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1 What is a cognitive system?

Before discussing the role of time and space in cognition, we will introduce the notion of
a ‘cognitive system’. The notion of a ‘cognitive system’ is suitable to overcome certain
problems encountered with the notion of an ‘intelligent system’.

1.1 The problem of defining intelligence

In classical views, intelligence was considered to be localised in the heart or in the brain
of an organism. The view that intelligence is localised in the brain still dominates the dis-
cussions about the possible existence of an artificial intelligence: a computer is likened to
a human being; the essence of the human being with respect to intelligence is considered
to be the mind/brain system.
However, the restriction to consider brain/mind (or hardware/software) as the locus of
intelligence has produced paradoxical results. A number of philosophical arguments have
been advanced: best-known among these is probably Searle’s “Chinese room argument”
[Searle 80]. Imagine yourself locked in a room, equipped with a set of instructions (in
English) how to manipulate all kinds of combinations of Chinese symbols. Occasionally,
somebody slips a set of papers covered with Chinese symbols (‘questions’) under the
door. After you have manipulated them according to the rules, writing down the results
of these manipulations on further sheets of papers, you slip these ‘answers’ back through
the door. How could anybody claim that you understand Chinese just because you hand
back ‘the right squiggles’? This parody of the Turing test [Turing 50] has been a highly
controversial issue in AI, leading many to abandon of the ‘strong AI’ claim “that the
appropriately programmed computer literally has cognitive states and that the programs
thereby explain human cognition” ([Searle 80]: 417).
But even ‘weak AI’, stating that “the principal value of the computer in the study of the
mind is that it gives us a very powerful tool” ([Searle 80]: 417), has increasingly come un-
der attack. This model too assumes that the symbol manipulation process is the essence of
intelligence, that an architecture having little or no parallelism and a very narrow channel
of interaction with the environment can adequately model ‘cognition’. Even taking this
view, there has been a marked failure of coming up with a useful definition of intelligence



Figure 1: Cognitive Systems vs. AI-Systems

on the basis of purely computational criteria and a difficulty of matching “intelligent pro-
cesses” with actually useful performance.

1.2 Cognitive systems vs. AI systems and abstract systems

As a consequence of this and due to the observation of more and more converging ev-
idence from the various branches of Cognitive Science, attention these days is turned
more towards investigating brains and computers in connection with their environments
and the interfaces that link them together. Specifically, the properties of the sensors and
actuators are more and more recognized as crucial for the knowledge structures involved
in cognitive processes. Cognitive Science now investigates highly parallel systems with
rich multimodal interactions with their environment (e.g. visual, acoustic, haptic). An
emerging consensus focuses more on practical intelligence, which can loosely be defined
as ‘the ability to do the right thing in a given situation’.
This approach implies considering cognitive processes in the context of the situations in
which they take place. Cognitive performance is judged on the basis of the ability to solve
tasks in the environment.
This typically involves perceiving and interpreting a situation, processing the resulting
information, and applying the result of this process to the situation. The cognitive perfor-
mance can then be judged by an external observer on the basis of a specification of the
task and solution spaces (cf. fig. 1).

1.3 Situatedness: extreme and moderate views

In the AI community, however, it has turned out that this realisation cannot simply ex-
tend and be embedded into existing research. Some proponents of the situated approach
envision a paradigmatic shift – the programmatic [Brooks 1991] is called “Intelligence
without representation”. Now representations can be viewed as one of the very founda-
tions of AI (as of most of the other Cognitive Sciences too!). But there are more moderate
voices as well.1 These attempt to allow representations formed by a situated cognitive
system. It is in this tradition that this paper will argue.

1.4 Cognitive systems use knowledge, not only information

Since we are considering cognitive systems embedded in their environment, we also have
to re-evaluate our notion of what the overall system uses to achieve intelligent behaviour.

1Even from Brooks’ side: [Mataric 1992]).



While in ‘classical AI’ it is admissible to use ‘pure, uninterpreted information’ (like the
Chinese symbols in Searle’s example), a ‘cognitive system’ in our sense must have some
idea about the connection of this information with structures in its environment. We will
call this enriched notion ‘ knowledge’.

1.5 Cognitive systems employ different levels of explanation

This view of ‘knowledge’ is a decidedly relative notion, relative to the concrete situation
in which it is to be used to solve a problem. Accepting this means rejecting the dichotomy
of “I know it” vs. “I don’t know it”. Instead, it is the admission that we (or indeed any
other cognitive system) will never completely understand anything in an absolute sense.
Rather, understanding is relative to a given level of knowledge. There will always be
different levels of explanation.
As an example, consider entering your office to find a stack of papers on your desk. If
you are an orderly person and want to start work, you will consider this to be (explain it
as) ‘some papers’ that have to be put somewhere else. If you want to find out whether it
was your little daughter, who put them there when you left her alone in the office for a
while, or a colleague, you will pay some more attention and see that there are ‘words’ (as
opposed to squiggles). If you want to find out what it is your colleague deemed interesting
to you, you will read the ‘text’. If you find out it is the draft for a new project proposal,
you will also read between the lines and find out it is ‘a plan to revolutionise the whole
department’.
And so on. The important point is that it is simply not necessary to consider or know
these levels of explanation when you’re trying to clean up your desk – in fact, it would
even be an impediment to your urgent work.

2 Why are time and space important for cognitive sys-
tems?

Time and particularly space have been a point of central interest for many branches of
Cognitive Science for a long time.2 Psychologists study spatial cognition – the cognition
of visual space (e.g. the perception of images and imagery), the cognition of personal
space (e.g. questions of reference frames, visual vs. haptic space) and the cognition of
large-scale space (Ecological Psychology’s “Images of the City” [Lynch 1960] and the
like).
The neurosciences study spatial cognition – particular neurological deficits of spatial cog-
nition like deficits in the cognition of personal space (neglect), deficits in the cognition
of locations (Balint-Holmes syndrome) and objects (cf. also the ‘what/where’ distinction,
see [Ungerleider & Mishkin 1982]). Reference systems play a decisive role here too.
Research in these areas is not restricted to the study of human spatial cognition, but ex-
tends to animals as well [Gallistel 1990].
Linguistics studies spatial language – for example, spatial prepositions. Different refer-
ence systems explain what may have seemed inconsistent usage of prepositions before
[Retz-Schmidt 1988].
Philosophers have been asking questions about possible structures of time and space for
2000 years.

2The discussion and particularly the references in this short sketch are intended to be purely exemplary!



An increasing number of interdisciplinary treatments are published – like [Landau & Jack-
endoff 1993]’s much-discussed article linking “ “What” and “where” in spatial language
and spatial cognition”, to cite but one example.
AI started out with a Computer Science’s mostly implicit treatment of time and space
(see section 2.1). Realising that this leads to many anomalies, AI researchers then started
developing explicit treatments of time and space. It is from this point of view that we
shall present our concepts of ‘time and space in cognitive systems’ here. The article is
not intended to be an overview over all existing approaches, but rather the advocation of
a particular point of view whose importance is growing.

2.1 Ubiquity of time and space, or: Why are we interested in time
and space?

We will consider the implications these general relationships have for a domain of partic-
ular importance to cognitive systems. Every action a cognitive system takes is situated in
time and space. In humans, these seem to be even more important: spatial and temporal
metaphors are used in a huge number of situations and domains [Lakoff 1987]: Do you
follow our argument?

In computer science, we usually describe individual aspects of space (e.g. length or
height) or we abstract from space altogether. Time is implicitly maintained in the dy-
namics of computer programs. But when considering the input/output characteristics of a
computer program, the aspect of time is ignored.
We argue that by decomposing complex spatial structures into individual aspects we lose
valuable cognitive power. The reconstruction of space from the decomposition may be
excessively expensive. Also, the resulting process of such an approach does not reflect
the temporal structure of the corresponding cognitive process.
We therefore try to better understand spatial structures and the power they may give to
cognitive processes. In doing this, we want to exploit the inherent constraints of time and
space.

2.2 Conceptions of time and space

When we say ‘time’ or ‘space’, the features we want to talk about include
– time: duration, simultaneity, speed, acceleration, precedence, concurrency, consequence,
– space: location, orientation, shape, size (height, width, length and their combination),
distance, vicinity, neighbourhood.
But how do we think and talk about them?
As the preceding section may have indicated, there are a variety of ways in which time
and space can be conceptualised. Each of these rests on implicit or explicit assumptions
which may be more or less adequate for a given task.
Let us start with a common sense picture, which could be something like: time is ‘an ever
growing arrow along which changes take place’; space is ‘a collection of entities (places)
which stand in unchanging spatial relations to one another and which may or may not
have objects located at them’. Implicit in these are the assumptions that the time arrow
grows even when no (other) changes take place, that space is there even without objects
to fill it, and that spatial relations and changes are observable. For some tasks, however,



it may seem more reasonable to assume that only the events (objects) that fill it constitute
time (space).
Another distinction concerns the question whether points should be used as primitives or
intervals (for time) or regions (for space). If we talk about Rocquencourt being south-
west of Hamburg, we are most likely thinking of two points on a map of Europe. If, in a
different situation, we say that you have to follow road X through Rocquencourt to reach
a particular destination, Rocquencourt has to have an extension.
Also, it is not a priori clear whether a discrete, a dense or a continuous representation of
time and space may be more adequate for a given task: If we want to be able to reason
about arbitrarily small changes, a dense representation seems a better choice; if we want
to say that two objects touch each other, we do not want anything to get in between them,
so a discrete representation seems preferable. If on one level of consideration a touching
relation and on another leve arbitrarily small changes seem to be appropriate, yet another
structure may be required. Lastly, a continuous representation (e.g. ��� ) is often implied
– for a better correspondence with models from Physics?!
There seems to be mainly one point on which agreement can be found: time is generally
conceived of as directed (and therefore irreversible), whereas space is not.

2.3 Abstract or concrete space?

Two disciplines which have dealt extensively with time and space are Mathematics and
Physics.3

Mathematics defines an abstract space as a set of points, which are extensionless. It is a
structure specified by a set of axioms which have to be satisfied by the points. Euclidean
geometry builds a system of concepts on the basics of points, lines and planes : distance,
area, volume and angle. More abstract than this metrical view are topological concepts
[Klein 1939]. Its elegance and conceptual simplicity have made these abstract views of
space very influential in Spatial Reasoning (cf. section 3.2).
Physics talks about a concrete space spanned by three positive orthogonal axes. Usually,
one of these axes is the gravitational vector. Consequently, this model of space is local
(the gravitational vector’s orientation changes with a change in global spatial position).
Physical space is always positively extended, and one can move in each spatial direction.
Physical space and its elements are related to other physical quantities in many ways:
movement relates time and (spatial) distance, molecular structure relates mass and spatial
extension, gravity relates weight and mass, etc. These relations are particularly important
for metaphorical concepts of space. Moreover, the ‘locality’ and the extensive use of
reference frames (which are usually aligned with gravitation) are predominant concepts
in many perception-related treatments of space. [Taylor & Tversky 1992, Paillard 1991]

3 Cognitive systems conceptualise time and space on dif-
ferent levels – dynamically and flexibly

In this section, we want to describe in more detail how different conceptualisations of time
and space can be classified, and what advantages the qualitative approach has (sections
3.1, 3.2). We also want to describe conceptual neighbourhoods, a particular approach to
the inherent imprecision of time and space in cognitive systems, which reflects the nature

3This section closely follows the discussion in [Freksa & Habel 1990].



Figure 2: Tall as a fuzzy quantity

of these notions transmitted by perception and is thus particularly adequate for cognitively
oriented AI (section 3.3). Lastly, we want to argue the case for considering a problem at
different granularities (which for the moment can be regarded as ‘different levels of reso-
lution’, section 3.4), and integrate the treatment of neighbours in the horizontal dimension
(conceptual neighbours) and neighbours in the vertical dimension (which are on different
levels of granularity) (section 3.5).

3.1 Qualitative vs. quantitative

3.1.1 What do we mean by ‘qualitative’ and ‘quantitative’?

The usual view of time and space is what we would call ‘quantitative’: “The talk started
at 15 hours, 20 minutes and 30 seconds”, “Claudia is 180 cm tall”. However, if, in a cog-
nitively motivated approach, we ask how people (or other cognitive systems) know about
space, we will see that it is primarily through perception and only secondarily through
abstract notions. This implies that reference values are taken entirely from within the
domain; no external scale is imposed on the domain. Knowledge about time and space
is then qualitative (“the talk started right after the coffee break”, “Claudia is taller than
David”) rather than quantitative. This requires that knowledge acquisition be qualitative
or that quantitative information be preprocessed.
Now ‘qualitative’ is often thought of merely as ‘less precise’. However, this is not neces-
sarily the case: If Claudia is – at a higher level of quantitative resolution – in fact 180.3
cm tall, while David is 179.8 cm tall, quantitative statements at ‘cm’
resolution will yield values that are equal, while a direct comparison (see above) will
reveal that she is taller. So in order to compare her to David using a quantitative scale, we
would have to choose a ‘mm’ resolution – but this implies wasted computational resources
if we want to compare her to Danny, who we know is something like 150 cm tall.
Language shows particularly well that ‘qualitative’ and ‘quantitative’ denote two different
views of – potentially the same – descriptors. As an example, consider ‘tall’ again. This
descriptor may represent a fuzzy quantity (fig. 2) or a crisp quality (tall vs. short vs. very
tall).
The emphasis we put on qualitative representations reflects our earlier stress on the depen-
dence of knowledge (and reasoning) on the situation: Quantitative representations refer to
external scales, which are situation-invariant. Qualitative representations refer to internal
distinctions, which are context-sensitive:

� A rich domain enables a rich description; a poor domain implies a simple descrip-
tion.

� Context is required for generating and interpreting descriptions.

� The domain is represented using an inhomogeneous resolution: high resolution at
the quality boundaries, low resolution elsewhere.



Figure 3: Qualitative relations in concrete free space

What are the relations we can distinguish qualitatively? Fig. 3 shows the relations that
can be distinguished in 1D (topological) space. For time, which is directed, the mirror
images of the first 5 relations have to be added (e.g. ‘after” is the mirror image of “be-
fore”) to yield altogether 13 relations. These relations were popularised in this context by
[Allen 1983], who intended them to be used for a description of relations between time
intervals, and have since been used in various formalisms to deal with time and space (for
an overview, see [Freksa & Röhrig 1993]).

3.1.2 Why is it important to represent space as an integrated structure?

Transfer of this scheme to space, however, has not been straightforward: We usually
interact with higher than one-dimensional spaces. Initial approaches simply decom-
posed � -dimensional space into projections to � one-dimensional spaces. For a com-
plexity

�������
of the one-dimensional case, this gives rise to representational and compu-

tational complexity
���	��
��

. Also, the inherent spatial interrelation between the spatial
dimensions disappears. Also, cognitive space is of lower dimensionality than Carte-
sian space. Subsequent approaches have tried to take spatial invariances into account.
They have chosen different decompositions, e.g. a distance/orientation-decomposition
[Zimmermann & Freksa 1995]. In these approaches, the number of dimensions deter-
mines the number of reference objects. This avoids a drastic increase in complexity, but a
shape problem persists. Therefore, it has become clear that global and local spatial infor-
mation have to be separated (i.e. the location and shape of objects). For a given task, the
cognitive system has to abstract from certain spatial properties.
There is a strong interrelation between spatial operations and spatial dimensions: If the
location of an object varies by a small amount, the variation of location is small for each
individual spatial dimension. A given variation in location is reflected by an accumulation
of variations in individual coordinates, i.e., the spatial dimensions are strongly interdepen-
dent with respect to a given relation in space. The main motivation for representing space
as a integrated structure is for directly making use of the built-in constraints rather than
composing substructures and adding constraints.

3.1.3 Abstraction in space

But despite the desideratum to maintain an integrated spatial structure, it is desirable to
abstract from spatial aspects that do not affect the solution of a given task or from aspects
that can be handled independently.
There is substantial evidence that biological systems split up various aspects of space into
different ‘maps’ for independent treatment and later integrate the partial solutions.



Figure 4: Abstraction from specific quantities

If splitting up into Cartesian dimensions is not the solution, what kind of abstractions can
we use?
Abstraction from specific quantities to yield qualitative relations appears to be one of the
first knowledge condensation steps in natural cognitive systems. As an example, consider
fig. 4: Everyone will immediately recognise that both pictures ‘show the same thing’. (If
the pictures are given at different times, people might not even notice the difference.)
Conceivably, we can abstract from every single spatial feature mentioned in section 2.2:

� Abstraction from location yields shape information.

� Abstraction from orientation yields shape information (provided there is a way of
describing shape in an orientation-invariant manner).

� Abstraction from shape yields a representation of location and possibly approximate
size or maximal size (provided there is a way of describing location in the absence
of shape).

� Abstraction from distance yields a representation of direction/orientation.

It is worthwhile to reiterate here the central advantage of qualitative reasoning: a question
like “Are A and B equal?” as such is meaningless. It only acquires meaning if it is seen in
relation to a task or problem. This relation defines the criteria necessary for the decision.
Consequently, only necessary decisions are made.

3.2 Geometry: from topological to metrical relations

Mathematics defines one particular, well-studied system of progressive abstraction from
aspects of space [Klein 1939]. If, as is commonly assumed, geometry is the underlying
model of ‘real spaces’ and also of ‘mental spaces’, we can order different levels of abstrac-
tion. Full metrical specifications are the most restrictive. Its properties are invariant with
respect to a certain set of transformations: if we rotate or translate a spatial arrangement,
its metrical description will remain the same. If we abstract from these properties, the re-
sulting properties of the space are invariant with respect to a larger set of transformations.
Continuing this relaxation process, we finally arrive at topology: now we can stretch and
squeeze the spatial arrangement whichever way we want4, its topological relations will
remain the same.
In Psychology, the view that spatial cognitive development starts with topology and gradu-
ally progresses towards full metrical knowledge has been widely accepted since [Piaget & Inhelder 1956]’s

4Of course there are limits here too, but for practical purposes, they are not of too much interest.



topological analysis of the development of spatial representation.5 This ‘sequence’ is also
assumed to hold in adults when they learn new environments. Later studies [Lynch 1960,
Siegel & White 1975] have elaborated on this view, defining the elements of more and
more refined knowledge: a transition from knowledge of single landmarks (outstanding
objects or places) via knowledge of routes between landmarks (specifying the topolog-
ical relation of ‘connectedness’) to map-like ‘survey’ knowledge (more or less distorted
metrical relations).
Some approaches in AI have explicitly modelled a corresponding hierarchy of kinds
of spatial knowledge, using ‘route’ and ‘survey’ knowledge (where the transition be-
tween the two forms of knowledge poses the same problems as in Psychology, however)
[Kuipers & Levitt 1988].
Most approaches focus on a subset of spatial aspects. In the domain of Qualitative Spatial
Reasoning (for a review, see [Freksa & Röhrig 1993]), a lot of effort has been spent on
trying to find out ‘how far one can get’ with concepts that are as simple as possible. A
few examples shall serve as an illustration:

� Randell,Cohn and Cui [Randell et al. 1992] focus on topology and derive all their
relations from a single primitive ‘is connected to’. They are able to model processes
like phagocytosis and exocytosis – a unicellular organism’s way of surrounding,
engulfing and then digesting food particles and the expulsion of waste material from
cells initiated by white blood cells, respectively. (It is obvious that for questions like
these, aspects like inclusion are important, while direction and distance can usually
be ignored.)

� Schlieder started from the question of how to describe a view (like a view from
a mountain top, a tower, etc.). Obviously, the arrangement of the landmarks un-
der consideration plays a decisive role here – ‘left’ or ‘right’ makes a difference.
He is exploring how much expressive power is added to topology by knowing the
arrangement ( � the mathematical ‘sense’) of landmarks [Schlieder 1993].

� Freksa and Zimmermann [Freksa 1992b, Freksa & Zimmermann 1992, Zimmer-
mann & Freksa 1995] consider questions of route-planning, including finding short-
cuts, finding home, etc. Here, orientation comes into play: ‘Where is the church
with respect to the filling-station?’.

These examples should illustrate our central point again: for different questions, different
aspects of space are required (i.e. different aspects of space can be abstracted from).
‘Intelligence’ and ‘knowledge’ are, again, all about finding the right level of abstraction
in a given situation.

3.3 Conceptual neighbourhoods

If space is important in a given task, it is because things that are ‘close’ have more to do
with each other than things that are ‘far’. Space is an organisation principle. So if we are
provided with this organisation, we can employ processes more effectively.

As an example, consider planning a train journey. We can do this with the help of train
timetables, which represent routes one-dimensionally. But it is far easier to do it with the

5It should be noted, however, that their notion of ‘topology’ is not exactly the same as that of Mathe-
matics [Mandler 1988].



help of a map, which represents the same routes two-dimensionally. Now it is obvious
that the two representations are equivalent (in [Palmer 78]’s sense). The difference is that
the 2D representation is ‘intrinsic’ in the sense that it represents the constraints of the
represented space implicitly. In the 1D representation, we have to note them and/or think
of them explicitly: If our destination is north of our starting point, we have to know that
considering a journey via a city south of it will (usually) not make much sense. And we as
cognitive systems obviously have processes which can use this intrinsic 2D representation
(cf. research on imagery).
Neighbourhoods reflect this organisation:

1. If an object occupies a given region, neighbouring regions are prime candidates for
being occupied by the same object.

2. If a region is occupied by a given object in a given state of affairs, only neighbouring
regions are candidates for becoming occupied by that object in the next state after
a (small) movement of that object.

3. When an error occurs in locating objects at a given place, neighbouring places are
the prime candidates for carrying the object.

For temporal events, 1., 2. and 3. can be applied accordingly.
Now this idea can be transferred to the domain of relations: certain spatial/temporal re-
lations are conceptually closer to one another than others. Relations which differ by a
minimal difference are conceptual neighbours.6

The special properties of conceptual neighbours are much like the ones of spatial neigh-
bours.
Conceptual neighbourhood allows us to order concepts of time and space. This will prove
particularly useful for a flexible use of concepts, as illustrated in the next section.

3.4 Granularity

There is another feature of descriptions, which stands orthogonal to the ones mentioned in
the preceding sections. This is granularity, the ‘resolution’ of the description [Hobbs 1985].
With different levels of granularity, we associate different properties. An example are
maps. We would not expect to find city streets on a road map, whereas with a tourist
guide map, we would even be disappointed if it didn’t specify the names of the buildings
along these streets.
But this is not just a matter of ‘looking at the map through a magnifying lens’: contrary
to common belief, spatial relations typically are affected by granularity transformations.
We must therefore model the effects of switching granularity levels, e.g. angles, distances,
shapes and neighbourhood relations. For an illustration, see figs. 5 and 6.

3.5 The horizontal and vertical dimensions

The preceding sections have shown what levels of conceptualisation cognitive systems
can move between in order to achieve a dynamic and flexible adaptation to different

6Conceptual neighbours were introduced by [Freksa 1992a], who defined them as: “Two relations be-
tween pairs of events are (conceptual) neighbors, if they can be directly transformed into one another by
continuously deforming (i.e. shortening, lengthening, moving) the events (in a topological sense).” ... “A set
of relations between pairs of events forms a (conceptual) neighborhood if its elements are path-connected
through ‘conceptual neighbor’ relations.”



Figure 5: Non-monotonicity of intersection angles at different levels of granularity

Figure 6: The length of a coastline depends on the measuring unit – non-asymptotically

problem-solving situations. Drawing these thoughts together allows a new look at concept
hierarchies.
Consider fig. 7. It depicts a hierarchy of different concepts of size (human ‘height’). In
this hierarchy, we can distinguish two dimensions of neighbourhood between concepts:
horizontal and vertical neighbourhood. ‘Horizontal neighbourhood’ refers to compet-
ing concepts on the same level of granularity [Freksa & López de Mántaras 1982], while
‘vertical neighbourhood’ refers to compatible concepts on different levels of granularity
[Zadeh 1978, Hobbs 1985].
How do people use these neighbourhoods?7

1. The speaker may be sure which descriptor he wants to use. Assume he wants to say
that “Claudia is tall”.

If he is asked to specify what he means, he could either say

(a) “Claudia is tall compared to other women.” This statement would define an
anchor-point on the horizontal level – to indicate which concrete objects the
size scale is taylored to.

(b) “Claudia is tall, but not very tall.” This statement would define an anchor-
point on the vertical level – to indicate which other concepts this “tall” is
differentiated from; the level of granularity is fixed.

2. The speaker may be uncertain which descriptor to use. Assume he thinks Claudia
is of normal height, but he is not sure he can really judge it.

(a) Is Claudia rather tall or rather small? He is not sure. With this level of in-
formation, it is safe to say that she is not huge (and not tiny either): only
conceptual neighbours are candidates for an adequate description of Claudia.

7For more discussion of neighbourhoods, see [Freksa & Barkowsky 1995].



Figure 7: Concepts of size
Bark/Freksa

It is safe to ‘compromise’ and to say that she is “of normal height”: uncer-
tainty is resolved by moving to the vertical neighbour at the higher level of
granularity. (But one cannot move to the non-neighbour small.)

(b) He thinks that Claudia is of normal height, but that she is on the border to
being tall.

He should then use a concept like “rather tall”: need for a more detailed de-
scription of borderline cases is fulfilled by moving to the vertical neighbour at
the lower level of granularity.

3. These considerations concerning the speaker also help the listener: If she hears
that “Claudia is tall”, she may not know exactly what the speaker thinks of, but
(provided she has an idea of the order of magnitude of female height)

(a) know that Claudia cannot be small (horizontal neighbourhood),

(b) no matter at what granularity level she thinks this “tall” resides, she cannot be
far off the mark, since all the “tall”s are vertical neighbours.

It should have become clear that these hierarchies – which are not trees! – allow a very
flexible and efficient choice of descriptor that fits a given situation best. This stands
in stark contrast to an ever-constant level of resolution with a well-defined quantitative
meaning.

4 How do these theoretical designs respond to computa-
tional / AI desiderata?

It is no coincidence that a computational realisation of these theoretical positions is a step
towards fulfilling many of the desiderata that have emerged in modern AI:

� Greater economy of representation and processing is achieved by using qualitative-
ness.



This definition of ‘efficiency’ is of course one of the central aims of Computer Sci-
ence as a whole, and in this respect at least, AI is (or should be) a true subdiscipline
of Computer Science.

� Systems are robust. On the one hand, they can take advantage of incremental knowl-
edge (this might, for example, bring them onto a finer level of granularity, which
allows a more precise answer to a query – but there had been an answer before too!).
On the other hand, they show graceful degradation: If there is less information, or
less precise information, they will move to a coarser level of granularity and still be
able to provide an answer.

This responds to one of AI’s oldest problems: ‘graceful degradation’ has been one
of the buzzwords of AI ever since its inception, but as it turned out, classical AI
systems are not capable of it: They either know something, or they don’t. As
illustrated in section 1.5, this is contrary to our definition of ‘cognitive systems’.
Our approach represents one of today’s ways of responding to this challenge.

� Because there will be an answer at every ‘information state’, an architecture built
on our principles will also be capable of anytime computing – it will at any stage of
its computation be able to give an answer ‘based on what is known so far’.

5 Conclusion: how can time and space be dealt with in
cognitively oriented AI implementations?

It seems reasonable to take stock at this point and to ask how the wealth of theoretical
knowledge about time and space can be validated with the methods of Artificial Intel-
ligence. We shall conclude this paper by mentioning predominant current approaches
which explicitly take into account our main tenets:

� that intelligence can only be understood when thinking of cognitive systems in re-
lation with their environment through their sensors and actuators,

� that cognitive systems employ knowledge at different levels, use these different
‘pieces of knowledge’ dynamically and flexibly, and that they can take advantage
of neighbourhoods between concepts to find the knowledge fitting best to a given
situation.

An important branch of modern Robotics is grounded in [Braitenberg 1984]’s thought
experiments in ‘synthetic Psychology’. Starting from the observation that ‘analysis is
difficult, but synthesis is easy’, he describes ‘creatures’ made up of simple wiring between
a small number of sensors and actuators. These could for example be light sensors and
motors, mounted on a Lego robot. The creatures will respond to their environment and
‘behave’ in ways that look surprisingly complex to us. He shows how tempting it is to
ascribe ‘love’, ‘hatred’, ‘aggression’ and a host of other dispositions and properties to
them. It is the interaction with their environment that makes their behaviour looks so
complex, that makes them seem so smart.
By now, the school variously called ‘situated action’, ‘subsumption architecture’, ‘behavior-
based robotics’ and so on has actually built robots working along these principles. Some
of these projects also deal explicitly with space [Mataric 1992].



However, using physical robots implies a lot of its own problems, many of whom are
of the nasty engineering kind. Simulating ‘creatures’ in the computer allows more time
to be spent on the questions one started out with – always at the risk of creating yet an-
other ‘blocksworld’ whose results will not scale up to ‘real’ worlds.8 Modern approaches,
described as ‘Artificial Life’, usually put a lot of emphasis on biological principles, partic-
ularly ethology, ecology and evolution. See [Cliff 1994] about why its proponents think
that the blocksworld risk is negligible.

For our own ‘experiments in synthetic Psychology’, we use the realator. This agent
also lives in the computer. Our main focus is on using qualitative reasoning, build-
ing only on the information available through its sensorical and motorical capabilities
[Barkowsky et al. 1994]. This platform allows us to test many of the predictions made in
this paper.
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