3,F) where F = R, C or
H. In particular, we show that § is convex.

We also give an application of our result to the description of singular values of a
product of two arbitrary matrices with prescribed singular values.

1 Introduction

Let G be a semisimple noncompact connected Lie group with finite center and K a maximal
compact subgroup of G and X = G/K the corresponding Riemannian symmetric space of
noncompact type. We have a Cartan decomposition g = ¢+ p and we choose a maximal abelian
subalgebra a of p. In what follows, ¥ corresponds to the root system of g and ¥ to the
positive roots. This implies that we have chosen a set of simple positive roots aq, ..., «,
where r = dima is the rank of the symmetric space. We have the root space decomposition
9= 080T ) .ey 0o Recall that ¢, the Lie algebra of K, can be described as

t=span {X, +0(X,): X, €g,, ac T U{0}}

where 0 is the Cartan automorphism. Let n =3 v goand n=3" vy a0 = > vt 0(ga)
Denote the groups corresponding to the Lie algebras a, n and n by A, N and N respectively.
We have the Cartan decomposition ¢ = K A K and the Iwasawa decomposition G = K A N.
Let at = {H € A: a(H) >0V a € ¥t} and AT = exp(at). In particular, for any g € G,
g = ky 9 ky where a(g) € at is uniquely determined by g¢.

If X is a complex-valued functional on a, the corresponding spherical function is

oale) = /I AT g

where ¢ = ke'"@Wn € KAN and p = (1/2) Y wes+ Maa (mg denotes the multiplicity of
the root «). A spherical function, like any KA-biinvariant function, can also be considered as
a K-invariant function on the Riemannian symmetric space of noncompact type X = G/K.
Naturally, such a function is completely determined by its values on A (or on A*). The books
[5, 6] constitute a standard reference on these topics.

In [6, (32), page 480], Helgason shows that a Weyl-invariant measure px y exists on the Lie
algebra a such that

() () = / br() dyu y (H)
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(unlike us, Helgason states his results at the group level).
It is known [6] that

or(eX) pr(eh) = or(eX k¥ dk.

K

The measure pyy satisfies then

[ ol ket = [ ) du (i (1

for all continuous functions f which are biinvariant under the action of K.

The support of the measure pxy is included in C'(X) + C(Y') where C(H) is the convex
hull of the orbit of H under the action of the Weyl group W.

The natural question whether the measure pxy is absolutely continuous with respect to
the Lebesgue measure on a, i.e. whether we have a “product formula”

r(eX) a(e) = / or () k(H, X, V) dH 2)

was answered positively when X € a or Y € o by Flensted-Jensen and Koornwinder ([1, 7])
in the rank one case and by the authors ([3]) in the general case. Very little is known about the
properties of this density, in particular its support, except the rank one case and the complex
case.

In rank 1 case the support of pxy was computed by Flensted-Jensen and Koornwinder
([1, 7]). This is the union of the segment [|X — Y|, X + Y] and its reflection with respect to 0
(X,Y >0).

In [2], we found the support of px y in the case of SL(3, C):

supp (pxy) Nat =(C(X)+Y)N (X +CY)N{H: H3 < X, +Y;, < H}.

This was obtained by using an explicit expression for the density of the measure py y.

The objective of this paper is to study the support of the W-invariant measure pxy or,
equivalently, the intersection of supp uyy with the closed positive Weyl chamber a¥.

It is clear by (1) that the support of puxy is included in the union of the translates of
a(e® K ¢¥) under the action of the Weyl group. These sets are in fact equal. We recall first a
result of [3].

Lemma 1 Suppose X, Y € at. Let F': K v at defined by F(k) = a(e* ke¥). Then there
exists a closed set O C K of Haar measure 0 such that F' is analytic and dF is surjective on

K\C.
Proof: This is a consequence of [3, Lemma 8]. 1

Theorem 2 Suppose X, Y € at. Then supp(pxy) Nat = a(eX K e¥). Consequently, supp
(ixy)=W -a(eX Ke¥).

Proof: Let F' and C' be as in Lemma 1. Suppose that H € a(eX K ¢e¥) and let U be any
neighbourhood of H in at. Then V = F~'(U) is an open set which cannot be included in C' so



there is a nonempty open set Vy C V such that F' is analytic and dF is surjective on V;. If we
refer to (1), it follows easily that H € supp (pxy). B

In this paper, we compute S = a(e¢® K ¢¥) (and therefore, by Theorem 2, the support of
px.y ), for some non-exceptional rank 2 Riemannian symmetric spaces. We aim to gain a better
comprehension of harmonic analysis on these spaces and we believe that our results provide
useful indications for the general symmetric space case (see [4, 9]). In Section 2, we give a
simple geometric description of the set a(e® K ¢e¥) for G = SL(3,F) where F = R, C or H
(the quaternions).

In all these cases S = a(eX K ¢€¥') is the convex hull of the set I described in Definition 9.
Our result for the Cartan decomposition is a counterpart of the Kostant convexity theorem for
the Iwasawa decomposition.

We end with an application of our result which gives necessary and sufficient inequalities on
the singular values of the product of two complex (or real) 3 x 3 matrices. Only some necessary
conditions (Gelfand-Naimark inequality, see [8]) were known before.

2 The set S =ale* Ke') on SL(3,F)

Definition 3 Let W = M'/M be the Weyl group (M' C K is the normalizer of a in K while
M C K is its centralizer). If a is a root then s, € W is the reflection with respect to the
hyperplane {a = 0}.

When appropriate we will not distinguish between w € W and w € M' C K. On the other

hand, to denote the action of w on X € a, we will write w X. We then have e** = we® w™!

([5, VII, Propoposition 2.2]).

We will write T=W X + WY ={w; X +wY: wy,wy € W} and Ty = TNat.

We define S = a(e® K e¥).

If « is a nonzero root then K, will denote the subgroup of K with Lie algebra t, = {X, +
0(Xa): Xao €a,t

Lemma 4 [Ifw, X +w, Y € a* then F(w;'wy) = w; X +w, Y. In particular we have Ty C S.

Proof: If w; X + wy Y € Tp then a(eX wiwye¥) = a(eXe2V) = w; X +w, Y. B

Denote by B(-,-) the Killing form on g. Define A, € a by B(H, A,) = o(H) for all H € a.
Denote Al = A, /a(A,) so that a(AL) = 1.

Lemma 5 Let o be a nonzero root. Write 7, = X, + 0(X,) for X, #0 € g,. Then we have
e An gt Do gy An = k(1) s Aa ka2 (t), teR
with ki (t), ko(t) € Ko and s taking all values from the closed interval between |z —y| and |x+y|.

Proof: This is a rank-one reduction (the algebra generated by A,, X, and (X,) being iso-
morphic to sl(2, R)). We use then [1, page 256]. B

Definition 6 Let Cy,... ,Cpw| C a be pairwise disjoint open Weyl chambers, Cy = at. For
each i, there exists a unique element w; € W such that w(C;) = o™ ([5, Ch.VII]). We define
the projection m of a to at by

m(H) = w;(H) when H € C,.



Note that the definition still holds when H € C; N C; ([5, Ch.VII]). When X € a, we have
a(e®) = m(X).

As in [6], let us denote by {Hy, Hy} the closed segment connecting H; € a and H; € a.
When it does not lead to a misunderstanding, we will also write {H;, Hy} = H;y H,.

Proposition 7 Suppose wy X +wy Y € Ty and let o be a positive root. Then the image 1y 4, w,
of t = a(e™ X et % 2V s the projection m of:

1. the segment T =H{w1 X + w2 Y | w1 X + so(we YY)} if a(wy X) > a(we Y),
2. the segment T = {w; X + wa Y | sq(w1 X) +we Y} if a(w; X) < a(wrY).
Proof: Note that a(w; X +w;Y) > 0 since wy X + w, Y € aF. Now using Lemma 5 and the

fact that K, centralizes the elements of a which are in the hyperplane @ = 0, we have

a(ele etZa R Y) R X—a(w X)A, jo(w X) AL etZa ea(wQ Y)AL w2 Y —a(ws Y)A;)

:a( a e Qe

— a(ewl X—a(w X)A:"k‘l(t) esA;kQ(t) R Y—a(w Y) A;)

— a(kl(t) Rt X—oa(w X)AL GSA{"euQ Y—o(w V) Al kg(t))
— a(ewl X—a(w X)AL+w Y —a(w Y) AL +s A;)

with s between a(w; X) + a(w, Y') and |a(w; X) — a(w V)| 1

Remark 8 The image I, ., , belongs to S since a(e™tX etZa ¢2¥V) = a(eX w' etZewy eY). It
does not depend on the choice of 0 # Z, € t,. The set I, ., uw, 15 a segment or is a connected

finite union of segments, the original segment starting at wi X 4wy Y being reflected each time
it meets a wall of at.

Definition 9 Let I C S be defined as
I = U [oz,wl,w27
a>0,wy,wr €W

the network of all segments composing the images I, ,, ., created according to Proposition 7.
Definition 10 Let Ky = Uyso W K, W.

Remark 11 Note that when the Weyl group acts transitively over the roots (which is true in
the case of the root system A,) then W K, W does not depend on the choice of nonzero root,
ie. Ko =W K, W for any fized root a. Actually, when o and 3 are two different roots and
Ad(w)a = 3, then Ad(w)Z, € tg.

Note also that a(eX ke¥) € I if k € Ko. Indeed, a(e®** et %o e2V) = a(eX wi' et 22wy V).

A “typical” example of the network [ is given in Figure 1.

If T ={Hy, Hy} is a closed segment in a we denote by 7° = 7 \ {H; H>}, the segment 7

deprived of its endpoints. We extend the same notation for a m-projection of a segment:
w(Z)° = w(Z°).

The projections of Hy and H, (the vertices of T) by m will be called the vertices of 7(Z). Given
Z € t,, we denote by wy ,, ., the Weyl group element such that

a(e X ” ey = m(H) = wg,, 0, H

with H € T as in Proposition 7.



Figure 1: The network I inside at (the points of T are shown as o)

Lemma 12 Let 0 # X, € g,, Hy = [Xo,0(X,)] and Z, = X, 4+ 0(X,). Suppose that wy X +
UJQY - a+.

1. 1f Zy is such that a(e**™ e”> ) e IS Nat then for |t| small enough,

a(ele et e gZa erY) = a(ele eZe erY) + Y1t Wz 0y 0y Ha + O(t?) with v, # 0.
2. For |t| small enough, a(e'X e'Zx 2} = w; X 4wy Y + yot2 H, + O(t%) with v, # 0.

Proof: Similarly as in the proof of [3, Corollary 14] or in the proof of Proposition 7 above, we
may write w1 X = a H, + X' and we Y = b H, + Y’ where o X') = o(Y’) = 0. The fact that
a(w; X) # 0 and a(w; Y) # 0 implies that a # 0 and b # 0. Using again the fact that X and
e"’ commute with elements of K, we see that in order to prove the 1. and 2. of the lemma,
it is enough to compute the limited Taylor expansion of e?fa ¢!Za e?Ha at t =1 and at ¢t = 0

respectively.
The Lie algebra generated by H,, X, and §(X,) is isomorphic to sl(2,R). Indeed, X,
corresponds to the matrix ¢ K15 with ¢ = /—a(H,)/2 # 0, 0(X,) to —cFEy; and H, to

—c*(Ey1 — Ea2) (see [3, Proposition 13]). Note that the constant ¢ may take any strictly

positive value when 7, (and therefore X, ) varies.
We now work in SL(2,R). Let e*He ¢! Za PHa correspond to g; = ky(t) A0 (Er1—Er ) (1)
(the Cartan decomposition in SL(2,R)). We basically want the limited expansion of a(t) since

a(ele eltth) Za erY) = a(ele et 2 erY) +a/(t)hw H, +a"(t) htwH, + O(h?’)

where w € W comes from an eventual projection to at.
Note that a(0) = |a + b| > 0. We compute

f(t): =trg;gl =2 sin®(et) cosh(2(a — b)e?) + 2 cos*(ct) cosh(2(a + b)c?),

f'(t) = —4csin(2ct) sinh(2ac?) sinh(2bc?),

f"(t) = —8¢* cos(2¢t) sinh(2ac?) sinh(2b¢?)
and note that f(¢) = 2 cosh(2c¢?a(t)). This means that f/'({) = —4 sinh(2¢*a(t))a’(¢) and
therefore that a/(0) = 0. Similarly, computing f”(0) shows that a”(0) # 0. This proves 2.

5



Now, a’(t) = 0 implies f/(¢) = 0. On the other hand, f’(¢) = 0if and only if 2 sin(ct) cos(ct) =
0. This implies that f(¢) = 2 cosh(2(a — b)c?) i.e. a(t) = |a —b| or f(t) =2 cosh(2(a + ) ?)
i.e. a(t) = la + bl

It follows that the function a(t¢) has only two extremal values |a — b| and |a + b|. We not
only prove directly the result of [1] on the form of S in rank 1 case but we show that the values
of the function a(t) run over the whole projected segment I, ,, ., from one vertex to another,
without any interior reflection points. N

Corollary 13 Suppose Hy € To Nat. Then any point in any sector of less than m with vertex
Hy and edges in I which is close enough to Hy belongs to S (refer to Figure 1).

Proof: We have Hy = a(e®** ¢¥27) and consider g(t;,ts) = a(e™1X et 7o ¢l2Zez ¢w2V') where
ay and ay correspond to the sides of the sector. We have g(ty,t2) = Ho+1y Hy, 542 Hay 15+
O(||t]]?) with ¢y # 0 and vy # 0. The absence of a mixed term in ¢ ¢y follows from the
invariance g(+t1, +t2) = g(t1,t2) as shown in [3, Lemma 17]. &

We will say that R is an intersection point in [ if R € [;’ wy vy N [;’, e With [;’ oy +*
! ! y W1y ’ )
[s’,w{,wé (recall that I3, ., is equal to I, ., ., without its extremities). In particular, R ¢ T.

Lemma 14 Given any X, Y € at, the set X + WY intersect at most 3 Weyl chambers or the
set W X +Y intersect at most 3 Weyl chambers (the Weyl chambers at, s, at and sga®).

Proof: Let Ay, ..., Ag be the points of X + WY starting from A; = X 4+ Y and going
clockwise.

Then X + WY intersect more than 3 Weyl chambers if and only if A4 is below a+ 3 =0
i.e. if and only if (a+ 3)(A4) < 0. Noting that Ay = [X1, Xo, X5] +[¥5, Y2, Y1, (e +3)(A4) <0
means that X; + Y5 < Xa+ Y] te. X —X5<Y] —Ys.

Applying the same reasoning to Y + W X, we can conclude that the corresponding vertex
is above a+ 3 =0 i.e. that Y + W X intersects at most 3 Weyl chambers. |

Let the points Ay, ..., Ag be as in the proof of Lemma 14 in the case X1 — X3 > Y] — Y3
and let it be the elements of Y + W X otherwise.
Let C(X,Y) = { OX+C(Y)UATAJU A As U A3 Ag if X1 — X5 > Y] — Y5,
’ a(Y + C(X)) U Al A4 U A2 A5 U A3 A6 otherwise )
In the following Proposition we explain in which way, by a simple geometric transformation,
it is possible to get the network I from the set C'(X,Y).

veey

defined in the Definition 6). Remove any segment of C'(X,Y) joining a point of D and the
wall {a = 0} or {# = 0}. Then the image of C(X,Y) by all these transformations is equal to
I and Ty =D.

Remark 16 Suppose that the set C(X,Y) intersects the wall {a = 0} of a*. The projection ©
intervening in the Proposition 15 consists in “folding” symmetrically along o = 0 the portion
which is in {a < 0} into aF. The resulting set is (C(X,Y) U s, C(X,Y)) NaT.

Apply the analogous “folding” operation if the set C(X,Y) intersects the wall {5 = 0} of
at. We obtain in this way the set C'(X,Y).

For the geometrical meaning of the Proposition 15 refer to Figure 2 (the vertical axis o =0
and the axis = 0 are shown as doted lines, the points of Ty are marked by o and the point
A1 = X +Y is always the upper right vertex).



Figure 2: C(X,Y), C(X,Y)U s, (C(X,Y)N{a < 0}), C"(X,Y) and [

Proof: We can assume without loss of generality that X; — X3 > Y] —Y5. Call the constructed
set J. If we consider Proposition 7, it is clear that J C I.

Let H = w; X +w, Y € Ty € at. We only need to show that H is one of the A;’s or a
reflection of one of the A;’s by s, or sg. In other words, we have to show that w; € {id, s,,s5}.
The possibilities to eliminate are wy = s, s, w1 = sg s, and wy = s, 53 5,. In the first and third
case, the first entry of H would be H; = X3+ Y;. There is one entry of H of the form X; 4+ Y.
Since H € aF, wehave 0 < X3+ Y, = X1 =V, =Y; =V, — (X; — X3) < Y] — V3 — (X; — X3) <0
which is absurd. In the second case, the last component of H is X;. A similar reasoning also
leads to a contradiction. N

Lemma 17 All the intersection points belong to m( A1 As), m(Az As) or m(As As).

Proof: We can assume without loss of generality that X; — X3 > Y] — Y3, that is, that X +C(Y)
intersects at most 3 Weyl chambers and therefore that C'(X,Y) = (X +C(Y))UA; AsUA; AsU
As Ag.o We distinguish the following cases:

(1

) X +CY) C

(2) X 4 C(Y) intersects a™ and {a < 0} but not {8 < 0}.
) (Y)
) (Y)

(2’) X + C(Y) intersects at and {3 < 0} but not {a < 0}.

(3) X 4+ C(Y) intersects a™, {a < 0} and {5 < 0}.

The Lemma is clear in case (1). The intersection points are then the vertices of the central
triangle of C'(X,Y). They are given by Ry = [X1 4 Y2, Xo + Y5, %], Ry = [, Xo + Y2, X5 + V5]
and Rs = [X| + Y2,%, X5 + V3] (the coordinate # is determined by the fact that the trace is
zero) Refer to Figure 3 (on this and on the following figures the set [ is drawn in boldface).

In the case (2), we verify that only one of the points R;, say Ry, may not belong to a™. In
fact Ry is equal to Ry or R3. By the construction of [ given in the Proposition 15, it follows
that m(Rp) is not an intersection point.

The new intersection points may only appear when the reflected part s,(C(X,Y)N{a < 0})
intersects some segments of C'(X,Y) N at different from the exterior edges of C'(X,Y"). These
segments are among m(A; Ay), m(Ag As) and w(As Ag). The case (27) is similar by symmetry.
Refer to Figure 4.



Figure 3: Case (1)

Figure 4: Case (2)

Case (3) boils down to considering separately cases (2) and (27) because the parts of C(X,Y)
which are reflected by s, and sg while constructing I are disjoint. This follows from the fact
that the hypothesis X; — X3 > Y} — Y3 is equivalent to the inequality X; + Y3 > X5+ 1)
between the second entries of AL = m(As5) = s4(As) and Ay = 7(A3) = s3(As), which in turn
means that the point AL is situated above and the point A5 below a line Hy = ¢. Hence this

line separates the sets 7(C(X,Y)N{a < 0}) and 7(C(X,Y)N{B < 0}). Refer to Figure 5. &

Figure 5: Case (3)

Lemma 18 and Theorem 19 will only apply in the case of F = R. As we will see in
Proposition 23, this will not be an impediment in proving our main result for SL(3, F).

Lemma 18 We are now restricting ourselves to the case F = R. Let k = %1 Zat5 970 g2 Zats
Then k € Ky if and only if one of the following is true.

1. sinf = 0.

2. sinf = 41 and sinf, =0 or £1.



3. sinf = +1 and sinfy, =0 or £1.

4. sinf; = +1 or 0 and sinfy, = £1 or 0.

Proof: It is easy to check that these conditions give elements of K.

To prove the inverse statement, let us assume that & € K, and sin@ # 0. Writing the

Zoagp 0 Xa 27

product k = e a+6 explicitly, we have

cos 0y cosf cosfy, —sinb; sinfy —cosb; sinf) — cosb, cos b sinfy — sin b, cos b,
k= sin f cos 8, cos 8 —sin § sin 6,
sinf; cos cosfy 4 cosf sinfs —sinf; sinf —sinby cos b sin by + cosH; cos b,

The elements of Ky are obtained from the elements of K, Kz and K,4z by permutations
of rows and columns. It follows that any line and any column of k contains at least one zero.
Also, there is one line and one column with elements {+1,0,0}. It follows that there is at least
a 0 on the second row.

Suppose that, say, cos § = 0. Considering different possible situations of +1 we deduce that
there 1s another 0 on the same column or row. This forces cos#; = 0 or cosf, = 0 or sinf; =0
or sinf, = 0.

The other cases are handled in much the same way. B

The technical condition in the following theorem will be overcome in the final theorem on

the form of 5.

Theorem 19 We are restricting ourselves to the case F = R. Suppose that X; +Y; # X, + Y,
whenever (i,7) # (p,q). If R € at is an intersection point in I then R € F(K \ Kp).

Proof: According to Lemma 17, we have 3 cases. We will assume first that R € m(A; Ay).

Let F'(01,0,0;) = a(eX ¢h1Za+s ¥ Za h2Zars V) € [ . Then F(0,,0,0,) € n(A; Ag) if and
only if €2X2+2¥2 is an eigenvalue of the matrix eX ke?Y kT e where k = 1 Zats ¢f Za 02 Zats,
Setting det(e® ke?¥ kT X — 2X2¥2Y2 ) = (0, we see after tedious elementary computations
(which may be very quickly done using for example Maple) that F'(6,,6,60;) belongs to m( Ay A4)
if and only if

sin? 0 (fo(X,Y) — f1(X,Y) sin® 0 — fo(X,Y) sin®fy) =0
where

fO — <€2X2-|—2Y2 o €2X3+2Y3> <€2Y1 o €2Y2> <€2X1 o €2X2>

f =2 Xe <€2Y1 _ €2Y2> <€2Y2 _ €2Y3> (ele _ €2X3>

) (3)
) (4)

f2 — €2Y2 <€2Y1 _ €2Y3> <€2X1 _ €2X2> <€2X2 _ €2X3> ) (5)
We will also use
fl _ fO — <€2X2 _ €2X3> <€2Y1 _ €2Y2> <€2X2+2Y2 _ €2X1-|—2Y3> 7 (6)
f2 _ fO — <€2X1 _ €2X2> <€2Y2 _ €2Y3> <€2X2+2Y2 _ €2AX3-|—2Y1>7 (7)
fl + f2 - fo = <€2X2 — €2X3> <€2Y2 _ €2Y3> <€2X1+2Y1 o €2X2+2Y2> ] (8)



We are interested in the condition
fo(X, Y) — fl(X, Y) Siﬂ2 01 — fQ(X, Y) Siﬂ2 02 =0. (9)

Let o = {(x,y): fiz+ fry=fo, 0 <,y <1} With the restriction that 6,, 62 € [0,7/2],
let

(01,02) = (2, y) = (arcsin /z, arcsin \/y).

Since 1 is continuous, the set (o) is connected. It follows that the set ¥ of points (6,6;) €
[0, 7/2]? such that (9) holds is connected.
The fact that fo — fi — fo < 0 implies that there is a solution of (9) with 6; = 6, = 05,
0o € (0,7/2). In particular, o and ¢ (o) are not empty. Note then that F(fy,m,00) = X + Y.
Now we compute
tr 2F0.02)  — 2% [cos? 01 (d cos? O + e?Y2 gin? ) + %cos 0 sin(20,) sin(20,) (€ Yo _ eQYl) + fsin? 0]

4+ X [d sin? 6 4+ €2Y2 cos? 0]

1
+ 2% [sin? 0,(dcos® 0 + ¢* Y2 gin? ) — 5 €0 6 sin(26,) sin(202)(62Y3 — eQYl) + fcos? ]
where we denote d = €21 cos? 0, + €2¥2 sin? 0, and f = €21 sin? 0, + €2¥2 cos? f,. It follows that

1
tr 28 (00.0.02) — 4y 2F(01,0.02) o 5 (€2X1 — €2X3) (€2Y1 — €2Y3) sin(26,) sin(26s) (1 — cos 9)

4 <(€2Y1 . €2Y2) _ (€2Y1 _ €2Y3) Sin2 02> (10)

. <—(€2X1 — €2X2) + (€2X1 — €2X3) sin? (91> sin? #.

Let R be as in the hypothesis. Recall that SO(3) = K45 Ko Katp (see [10]). Since R is
an intersection point in I we can write R = F(k) with k = %1 Za+p ¢?Za %2 Zats and sin 6 # 0
(basically, because R belongs also to the segment emanating from another element of Tg). This
means that (9) is satisfied. Condition (4) of Lemma 18 cannot be fulfilled since fo, fo — fi,
fo— faand fo — fi — f2 are nonzero. Hence one of remaining conditions (2)—(3) of Lemma 18
is verified. Therefore, in addition to (9), one of the following holds:

1. sinf = £1 and (a) sinf; = 0 or (b) sinf; + 1.
2. sinf = 41 and (a) sinfy = 0 or (b) sinfy =0+ 1.
In all possible cases, (10) becomes

tI’ €2F(€1,€,€2) — tI’ €2F(€1,0,€2) _I_ <(€2Y1 _ €2Y2) _ (€2Y1 _ €2Y3) Sin2 02> (11)

(= (2 = M) 4 (2N — 20 sin” 0;) sin® 0.
Using (9), these cases correspond to

la. sin®@; = 0 and sin® 0, = fo/ f3

1b. sin?#; = 1 and sin? ¥4, = (fo— f1)] 1z

2a. sin’f, = fo/f1 and sin?fy = 0

10



2b. sin?0; = (fo — f2)/f1 and sin* 0, = 1.

Using (3)-(7), we observe that the coefficient of sin® @ = 1 in (11) is strictly positive in all these
cases. This means that if R = F(6,6,03) is an intersection point then for (8, 6,) fixed, then
2F(61,6.02) is maximum at R and minimum at R = F(0,,0,6,) # R.

P grel whenever, starting at X 4+ Y and running

tr e
For Py, P, € 1,484, we have tre
along I,43.d4,i4, the point Py precedes P,. This follows from the negativity of

f'(t) = —4esin(2¢t) sinh(2ac?) sinh(2b¢%), t>0

where f(t) = tr g;g!, according to the formula for f’(¢) in the proof of Lemma 12. Since ¢ > 0,
the sign of f’ is that of —ab where a = v(w1 X)/~v(H,) and b = (w2 Y')/v(H,) when running
along the segment [ ., », starting at w; X + wyY € Ty (see the proof of [3, Corollary 14] ).
When starting from X + Y with v = o + 3 we have a < 0 and b < 0.

It follows that R’ € m(A; A4) and X +Y € w(A; Ay) are on different sides of the intersection
point R € m(A; Ay). Hence for € > 0 sufficiently small, the points F(0y,m — €,00) € (A1 A4)
and F(0;,m — ¢€,05) € m(A1 Ay) (recall that R = F(6,,7/2,0,)) are on different sides of the
intersection point R € w(A; A4).

The sets (o) and w(A; Ay) being connected it follows that there exist 0/, 8} such that

R=F(,m—¢0,).

Since (0,0), (7/2,0), (0,7/2), (7/2,7/2) & (o), it follows by Lemma 1 that R € F(K \ Ky).

For the other two cases, let us suppose without loss of generality that X; — X35 > Y] — Y5 so
that the points A; are the vertices of X + C(Y). In the case R € m(As3 Ag), consider first the
subcase m(Az) = A3 = X + waqpwsY € o, which is equivalent to

Xi4+Y:>Xo+ V3> X5+ Vi

Consider Fy(0,,0,05) = a(eX 78 0% %225 cwatswsY) Then Fy(0y,0,0;) € I belongs to
m(As Ag) if and only if det(eX k e2watpwsy [T X — 2 (X1412) I) =0 with k = %1 2p ¢/ Za %2725,

Observe that a(e® keWatswsY) = q(ev=X ky evavatssY) where ky = e Zats ¢=07a 02 Zats
is as in the case m(A; Ag). Similarly

D= det(eXkGQwa-l"BwﬁY kT €X _ 62(X1+Y2)]) — det(ewaX k1€2wa WaypwgY k? ewaX _ 62(X1+Y2)])

and we observe that the determinant D is equal to the determinant computed in the case
(A1 Ay) evaluated for variables Xs, X1, X5, Y3, Y3, Y1, —6, 01, 05 instead of X, Xs, X3, Y7,
Y2, Y5, 0, 64, 5. In particular we find without any new computation that D = 0 if and only if

sin? 0 (fo(X,Y) — fi(X,Y) sin®0; — fo(X,Y) sin® ;) = 0

where
fo = <€2X1+2Y2 _ €2X3+2Y1> <€2Y3 _ €2Y2> <€2X2 _ €2X1>7 (12)
£ = e ( 2V, 2Y2> <€2Y2 _ €2Y1> <€2X2 _ ez)@,)7 (13)
fy = 22 ( 23 €2Y1> <€2X2 _ €2X1> <€2X1 _ €2X3> (14)
f1 fo _ <€2X1 _ 2X3> ( 2V, €2Y2> <€2X1+2Y2 _ €2X2-|—2Y1>7 (15)
<€2X2 _ 1) ( 2Y, €2Y1> <€2X1+2Y2 _ €2X3-|—2Y3>7 (16)
A -I-fz <€2X1 _ 2X3> ( 2Y, €2Y1> <€2X2-|—2Y3 _ €2X1+2Y2>‘ (17)
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The inequality X7 + Y5 > X3+ Y] implies that fo > 0 and the inequality X; + Y5 > X5+ Y5
implies that fo — fi — f2 < 0. It follows as in the first case that the inequality

fo(X,Y) = fi(X,Y) sin? 0 — fo(X,Y) sin®0; = 0 (18)

admits a solution 0; = 8, = 6y € (0,7/2). We have Fi(0y, 7, 6p) = As.

The computation of the trace of e*1(01,0:02)
the same way as the computation of D boils down to the determinant of the first case. In
particular, in the cases la—b and 2a-b as in the proof of the first case,

61,6,02)

also boils down to the trace of e , in

tI’ €2F1(€1,€,€2) — tI’ €2F1(€1,0,€2) _I_ <(€2Y3 _ €2Y2) _ (€2Y3 _ €2Y1) Sin2 02> (19)

. (—(€2X2 — erl) + (€2X2 — €2X3) sin® (91> sin’ 4.

Observe that the second factor of sin®# in (19) is always positive. The fact that f, — fo > 0
implies that the case 2b is impossible. It is trivial to see that in the case 2a the factor of sin?#
in (19) is negative. It is a matter of easy verifications using (12), (14) and (15) to see that the
same 1is true in cases la and 1b.

Finally one checks using the same ideas as in the proof for m(A; A4) that the trace of g; gl
increases when we start at As and run along 7(As Ag). We conclude the proof in the same way
as for m( Ay Ay).

The subcase A3 € at (so 7(As) = wg(As) € a™) of the case R € (A3 Ag) reduces to the first
subcase if we consider [5(01,0,05) = a(evs® ¢"Zs ¢ Zatp 9225 cwpwatpwsY) = [(—0,,0, —0,).
The inequalities X; +Y; > X5+ Y] and X; + Y5 > X, + Y3 intervening in the case A3 € a* still
hold true because wg(As) € a™.

The proof in the case R € m(Az As) goes along the same lines as that for R € m( A3 As)
if we choose as a starting point As € at (or 7(As) € a¥) and we consider F3(0y,0,0,) =
a(eX eh1Za e Zavp P2 Za cwatpwa Yy (or respectively, Fy(0y,0,0,) = a(e¥eX et Za 075 02 Za gwatatpwaly —
F5(—01,0,—05)). In particular, the eigenvalues intervening in the study of F5 € m(Ay As) are
e2Xet12) " the case 2a is now impossible (since fo > f; > 0) and the trace of ¢; ¢ increases
when one starts at As (or m(As)). The reader will verify easily this last case of the proof. 1

Lemma 20 We have 0 € S if and only if 0 € T,.

Proof: If 0 € S then 0 = a(eXke¥) ie. eXke¥ = K or ke¥ = ¢7* k which means that
Y = —w X for some w € W since the abelian component of the Cartan decomposition is

unique modulo W: 0 =w X +Y €1, 1

Lemma 21 Let K = K\ Ko. Then
1. IfH eS8\ I then H=a(eXkeY) for some ke K.
2. Ifk e K and a(eXkeV) € at then a(eX ke) € S°.
Proof:

1. One notes that I = a(e® Kye¥).
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2. Suppose that k € K and a(eX ke¥) € ot (the second condition ensures the analyticity of
the map &' — a(eX k' €¥) in the neighbourhood of k).

Let P=ke?Y k7" and for Z = ay Zo + ay Zg+ asZoyp, let Ry = eXet? Pet?eX and
note that the eigenvalues of R; determine a(eX e!Z ke¥). The functions tr R; and tr R}
in turn determine the eigenvalues of R;.

Now,

tr Ry = tr(eX P e¥) + tr(e¥ [Z, Pl X))t + O(?), (20)
tr Rt = tr(e_X P! e_X) + tr(e_X [Z, P71 e_X)t + O(t?). (21)

It suffices to show that, locally, these two functions can give any direction we want using the
right choice of Z. The equations tr(e* [Z, P]eX) = 0 and tr(e=* [Z, P~!] ™) = 0 correspond
to 2 equations of planes:

(*" =) Plyar 4 (27 — 2™) Pygas + (2™ — ™) Pigas =0,  (22)
(2™ — ") Qrae®™ ay + (272 — €2™) Qas €™ ag + (" — ™) Q13 az =0  (23)

where () = P~1. It suffices to show that the two planes do not coincide. To show that the two
planes are not the same, it suffices to show that

(621’1 _ €2$2)P172(€2$1 _ 62903)@173 621’2 7£ (621’1 _ €2$3)P173(€2$1 _ 62902)@172 621’3
i.e.
P1,2 Q1,3 e’ 7’A P1,3 Ql,z e,

Note that the format of k implies that P cannot have more than 2 zeros (which are then
symmetric about the diagonal). If Piy = 0 and P35 # 0 then P53 # 0 and Pi3Q12 =
—P1273 P23 # 0 and the result is clear. The case Py 5 # 0 and P, 3 = 0 is very similar. We can
therefore assume that P; 5 and P 3 are nonzero.

If Q12 =0 or Q13 = 0, then the result is clear (we cannot have Q12 = Q13 = 0 since
that would imply P12 = P15 = 0). Suppose therefore that (12 # 0 and ()13 # 0. Now, using
P=ke*kV'and Q =ke 2V k7!, we get

PioQis—PisQua=—kiikiakis (e — %) (2 —e?¥) (2% — ).

If kyykiokis =0 then PiyQi3 = Pi3Qi2 and therefore Py Qy3e?™ # Py Qroe*®. If
ki1kiakis # 0, multiplying the first two rows of K by —1 (taking for example m k where
m = diag|—1,—1,1] € M) if necessary, we can assume that ky; k1 2k s < 0 which implies
PiyQis— Pi3Qi9 > 0 and therefore Py Qi 3€* 2P 30Q 1 2¢*™. 1

Corollary 22 The set S\ I\ da* is open in a*.

Proposition 23 Let Z = {(X,Y) € ot xot: WX+ WY Noa™ # 00U, A(X,Y) €
at xat: X;4+Y, =X, +Y,}. f X, Y €at and (X,Y) & Z then S = conv(I).
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Proof: Note that w; X +wy; Y € dat if and only if a(w; X 4+ w2 V) = 0 for some nonzero root
. This implies that at x a \ Z is dense in at x oT since we only remove a finite numbers of
hyperplanes.

We prove first that conv(/) C §. We can assume without loss of generality that F = R
(indeed, it is clear that the set S corresponding to the real case is included in the others and
that the network [ is the same).

Assume that conv(/) C § is not true. Divide conv([)\ I into open connected components
C;. Pick C; which contains Hy € S. We know that C; is the interior of a polygon with, say, n
vertices. FEach edge of (' is parallel to the direction A, of a root v € Ag. It is important to
recall that the segments composing I are reflected when they encounter a wall of a*.

We claim first that C; NS Nat # 0.

Suppose that more than two of the vertices of C; belong to da™. We first note that C; is
a triangle. On sees this by taking into account the above observations concerning the edges of
C';. The same considerations then imply that at least one of its vertices belongs to Ty. The
possibility is excluded by the hypothesis (X,Y) ¢ Z.

We can therefore assume that no more than two vertices belong to dat. Since the sum of
the angles inside C; is (n — 2) m, there must be an angle inside C; less than 7 with a vertex
V € at. The vertex V' is either an element of Ty with a sector in C; included in § (Corollary
13) or the intersection point of 2 different segments of I which is included in §° by Theorem
19.

The claim therefore follows.

Let H;y € §°NC; and let {(t), t € [0,1] be a continuous curve linking Hy to H; contained
in C; (I(0) = Hy, (1) = Hy, l(s) # (t) when s # t). One may choose [ as a segment or a finite
connected union of segments.

Let to = sup{t € [0,1] | {(t) & S} and let Hy = l(ty) € C;. By the maximality of o, in
any neighbourhood of H,, there are points of & which is closed. It follows that Hy, € & and
Hy € S\ I\ dat which is open according to Corollary 22. This contradicts the definition of ¢g
since tg — € € S for € > 0 small enough. The set {t € [0,1] | {({) € S} must be empty which
contradicts the existence of H,.

We now return to F = R, C or H. Suppose now that there exists H € S\ conv(/). We
can assume without loss of generality that H € a™. Otherwise, take an open neighbourhood
U of H € at which does not touch conv(I) and consider the open set V = F~Y(U) in K. The
set V' cannot be included in the set C' of Lemma 1 and therefore, there exists & € V' such that
F(k)e UNS®isin at (and not in conv([l)).

Consider the half line ¢ starting at 0 and passing through H. Note that by the hypothesis
and by Lemma 20, 0 ¢ S and therefore SN ¢ C at. Let Hy be the point on the compact SN/
which is the furthest away from conv([7). It is plain using Corollary 22 that such a point cannot
exist. This contradicts the existence of H € S\ conv(/). W

All that remains is to get rid of the technical condition “If X, Y € at and (X,Y) & Z7 of

Proposition 23. The following lemma is the tool we need to achieve this.

Lemma 24 A “segment” of I has the form a(e® wy K, wqe¥) where w; € W and o € Ag (the
set of positive roots). Fvery element H € conv(l) has the form

H = Z | RN a(eX wy ko, ws eY)

WxWxAg

where ko € Ko, Ty wy o € 10,1] and EWxWxAO | R

14



Proof: Clear. N
Theorem 25 If ¢ = SL(3,F) with F =R, C or H then S = conv(I).

Proof: Let Z be as in Proposition 23. If (X,Y") € Z then the result follows from Proposition
23.

Suppose then that (X,Y) € Z. Let Sxy = a(e® K¢e¥) and let Ixy be the network I
associated to X and Y.

Take (X,,,Y,) € Z such that (X,,,Y}) converges to (X,Y).

Let H = a(eX ke¥) and note that I = lim, ., a(eX" ke'). Now, for each n, we have by
Lemma 24 and by Proposition 23 that

a(eX" k eY") = Z Loy (1) a(eX" wy ko (n) we eY)

WxW

with Ty w0 (n) € [0,1] and 3y e, Dwiwsa() < 1. Since [0, 1] and each K, are compact,
by taking a subsequence if necessary, we can assume without loss of generality that 'y, ., o(n)
converges to I'y, ., o and that k,(n) converges to k, (for each o, w; and wy). This means that

a(eX k eY) = Z | . a(eX wy ko wo eY) € conv(lxy).
WxWw

Suppose now that H € conv(Ixy) i.e. H = 3w Dwiwsa a(e® wy ko wye’). Then
H =1limy oo D pew Dt wsia a(eXmwy ko wq e¥m)
EWXWXAO L'y p,0 < 1 (using Proposition 23 and the fact that Yy L'y a(eXm wy kywy e
belongs to conv([x, y,)). As before, by taking a subsequence if necessary, we can assume that
k, converges to k. Hence, H = lim, .. a(eX"w; k,wse¥) = a(e* ke¥) € Sxyy. 1

= lim, 0o a(e®™ wy k, wy e¥™) with
Yn)

Recall that the singular values of a complex square matrix A are the non-negative square
roots of the eigenvalues of the Hermitian matrix AA*. It is useful to note that if A is Hermitian
(in particular if A is real symmetric) then its singular values are the absolute values of its
eigenvalues. When A is Hermitian positive definite its eigenvalues and singular values coincide.

Theorem 26 Let A and B be two complex matrices of size 3 X 3 with singular values a; >
ag > az > 0 and by > by > by > 0 respectively. Let o1 > o9 > o3 be the singular values of the
product C = AB. Then

max{aibs, azb;} < o1 < arby, (

max{azbs, asby} < oy < min{azby, a1by}, (
asbs < o3 < min{agbl, Glb:a}, (

o3 < axby < oy. (

Conversely, for any square 3 x 3 matriz C with singular values satisfying equations (24)-(27),
there exist matrices A and B with singular values a; > ay > a3 > 0 and by > by > b3 > 0 such
that AB = C'.

If C is real then A and B can be chosen to be real.
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Proof: Suppose first that A and B are non-singular. In this case we can assume without loss

of generality that |[A] = 1 = |B| so that A, B € SL(3,C). We have then A = k; ¢X ky and

B = kye¥ ky with k; € SU(3), ¢« < 4 and ¢* = diag[ay, as, as], ¢ = diag[by, by, b3]. Therefore,

AB = kyeXkykaeY by and e(e™ hahae?) — diag[oy, 02, 03). The result follows by Theorem 25.
The general case follows by a continuity argument. B

Remark 27 The conditions (24)—(27) in Theorem 26, when the considered matrices have the

determinant 1, have a nice geometric interpretation
[Inoy,Inoy, Inos] € conv(l)

where [ is constructed in the Proposition 15 starting from X = [Inaj,Inag,Inaz] and Y =

[lﬂ bl, In bz, In bg] .

3 Conclusion

Naturally, the network I can be defined for any symmetric space of noncompact type. In the
other rank 2 cases, the difficulty is not so much with the the result corresponding to Proposition
23 but what to do with the “intersection points”. When the rank is greater than 2, matters
are even more complicated.

In [3] we showed that px y is absolutely continuous with respect to the Haar measure on A
whenever X, Y € at. We described other situations when X or Y where in da* where this still
held and others when it did not. However, we did not find necessary and sufficient conditions
on X and Y to settle this question. With a convexity theorem such as we have found in this
paper, the situation becomes clearer. It is clear that px y is absolutely continuous if and only
if the network I does not live in a hyperplane of a. In fact, we can conclude that pxy is
absolutely continuous if and only if the network W X + W'Y does not live in a hyperplane of
a. A corresponding result for all ranks would be very useful and we conjecture it.

References

[1] M. Flensted-Jensen and T. Koornwinder. The convolution structure for Jacobi expansions,

Ark. Mat. 10 (1973), 245-262.

[2] P. Graczyk and P. Sawyer. The product formula for the spherical functions on symmetric
spaces in the complex case, 2000, to appear in the Pacific Journal of Mathematics.

[3] P. Graczyk and P. Sawyer.The product formula for the spherical functions on symmetric
spaces of noncompact type, preprint n°® 124, Département de Mathématiques, Université
d’Angers, January 2001.

[4] A. Hba. Analyse harmonique sur SL(3,H), C.R. Acad. Sci. Paris, t. 305, Série I, 77-80,
1987.

[5] S. Helgason. Differential Geometry, Lie Groups and Symmetric spaces, Academic Press,
New York, 1978.

[6] S. Helgason. Group and Geometric Analysis, Academic Press, New York, 1984.

16



[7] T. Koornwinder. Jacobi polynomials, 1l. An analytic proof of the product formula, SIAM
J. Math. Anal. Vol. 5, No. 1 (1974), 125-137.

[8] A. A. Markus, Figenvalues and singular values of the sum and product of linear operators,

Uspehi Mat. Nauk 19 (1934), 93-123; Russian Mathematical Surveys 19 (1964), 91-119.

[9] P. Sawyer. The heat equation on spaces of positive definite matrices, Canadian Journal of

Mathematics, Volume 44, Number 3, 1992, 624-651.

[10] P. Wigner, On a generalization of Fuler’s angles in “Group theory and its applications”
edited by Ernest M. Loebl, Academic Press, New York-London, 1968.

17



