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Abstract. Ostrogradsky and Horowitz’s method performs the additive decomposition
of rational functions by solving linear systems. We show that there are extraneous factors
when the systems in their method are solved by Cramer’s rule. The results help us to
obtain better bounds on the degrees of the coefficients in the additive decomposition.

1. Introduction

Let k be a field of characteristic zero, and k(y) be the field of rational functions in y
over k. For a nonzero rational function f € k(y), there exist g and r in k(y) such that

f=Dy(g) +r (1)

with r being proper and having a squarefree denominator. The pair (g,r) above is called
an additive decomposition of f with respect to y. Up to adding a constant in k to g, a
rational function f has a unique additive decomposition. There are several methods for
computing the additive decomposition of a rational function (see e.g. [1, Chapter 2]). The
most popular one is Hermite reduction [2], which reduces the multiplicity of denominators
by the extended Euclidean algorithm recursively. Another method by Ostrogradsky and
Horowitz [4, 3] merely needs to compute the squarefree part of the denominator of f and
solve a linear system. This feature enables us to derive coefficient or degree bounds for the
denominators and numerators of g and r when k& = Q or Q(z) or the quotient field of a
unique factorization domain. Experiments illustrate that extraneous factors arise when we
solve linear systems appearing in Ostrogradsky and Horowitz’s method. In this note, we
describe these extraneous factors in order to derive tighter bounds.

Throughout the note, let R be a unique factorization domain and K be its quotient field.
Assume that K is of characteristic zero. Let P and @ be two nonzero polynomials in R[y]
with deg, P < deg, @, ged(P, Q) = 1 and deg, @ > 0.

Assume that the squarefree factorization of Q is Q1Q3 - - - Q™, where Q1, Qo, . .., Qn, are
squarefree in R[y], pairwise coprime in K[y|, and deg, Qm > 0. Put Q* = Q1Q2 - Qs and
Q™ = QgQ% ~-Q™m=1 Then Q = Q*Q~. For later convenience, we set

d, = deg, Q" and d, =deg, Q.

Let Q2 denote the second deflation of Q, which equals to Q3Q?--- Q7 2. For definiteness,
we agree that Q2 =1if m < 2.



A Note on Ostrogradsky and Horowitz’s Method 37

Ostrogradsky and Horowitz’s method takes @~ and @Q* to be the denominators of ¢
and r, respectively. According to (1), there exist two unique polynomials A and a in K|[y]
with deg, A < d,; and deg, a < dj, such that

o (d) &

Note that A and a satisfy (2) if and only if they satisfy the equation
P = Dy(A)Q" — AQ + aQ™, (3)

where Q = Q*Dy(Q7)/Q is a polynomial in R[y] of degree dj, — 1.

Remark 1.1 Among the three products in (3), Dy(A)Q* and AQ have degrees (in y) less
than dy +d, — 1, and aQ™ has degree less than or equal to dj, +d, — 1.

Let A = ZEO_ ! Aiyta = E?igl ajy’ and P = Zﬁgd;_l Pyy' with undetermined coeffi-
cients. Then (3) holds if and only if

(Ad;_l,...,Ao,ad;_l,...,ao) M = (Pd;—l—d;—l"" ,P(]) 5 (4)

where M is a (dy +d, ) x (d;, +d,;) matrix over R obtained by equating the like powers of y
in (3). The uniqueness of A and @ implies that M is invertible. We call M in (6) the matrix
associated with @, and denoted it by M(Q).

Remark 1.2 By Remark 1.1, the first column of M(Q) consisting of zeros except the (d, +1)
entry, which is filled with ley(Q™). The first d,; rows are of the form

0 eiley(Q") T T |
0 0 eale(QF) ! e
. . . . e 1
0 0 0 edglcy(Q*) T

where the e;’s are integers, and | stands for some linear combinations of the coefficients
of Q" over Z. The last d;, rows consist of the coefficients of yBQ, L, yQm, Q.

2. A factor of the determinant of M (Q) over R
By definitions of Q*, @~ and @2, we have lc, (Q*) = [[\"; 1cy (Q:),

ley(Q7) = [[1ey(@) " and 1ey(Q7) = [ 1ey(@;) 2.
j=2 Jj=3

So e, (Q*)™~! and lc, (Q*)™ 2 are divisible by lc,(Q ™) and lc, (Q~2) in R, respectively. The
following two technical lemmas will help us to factor M(Q).
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Lemma 2.1 Let ¢* =lc, (Q*), ¢~ =1cy(Q7), ¢72 =lc, (Q72) and

ay
R _ i
Q =qy" +) a y

Jj=1

Then q*jq;, y and q*j_lq;, ; are divisible by ¢~ and ¢~2 for all j with 1 < j < d,
Yy Yy
respectively.

Proof. If j > m — 1, then ¢* is divisible by ¢~, and so is q° q,- 5 We now consider the case
o

in which 1 < j < m—1. Since Q~ is a product of m(m —1)/2 factors, q;,ij is either zero or
the sum of the coefficients that are divisible by at least the power product of m(m—1)/2—j
leading coefficients of these factors. In other words, if Q- is nonzero, then there are

at most j polynomials among the m(m — 1)/2 factors whose leading terms (with respect
to y) do not contribute to form the term q;;_jyd;_j. Let n; = max(0,7 — 1 — j) for all ¢
with 2 <i<m—1, and let p = ¢3?---¢». Then qd*; i is divisible by p. Consequently, the
product ¢*' p is divisible by ¢~, and so is ¢*’ q;y, e The second divisibility follows from the
same argument as above. (|

Lemma 2.2 With the notation introduced in Lemma 2.1, let A be a determinant of size
(dy +d, —1) in the form

T l T t T
U T I t T
0 0 0 ¢ ] t l I
T Y451 Y452 o 0
0 a4, 4, % ds -1
0 0 4 4, @
where | stands for any element of R and the last d; — 1 rows consist of the coefficients
of yw2Q~, yW3Q~, ..., Q~. Then A is divisible by q~.
Proof. Let I be the ideal generated by ¢~ in k[z]. Then
1 T R | f f T
0 ¢ T t t I I
. e dy,
0 0 0 ¢ T I I )
A= Qg1 gz 2 o 0
0 0 Qg1 9452 o d; — 1
0 0 0 0 g, a4, 4o
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modulo I. Expanding the above determinant according the first column, we get

2
q (SRS SRRNETCRNNNS SRS SNPPPINS B

. . : o . . cee a1

0 . 0 q 1 1 ce

A=| 9% 1 Y45 % 0 4

0 Qg1 gy 0 D .

. . : . dy —1

0 0 0 Gy Gy G

modulo . Since q*qdi , =0 mod I by Lemma 2.1, expanding the above determinant
o

according to the first column modulo [ yields a determinant whose first columns has three
nonzero elements
«3 2 _ 2
¢ 4G €

The last two elements are congruent to zero modulo I by Lemma 2.1. Then expanding the
determinant in the same manner yields a determinant whose first column has four nonzero
elements, three of which are congruent to zero modulo I, and the other is q*4. we can
expand A in the above-described manner d,; times, which concludes that A is in the sum

of I and the ideal generated by q*d; in R. Since d,; > (m —1)deg, Qm > (m — 1), q*dy is
in I, and so is A. d

Proposition 2.3 The determinant of M(Q) is divisible by lc(Q™)? over R.

Proof. By Remark 1.2, expanding det(M (Q)) according to the first column and moving some
integers out of the minor, we see that det(M(Q)) is divisible by the product of lc, (@) and
the determinant as given in Lemma 2.2. Hence, det(M(Q)) is divisible by lc, (Q ™). O

3. An extraneous factor

First, we consider the generic case. For all ¢ with 1 < ¢ < m, let U; be a polynomial
of degree deg, Q; in y whose coeflicients are distinct indeterminates. Put U* = Uy --- Uy,
and U~ = UsU3F-- UM 1. Then U = U*U~.  The second deflation U2 of U is equal
to UsUZ --- U™ 2. Let S be the ring of polynomials generated by the indeterminate coeffi-
cients of the U;’s over R. Then the above-defined generic polynomials are all in S[y]. For a
polynomial f in S[y], coeff(f,y") stands for the coefficient of y in f.

Recall the usual convention that f € S[y] is zero if and only if deg, f < 0, and that a
fraction in S(y) is proper if the degree of the numerator is less than that of denominator.

Lemma 3.1 With the notation just introduced, let N be the matriz associated with U. Then
there exist T and t in S[y] with deg, T' < d,; and deg, t < d, such that the following hold:

()
T t

det (N) g _ D, <U> o (5)
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(i) T is divisible by lcy,(U™2) in S[y|, and, moreover, if deg, P < dj, +d,; — 1, then T is
diwvisible by lc, (U™) - 1c, (U™2) in S[y].
(i4) t is divisible by lcy,(U™) in S[y], and, moreover, if deg, P < dj, + d,; — 1, then t is
divisible by lc, (U)? in S[y].
Proof. Using Cramer’s rule to solve a linear system of the form (6), we obtain A; = T;/ det(NV)
for all i with 0 <7 <d, —1, and a; = tj/det(N) for all j with 0 < j < dy, — 1, where T}, t;
are in S. Putting T' = E?io_l Ty and t = ?igl t;y’, we prove the first assertion.
Now, we are going to show the second assertion. The case in which m < 2 is trivial.
So we may assume that m > 2 in the sequel. Set u; = lcy(U;), u* = wiug--- Uy, and

u” = ugu3 - ul1. Let u™2 denote the second deflation of u, which equals to uzu3 - - - um=2.
Recall the form of the associated matrix IV of U as follows,
0 u* T T e T T T T
. . . . .* - . . .
0 0 0 0 u T T f T Y
u- ud;_l ud;_Q U 0 0 0 0
0 U ud;_l ud;_2 Ug 0 0
- - - - *
0 0 U ud;_l ud;_2 Ug 0 0 dy,
0 0 0 u- u;;_l u;;_2 U Uy

where 1 stands for any element of S and the last dj rows consist of the coefficients of y U,

yW 72U, .. U Let T = Zfi_o_l Tiy*. Using Cramer’s rule to solve the linear system

(A1 Aoy, sa0) M= (Pryye 1o R), (6)

we have A; = T;/det(N) for all ¢ with 0 < i < d, — 1, and T; is the determinant of the form

0 u* T T e T T T T
0 0 u* 1 T .. T o f

Pd;;+dy——1 Pd;;+d;—2 Fo d,
0 0 0 u* T T T T
0 0 0 0 u* 1 T 1
u- u;;_l u;;_2 Uy 0 0 0 0
u” u;;_l u;;_2 . Ug 0 0 0

0 0 u” u;;_ L u;;_ ) Ug 0 0 dy,

0 0 0 u” u;; . u;; Ly Uy U /
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which is obtained from replacing the ith row of det(N) by (P,

dy+dy 17"
show that T; is divisible by u™2. Let I be the ideal generated by ©v~2 in S. Then,
0 u’ t t e T ] T
0 0 u* T T e ] oo f
Pd;+d;—1 Pd;;+d;—2 P
0 0 0 u* T 1 T T
T = 0 0 0 0 u* T T T
— _ —
0 0 Uy U 0 0 0 0
0 0 0 Uy Ug 0 0 0
0 0 0 0 Uy U 0 0
0 0 e 0 0 0 u;y__2 Uy Uy

modulo /. Expanding the determinant according the first column, we get

u* T T T T Tor o T T T
0w T T T T ToT T
0 0 u* T T Tt T T
0 0 0 0 w1 1 Tt
0 0 0 0 0 w f -t t f
d+dy -1 00 o o0 0 0 wu Tt
0 “}72 Uy 0 o0 0 O 0
0 6 u;,iz ug 0 0 O 0
0 0 6 “;,2 Ug 0 O 0
. . . L 0
0 .- 0 0 0 u,__, ug

41

.., Py). Tt suffices to

dy

modulo I. Expanding the determinant according the first column again and noting that u =2
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divides u*u " _
dy

u*

0

o O -

P, -
dy+dy —1

o O O O o o -

modulo /. Repeating the above process for ¢ — 2 times and using Lemma 2.1, we get

2

*1—1

u
0
0
0
0
Ppryay—1| 0
0
0

L by Lemma 2.1, we get,

i ..
u* 1
0 u*
0 0
0 0
0 0
Yy 3
Yy -2
0 g,
0 Yy —o
0

T

T
u* ]
0
0
;; —2
0 0

0

t

0
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—

S

o o o -

u
dy —2

“ — —

-
dy —2

Li

. —t —

N
*

o O O

T
I

o O = =+ -

. —t —

—

<
*

o O O

T
l

o O = =+ -

. —t —

o o O —4+ = —

T
I

o —+ =+ — -

. —t —

o o O =4+ = —

T
I

o —+ =+ —+ -

(a») .

. —t —}

o O O O —+ —+ —

IS
S

T
t

o O OO0 O ———+ -

IS
<

/ A

modulo /. Expanding the above determinant according the first column and using Lemma 2.1,
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we get
0 u* T T T T T )
0 0w f ot Pt dy —i
0 0 0 u* T Tt
0 Uy 0 0O 0 T ]
_ 0 . 0 0 0 O 0
Ti = Py gy uf) . 0
_ _ ]
0 ud;_2 Ug 0 O 0
. . 0
0 0 0 udgi2 Uy

modulo I, which implies that 7; = 0 modulo I. The first part of second assertion holds.
If degy P < d; + dy_ — 1, then Pd;§+d;4 =0 and T; = u~ T}, where T; is the determinant
of the form

u* t t l I t t
. . .
Pdeery_fQ Fo Y
0 0 u* f [ f
0 0 0 u* T T T
- __ - 0 0 0 0
u udy:l uciy T U, :
0 u Upoy Uy T U 0 0 ar -1
0 0 - - - L Ug
u Uy Ugo g U Y

which is obtained by removing the first column and the (d~ +1)th row of the determinant Tj.
The same argument as above shows that T} is divisible by w~2. Thus T is divisible by le, (U™)-
ley, (U™2) in S[y].

For proving the last assertion, we need two intermediate results.

Claim 1. lc, (U™)| coeff(t, y%1).
Proof of Claim 1. Let v = coeff(t,y% 1) in t. By (5),

det (N) P = U*D,(T) —UT + U t,

where U € S[y] with degree less than dy,. The coefficient of y%*td ~1 in the right-hand side
of the above equation is equal to vlc, (U ™), because both deg, (U*D,(T)) and degy(ﬁT) are
less than dj, +d, — 1. Hence, v = 0 if deg, P < d;; + d,; — 1; and vlc, (U™) = det () Ic, (P)
if deg, P = d;, +d,; — 1. In the latter case, lc,(U~) divides v by Proposition 2.3. Claim 1 is
proved.
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If d;, = 1, then deg, t < 0. Hence, lc,(U~) divides ¢ by Claim 1. In the rest of the proof,
we assume that dj > 1. Then there are at least two rows in M consisting of either zero or
coefficients of U~. Hence t is divisible by uz_l if deg, Q; = 0.

Since uo, ..., u;, are independent indeterminates, it suffices to prove that ¢ is divisible
by uﬁfl for all ¢ with 2 < ¢ < m and deg, @); > 0. Without loss of generality, we prove that ¢
is divisible by um~!. To this end, let ¢,, be the R-homomorphism from S[y] to S[y] that
maps u,, to zero and fixes other indeterminates.

Claim 2. If w € S[y] with deg, w < d;; and | coeff(w, y% 1), then ¢, (w)/dm(U*) is a
proper fraction in y whose denominator is squarefree.

Proof of Claim 2. Since dy, > 1 and U* is a product of generic polynomials, Odm(U™) is
a squarefree polynomial of degree dj, — 1, which is postive. But ¢m(w) has degree less
than d;, — 1. Claim 2 is proved.

For simplicity, we denote by F the fraction T'/U~. Since ¢y, and D, commute and ¢,,(U ™)
is nonzero, applying ¢, to (5) yields

0= Dy 0 dm (F) + ¢pm(t)/dm(U*)

by Proposition 2.3. It follows from Claims 1 and 2 that ¢,,(t) = 0, because a derivative
of a fraction is unequal to a proper fraction whose denominator is squarefree. Hence, u,,
divides ¢ in S[y]. Assume that u!, divides w for some £ with 1 < ¢ < m — 1. It suffices to

show that v’ divides ¢t. Assume t = u’,w for some w € S[y]. Rewrite (5) as

ugw

P

(7)

Let D,, be the usual partial differential operator with respect to u,,. Applying ¢,, o Dfn
to (7) yields
Ol (w
0= Dy o 60 D (F) + S0 0
by Proposition 2.3. By Claim 1 and since ¢ < m — 1, coeff(w,y% ') is divisible by . By
Claim 2 and the above equality, ¢,,(w) = 0, that is, ¢ is divisible by u4F!. The first part of
the last assertion holds.

If deg, P < dj, +d, — 1, then deg, ¢ < dj — 2 by the proof of Claim 1. The first part of
the last assertion implies that u,, divides t. Assume that u’, divides w for some £ < 2(m —1)
and let t+ = uf,w. Then both (7) and (8) hold because lc,(Q~)? det(N) by Proposi-
tion 2.3. Moreover, deg, w < d — 2 since deg,t < dy — 2. We have that ¢,,(w) = 0
because deg, (¢m(w)) < dy — 2 and deg, (¢pm(U)) = d;; — 1. O

We now specialize Lemma 3.1 to R][y].

Proposition 3.2 Let § be the determinant of the matriz associated with Q). Then the fol-
lowing statements hold:

(i) There exist B,b € Rly] such that deg, B < d,;, deg, b < dy, and

P B b
Q- («5@) 5o ©)
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(ii) B is divisible by lc,(Q™2), and, moreover, B is divisible by lc,(Q~)-lc, (Q72) if deg, P <
i +d; —1.
y T %

(iii) b is divisible by lcy(Q7), and, moreover, b is divisible by lc,(Q™)? if deg, P < dy +
d; —1.
y

Proof. Let 9 be the R-homomorphism from S[y] to R[y] that maps y to y and U; to Q; for
all 7 with 1 <7 <m. Then

YUY =Q% YU )=Q U ?)=Q* and PU)=Q.

The homomorphism also maps the determinant of M (U) to . Moreover, D, and 1) commute.
The first assertion is proved by applying ¢ to (5). The others hold by an easy application
of 1 to Lemma 3.1 (ii) and (iii). O

4. Applications to the additive decomposition of bivariate rational functions

In this section we assume that R = k[z], where k is a field of characteristic zero.
Then K = k(x). For an element f € k(z,y), the denominator and numerator of f are
denoted by den(f) and num(f), which are assumed to be coprime.

Proposition 4.1 Let P,Q € k[v,y] with deg, Q" = dj,, deg, Q" = dj, deg, Q™ = d
and deg, Q™ = d; . Assume that d;, > 0 and set p = dyd,; +d; d. If (2) holds, where A, a €
k(x)[yl, deg, A < d, and deg,a < d,, then the following statements hold:

1. Ifdeg, P = dy+d, —1, then the degrees of den(A) and den(a) are respectively bounded
by
p— dog, ley(Q?) and i — deg, 1y (@),

The degrees of num(A) and num(a) are respectively bounded by
p—d, +deg, P —deg,lc,(Q72) and p—d, +deg, P —deg,lc,(Q7).

2. Ifdeg, P < d;+d, —1, then the degrees of den(A) and den(a) are respectively bounded
by
= degm 1Cy(Q_) - deg:v lcy(Q_2) and K= 2 deg:p lcy(Q_)'

The degrees of num(A) and num(a) are respectively bounded by

p—d, +deg, P —deg,lc,(Q) — deg, lcy, (Q72?)

and
p—d, +deg, P —2deg, lc,(Q).

Proof. Let ¢ be the determinant of M(Q). Then deg, 6 < d3d, + d; d,. Solving system (3)
by Cramer’s rule, we find that a = b/6 where b € k[z,y| is given in Proposition 3.2. Note
that deg, b < dyd, +d, dy, — d;; + deg, P by Cramer’s rule. The two assertions then follow
from divisibility described in Proposition 3.2 (ii) and (iii), respectively. O
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Corollary 4.2 With the notation introduced in Proposition 4.1, we further assume that Q~ =
Q*. Then the following hold:

1. If deg, P = 2d; — 1, then
deg,(den(a)) < (2d, — 1)d,

and
deg, (num(a)) < 2(d, — 1)d; + deg, P.

2. If deg, P < 2d} — 1, then
deg, (den(a)) < 2(d; — 1)d,

and
deg, (num(a)) < (2d, — 3)d;, + deg, P.

Proof. Let U* be a polynomial in y with deg, U* = deg, Q" whose coefficients are distinct
indeterminates. Let R be the ring generated by the coefficients of U* over k[z]. Set U = U *
and N = M(U). By Proposition 3.2(i), there are T',t € R[y] with deg, T' < d;; and deg,, t < d,
such that

P_ T Lt
U~ Y\ det(N)U*) " det(N)U*’

By Proposition 3.2, det(N) = le(U*)?2H, where H is a homogeneous polynomials of de-
gree 2d; — 2 in the coefficients of U* over k[z]. By Cramer’s rule, the coefficients of 7' is a
product of lc(Q*) and a homogenous polynomials of degree 2d; — 2 (resp. of degree 2d; — 3)
if deg, P = 2d;, — 1 (resp. deg, P < 2d; — 1). Moreover, deg, T' < deg, P. The corollary is
then proved by specializing U* to Q* together with Proposition 3.2(iii). O

Example 4.3 Assume that QQ = Q*Q. Then deg, Q = 2d,,. Performing Hermite reduction
on D, (Q*)/Q with respect to y yields

D.(Q*) <H> h
o o)t

with H,h € k[z,y]. If d;, =1, then Corollary 4.2 (i) implies

deg,(den(h)) < d;

T

and deg,(num(h)) < d; — 1.
If & > 1, then deg, D.(Q*) < d, < 2d;, — 1. By Corollary 4.2 (ii),

deg,(den(h)) < 2d;(d, —1) and deg,(num(h)) < 2d;(d, — 1) — 1.
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