
Look-Back and Look-Ahead in the Conversion ofHidden Markov Models into Finite State TransducersAndr�e KempeXerox Research Centre Europe { Grenoble Laboratory6, chemin de Maupertuis { 38240 Meylan { Franceandre.kempe@xrce.xerox.comhttp://www.xrce.xerox.com/research/mlttAbstractThis paper describes the conversion of a Hid-den Markov Model into a �nite state trans-ducer that closely approximates the behaviorof the stochastic model. In some cases thetransducer is equivalent to the HMM. Thisconversion is especially advantageous for part-of-speech tagging because the resulting trans-ducer can be composed with other transducersthat encode correction rules for the most fre-quent tagging errors. The speed of tagging isalso improved. The described methods havebeen implemented and successfully tested.1 IntroductionThis paper presents an algorithm1 which approxi-mates a Hidden Markov Model (HMM) by a �nite-state transducer (FST). We describe one applica-tion, namely part-of-speech tagging. Other poten-tial applications may be found in areas where bothHMMs and �nite-state technology are applied, suchas speech recognition, etc. The algorithm has beenfully implemented.An HMM used for tagging encodes, like a trans-ducer, a relation between two languages. One lan-guage contains sequences of ambiguity classes ob-tained by looking up in a lexicon all words of a sen-tence. The other language contains sequences of tagsobtained by statistically disambiguating the class se-quences. From the outside, an HMM tagger behaveslike a sequential transducer that deterministicallymaps every class sequence to a tag sequence, e.g.:[DET; PRO] [ADJ; NOUN] [ADJ; NOUN] :::::: [END]DET ADJ NOUN :::::: END (1)1There are other (di�erent) algorithms for HMMto FST conversion: An unpublished one by Julian M.Kupiec and John T. Maxwell (p.c.), and n-type and s-type approximation by Kempe (1997).

The main advantage of transforming an HMM isthat the resulting transducer can be handled by �-nite state calculus. Among others, it can be com-posed with transducers that encode:� correction rules for the most frequent taggingerrors which are automatically generated (Brill,1992; Roche and Schabes, 1995) or manuallywritten (Chanod and Tapanainen, 1995), in or-der to signi�cantly improve tagging accuracy2.These rules may include long-distance depen-dencies not handled by HMM taggers, and canconveniently be expressed by the replace oper-ator (Kaplan and Kay, 1994; Karttunen, 1995;Kempe and Karttunen, 1996).� further steps of text analysis, e.g. light parsingor extraction of noun phrases or other phrases(A��t-Mokhtar and Chanod, 1997).These compositions enable complex text analysis tobe performed by a single transducer.The speed of tagging by an FST is up to six timeshigher than with the original HMM.The motivation for deriving the FST from anHMM is that the HMM can be trained and con-verted with little manual e�ort.An HMM transducer builds on the data (probabil-ity matrices) of the underlying HMM. The accuracyof this data has an impact on the tagging accuracyof both the HMM itself and the derived transducer.The training of the HMM can be done on either atagged or untagged corpus, and is not a topic of thispaper since it is exhaustively described in the liter-ature (Bahl and Mercer, 1976; Church, 1988).An HMM can be identically represented by aweighted FST in a straightforward way. We are,however, interested in non-weighted transducers.2Automatically derived rules require less work thanmanually written ones but are unlikely to yield betterresults because they would consider relatively limitedcontext and simple relations only.



2 b-Type ApproximationThis section presents a method that approximatesa (�rst order) Hidden Markov Model (HMM) by a�nite-state transducer (FST), called b-type approxi-mation3. Regular expression operators used in thissection are explained in the annex.Looking up, in a lexicon, the word sequence of asentence produces a unique sequence of ambiguityclasses. Tagging the sentence by means of a (�rstorder) HMM consists of �nding the most probabletag sequence T given this class sequence C (eq. 1,�g. 1). The joint probability of the sequences C andT can be estimated by:p(C; T ) = p(c1::::cn; t1::::tn) =�(t1) b(c1jt1) � nYi=2 a(tijti�1) b(cijti) (2)2.1 Basic IdeaThe determination of a tag of a particular word can-not be made separately from the other tags. Tagscan inuence each other over a long distance viatransition probabilities.In this approach, an ambiguity class is disam-biguated with respect to a context. A context con-sists of a sequence of ambiguity classes limited atboth ends by some selected tag4. For the left con-text of length � we use the term look-back, and forthe right context of length � we use the term look-ahead.
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tagsFigure 1: Disambiguation of classes betweentwo selected tagsIn �gure 1, the tag t2i can be selected from the classci because it is between two selected tags4 which aret1i�2 at a look-back distance of � = 2 and t2i+2 at3Name given by the author, to distinguish the algo-rithm from n-type and s-type approximation (Kempe,1997).4The algorithm is explained for a �rst order HMM. Inthe case of a second order HMM, b-type sequences mustbegin and end with two selected tags rather than one.

a look-ahead distance of � = 2. Actually, the twoselected tags t1i�2 and t2i+2 allow not only the disam-biguation of the class ci but of all classes inbetween,i.e. ci�1, ci and ci+1.We approximate the tagging of a whole sentenceby tagging subsequences with selected tags at bothends (�g. 1), and then overlapping them. The mostprobable paths in the tag space of a sentence, i.e.valid paths according to this approach, can be foundas sketched in �gure 2.
tt t t t t t t t

tt t t t t t t t# #

t t t t

w w w w w w w w1 2 3 4 5 6 7 8

c c c c c c c c1 2 3 4 5 6 7 8# # classes

words

tagsFigure 2: Two valid paths through the tagspace of a sentence
tt t t t t t t t

c c c c c c c c1 2 3 4 5 6 7 8# #

tt t t t t t t t# #

t t t t

w w w w w w w w1 2 3 4 5 6 7 8

classes

words

tagsFigure 3: Incompatible sequences in the tagspace of a sentenceA valid path consists of an ordered set of overlap-ping sequences in which each member overlaps withits neighbour except for the �rst or last tag. Therecan be more than one valid path in the tag spaceof a sentence (�g. 2). Sets of sequences that do notoverlap in such a way are incompatible according tothis model, and do not constitute valid paths (�g. 3).2.2 b-Type SequencesGiven a length � of look-back and a length � of look-ahead, we generate for every class c0, every look-back sequence t�� c��+1 ::: c�1, and every look-ahead sequence c1 ::: c��1 t�, a b-type sequence4 :t�� c��+1 ::: c�1 c0 c1 ::: c��1 t� (3)



For example:CONJ [DET; PRON] [ADJ; NOUN; VERB] [NOUN; VERB] VERB (4)Each such original b-type sequence (eq. 3,4; �g. 4)is disambiguated based on a �rst order HMM. Herewe use the Viterbi algorithm (Viterbi, 1967; Ra-biner, 1990) for e�ciency.
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Figure 4: b-Type sequenceFor an original b-type sequence, the joint proba-bility of its class sequence C with its tag sequence T(�g. 4), can be estimated by:p(C; T ) = p(c��+1 ::: c��1 ; t�� ::: t�) =24 ��1Yi=��+1a(tijti�1) b(cijti)35 � a(t�jt��1) (5)At every position in the look-back sequence andin the look-ahead sequence, a boundary # may oc-cur, i.e. a sentence beginning or end. No look-back(� = 0) or no look-ahead (� = 0) is also allowed.The above probability estimation (eq. 5) can thenbe expressed more generally (�g. 4) as:p(C; T ) = pstart � pmiddle � pend (6)with pstart beingpstart = a(t��+1jt��) for selected tag t�� (7)pstart =�(t��+1) for boundary # (8)pstart = 1 for �=0 (9)with pmiddle beingpmiddle = b(c��+1jt��+1)� ��1Yi=��+2a(tijti�1) b(cijti)for �+�>0 (10)pmiddle = b(c0jt0) for �+�=0 (11)

and with pend beingpend = a(t�jt��1) for selected tag t� (12)pend = 1 for boundary # or �=0 (13)When the most likely tag sequence is found for anoriginal b-type sequence, the class c0 in the middleposition (eq. 3) is associated with its most likely tagt0. We formulate constraints for the other tags t��and t� and classes c��+1:::c�1 and c1:::c��1 of theoriginal b-type sequence. Thus we obtain a taggedb-type sequence 5:tB��� cB(��1)��+1 :::cB2�2 cB1�1 c0 : t0 cA11 cA22 :::cA(��1)��1 tA�� (14)stating that t0 is the most probable tag in the classc0 if it is preceded by tB� cB(��1):::cB2 cB1 andfollowed by cA1 cA2:::cA(��1) tA�.In expression 14 the subscripts �� ��+1:::0:::��1� denote the position of the tag or class in the b-typesequence, and the superscripts B� B(��1):::B1 andA1:::A(��1) A� express constraints for precedingand following tags and classes which are part of otherb-type sequences. In the example5:CONJ�B2 [DET; PRON]�B1[ADJ; NOUN; VERB] :ADJ[NOUN; VERB]�A1 VERB�A2 (15)ADJ is the most likely tag in the class[ADJ,NOUN,VERB] if it is preceded by the tag CONJtwo positions back (B2), by the class [DET,PRON]one position back (B1), and followed by the class[NOUN,VERB] one position ahead (A1) and by thetag VERB two positions ahead (A2).Boundaries are denoted by a particular symbol #and can occur at the edge of the look-back and look-ahead sequence:tB� cB(��1) :::cB2 cB1 c :t cA1 cA1 :::cA(��1) #A� (16)tB� cB(��1) :::cB2 cB1 c :t cA1 cA1 :::#A(��1) (17)#B� cB(��1) :::cB2 cB1 c :t #A1 (18)#B1 c :t #A1 (19)#B2 cB1 c :t cA1 cA1 :::cA(��1) tA� (20)For example:#�B2 [DET; PRON]�B1[ADJ; NOUN; VERB] :ADJ[NOUN; VERB]�A1 VERB�A2 (21)5Regular expression operators used in this article areexplained in the annex.



CONJ�B2 [DET; PRON]�B1[ADJ; NOUN; VERB] :NOUN#�A1 (22)Note that look-back of length � and look-ahead oflength � also include all sequences shorter than � or�, respectively, that are limited by #.For a given length � of look-back and a length �of look-ahead, we generate every possible original b-type sequence (eq. 3), disambiguate it statistically(eq. 5-13), and encode the tagged b-type sequenceBi (eq. 14) as an FST. All sequences Bi are thenunioned [B =[i Bi (23)and we generate a preliminary tagger model B�B� = [ [B ]� (24)where all sequences Bi can occur in any orderand number (including zero times) because no con-straints have yet been applied.2.3 Concatenation ConstraintsTo ensure a correct concatenation of sequences Bi,we have to make sure that every Bi is preceded andfollowed by other Bi according to what is encodedin the look-back and look-ahead constraints. E.g.the sequence in example (21) must be preceded bya sentence beginning, #, and the class [DET,PRON]and followed by the class [NOUN,VERB] and the tagVERB.We create constraints for preceding and followingtags, classes and sentence boundaries. For the look-back, a particular tag ti or class cj is required for aparticular distance of � � �1, by5:R�(ti) =~[ ~[ ?� ti [n[t]� [[t [n[t]�]^(���1) ] tB(��)i ?� ] (25)R�(cj) =~[ ~[ ?� cj [n[c]� [[c [n[c]�]^(���1) ] cB(��)j ?� ] (26)for � � �1with [t and [c being the union of all tags and allclasses respectively.A sentence beginning, #, is required for a partic-ular look-back distance of ���1, on the side of thetags, by:R�(#) =~[ ~[ [n[t]� [[t [n[t]�]^(���1) ] #B(��) ?� ] (27)for � � �1

In the case of look-ahead we require for a partic-ular distance of ��1, a particular tag ti or class cjor a sentence end, #, on the side of the tags, in asimilar way by:R�(ti) =~[ ?� tA�i ~[ [n[t]� [[t [n[t]�]^(� � 1) ti ?� ] ] (28)R�(cj) =~[ ?� cA�j ~[ [n[c]� [[c [n[c]�]^(� � 1) cj ?� ] ] (29)R�(#) =~[ ?� #A� ~[ [n[t]� [[t [n[t]�]^(� � 1) ] ] (30)for � � 1All tags ti are required for the look-back only atthe distance of � = �� and for the look-ahead onlyat the distance of �=�. All classes cj are requiredfor distances of � 2 [�� + 1;�1] and � 2 [1; �� 1].Sentence boundaries, #, are required for distancesof � 2 [��;�1] and � 2 [1; �].We create the intersection Rt of all tag con-straints, the intersection Rc of all class constraints,and the intersection R# of all sentence boundaryconstraints: Rt = \i 2 [1;n]� 2 f��;�gR�(ti) (31)Rc = \j 2 [1;m]� 2 [��+1;�1][[1;��1]R�(cj) (32)R# = \� 2 [��;�1][[1;�]R�(#) (33)All constraints are enforced by composition withthe preliminary tagger model B� (eq. 24). The classconstraint Rc is composed on the upper side of B�which is the side of the classes (eq. 14), and boththe tag constraint Rt and the boundary constraint6R# are composed on the lower side of B�, which isthe side of the tags5:B�� = Rc :o: B� :o: Rt :o: R# (34)Having ensured correct concatenation, we deleteall symbols r that have served to constrain tags,classes or boundaries, using Dr :r = 24[i;� t�i35 [ 24[j;� c�j35 [ "[� #�# (35)6The boundary constraint R# could alternatively becomputed for and composed on the side of the classes.The transducer which encodes R# would then, however,be bigger because the number of classes is bigger thanthe number of tags.



Dr = r �> [ ] (36)By composing7 B�� (eq. 34) on the lower side withDr and on the upper side with the inverted relationDr :i, we obtain the �nal tagger model B:B = Dr:i :o: B�� :o: Dr (37)We call the model a b-type model , the correspond-ing FST a b-type transducer , and the whole algo-rithm leading from the HMM to the transducer, ab-type approximation of an HMM.2.4 Properties of b-Type TransducersThere are two groups of b-type transducers with dif-ferent properties: FSTs without look-back and/orwithout look-ahead (� ��= 0) and FSTs with bothlook-back and look-ahead (� �� > 0). Both acceptany sequence of ambiguity classes.b-Type FSTs with � ��=0 are always sequential.They map a class sequence that corresponds to theword sequence of a sentence, always to exactly onetag sequence. Their tagging accuracy and similaritywith the underlying HMM increases with growing�+�. A b-type FST with �=0 and �=0 is equiva-lent to an n0-type FST, and with �=1 and �=0 itis equivalent to an n1-type FST (Kempe, 1997).b-Type FSTs with � ��> 0 are in general not se-quential. For a class sequence they deliver a set ofdi�erent tag sequences, which means that the tag-ging results are ambiguous. This set is never empty,and the most probable tag sequence according to theunderlying HMM is always in this set. The longerthe look-back distance � and the look-ahead distance� are, the larger the FST and the smaller the set ofresulting tag sequences. For su�ciently large �+�,this set may contain always only one tag sequence.In this case the FST is equivalent to the underlyingHMM. For reasons of size however, this FST maynot be computable for particular HMMs (sec. 4).3 An Implemented Finite-State TaggerThe implemented tagger requires three transducerswhich represent a lexicon, a guesser and an approx-imation of an HMM mentioned above.Both the lexicon and guesser are sequential, i.e.deterministic on the input side. They both unam-biguously map a surface form of any word that theyaccept to the corresponding ambiguity class (�g. 5,col. 1 and 2): First of all, the word is looked for in the7For e�ciency reasons, we actually do not delete theconstraint symbols r by composition. We rather tra-verse the network, and overwrite every symbol r withthe empty string symbol �. In the following determiniza-tion of the network, all � are eliminated.

lexicon. If this fails, it is looked for in the guesser. Ifthis equally fails, it gets the label [UNKNOWN] whichdenotes the ambiguity class of unknown words. Tagprobabilities in this class are approximated by tagsof words that appear only once in the training cor-pus.As soon as an input token gets labeled with thetag class of sentence end symbols (�g. 5: [SENT]),the tagger stops reading words from the input. Atthis point, the tagger has read and stored the wordsof a whole sentence (�g. 5, col. 1) and generated thecorresponding sequence of classes (�g. 5, col. 2).The class sequence is now mapped to a tag se-quence (�g. 5, col. 3) using the HMM transducer. Ab-type FST is not sequential in general (sec. 2.4),so to obtain a unique tagging result, the �nite-statetagger can be run in a special mode, where only the�rst result found is retained, and the tagger doesnot look for other results8. Since paths through anFST have no particular order, the result retained israndom.The tagger outputs the stored word and tag se-quence of the sentence, and continues in the sameway with the remaining sentences of the corpus.The [AT] ATshare [NN,VB] NNof [IN] IN... ... ...tripled [VBD,VBN] VBDwithin [IN,RB] INthat [CS,DT,WPS] DTspan [NN,VB,VBD] NNof [IN] INtime [NN,VB] NN. [SENT] SENTFigure 5: Tagging a sentenceThe tagger can be run in a statistical mode wherethe number of tag sequences found per sentence iscounted. These numbers give an overview of thedegree of non-sequentiality of the concerned b-typetransducer (sec. 2.4).8This mode of retaining the �rst result only is notnecessary with n-type and s-type transducers which areboth sequential (Kempe, 1997).



Transducer Accuracy Tagging speed Transducer size Creationor HMM test corp. in words/sec timein % ultra2 sparc20 #states #arcs ultra2HMM 97.35 4 834 1 624s+n1-FST (1M, F1) 97.33 19 939 8 986 9 419 1 154 225 22 mins+n1-FST (1M, F8) 96.12 22 001 9 969 329 42 560 4 minb-FST (�=0;�=0), =n0 87.21 26 585 11 000 1 181 6 secb-FST (�=1;�=0), =n1 95.16 26 585 11 600 37 6 697 11 secb-FST (�=2;�=0) 95.32 21 268 7 089 3 663 663 003 4 h 11b-FST (�=0;�=1) 93.69 19 939 7 877 252 40 243 12 secb-FST (�=0;�=2) 93.92 19 334 9 114 10 554 1 246 686 10 minb-FST (�=1;�=1) �95.78 16 360 7 506 3 514 640 336 56 secb-FST (�=2;�=1) �97.34 15 191 6 510 54 578 8 402 055 2 h 17b-FST (�=3;�=1) FST was not computableLanguage: EnglishCorpora: 19 944 words for HMM training, 19 934 words for testTag set: 36 tags, 181 classes� Multiple, i.e. ambiguous tagging results: Only �rst result retainedTypes of FST (Finite-State Transducers) :n0, n1 n-type transducers (Kempe, 1997)s+n1 (1M,F8) s-type transducer (Kempe, 1997),with subsequences of frequency � 8, from a training corpusof 1 000 000 words, completed with n1-typeb (�=2;�=1) b-type transducer (sec. 2), with look-back of 2 and look-ahead of 1Computers:ultra2 1 CPU, 512 MBytes physical RAM, 1.4 GBytes virtual RAMsparc20 1 CPU, 192 MBytes physical RAM, 827 MBytes virtual RAMTable 1: Accuracy, speed, size and creation time of some HMM transducers4 Experiments and ResultsThis section compares di�erent FSTs with eachother and with the original HMM.As expected, the FSTs perform tagging fasterthan the HMM.Since all FSTs are approximations of HMMs, theyshow lower tagging accuracy than the HMMs. In thecase of FSTs with ��1 and �=1, this di�erence inaccuracy is negligible. Improvement in accuracy canbe expected since these FSTs can be composed withFSTs encoding correction rules for frequent errors(sec. 1).For all tests below an English corpus, lexicon andguesser were used, which were originally annotatedwith 74 di�erent tags. We automatically recoded thetags in order to reduce their number, i.e. in somecases more than one of the original tags were recodedinto one and the same new tag. We applied di�erentrecodings, thus obtaining English corpora, lexiconsand guessers with reduced tag sets of 45, 36, 27, 18and 9 tags respectively.FSTs with � = 2 and � = 1 and with � = 1 and�=2 were equivalent, in all cases where they couldbe computed.
Table 1 compares di�erent FSTs for a tag set of36 tags.The b-type FST with no look-back and no look-ahead which is equivalent to an n0-type FST(Kempe, 1997), shows the lowest tagging accuracy(b-FST (�=0; �=0): 87.21 %). It is also the small-est transducer (1 state and 181 arcs, as many astag classes) and can be created faster than the otherFSTs (6 sec.).The highest accuracy is obtained with a b-typeFST with � = 2 and � = 1 (b-FST (� =2; �=1):97.34 %) and with an s-type FST (Kempe, 1997)trained on 1 000 000 words (s+n1-FST (1M, F1):97.33 %). In these two cases the di�erence in accu-racy with respect to the underlying HMM (97.35 %)is negligible. In this particular test, the s-type FSTcomes out ahead because it is considerably smallerthan the b-type FST.The size of a b-type FST increases with the sizeof the tag set and with the length of look-back pluslook-ahead, �+�. Accuracy improves with growing�+�.b-Type FSTs may produce ambiguous tagging re-sults (sec. 2.4). In such instances only the �rst resultwas retained (sec. 3).



Tagging accuracy and agreement with the HMMTransducer for tag sets of di�erent sizesor HMM 74 tags 45 tags 36 tags 27 tags 18 tags 9 tags297 cls. 214 cls. 181 cls. 119 cls. 97 cls. 67 cls.HMM 96.78 96.92 97.35 97.07 96.73 95.76s+n1 FST (1M, F1) 96.76 96.88 97.33 97.06 96.72 95.7499.89 99.93 99.90 99.95 99.95 99.94s+n1-FST (1M, F8) 95.09 95.25 96.12 96.36 96.05 95.2997.00 97.35 98.15 98.90 98.99 98.96b-FST (�=0;�=0), =n0 83.53 83.71 87.21 94.47 94.24 93.8684.00 84.40 88.04 96.03 96.22 95.76b-FST (�=1;�=0), =n1 94.19 94.09 95.16 95.60 95.17 94.1495.61 95.92 96.90 97.75 97.66 96.74b-FST (�=2;�=0) 94.28 95.32 95.71 95.31 94.2296.09 97.01 97.84 97.77 96.83b-FST (�=0;�=1) 92.79 92.47 93.69 95.26 95.19 94.6493.64 93.41 94.67 96.87 97.06 97.09b-FST (�=0;�=2) 93.46 92.77 93.92 95.37 95.30 94.8094.35 93.70 94.90 96.99 97.20 97.29b-FST (�=1;�=1) �94.94 �95.14 �95.78 �96.78 �96.59 �95.36�97.86 �97.93 �98.11 �99.58 �99.72 �99.26b-FST (�=2;�=1) �97.34 �97.06 �96.73 �95.73�99.97 �99.98 �100.00 �99.97b-FST (�=3;�=1) 95.76100.00Language: EnglishCorpora: 19 944 words for HMM training, 19 934 words for testTypes of FST (Finite-State Transducers) cf. table 1� Multiple, i.e. ambiguous tagging results: Only �rst result retained97.0699.98 Tagging accuracy of 97.06 %,and agreement of FST with HMM tagging results of 99.98 %Transducer could not be computed, for reasons of size.Table 2: Tagging accuracy and agreement of the FST tagging results with thoseof the underlying HMM, for tag sets of di�erent sizesTable 2 shows the tagging accuracy and the agree-ment of the tagging results with the results of theunderlying HMM for di�erent FSTs and tag sets ofdi�erent sizes.To get results that are almost equivalent to thoseof an HMM, a b-type FST needs at least a look-backof � = 2 and a look-ahead of � = 1 or vice versa.For reasons of size, this kind of FST could only becomputed for tag sets with 36 tags or less. A b-typeFST with � = 3 and �= 1 could only be computedfor the tag set with 9 tags. This FST gave exactlythe same tagging results as the underlying HMM.Table 3 illustrates which of the b-type FSTs aresequential, i.e. always produce exactly one taggingresult, and which of the FSTs are non-sequential.For all tag sets, the FSTs with no look-back
(� = 0) and/or no look-ahead (� = 0) behaved se-quentially. Here 100 % of the tagged sentences hadonly one result. Most of the other FSTs (� ��> 0)behaved non-sequentially. For example, in the caseof 27 tags with � = 1 and � = 1, 90.08 % of thetagged sentences had one result, 9.46 % had two re-sults, 0.23 % had tree results, etc.Non-sequentiality decreases with growing look-back and look-ahead, �+�, and should completelydisappear with su�ciently large �+�. Such b-typeFSTs can, however, only be computed for small tagsets. We could compute this kind of FST only forthe case of 9 tags with �=3 and �=1.The set of alternative tag sequences for a sentence,produced by a b-type FST with � �� > 0, alwayscontains the tag sequence that corresponds with theresult of the underlying HMM.



Sentences with n tagging resultsTransducer (in %)n= 1 n= 2 n= 3 n= 4 5-8 9-1674 tags, 297 classes (original tag set)b-FST (� ��=0) 100b-FST (�=1;�=1) 75.14 20.18 0.34 3.42 0.80 0.11b-FST (�=2;�=1) FST was not computable45 tags, 214 classes (reduced tag set)b-FST (� ��=0) 100b-FST (�=1;�=1) 75.71 19.73 0.68 3.19 0.68b-FST (�=2;�=1) FST was not computable36 tags, 181 classes (reduced tag set)b-FST (� ��=0) 100b-FST (�=1;�=1) 78.56 17.90 0.34 2.85 0.34b-FST (�=2;�=1) 99.77 0.2327 tags, 119 classes (reduced tag set)b-FST (� ��=0) 100b-FST (�=1;�=1) 90.08 9.46 0.23 0.11 0.11b-FST (�=2;�=1) 99.77 0.2318 tags, 97 classes (reduced tag set)b-FST (� ��=0) 100b-FST (�=1;�=1) 93.04 6.84 0.11b-FST (�=2;�=1) 99.89 0.119 tags, 67 classes (reduced tag set)b-FST (� ��=0) 100b-FST (�=1;�=1) 86.66 12.43 0.91b-FST (�=2;�=1) 99.77 0.23b-FST (�=3;�=1) 100Language: EnglishTest corpus: 19 934 words, 877 sentencesTypes of FST (Finite-State Transducers) cf. table 1Table 3: Percentage of sentences with a par-ticular number of tagging results5 Conclusion and Future ResearchThe algorithm presented in this paper describes theconstruction of a �nite-state transducer (FST) thatapproximates the behaviour of a Hidden MarkovModel (HMM) in part-of-speech tagging.The algorithm, called b-type approximation, useslook-back and look-ahead of freely selectable length.The size of the FSTs grows with both the size ofthe tag set and the length of the look-back plus look-ahead. Therefore, to keep the FST at a computablesize, an increase in the length of the look-back orlook-ahead, requires a reduction of the number oftags. In the case of small tag sets (e.g. 36 tags), thelook-back and look-ahead can be su�ciently largeto obtain an FST that is almost equivalent to theoriginal HMM.In some tests s-type FSTs (Kempe, 1997) andb-type FSTs reached equal tagging accuracy. Inthese cases s-type FSTs are smaller because theyencode the most frequent ambiguity class sequences

of a training corpus very accurately and all othersequences less accurately. b-Type FSTs encode allsequences with the same accuracy. Therefore, ab-type FST can reach equivalence with the originalHMM, but an s-type FST cannot.The algorithms of both conversion and tagging arefully implemented.The main advantage of transforming an HMM isthat the resulting FST can be handled by �nite statecalculus9 and thus be directly composed with otherFSTs.The tagging speed of the FSTs is up to six timeshigher than the speed of the original HMM.Future research will include the composition ofHMM transducers with, among others:� FSTs that encode correction rules for the mostfrequent tagging errors in order to signi�cantlyimprove tagging accuracy (above the accuracyof the underlying HMM). These rules can ei-ther be extracted automatically from a corpus(Brill, 1992) or written manually (Chanod andTapanainen, 1995).� FSTs for light parsing, phrase extraction andother text analysis (A��t-Mokhtar and Chanod,1997).An HMM transducer can be composed with oneor more of these FSTs in order to perform complextext analysis by a single FST.ANNEX: Regular Expression OperatorsBelow, a and b designate symbols, A and B designatelanguages, and R and Q designate relations betweentwo languages. More details on the followingoperators and pointers to �nite-state literature canbe found inhttp://www.xrce.xerox.com/research/mltt/fst~A Complement (negation). Set of all stringsexcept those from the language A.na Term complement. Any symbol otherthan a.A* Kleene star. Language A zero or moretimes concatenated with itself.A^n A n times. Language A n times concate-nated with itself.a -> b Replace. Relation where every a on theupper side gets mapped to a b on thelower side.9A large library of �nite-state functions is availableat Xerox.
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