
Some convexity results for the Cartan decompositionP. Graczyk � and P. Sawyer yAbstractIn this paper, we consider the set S = a(eX K eY ) where a(g) is the abelian part inthe Cartan decomposition of g. This is exactly the support of the measure intervening inthe product formula for the spherical functions on symmetric spaces of noncompact type.We give a simple description of that support in the case of SL(3;F) where F = R, C orH. In particular, we show that S is convex.We also give an application of our result to the description of singular values of aproduct of two arbitrary matrices with prescribed singular values.1 IntroductionLet G be a semisimple noncompact connected Lie group with �nite center and K a maximalcompact subgroup of G and X = G=K the corresponding Riemannian symmetric space ofnoncompact type. We have a Cartan decomposition g = k+ p and we choose a maximal abeliansubalgebra a of p. In what follows, � corresponds to the root system of g and �+ to thepositive roots. This implies that we have chosen a set of simple positive roots �1, : : : , �rwhere r = dim a is the rank of the symmetric space. We have the root space decompositiong = g0 +P�2� g�. Recall that k, the Lie algebra of K, can be described ask = span fX� + �(X�) : X� 2 g�; � 2 �+ [ f0ggwhere � is the Cartan automorphism. Let n =P�2�+ g� and �n =P�2�+ g�� =P�2�+ �(g�).Denote the groups corresponding to the Lie algebras a, n and �n by A, N and �N respectively.We have the Cartan decomposition G = K AK and the Iwasawa decomposition G = K AN .Let a+ = fH 2 A : �(H) > 0 8 � 2 �+g and A+ = exp(a+). In particular, for any g 2 G,g = k1 ea(g) k2 where a(g) 2 a+ is uniquely determined by g.If � is a complex-valued functional on a, the corresponding spherical function is��(eH) = ZK e(i ���)(H(eH k)) dkwhere g = k eH(g) n 2 K AN and � = (1=2) P�2�+ m� � (m� denotes the multiplicity ofthe root �). A spherical function, like any K-biinvariant function, can also be considered asa K-invariant function on the Riemannian symmetric space of noncompact type X = G=K.Naturally, such a function is completely determined by its values on A (or on A+). The books[5, 6] constitute a standard reference on these topics.In [6, (32), page 480], Helgason shows that a Weyl-invariant measure �X;Y exists on the Liealgebra a such that ��(eX)��(eY ) = Za ��(eH) d�X;Y (H)�Author supported by the European Commission (TMR 1998-2001 Network Harmonic Analysis)yResearch supported by a grant from NSERC.Key words: convexity theorems, Cartan decomposition, spherical functions, product formula, semisimple Liegroups, singular valuesAMS Subject Classi�cation: 43A90, 53C35, 15A18 1



(unlike us, Helgason states his results at the group level).It is known [6] that ��(eX)��(eY ) = ZK ��(eX k eY ) dk:The measure �X;Y satis�es thenZK f(a(eX k eY )) dk = Za f(eH) d�X;Y (H) (1)for all continuous functions f which are biinvariant under the action of K.The support of the measure �X;Y is included in C(X) + C(Y ) where C(H) is the convexhull of the orbit of H under the action of the Weyl group W .The natural question whether the measure �X;Y is absolutely continuous with respect tothe Lebesgue measure on a, i.e. whether we have a \product formula"��(eX)��(eY ) = Za ��(eH) k(H;X; Y ) dH (2)was answered positively when X 2 a+ or Y 2 a+ by Flensted-Jensen and Koornwinder ([1, 7])in the rank one case and by the authors ([3]) in the general case. Very little is known about theproperties of this density, in particular its support, except the rank one case and the complexcase.In rank 1 case the support of �X;Y was computed by Flensted-Jensen and Koornwinder([1, 7]). This is the union of the segment [jX � Y j;X + Y ] and its re
ection with respect to 0(X;Y � 0).In [2], we found the support of �X;Y in the case of SL(3;C):supp (�X;Y ) \ a+ = (C(X) + Y ) \ (X + C(Y )) \ fH : H3 � X2 + Y2 � H1g:This was obtained by using an explicit expression for the density of the measure �X;Y .The objective of this paper is to study the support of the W -invariant measure �X;Y or,equivalently, the intersection of supp �X;Y with the closed positive Weyl chamber a+.It is clear by (1) that the support of �X;Y is included in the union of the translates ofa(eXK eY ) under the action of the Weyl group. These sets are in fact equal. We recall �rst aresult of [3].Lemma 1 Suppose X, Y 2 a+. Let F : K 7! a+ de�ned by F (k) = a(eX k eY ). Then thereexists a closed set C � K of Haar measure 0 such that F is analytic and dF is surjective onK n C.Proof: This is a consequence of [3, Lemma 8].Theorem 2 Suppose X, Y 2 a+. Then supp(�X;Y ) \ a+ = a(eXK eY ). Consequently, supp(�X;Y ) = W � a(eXK eY ).Proof: Let F and C be as in Lemma 1. Suppose that H 2 a(eXK eY ) and let U be anyneighbourhood of H in a+. Then V = F�1(U) is an open set which cannot be included in C so2



there is a nonempty open set V0 � V such that F is analytic and dF is surjective on V0. If werefer to (1), it follows easily that H 2 supp (�X;Y ).In this paper, we compute S = a(eX K eY ) (and therefore, by Theorem 2, the support of�X;Y ), for some non-exceptional rank 2 Riemannian symmetric spaces. We aim to gain a bettercomprehension of harmonic analysis on these spaces and we believe that our results provideuseful indications for the general symmetric space case (see [4, 9]). In Section 2, we give asimple geometric description of the set a(eXK eY ) for G = SL(3;F) where F = R, C or H(the quaternions).In all these cases S = a(eXK eY ) is the convex hull of the set I described in De�nition 9.Our result for the Cartan decomposition is a counterpart of the Kostant convexity theorem forthe Iwasawa decomposition.We end with an application of our result which gives necessary and su�cient inequalities onthe singular values of the product of two complex (or real) 3�3 matrices. Only some necessaryconditions (Gelfand-Naimark inequality, see [8]) were known before.2 The set S = a(eX K eY ) on SL(3;F)De�nition 3 Let W = M 0=M be the Weyl group (M 0 � K is the normalizer of a in K whileM � K is its centralizer). If � is a root then s� 2 W is the re
ection with respect to thehyperplane f� = 0g.When appropriate we will not distinguish between w 2 W and w 2 M 0 � K. On the otherhand, to denote the action of w on X 2 a, we will write wX. We then have ewX = w eX w�1([5, VII, Propoposition 2.2]).We will write T = W X +W Y = fw1X + w2 Y : w1; w2 2 Wg and T0 = T \ a+.We de�ne S = a(eXK eY ).If � is a nonzero root then K� will denote the subgroup of K with Lie algebra k� = fX� +�(X�) : X� 2 g�g.Lemma 4 If w1X +w2 Y 2 a+ then F (w�11 w2) = w1X +w2 Y . In particular we have T0 � S.Proof: If w1X + w2 Y 2 T0 then a(eX w�11 w2 eY ) = a(ew1Xew2 Y ) = w1X + w2 Y .Denote by B(�; �) the Killing form on g. De�ne A� 2 a by B(H;A�) = �(H) for all H 2 a.Denote A0� = A�=�(A�) so that �(A0�) = 1.Lemma 5 Let � be a nonzero root. Write Z� = X� + �(X�) for X� 6= 0 2 g�. Then we haveexA0� et Z� ey A0� = k1(t) esA0� k2(t); t 2 Rwith k1(t), k2(t) 2 K� and s taking all values from the closed interval between jx�yj and jx+yj.Proof: This is a rank-one reduction (the algebra generated by A�, X� and �(X�) being iso-morphic to sl(2;R)). We use then [1, page 256].De�nition 6 Let C1; : : : ; CjW j � a be pairwise disjoint open Weyl chambers, C1 = a+. Foreach i, there exists a unique element wi 2 W such that wi(Ci) = a+ ([5, Ch.VII]). We de�nethe projection � of a to a+ by �(H) = wi(H) when H 2 Ci:3



Note that the de�nition still holds when H 2 Ci \ Cj ([5, Ch.VII]). When X 2 a, we havea(eX) = �(X).As in [6], let us denote by fH1;H2g the closed segment connecting H1 2 a and H2 2 a.When it does not lead to a misunderstanding, we will also write fH1;H2g = H1H2.Proposition 7 Suppose w1X+w2 Y 2 T0 and let � be a positive root. Then the image I�;w1;w2of t 7! a(ew1X etZ� ew2 Y ) is the projection � of:1. the segment I = fw1X + w2 Y ; w1X + s�(w2 Y )g if �(w1X) � �(w2 Y ),2. the segment I = fw1X + w2 Y ; s�(w1X) + w2 Y g if �(w1X) � �(w2 Y ).Proof: Note that �(w1X + w2 Y ) � 0 since w1X + w2 Y 2 a+. Now using Lemma 5 and thefact that K� centralizes the elements of a which are in the hyperplane � = 0, we havea(ew1X etZ� ew2 Y ) = a(ew1X��(w1X)A0� e�(w1X)A0� etZ� e�(w2 Y )A0� ew2 Y��(w2 Y )A0�)= a(ew1X��(w1X)A0�k1(t) esA0�k2(t) ew2 Y��(w2 Y )A0�)= a(k1(t) ew1X��(w1X)A0�esA0�ew2 Y ��(w2 Y )A0� k2(t))= a(ew1X��(w1X)A0�+w2 Y��(w2 Y )A0�+sA0�)with s between �(w1X) + �(w2 Y ) and j�(w1X)� �(w2 Y )j.Remark 8 The image I�;w1;w2 belongs to S since a(ew1X etZ� ew2 Y ) = a(eX w�11 etZ� w2 eY ). Itdoes not depend on the choice of 0 6= Z� 2 k�. The set I�;w1;w2 is a segment or is a connected�nite union of segments, the original segment starting at w1X +w2 Y being re
ected each timeit meets a wall of a+.De�nition 9 Let I � S be de�ned asI = [�>0;w1;w22W I�;w1;w2 ;the network of all segments composing the images I�;w1;w2 created according to Proposition 7.De�nition 10 Let K0 = [�>0W K�W .Remark 11 Note that when the Weyl group acts transitively over the roots (which is true inthe case of the root system An) then W K�W does not depend on the choice of nonzero root,i.e. K0 = W K�W for any �xed root �. Actually, when � and � are two di�erent roots andAd(w)� = �, then Ad(w)Z� 2 k�.Note also that a(eX k eY ) 2 I if k 2 K0. Indeed, a(ew1X et Z� ew2 Y ) = a(eX w�11 etZ� w2 eY ).A \typical" example of the network I is given in Figure 1.If I = fH1;H2g is a closed segment in a we denote by I� = I n fH1H2g, the segment Ideprived of its endpoints. We extend the same notation for a �-projection of a segment:�(I)� := �(I�):The projections of H1 and H2 (the vertices of I) by � will be called the vertices of �(I). GivenZ 2 k�, we denote by wZ;w1;w2 the Weyl group element such thata(ew1X eZ ew2 Y ) = �(H) = wZ;w1;w2Hwith H 2 I as in Proposition 7. 4
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Figure 1: The network I inside a+ (the points of T0 are shown as O)Lemma 12 Let 0 6= X� 2 g�, H� = [X�; �(X�)] and Z� = X� + �(X�). Suppose that w1X +w2 Y 2 a+.1. If Z� is such that a(ew1X eZ� ew2 Y ) 2 I��;w1;w2 \ a+ then for jtj small enough,a(ew1X etZ� eZ� ew2 Y ) = a(ew1X eZ� ew2 Y ) + 
1 t wZ�;w1;w2 H� +O(t2) with 
1 6= 0.2. For jtj small enough, a(ew1X et Z� ew2 Y ) = w1X + w2 Y + 
2 t2H� +O(t3) with 
2 6= 0.Proof: Similarly as in the proof of [3, Corollary 14] or in the proof of Proposition 7 above, wemay write w1X = aH� +X 0 and w2 Y = bH� + Y 0 where �(X 0) = �(Y 0) = 0. The fact that�(w1X) 6= 0 and �(w2 Y ) 6= 0 implies that a 6= 0 and b 6= 0. Using again the fact that eX 0 andeY 0 commute with elements of K�, we see that in order to prove the 1. and 2. of the lemma,it is enough to compute the limited Taylor expansion of eaH� etZ� ebH� at t = 1 and at t = 0respectively.The Lie algebra generated by H�, X� and �(X�) is isomorphic to sl(2;R). Indeed, X�corresponds to the matrix cE1;2 with c = p��(H�)=2 6= 0, �(X�) to �cE2;1 and H� to�c2 (E1;1 � E2;2) (see [3, Proposition 13]). Note that the constant c may take any strictlypositive value when Z� (and therefore X�) varies.We now work in SL(2;R). Let eaH� etZ� ebH� correspond to gt = k1(t) ea(t)c2 (E1;1�E2;2) k2(t)(the Cartan decomposition in SL(2;R)). We basically want the limited expansion of a(t) sincea(ew1X e(t+h)Z� ew2 Y ) = a(ew1X etZ� ew2 Y ) + a0(t)hwH� + a00(t)h2wH� +O(h3)where w 2 W comes from an eventual projection to a+.Note that a(0) = ja+ bj > 0. We computef(t) : = tr gt gTt = 2 sin2(c t) cosh(2(a� b)c2) + 2 cos2(c t) cosh(2(a+ b)c2);f 0(t) = �4 c sin(2 c t) sinh(2 a c2) sinh(2 b c2);f 00(t) = �8 c2 cos(2 ct) sinh(2 a c2) sinh(2 b c2)and note that f(t) = 2 cosh(2 c2 a(t)). This means that f 0(t) = �4 sinh(2 c2 a(t)) a0(t) andtherefore that a0(0) = 0. Similarly, computing f 00(0) shows that a00(0) 6= 0. This proves 2.5



Now, a0(t) = 0 implies f 0(t) = 0. On the other hand, f 0(t) = 0 if and only if 2 sin(c t) cos(c t) =0. This implies that f(t) = 2 cosh(2 (a� b) c2) i.e. a(t) = ja� bj or f(t) = 2 cosh(2 (a + b) c2)i.e. a(t) = ja+ bj.It follows that the function a(t) has only two extremal values ja � bj and ja + bj. We notonly prove directly the result of [1] on the form of S in rank 1 case but we show that the valuesof the function a(t) run over the whole projected segment I�;w1;w2 from one vertex to another,without any interior re
ection points.Corollary 13 Suppose H0 2 T0 \ a+. Then any point in any sector of less than � with vertexH0 and edges in I which is close enough to H0 belongs to S (refer to Figure 1).Proof: We have H0 = a(ew1X ew2 Y ) and consider g(t1; t2) = a(ew1X et1 Z�1 et2Z�2 ew2 Y ) where�1 and �2 correspond to the sides of the sector. We have g(t1; t2) = H0+ 1H�1 t21+ 2H�2 t22+O(ktk3) with  1 6= 0 and  2 6= 0. The absence of a mixed term in t1 t2 follows from theinvariance g(�t1;�t2) = g(t1; t2) as shown in [3, Lemma 17].We will say that R is an intersection point in I if R 2 I�
;w1;w2 \ I�
0;w01;w02 with I�
;w1;w2 6=I�
0;w01;w02 (recall that I�
;w1;w2 is equal to I
;w1;w2 without its extremities). In particular, R 62 T0.Lemma 14 Given any X, Y 2 a+, the set X +W Y intersect at most 3 Weyl chambers or theset W X + Y intersect at most 3 Weyl chambers (the Weyl chambers a+, s� a+ and s� a+).Proof: Let A1, : : : , A6 be the points of X + W Y starting from A1 = X + Y and goingclockwise.Then X +W Y intersect more than 3 Weyl chambers if and only if A4 is below �+ � = 0i.e. if and only if (�+�)(A4) < 0. Noting that A4 = [X1;X2;X3]+ [Y3; Y2; Y1], (�+�)(A4) < 0means that X1 + Y3 < X3 + Y1 i.e. X1 �X3 < Y1 � Y3.Applying the same reasoning to Y +W X, we can conclude that the corresponding vertexis above � + � = 0 i.e. that Y +W X intersects at most 3 Weyl chambers.Let the points A1, : : : , A6 be as in the proof of Lemma 14 in the case X1 �X3 > Y1 � Y3and let it be the elements of Y +W X otherwise.Let C(X;Y ) = � @(X + C(Y )) [A1A4 [A2A5 [ A3A6 if X1 �X3 > Y1 � Y3,@(Y + C(X)) [A1A4 [A2A5 [ A3A6 otherwise .In the following Proposition we explain in which way, by a simple geometric transformation,it is possible to get the network I from the set C(X;Y ).Proposition 15 Let C 0(X;Y ) = �(C(X;Y )) and D = �(fAigi=1;:::;6) (the projection � wasde�ned in the De�nition 6). Remove any segment of C 0(X;Y ) joining a point of D and thewall f� = 0g or f� = 0g. Then the image of C(X;Y ) by all these transformations is equal toI and T0 = D.Remark 16 Suppose that the set C(X;Y ) intersects the wall f� = 0g of a+. The projection �intervening in the Proposition 15 consists in \folding" symmetrically along � = 0 the portionwhich is in f� < 0g into a+. The resulting set is (C(X;Y ) [ s�C(X;Y )) \ a+.Apply the analogous \folding" operation if the set C(X;Y ) intersects the wall f� = 0g ofa+. We obtain in this way the set C 0(X;Y ).For the geometrical meaning of the Proposition 15 refer to Figure 2 (the vertical axis � = 0and the axis � = 0 are shown as doted lines, the points of T0 are marked by � and the pointA1 = X + Y is always the upper right vertex). 6
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Figure 2: C(X;Y ), C(X;Y ) [ s�(C(X;Y ) \ f� < 0g), C 0(X;Y ) and IProof: We can assume without loss of generality that X1�X3 > Y1�Y3. Call the constructedset J . If we consider Proposition 7, it is clear that J � I.Let H = w1X + w2 Y 2 T0 2 a+. We only need to show that H is one of the Ai's or are
ection of one of the Ai's by s� or s�. In other words, we have to show that w1 2 fid; s�; s�g.The possibilities to eliminate are w1 = s� s�, w1 = s� s� and w1 = s� s� s�. In the �rst and thirdcase, the �rst entry of H would be H1 = X3+ Yi. There is one entry of H of the form X1+ Yj.Since H 2 a+, we have 0 � X3+Yi�X1�Yj = Yi�Yj � (X1�X3) � Y1�Y3� (X1�X3) < 0which is absurd. In the second case, the last component of H is X1. A similar reasoning alsoleads to a contradiction.Lemma 17 All the intersection points belong to �(A1A4), �(A2A5) or �(A3A6).Proof: We can assume without loss of generality that X1�X3 > Y1�Y3, that is, that X+C(Y )intersects at most 3 Weyl chambers and therefore that C(X;Y ) = @(X+C(Y ))[A1A4[A2A5[A3A6.o We distinguish the following cases:(1) X + C(Y ) � �a+.(2) X + C(Y ) intersects a+ and f� < 0g but not f� < 0g.(2') X + C(Y ) intersects a+ and f� < 0g but not f� < 0g.(3) X + C(Y ) intersects a+, f� < 0g and f� < 0g.The Lemma is clear in case (1). The intersection points are then the vertices of the centraltriangle of C(X;Y ). They are given by R1 = [X1 + Y2;X2 + Y2; �], R2 = [�;X2 + Y2;X3 + Y2]and R3 = [X1 + Y2; �;X3 + Y2] (the coordinate � is determined by the fact that the trace iszero) Refer to Figure 3 (on this and on the following �gures the set I is drawn in boldface).In the case (2), we verify that only one of the points Ri, say R0, may not belong to a+. Infact R0 is equal to R2 or R3. By the construction of I given in the Proposition 15, it followsthat �(R0) is not an intersection point.The new intersection points may only appear when the re
ected part s�(C(X;Y )\f� < 0g)intersects some segments of C(X;Y ) \ a+ di�erent from the exterior edges of C(X;Y ). Thesesegments are among �(A1A4), �(A2A5) and �(A3A6). The case (2') is similar by symmetry.Refer to Figure 4. 7
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OFigure 4: Case (2)Case (3) boils down to considering separately cases (2) and (2') because the parts of C(X;Y )which are re
ected by s� and s� while constructing I are disjoint. This follows from the factthat the hypothesis X1 � X3 > Y1 � Y3 is equivalent to the inequality X1 + Y3 > X3 + Y1between the second entries of A05 = �(A5) = s�(A5) and A03 = �(A3) = s�(A5), which in turnmeans that the point A05 is situated above and the point A03 below a line H2 = c. Hence thisline separates the sets �(C(X;Y ) \ f� < 0g) and �(C(X;Y )\ f� < 0g). Refer to Figure 5.
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OFigure 5: Case (3)Lemma 18 and Theorem 19 will only apply in the case of F = R. As we will see inProposition 23, this will not be an impediment in proving our main result for SL(3;F).Lemma 18 We are now restricting ourselves to the case F = R. Let k = e�1 Z�+� e� Z� e�2 Z�+� .Then k 2 K0 if and only if one of the following is true.1. sin � = 0.2. sin � = �1 and sin �1 = 0 or �1. 8



3. sin � = �1 and sin �2 = 0 or �1.4. sin �1 = �1 or 0 and sin �2 = �1 or 0.Proof: It is easy to check that these conditions give elements of K0.To prove the inverse statement, let us assume that k 2 K0 and sin � 6= 0. Writing theproduct k = e�1 Z�+� e� X� e�2 Z�+� explicitly, we havek = 24 cos �1 cos � cos �2 � sin �1 sin �2 � cos �1 sin � � cos �1 cos � sin �2 � sin �1 cos �2sin � cos �2 cos � � sin � sin �2sin �1 cos � cos �2 + cos �1 sin �2 � sin �1 sin � � sin �1 cos � sin �2 + cos �1 cos �2 35 :The elements of K0 are obtained from the elements of K�, K� and K�+� by permutationsof rows and columns. It follows that any line and any column of k contains at least one zero.Also, there is one line and one column with elements f�1; 0; 0g. It follows that there is at leasta 0 on the second row.Suppose that, say, cos � = 0. Considering di�erent possible situations of �1 we deduce thatthere is another 0 on the same column or row. This forces cos �1 = 0 or cos �2 = 0 or sin �1 = 0or sin �2 = 0.The other cases are handled in much the same way.The technical condition in the following theorem will be overcome in the �nal theorem onthe form of S.Theorem 19 We are restricting ourselves to the case F = R. Suppose that Xi+Yj 6= Xp+Yqwhenever (i; j) 6= (p; q). If R 2 a+ is an intersection point in I then R 2 F (K nK0).Proof: According to Lemma 17, we have 3 cases. We will assume �rst that R 2 �(A1A4).Let F (�1; �; �2) = a(eX e�1 Z�+� e� Z� e�2 Z�+� eY ) 2 I . Then F (�1; �; �2) 2 �(A1A4) if andonly if e2X2+2Y2 is an eigenvalue of the matrix eX k e2Y kT eX where k = e�1 Z�+� e� Z� e�2 Z�+� .Setting det(eX k e2Y kT eX � e2X2+2Y2 I) = 0, we see after tedious elementary computations(which may be very quickly done using for example Maple) that F (�1; �; �2) belongs to �(A1A4)if and only if sin2 � (f0(X;Y )� f1(X;Y ) sin2 �1 � f2(X;Y ) sin2 �2) = 0where f0 = �e2X2+2Y2 � e2X3+2Y3� �e2Y1 � e2Y2� �e2X1 � e2X2� ; (3)f1 = e2X2 �e2Y1 � e2Y2� �e2Y2 � e2Y3� �e2X1 � e2X3� ; (4)f2 = e2Y2 �e2Y1 � e2Y3� �e2X1 � e2X2� �e2X2 � e2X3� : (5)We will also use f1 � f0 = �e2X2 � e2X3� �e2Y1 � e2Y2� �e2X2+2Y2 � e2X1+2Y3� ; (6)f2 � f0 = �e2X1 � e2X2� �e2Y2 � e2Y3� �e2X2+2Y2 � e2X3+2Y1� ; (7)f1 + f2 � f0 = �e2X2 � e2X3� �e2Y2 � e2Y3� �e2X1+2Y1 � e2X2+2Y2� : (8)9



We are interested in the conditionf0(X;Y )� f1(X;Y ) sin2 �1 � f2(X;Y ) sin2 �2 = 0: (9)Let � = f(x; y) : f1 x+f2 y = f0; 0 � x; y � 1g. With the restriction that �1, �2 2 [0; �=2],let (�1; �2) =  (x; y) = (arcsinpx; arcsinpy):Since  is continuous, the set  (�) is connected. It follows that the set � of points (�1; �2) 2[0; �=2]2 such that (9) holds is connected.The fact that f0 � f1 � f2 < 0 implies that there is a solution of (9) with �1 = �0 = �2,�0 2 (0; �=2). In particular, � and  (�) are not empty. Note then that F (�0; �; �0) = X + Y .Now we computetr e2F (�1;�;�2) = e2X1[cos2 �1(d cos2 � + e2Y2 sin2 �) + 12 cos � sin(2�1) sin(2�2)(e2Y3 � e2Y1) + f sin2 �1]+ e2X2[d sin2 � + e2Y2 cos2 �]+ e2X3[sin2 �1(d cos2 � + e2Y2 sin2 �)� 12 cos � sin(2�1) sin(2�2)(e2Y3 � e2Y1) + f cos2 �1]where we denote d = e2Y1 cos2 �2+ e2Y3 sin2 �2 and f = e2Y1 sin2 �2+ e2Y3 cos2 �2. It follows thattr e2F (�1;�;�2) = tr e2F (�1 ;0;�2) + 12 (e2X1 � e2X3) (e2Y1 � e2Y3) sin(2 �1) sin(2 �2) (1� cos �)+ �(e2Y1 � e2Y2)� (e2Y1 � e2Y3) sin2 �2� (10)� ��(e2X1 � e2X2) + (e2X1 � e2X3) sin2 �1� sin2 �:Let R be as in the hypothesis. Recall that SO(3) = K�+�K�K�+� (see [10]). Since R isan intersection point in I we can write R = F (k) with k = e�1 Z�+� e� Z� e�2 Z�+� and sin � 6= 0(basically, because R belongs also to the segment emanating from another element of T0). Thismeans that (9) is satis�ed. Condition (4) of Lemma 18 cannot be ful�lled since f0, f0 � f1,f0 � f2 and f0 � f1 � f2 are nonzero. Hence one of remaining conditions (2){(3) of Lemma 18is veri�ed. Therefore, in addition to (9), one of the following holds:1. sin � = �1 and (a) sin �1 = 0 or (b) sin �1 � 1.2. sin � = �1 and (a) sin �2 = 0 or (b) sin �2 = 0� 1.In all possible cases, (10) becomestr e2F (�1;�;�2) = tr e2F (�1;0;�2) + �(e2Y1 � e2Y2)� (e2Y1 � e2Y3) sin2 �2� (11)� ��(e2X1 � e2X2) + (e2X1 � e2X3) sin2 �1� sin2 �:Using (9), these cases correspond to1a. sin2 �1 = 0 and sin2 �2 = f0=f21b. sin2 �1 = 1 and sin2 �2 = (f0 � f1)=f22a. sin2 �1 = f0=f1 and sin2 �2 = 0 10



2b. sin2 �1 = (f0 � f2)=f1 and sin2 �2 = 1:Using (3){(7), we observe that the coe�cient of sin2 � = 1 in (11) is strictly positive in all thesecases. This means that if R = F (�1; �; �2) is an intersection point then for (�1; �2) �xed, thentr e2F (�1;�;�2) is maximum at R and minimum at R0 = F (�1; 0; �2) 6= R.For P1, P2 2 I�+�;id;id, we have tr eP1 > tr eP2 whenever, starting at X + Y and runningalong I�+�;id;id, the point P1 precedes P2. This follows from the negativity off 0(t) = �4 c sin(2 ct) sinh(2 a c2) sinh(2 b c2); t > 0where f(t) = tr gtgTt , according to the formula for f 0(t) in the proof of Lemma 12. Since c > 0,the sign of f 0 is that of �a b where a = 
(w1X)=
(H
 ) and b = 
(w2 Y )=
(H
) when runningalong the segment I
;w1;w2 starting at w1X + w2 Y 2 T0 (see the proof of [3, Corollary 14] ).When starting from X + Y with 
 = �+ � we have a < 0 and b < 0.It follows that R0 2 �(A1A4) and X+Y 2 �(A1A4) are on di�erent sides of the intersectionpoint R 2 �(A1A4). Hence for � > 0 su�ciently small, the points F (�0; � � �; �0) 2 �(A1A4)and F (�1; � � �; �2) 2 �(A1A4) (recall that R = F (�1; �=2; �2)) are on di�erent sides of theintersection point R 2 �(A1A4).The sets  (�) and �(A1A4) being connected it follows that there exist �01; �02 such thatR = F (�01; � � �; �02):Since (0; 0), (�=2; 0), (0; �=2), (�=2; �=2) 62  (�), it follows by Lemma 1 that R 2 F (K nK0).For the other two cases, let us suppose without loss of generality that X1�X3 > Y1�Y3 sothat the points Ai are the vertices of X + C(Y ). In the case R 2 �(A3A6), consider �rst thesubcase �(A3) = A3 = X + w�+� w� Y 2 a+, which is equivalent toX1 + Y2 > X2 + Y3 > X3 + Y1:Consider F1(�1; �; �2) = a(eX e�1 Z� e�Z� e�2 Z� ew�+� w� Y ). Then F1(�1; �; �2) 2 I belongs to�(A3A6) if and only if det(eX k e2w�+�w �Y kT eX � e2 (X1+Y2) I) = 0 with k = e�1 Z� e� Z� e�2 Z� .Observe that a(eX kew�+� w�Y ) = a(ew�X k1 ew� w�+� w� Y ) where k1 = e�1 Z�+� e�� Z� e�2 Z�+�is as in the case �(A1A4). SimilarlyD = det(eXke2w�+� w�Y kT eX � e2 (X1+Y2)I) = det(ew�X k1e2w� w�+� w� Y kT1 ew�X � e2 (X1+Y2)I)and we observe that the determinant D is equal to the determinant computed in the case�(A1A4) evaluated for variables X2, X1, X3, Y3, Y2, Y1, ��, �1, �2 instead of X1, X2, X3, Y1,Y2, Y3, �, �1, �2. In particular we �nd without any new computation that D = 0 if and only ifsin2 � (f0(X;Y )� f1(X;Y ) sin2 �1 � f2(X;Y ) sin2 �2) = 0where f0 = �e2X1+2Y2 � e2X3+2Y1� �e2Y3 � e2Y2� �e2X2 � e2X1� ; (12)f1 = e2X1 �e2Y3 � e2Y2� �e2Y2 � e2Y1� �e2X2 � e2X3� ; (13)f2 = e2Y2 �e2Y3 � e2Y1� �e2X2 � e2X1� �e2X1 � e2X3� (14)f1 � f0 = �e2X1 � e2X3� �e2Y3 � e2Y2� �e2X1+2Y2 � e2X2+2Y1� ; (15)f2 � f0 = �e2X2 � e2X1� �e2Y2 � e2Y1� �e2X1+2Y2 � e2X3+2Y3� ; (16)f1 + f2 � f0 = �e2X1 � e2X3� �e2Y2 � e2Y1� �e2X2+2Y3 � e2X1+2Y2� : (17)11



The inequality X1+Y2 > X3+Y1 implies that f0 > 0 and the inequality X1+Y2 > X2+Y3implies that f0 � f1 � f2 < 0. It follows as in the �rst case that the inequalityf0(X;Y )� f1(X;Y ) sin2 �1 � f2(X;Y ) sin2 �2 = 0 (18)admits a solution �1 = �2 = �0 2 (0; �=2). We have F1(�0; �; �0) = A3.The computation of the trace of e2F1(�1;�;�2) also boils down to the trace of e2F (�1;�;�2), inthe same way as the computation of D boils down to the determinant of the �rst case. Inparticular, in the cases 1a{b and 2a{b as in the proof of the �rst case,tr e2F1(�1;�;�2) = tr e2F1(�1;0;�2) + �(e2Y3 � e2Y2)� (e2Y3 � e2Y1) sin2 �2� (19)� ��(e2X2 � e2X1) + (e2X2 � e2X3) sin2 �1� sin2 �:Observe that the second factor of sin2 � in (19) is always positive. The fact that f2 � f0 > 0implies that the case 2b is impossible. It is trivial to see that in the case 2a the factor of sin2 �in (19) is negative. It is a matter of easy veri�cations using (12), (14) and (15) to see that thesame is true in cases 1a and 1b.Finally one checks using the same ideas as in the proof for �(A1A4) that the trace of gt gTtincreases when we start at A3 and run along �(A3A6). We conclude the proof in the same wayas for �(A1A4).The subcase A3 62 a+ (so �(A3) = w�(A3) 2 a+) of the case R 2 �(A3A6) reduces to the �rstsubcase if we consider F2(�1; �; �2) = a(ew�X e�1Z� e� Z�+� e�2 Z� ew� w�+� w�Y ) = F1(��1; �;��2).The inequalities X1+Y2 > X3+Y1 and X1+Y2 > X2+Y3 intervening in the case A3 2 a+ stillhold true because w�(A3) 2 a+.The proof in the case R 2 �(A2A5) goes along the same lines as that for R 2 �(A3A6)if we choose as a starting point A5 2 a+ (or �(A5) 2 a+) and we consider F3(�1; �; �2) =a(eX e�1 Z� e� Z�+� e�2 Z� ew�+� w� Y ) (or, respectively,F4(�1; �; �2) = a(ew�X e�1 Z� e�Z� e�2 Z� ew� w�+� w�Y ) =F3(��1; �;��2)). In particular, the eigenvalues intervening in the study of F3 2 �(A2A5) aree2(X3+Y2), the case 2a is now impossible (since f0 > f1 > 0) and the trace of gt gTt increaseswhen one starts at A5 (or �(A5)). The reader will verify easily this last case of the proof.Lemma 20 We have 0 2 S if and only if 0 2 T0.Proof: If 0 2 S then 0 = a(eX k eY ) i.e. eX k eY = k0 or k eY = e�X k which means thatY = �wX for some w 2 W since the abelian component of the Cartan decomposition isunique modulo W : 0 = wX + Y 2 T0.Lemma 21 Let K̂ = K nK0. Then1. If H 2 S n I then H = a(eX k eY ) for some k 2 K̂ .2. If k 2 K̂ and a(eX k eY ) 2 a+ then a(eX k eY ) 2 S�.Proof:1. One notes that I = a(eXK0 eY ). 12



2. Suppose that k 2 K̂ and a(eX k eY ) 2 a+ (the second condition ensures the analyticity ofthe map k0 ! a(eX k0 eY ) in the neighbourhood of k).Let P = k e2Y k�1 and for Z = a1 Z� + a2 Z� + a3Z�+� , let Rt = eX etZ P e�t Z eX andnote that the eigenvalues of Rt determine a(eX etZ k eY ). The functions trRt and trR�1tin turn determine the eigenvalues of Rt.Now, trRt = tr(eX P eX) + tr(eX [Z;P ] eX) t+O(t2); (20)trR�1t = tr(e�X P�1 e�X) + tr(e�X [Z;P�1] e�X) t+O(t2): (21)It su�ces to show that, locally, these two functions can give any direction we want using theright choice of Z. The equations tr(eX [Z;P ] eX) = 0 and tr(e�X [Z;P�1] e�X) = 0 correspondto 2 equations of planes:(e2x1 � e2x2)P1;2 a1 + (e2x2 � e2x3)P2;3 a2 + (e2x1 � e2x3)P1;3 a3 = 0; (22)(e2x1 � e2x2)Q1;2 e2x3 a1 + (e2x2 � e2x3)Q2;3 e2x1 a2 + (e2x1 � e2x3)Q1;3 e2x2 a3 = 0 (23)where Q = P�1. It su�ces to show that the two planes do not coincide. To show that the twoplanes are not the same, it su�ces to show that(e2x1 � e2x2)P1;2(e2x1 � e2x3)Q1;3 e2x2 6= (e2x1 � e2x3)P1;3(e2x1 � e2x2)Q1;2 e2x3i.e. P1;2Q1;3 e2x2 6= P1;3Q1;2 e2x3:Note that the format of k implies that P cannot have more than 2 zeros (which are thensymmetric about the diagonal). If P1;2 = 0 and P1;3 6= 0 then P2;3 6= 0 and P1;3Q1;2 =�P 21;3 P2;3 6= 0 and the result is clear. The case P1;2 6= 0 and P1;3 = 0 is very similar. We cantherefore assume that P1;2 and P1;3 are nonzero.If Q1;2 = 0 or Q1;3 = 0, then the result is clear (we cannot have Q1;2 = Q1;3 = 0 sincethat would imply P1;2 = P1;3 = 0). Suppose therefore that Q1;2 6= 0 and Q1;3 6= 0. Now, usingP = k e2Y k�1 and Q = k e�2Y k�1, we getP1;2Q1;3 � P1;3Q1;2 = �k1;1 k1;2 k1;3 (e2y1 � e2y2) (e2y2 � e2y3) (e2y1 � e2y3):If k1;1 k1;2 k1;3 = 0 then P1;2Q1;3 = P1;3Q1;2 and therefore P1;2Q1;3 e2x2 6= P1;3Q1;2 e2x3 . Ifk1;1 k1;2 k1;3 6= 0, multiplying the �rst two rows of K by �1 (taking for example mk wherem = diag[�1;�1; 1] 2 M) if necessary, we can assume that k1;1 k1;2 k1;3 < 0 which impliesP1;2Q1;3 � P1;3Q1;2 > 0 and therefore P1;2Q1;3 e2x2P1;3Q1;2 e2x3 .Corollary 22 The set S n I n @a+ is open in a+.Proposition 23 Let Z = f(X;Y ) 2 a+ � a+ : W X + W Y \ @a+ 6= ;g [ Si;j;p;qf(X;Y ) 2a+ � a+ : Xi + Yj = Xp + Yqg. If X, Y 2 a+ and (X;Y ) 62 Z then S = conv(I).13



Proof: Note that w1X +w2 Y 2 @a+ if and only if �(w1X +w2 Y ) = 0 for some nonzero root�. This implies that a+ � a+ n Z is dense in a+ � a+ since we only remove a �nite numbers ofhyperplanes.We prove �rst that conv(I) � S. We can assume without loss of generality that F = R(indeed, it is clear that the set S corresponding to the real case is included in the others andthat the network I is the same).Assume that conv(I) � S is not true. Divide conv(I) n I into open connected componentsCi. Pick Cj which contains H0 62 S. We know that Cj is the interior of a polygon with, say, nvertices. Each edge of Cj is parallel to the direction A
 of a root 
 2 �0. It is important torecall that the segments composing I are re
ected when they encounter a wall of a+.We claim �rst that Cj \ S \ a+ 6= ;.Suppose that more than two of the vertices of Cj belong to @a+. We �rst note that Cj isa triangle. On sees this by taking into account the above observations concerning the edges ofCj. The same considerations then imply that at least one of its vertices belongs to T0. Thepossibility is excluded by the hypothesis (X;Y ) 62 Z.We can therefore assume that no more than two vertices belong to @a+. Since the sum ofthe angles inside Cj is (n � 2)�, there must be an angle inside Cj less than � with a vertexV 2 a+. The vertex V is either an element of T0 with a sector in Cj included in S (Corollary13) or the intersection point of 2 di�erent segments of I which is included in S� by Theorem19. The claim therefore follows.Let H1 2 S� \ Cj and let l(t), t 2 [0; 1] be a continuous curve linking H0 to H1 containedin Cj (l(0) = H0, l(1) = H1, l(s) 6= l(t) when s 6= t). One may choose l as a segment or a �niteconnected union of segments.Let t0 = supft 2 [0; 1] j l(t) 62 Sg and let H2 = l(t0) 2 Cj. By the maximality of t0, inany neighbourhood of H2, there are points of S which is closed. It follows that H2 2 S andH2 2 S n I n @a+ which is open according to Corollary 22. This contradicts the de�nition of t0since t0 � � 2 S for � > 0 small enough. The set ft 2 [0; 1] j l(t) 62 Sg must be empty whichcontradicts the existence of H0.We now return to F = R, C or H. Suppose now that there exists H 2 S n conv(I). Wecan assume without loss of generality that H 2 a+. Otherwise, take an open neighbourhoodU of H 2 a+ which does not touch conv(I) and consider the open set V = F�1(U) in K. Theset V cannot be included in the set C of Lemma 1 and therefore, there exists k 2 V such thatF (k) 2 U \ S� is in a+ (and not in conv(I)).Consider the half line ` starting at 0 and passing through H. Note that by the hypothesisand by Lemma 20, 0 62 S and therefore S \ ` � a+. Let H0 be the point on the compact S \ `which is the furthest away from conv(I). It is plain using Corollary 22 that such a point cannotexist. This contradicts the existence of H 2 S n conv(I).All that remains is to get rid of the technical condition \If X, Y 2 a+ and (X;Y ) 62 Z" ofProposition 23. The following lemma is the tool we need to achieve this.Lemma 24 A \segment" of I has the form a(eX w1K�w2 eY ) where wi 2 W and � 2 �0 (theset of positive roots). Every element H 2 conv(I) has the formH = XW�W��0 �w1;w2;� a(eX w1 k�w2 eY )where k� 2 K�, �w1;w2 ;� 2 [0; 1] and PW�W��0 �w1;w2 ;� � 1.14



Proof: Clear.Theorem 25 If G = SL(3;F) with F = R, C or H then S = conv(I).Proof: Let Z be as in Proposition 23. If (X;Y ) 62 Z then the result follows from Proposition23. Suppose then that (X;Y ) 2 Z. Let SX;Y = a(eXK eY ) and let IX;Y be the network Iassociated to X and Y .Take (Xn; Yn) 62 Z such that (Xn; Yn) converges to (X;Y ).Let H = a(eX k eY ) and note that H = limn!1 a(eXn k eYn). Now, for each n, we have byLemma 24 and by Proposition 23 thata(eXn k eYn) = XW�W �w1;w2;�(n) a(eXn w1 k�(n)w2 eY )with �w1;w2;�(n) 2 [0; 1] and PW�W��0 �w1;w2;�(n) � 1. Since [0; 1] and each K� are compact,by taking a subsequence if necessary, we can assume without loss of generality that �w1;w2;�(n)converges to �w1;w2;� and that k�(n) converges to k� (for each �, w1 and w2). This means thata(eX k eY ) = XW�W �w1;w2;� a(eX w1 k� w2 eY ) 2 conv(IX;Y ):Suppose now that H 2 conv(IX;Y ) i.e. H = PW�W �w1;w2;� a(eX w1 k� w2 eY ). ThenH = limn!1 PW�W �w1;w2;� a(eXn w1 k� w2 eYn) = limn!1 a(eXn w1 kn w2 eYn) withPW�W��0 �w1;w2;� � 1 (using Proposition 23 and the fact thatPW�W �w1;w2;� a(eXn w1 k�w2 eYn)belongs to conv(IXn;Yn)). As before, by taking a subsequence if necessary, we can assume thatkn converges to k. Hence, H = limn!1 a(eXn w1 kn w2 eYn) = a(eX k eY ) 2 SX;Y .Recall that the singular values of a complex square matrix A are the non-negative squareroots of the eigenvalues of the Hermitian matrix AA�. It is useful to note that if A is Hermitian(in particular if A is real symmetric) then its singular values are the absolute values of itseigenvalues. When A is Hermitian positive de�nite its eigenvalues and singular values coincide.Theorem 26 Let A and B be two complex matrices of size 3 � 3 with singular values a1 �a2 � a3 � 0 and b1 � b2 � b3 � 0 respectively. Let �1 � �2 � �3 be the singular values of theproduct C = AB. Then maxfa1b3; a3b1g � �1 � a1b1; (24)maxfa2b3; a3b2g � �2 � minfa2b1; a1b2g; (25)a3b3 � �3 � minfa3b1; a1b3g; (26)�3 � a2b2 � �1: (27)Conversely, for any square 3� 3 matrix C with singular values satisfying equations (24){(27),there exist matrices A and B with singular values a1 � a2 � a3 � 0 and b1 � b2 � b3 � 0 suchthat AB = C.If C is real then A and B can be chosen to be real.15



Proof: Suppose �rst that A and B are non-singular. In this case we can assume without lossof generality that jAj = 1 = jBj so that A, B 2 SL(3;C). We have then A = k1 eX k2 andB = k3 eY k4 with ki 2 SU(3), i � 4 and eX = diag[a1; a2; a3], eY = diag[b1; b2; b3]. Therefore,AB = k1eXk2k3eY k4 and ea(eXk2k3eY ) = diag[�1; �2; �3]. The result follows by Theorem 25.The general case follows by a continuity argument.Remark 27 The conditions (24){(27) in Theorem 26, when the considered matrices have thedeterminant 1, have a nice geometric interpretation[ln�1; ln�2; ln�3] 2 conv(I)where I is constructed in the Proposition 15 starting from X = [ln a1; ln a2; ln a3] and Y =[ln b1; ln b2; ln b3].3 ConclusionNaturally, the network I can be de�ned for any symmetric space of noncompact type. In theother rank 2 cases, the di�culty is not so much with the the result corresponding to Proposition23 but what to do with the \intersection points". When the rank is greater than 2, mattersare even more complicated.In [3] we showed that �X;Y is absolutely continuous with respect to the Haar measure on Awhenever X, Y 2 a+. We described other situations when X or Y where in @a+ where this stillheld and others when it did not. However, we did not �nd necessary and su�cient conditionson X and Y to settle this question. With a convexity theorem such as we have found in thispaper, the situation becomes clearer. It is clear that �X;Y is absolutely continuous if and onlyif the network I does not live in a hyperplane of a. In fact, we can conclude that �X;Y isabsolutely continuous if and only if the network W X +W Y does not live in a hyperplane ofa. A corresponding result for all ranks would be very useful and we conjecture it.References[1] M. Flensted-Jensen and T. Koornwinder. The convolution structure for Jacobi expansions,Ark. Mat. 10 (1973), 245{262.[2] P. Graczyk and P. Sawyer. The product formula for the spherical functions on symmetricspaces in the complex case, 2000, to appear in the Paci�c Journal of Mathematics.[3] P. Graczyk and P. Sawyer.The product formula for the spherical functions on symmetricspaces of noncompact type, preprint no 124, D�epartement de Math�ematiques, Universit�ed'Angers, January 2001.[4] A. Hba. Analyse harmonique sur SL(3;H), C.R. Acad. Sci. Paris, t. 305, S�erie I, 77-80,1987.[5] S. Helgason. Di�erential Geometry, Lie Groups and Symmetric spaces, Academic Press,New York, 1978.[6] S. Helgason. Group and Geometric Analysis, Academic Press, New York, 1984.16
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