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1 MotivationWe are developing massively parallel algorithms and software for molecularconformation, especially protein folding. This paper reports on our recentprogress.The prediction of protein native structures and the understanding of howthey fold from sequences of their constituent amino acids is one of the mostimportant and challenging computational science problems of the decade.The protein folding problem is fundamental to almost all theoretical studiesof proteins and protein related life processes. It also has many applicationsin the biotechnology industries such as structure-based drug design for thetreatment of important diseases like polio, cancer, and AIDS.Optimization approaches to the protein folding problem are based on thehypothesis that the protein native structure corresponds to the global min-imum of the protein energy. The problem can be attacked computationallyby minimizing the protein energy over all possible protein structures. Thestructure with the lowest energy is presumed to be the most stable proteinstructure.Mathematically, for a protein molecule of n atoms, let x = fxi 2 R3; i =1; : : : ; ng represent the molecular structure with each xi specifying the spa-tial position of atom i. Then the computational problem for protein foldingis to globally minimize a nonlinear function f(x) for all x 2 S, i.e.,minx2S f(x) (1)where S is the set of all possible molecular structures, and f(x) is the energyfunction for the protein de�ned for all x.The di�culty with this approach is that global optimization problemsare computationally intractable in general, and especially di�cult to solvewhen problem sizes are large and objective functions contain many localminimizers. For protein folding, the problem sizes tend to be very largewith possibly thousands of variables, and the objective functions usuallyhave exponentially many local minimizers. Therefore, to solve the opti-mization problems for protein folding, special algorithms must be developedwhich exploit the problem structure. In addition, parallel high performancecomputing is also essential for the solutions to be computationally feasible.Our work focuses on establishing a new continuation-based approach toglobal optimization; we develop e�cient parallel algorithms and softwarespeci�cally for molecular conformation and protein folding.2



2 The basic approachThe idea behind our approach is the following. To avoid directly minimiz-ing a \di�cult" objective function, a smoothing technique is introduced totransform the function into a class of gradually deformed, but \smoother"or \easier" functions. An optimization procedure is then applied to the newfunctions successively, to trace their solutions back to the original function.To obtain our smoothing transformation, a parametrized integral trans-formation is introduced, transforming a given function into a class of newfunctions corresponding to a set of parameter values. A transformed func-tion is in some sense a coarse approximate to the original function. Afterapplying the transform, the original function becomes smoother with smalland narrow minimizers being removed while the overall structure of thefunction is maintained. This allows a solution tracing procedure to skip lessinteresting local minimizers, and concentrate on regions with average lowfunction values where a global minimizer is most likely to be located.Di�erent methods can be employed to trace the solutions. For example,a simple method is to apply a random search procedure to the transformedfunctions successively to locate their low local minimizers. Another possi-ble method is to apply local optimization procedures to each transformedfunction and trace a set of local minimizers.Our approach is called continuation-based, because the transformationcan actually be viewed as a special continuation process by the theory de-scribed in [7]. Following this theory, our new approach can be studied ina general numerical continuation setting, and algorithms can be developedby employing standard advanced numerical methods. We will discuss theseissues later in this paper.3 TransformationWe �rst introduce the transformation.De�nition 1 Given a nonlinear function f , the transformation <f >� forf is de�ned such that for all x,<f >� (x) = C� Z f(x0) e�kx�x0k2=�2 dx0; (2)or equivalently;<f >� (x) = C� Z f(x� x0) e�kx0k2=�2 dx0; (3)3



where � is a positive number and C� is a normalization constant such thatC� Z e�kxk2=�2 dx = 1: (4)To understand this transformation, consider that given a random func-tion g(x0) and a probability distribution function p(x0) for the random vari-able x0, the expectation of the function g with respect to p is<g>p= Z g(x0) p(x0) dx0: (5)In light of (5), the de�ned transformation (2) yields a function value for< f >� at any x equal to the expectation for f sampled by a Gaussiandistribution function centered at x.For example, consider the following nonlinear function:f(x) = (x� 1)2 + 0:1sin20(x� 1) (6)which is a quadratic function augmented with a \noise" function. The trans-formation for this function can be computed:<f >� (x) = (x� 1)2 + �22 + 0:1e�(20�)2=4sin20(x� 1): (7)The function value < f >� (x) for �xed x is equal to the integration withrespect to the product of two functions, the original function f(x0) and theGaussian distribution function p(x0) = C�e�kx�x0k2=�2 (Figure 1 (a)), where� determines the size of the dominant region of the Gaussian. Since the mostsigni�cant part of the integration is that within the dominant region of theGaussian, < f >� (x) can be viewed as the average value for the originalfunction f within a small �-neighborhood around x. If � is equal to zero thetransformed function is exactly the original function. Otherwise, originalfunction variations in small regions are averaged out, and the transformedfunction will become \smoother" (Figure 1 (b)).Figure 2 shows how the function <f >� in (7) behaves with increasing�. Observe that when � = 0:0 the function is the original function; whenwe increase � to 0.1, the function becomes \smoother"; when � is increasedfurther to 0.2, the function becomes entirely \smooth". As we will show inthe following sections, what we observed here is a general property of thetransformation, i.e., for any function f , the larger of �, the \smoother" thetransformed function. 4



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

x’

f(x’)

p(x’)

(a)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)Figure 1: A 1-dimensional transformation example.5
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(c) � = 0:0Figure 2: A class of gradually deformed functions.6



4 SmoothnessLet f̂ be the Fourier transformation for function f , and d<f >� the Fouriertransformation for function <f >�. Recall that the transformation <f >�for f is just a convolution of f and p, where p is the Gaussian distributionfunction p(x) = C� e�kxk2=�2: (8)Therefore the Fourier transformation for <f >� is equal to the product ofthe Fourier transformations for f and p. The Fourier transformation for theGaussian distribution function isĝ(!) = e��2k!k24 : (9)So, we have d<f >�(!) = e��2k!k24 f̂ (!): (10)We see from (10) that if � ! 0, d<f >� converges to f̂ , and < f >�converges to f .Also by (10), for �xed �, if ! is large d<f >�(!) will be very small. Thisimplies that high frequency components of the original function becomevery small after the transformation. This is why the transformed function is\smoother". In addition, for larger � values, wider ranges of high frequencycomponents of the original function practically vanish after the transforma-tion. Therefore, the transformed function becomes increasingly smooth as� increases. We state these properties formally in the following theorem.Theorem 1 Let f , f̂ , < f >� and d<f >� all be given and well de�ned.Then 8" > 0, 9� / 1=� for �xed �, such that 8! with k!k > �,j d< f >�(!)jj bf(!)j < ": (11)Proof: See [7]. 2From this theorem we learn that the relative size of d< f >�(!) can bemade arbitrarily small for all ! with k!k greater than a small value �. Since� is inversely proportional to �, high frequency components are removedwhen � is large. 7



5 Numerical PropertiesThe de�nition of the transformation (2) involves high dimensional integra-tion which cannot be computed in general (except perhaps by the MonteCarlo method which is not appropriate for our purposes because it is tooexpensive). So the transformation may not be applicable to arbitrary func-tions, at least numerically. However, this transformation does apply to alarge class of nonlinear partially separable functions, and especially to typ-ical molecular conformation and protein folding energy functions.Consider a large class of nonlinear partially separable functions, calledgeneralized multilinear functions,f =Xi Yj gij ; (12)where gij 's are one dimensional nonlinear functions. It is easy to verify that<f >�=Xi Yj <gij>�: (13)Since transformation <gij>�, for all i and j, involves only one dimensionalintegration, the transformation for a generalized multilinear function can benumerically computed.In particular, let us consider a typical n-atom molecular conformationenergy function, f(x) = nXi=1;j>i hij(kxi � xjk) (14)where x = fxi 2 R3; i = 1; : : : ; ng and hij is the pairwise energy functiondetermined by kxi�xjk, the distance between atoms i and j. Because of thepartial separability of this type of function, the transformation for f is equalto the sum of the transformations for the pairwise functions hij . Howeverthe computation for the pairwise transformation still cannot be conducteddirectly, because there is still more than one variable. Nevertheless, thefollowing theorem provides a feasible way to compute the molecular energytransformation:Theorem 2 Let f be de�ned as in (14). Then the transformation (2) forf can be computed using the formula<f >� (x) = nXi=1;j>i<hij>p2� (krijk) (15)8



where rij = xi � xj and<hij>p2� (krijk) = cp2� Z hij(kr0ijk)e�krij�r0ijk2=2�2dr0ij : (16)Proof: See [7]. 2Note that <hij >p2� (krijk) can be computed with a standard numer-ical integration technique; therefore, the transformation <f >� (x) can becomputed in this fashion.6 MinimizationIn summary, we have introduced a parametrized integral transformation totransform the object function of a global optimization problem. Statisti-cally, the transformation averages the function values, and provides coarseestimates for the function variation. Geometrically, the transformation de-forms the function into a class of \smoother" functions with small high fre-quency components removed in the transformed functions. Physically, thetransformation allows a physical system to have small perturbations, andthe transformed function re
ects the average behavior of the system dy-namics. Finally, the transformation can exploit partial separability, and isparticularly suitable for molecular conformation and protein folding energyfunctions.With this transformation, a general global minimization procedure canimmediately be constructed as illustrated in Figure 3. That is, given aglobal minimization problem with a nonlinear objective function f , we �rsttransform the function into a class of new functions < f >�1 , <f >�2 , : : :,< f >�m for �1 > �2 > : : : > �m = 0 with < f >�m corresponding to f .We then apply local optimization procedures to the transformed functionssuccessively, to trace their solutions back to the original function. Since thetransformed function with a larger � value is \smoother" with possibly fewerlocal minimizers, we can start by minimizing < f >�1 , and next, take itssolution as the initial point and minimize <f >�2 , and so on and so forth.Since a transformed function is also a coarse approximate to the originalfunction, its solution should also be a rough estimate for the solution of theoriginal function. So by minimizing the transformed functions successively,9



1 Choosef�i : i = 1; : : : ;m; �1 > : : : > �m = 0g2 For i = 1; : : : ;mminx2S <f >�i (x)Figure 3: A global minimization procedure.the whole process is concentrated in regions where the solution of the originalfunction is most likely to be located.7 Tracing SolutionsThe continuation-based global minimization approach contains two majorcomponents:1. Application and computation of the transformation (2),2. A solution tracing procedure.Clearly, di�erent algorithms can be implemented if di�erent solution tracingprocedures are employed. An e�cient solution tracing method is crucial forthe algorithm to be numerically e�ective and e�cient.In principle, tracing solutions means tracing global minimizers: the so-lution for a global minimization problem is sought for each transformedfunction. However, in a broader sense, the solutions can actually be eitherglobal or local, as long as they form a \path" that can lead to a global min-imizer for the original objective function. Under some circumstances, sucha \path" exists as a smooth curve, and then tracing solutions simply im-plies following a smooth solution curve determined by a set of transformedfunctions. 10



A random search procedure is an example of a simple solution tracingmethod, e.g., the simulated annealing random search [1]. This method iseasy to implement, and especially robust in the sense that the random searchprocedure can be designed to converge asymptotically to a global minimizer.However, convergence depends on how thoroughly the search can be con-ducted. Usually, an una�ordable amount of computation is required even forsmall problems. Another problem with this method is that the randomnessintroduces uncertainty.A more deterministic and e�cient alternative is to use a local minimiza-tion procedure. This method applies local minimization to the transformedfunctions successively, and returns a local minimizer as the candidate for thesolution to the given problem. The method is relatively inexpensive, andclearly more feasible for large scale problems, e.g., the protein problems.In particular, it can take advantage of well-developed local optimizationtechniques [6].The e�ectiveness of this method can be illustrated in the following simpleexperiment: Consider the function in (6), and suppose that we want to �ndits global minimizer. First we transform the function to obtain a class ofnew functions given in (7). Choose �1 = 0:2, �2 = 0:1 and �3 = 0:0. Wethen have three transformed functions as shown in Figure 2 (a), (b) and (c).The function in Figure 2 (c) is equivalent to the original function. Thenwe apply a local minimization procedure to the transformed functions from<f >�1 to <f >�3 . Since <f >�1 is \smooth" with only one local minimizer,the solution can immediately be found for it. Started from this solution, alocal minimizer, being also a global minimizer, for < f >�2 can be foundsubsequently. Continuing the process, the global minimizer for the originalfunction can be located at the end.The example shows that the local minimization skips small local min-imizers at the �rst stages and goes directly to a region of interest, wherea global minimizer is very likely to be found subsequently. In general, themethod may not always be this fortunate. For example, the early trans-formed functions may still have more than one local minimizer; the chosenminimizer may not necessarily lead to a global minimizer for the functionat the �nal stage.To begin with the \right local minimizer", either a good initial point isprovided based on the known knowledge of given problem, or a set of localminimizers can be selected and traced, and one of them may lead to a goodsolution. 11



8 Numerical ContinuationOur recent work [7] shows that the parametrized integral transform in (2)de�nes for f a homotopy on [0; �0] for any �0 < 1. Moreover, underappropriate assumptions, the transformed functions f< f >�: � 2 [0; �0]gdetermine for any given local minimizer x0 of < f >�0 a continuous anddi�erentiable curve x(�) so that for all � 2 [0; �0], x(�) is a local minimizerof < f >�. In this case, the deterministic trace of the solution, e.g., usinglocal minimization, is equivalent to following a solution curve x(�) (or aset of such curves). This forms the theoretical basis for our method as aspecial continuation approach to global optimization. Therefore, an initialvalue problem to determine the solution curve can be derived in a simpleand computable form:x0 = ��2 <r2f >�1� (x) <�g>� (x) (17)x0 = x(�0) (18)where r2f is the Hessian of the function, and �g the Laplace operation ap-plied to the components of the gradient. This result opens another directionfor the e�ective trace of the solution - solve the initial value problem usingstandard numerical IVP-methods, e.g., the predictor-corrector methods [2].One simple example is to use an Euler-Newton method as shown in Figure 4.In this method, at each iteration, an Euler predictor is computed to start aNewton's local minimization procedure to �nd a solution on the curve. Theprocess is continued, and the solution curve is followed to its end.9 ParallelismDi�erent levels of parallelism can be exploited for continuation-based globaloptimization, e.g., parallel solution tracing, parallel function evaluation, andparallel linear algebra and optimization.At the solution tracing level, parallelism can be exploited by using mul-tiprocessors to generate multiple random searches, or trace a set of localminimizers in parallel. For the random search technique, increasing thenumber of processors is equivalent to increasing the number of trials. Themore processors that are used, the higher the probability a solution can befound. For tracing multiple local minimizers, using multiprocessors simplyreduces the total computation and increases the potential for �nding the best12



� = �0; x = x0RepeatCompute x0 = ��2 <r2f >�1� (x) <�g>� (x)� = �+ h; x = x + x0 hRepeatCompute s = � <r2f >�1� (x) <g>� (x)x = x+ � sEndEnd Figure 4: Euler-Newton prediction and correction.
13



possible local minimizer. In either case, the parallelism is coarsely grainedwith little communication required among processors but intensive compu-tation for each, which is good for massively parallel computation, especiallyon the machines with high communication to computation ratios.Parallel function evaluation is important for both local and global op-timization. For the continuation-based global optimization method, morethan half of the total computation involves function evaluation, and eachevaluation is costly, requiring numerical integration. However, for molecularconformation and protein folding, the energy functions to be minimized arepartially separable with typically a small number of element functions. Sofor each element function, we can construct a function value look-up table.The function evaluation can then be conducted with cubic spline interpola-tion using the function values already calculated in the look-up tables. Inthis way, the total function evaluation cost can be reduced; moreover, thefunction value look-up tables, no matter how expensive they are, can becomputed in parallel with perfect parallel e�ciency. In this sense, we saythat the function evaluation can be indirectly parallelized.Finally, the continuation-based global optimization method is rich inlinear algebra which is good for high performance computing. When theproblem is large, say, the problem for a protein with ten thousand atoms,the parallelism at this level can also be exploited by parallelizing the majorlinear algebra operations, e.g., linear system solve and local minimization.This type of parallelism has been well studied and understood, and can beexploited using standard techniques.10 Numerical ExperienceThe development of the continuation-based approach to global optimizationhas been accompanied with a series of computational works [3, 4, 5]. Thealgorithms have been implemented on parallel machines and tested with aset of molecular conformation problems. The results we obtained supportthe approach, and show that the algorithms perform much more e�ectivelyand e�ciently than conventional global optimization methods. They are alsovery suitable for massively parallel computation. We illustrate in the follow-ing some of our numerical experience with two particular algorithms. Bothmethods are continuation-based, but di�er in solution tracing strategies.The �rst method, called the e�ective energy simulated annealing, usesa random search procedure, the simulated annealing method, to trace the14



solutions. Recall that in the simulated annealing method, a temperatureparameter T is decreased from a positive number to zero as the iterationcount increases. For each value of T , a number of random trials is appliedto the given energy function. For the e�ective energy simulated annealingmethod, a function � = � T �rst is de�ned, where � is a constant. For eachvalue of T , a � value is determined, which, in turn, de�nes a transformedfunction, called the e�ective energy function. A number of random trialsis then conducted on this function to locate a solution. The parameter �goes to zero as T decreases, and the transformed function changes to theoriginal function. The process is equivalent to tracing the solutions for aset of transformed functions using the Monte Carlo search with a di�erenttemperature T for each di�erent transformed function. Note that if � is setto zero, � is equal to zero for all T . In this case all transformed functionsare the same original function, and the algorithm is reduced to a standardsimulated annealing procedure.The e�ective energy simulated annealing algorithm has been implementedon a 32-node Intel iPSC/860 at Cornell. The machine is a parallel dis-tributed memory system with a hypercube interconnection network. Eachprocessor has 8 Mbytes of local memory, and achieves a theoretical peakperformance of 40 M
ops. The parallelization of the algorithm is straight-forward: Multiple processors are used at each iteration to generate multiplesequences of trials independently. Little communication is required amongprocessors except for calculating the global acceptance rate at the end ofeach iteration. The load also is well balanced: the number of trials is thesame each processor. For more implementation details, readers are referredto [3].The algorithm is tested with a set of small sizes of Lennard-Jones mi-crocluster conformation problems, which have been well studied, and widelyused as model problems for molecular conformation. Typical results forthese problems are shown in Figure 5, where three pictures for clusters ofn = 8; 12; 16 atoms are given. The curves indicate the energy levels for thesolutions obtained by the algorithm with di�erent � values. We see when� is equal to zero, the algorithm corresponding to a standard simulatedannealing procedure can only �nd solutions with very high energy levels.However, within the same amount of computation time, the e�ective energysimulated annealing algorithm with a proper choice of positive � value can�nd solutions whose energy levels are already very close to the best knownvalues (the bottom lines of the pictures). As a matter of fact, by applyinga local minimization procedure started with these solutions, we obtained15



immediately the best known solutions for all the clusters. These results justshow how e�ective the method with the transformation scheme can be formolecular conformation, compared with a conventional global optimizationtechnique.The parallel performance for the algorithm is illustrated in Figure 6,where two examples are given to show how rapidly the energy levels ofthe solutions found by the algorithm decrease with increasing numbers ofprocessors.The second algorithm we want to discuss is the deterministic local tracingalgorithm, which uses local minimization as a solution tracing procedure.The algorithm �rst requires the objective function to be transformed into aclass of new functions <f >�1 , <f >�2 , : : :, <f >�m for a set of parametervalues �1 > �2 > : : : > �m = 0, with <f >�m corresponding to f . A set ofstarting points are sampled randomly so that a group of local minimizers for<f >�1 are obtained at the beginning. Then local minimization is appliedto the remaining transformed functions successively to trace the changes ofthese local minimizers, and the one with the lowest function value is selectedat the last stage as a candidate for the solution to the given problem.The deterministic local tracing algorithm has been implemented on a64-node IBM SP1 at Cornell. The SP1 is a parallel distributed memorysystem with a high performance switch installed for better interprocessorcommunication. Each processor is an IBM RS/6000 with 128 Mbytes ofmemory and a peak performance of 125 M
ops. In this implementation,multiprocessors are used to trace multiple local minimizers in parallel withone local minimizer for each processor. Little communication is required.Each processor carries a sequence of local minimizations. Basically, the moreprocessors used, the more local minimizers traced, and hence the higher theprobability of obtaining a good solution. Also, the larger the problem sizes,the more intensive the computation for each processor. Since the problemsizes of practical interest tend to be very large, the machines with highcommunication to computation ratios, such as the IBM SP1, can be verysuitable for the algorithm to achieve good performance in practice.The algorithm has been tested with a set of \perturbed Lennard-Jonesmicrocluster conformation problems". Such a problem is obtained by addingin each pairwise Lennard-Jones potential function a periodically varyingterm, � sin(!r)=r, where � and ! are constants, and r is the distance betweengiven pair of atoms. The functions with properly adjusted � and ! cangenerate a set of even more complicated global optimization test problems.The perturbed functions reduce to pure Lennard-Jones problems when � is16
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Deterministic Local Tracingp n = 16 n = 20 n = 24m = 1 m = 40 m = 1 m = 40 m = 1 m = 401 -4.2805e1 -5.7933e1 -5.2270e1 -7.6255e1 -1.0112e2 -1.0312e22 -5.5878e1 -5.6551e1 -7.4508e1 -8.0626e1 -1.0129e2 -1.0048e24 -5.8068e1 -6.0420e1 -7.6577e1 -7.9048e1 -1.0555e2 -1.0419e28 -5.8068e1 -6.1350e1 -7.7593e1 -7.9561e1 -1.0250e2 -1.0419e216 -5.8068e1 -6.1350e1 -8.0518e1 -8.3793e1 -1.0411e2 -1.0604e232 -6.1350e1 -6.1350e1 -8.3664e1 -8.3793e1 -1.0463e2 -1.0604e2Table 1: Energy values obtained by the deterministic local tracing methodfor the perturbed Lennard-Jones problems.set to zero. In this test, � is set to 1, and ! to 10.Table 1 lists the results for some example problems (n=16,20,24), ob-tained by the algorithm using di�erent numbers of processors (p). The datain the table are the energy values for the solutions obtained by the algorithm.To transform the function, a set of values f�i : i = 1; : : : ; mg are used with�i = (i � 1)h, h = 0:01. So, m = 1 simply implies that no transformationis used, and the algorithm is just a local minimization sampling procedure.The comparison between the two cases, m = 1 and m = 40, shows that withtransformation, the algorithm performs much more e�ectively than directlydoing local minimization on the given function. In the table, we can alsosee that as the number of processors increases, the energy values for thesolutions obtained by the algorithm decreases rapidly.11 Software DevelopmentBased on this work, we are currently developing a parallel continuation-based global optimization software system, called Cglop (Figure 7), formolecular conformation and protein folding. An initial version of the systemhas just been completed (see [5] for more details).The system transforms the objective function into a sequence of gradu-ally deformed functions. There are three subsystems corresponding to threedi�erent solution tracing procedures, namely, the global simulated anneal-ing random search (GLOBAL), the Newton's local minimization method(LOCAL), and the Euler-Newton predictor-corrector method (PC). As we19



have discussed in this paper, the random search method is more robust butalso costly. The deterministic local tracing is e�cient, but may not guar-antee a global minimizer. The predictor-corrector method provides a moreaccurate way to trace the solution. Overall, each of these methods has ad-vantages and disadvantages, but the combination of them provides a robustset of numerical tools for both e�ective and e�cient trace of the solutions.The system also provides transformation routines (TRANSFORMATION)to both transform user-supplied functions (USER FUNCTIONS) using nu-merical integration (INTEGRAL) and construct corresponding function val-ues look-up tables. The function evaluations in the solution tracing processare conducted by cubic spline (SPLINE) using the function values in thelook-up tables.The system is written in C and developed on the IBM SP1 with PVMused for parallel message passing extensions. It is easy to port to a variety ofparallel architectures including a cluster of local workstations. The systemis meant to be used as a computational platform for basic interdisciplinarystudies on molecular conformation and protein folding.AcknowledgementsThis research was supported partially by the Cornell Theory Center, whichreceives funding from members of its Corporate Research Institute, the Na-tional Science Foundation (NSF), the Advanced Research Projects Agency(ARPA), the National Institutes of Health (NIH), New York State, and IBMCorporation.References[1] Emile Aarts, and Jan Korst [1989]. Simulated Annealing and BoltzmannMachines. John Wiley & Sons, New York, NY.[2] Eugene L. Allgower and Kurt Georg [1990]. Numerical ContinuationMethods. Springer-Verlag, New York, NY.[3] Thomas F. Coleman, David Shalloway and Zhijun Wu [1993]. IsotropicE�ective Energy Simulated Annealing Searches for Low Energy Molec-ular Cluster States. Computational Optimization and Applications, 2,145-170, 1993. 20



[4] Thomas F. Coleman, David Shalloway and Zhijun Wu [1994]. A Paral-lel Build-Up Algorithm for Global Energy Minimizations of MolecularClusters Using E�ective Energy Simulated Annealing. Journal of GlobalOptimization, 4, 171-185, 1994.[5] Thomas F. Coleman and Zhijun Wu [1994]. Cglop { A ParallelContinuation-Based Global Optimization Package for Molecular Con-formation. Advanced Computing Research Institute, Cornell Univer-sity, Ithaca, NY, to be submitted to ACM Transactions on Mathemat-ical Software.[6] J. E. Dennis, Jr. and R. B. Schnabel [1983]. Numerical Methods forUnconstrained Optimization and Nonlinear Equations. Prentice-Hall,Englewood Cli�s, NJ.[7] Zhijun Wu [1993]. The E�ective Energy Transformation Scheme as aGeneral Continuation Approach to Global Optimization with Applica-tion to Molecular Conformation. Technical Report CTC93TR143, Ad-vanced Computing Research Institute, Cornell University, Ithaca, NY,submitted to SIAM Journal on Optimization.

21



EULER
NEWTON

GLOBAL LOCAL PC

SA NEWTON

SPLINE TRANSFORMATION INTEGRAL

DG LJ WATER PROTEIN

USER FUNCTIONS

PROTEIN
 WATER

+

+

            Solving the Protein Folding Problem:

for Molecular Conformation
A Parallel Continuation-Based Global Optimization System

Figure 7: The Cglop system structure.
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