
Asynchronous (time-warp) versus synchronous(event-horizon) simulation time advance in BSPMauricio Mar��nProgramming Research Group, Computing Laboratory, University of OxfordE-mail: mmarin@comlab.ox.ac.ukAbstract. This paper compares the very fundamental concepts behindtwo approaches to optimistic parallel discrete-event simulation on BSPcomputers [10]. We refer to (i) asynchronous simulation time advanceas it is realised in the BSP implementation of Time Warp [3], and(ii) synchronous time advance as it is realised in the BSP implementationof Breathing Time Buckets [8]. Our results suggest that asynchronoustime advance can potentially lead to more e�cient and scalable simula-tions in BSP.1 IntroductionAs BSP is a (bulk) synchronous model of parallel computing [10], the obvi-ous method of parallel discrete-event simulation [2, 7] on BSP computers seemsto be synchronisation protocols based on synchronous time advance, such asBreathing Time Buckets [8]. In this paper we show that using synchronous timeadvance on a BSP computer might not be a good idea for two reasons. Firstly,synchronous simulation methods force the execution of periodical parallel min-reductions during which no interesting advance in simulation time can be made.These operations take some number of BSP supersteps to complete [10], and thesimulation is stopped during their execution. The cumulative cost of these oper-ations is relevant since the total number of min-reductions is equal to the totalnumber of supersteps used to process the simulation events. Secondly and moreimportantly, synchronous methods impose barriers in simulation time which tendto reduce the rate of time advance per superstep of the simulation. This increasesthe total number of supersteps dedicated to parallel event-processing. Equiva-lently, time barriers tend to decrease the number of events that are processed ineach superstep.In BSP, supersteps are delimited by the barrier synchronisation of all the pro-cessors. In turn this operation takes some amount of real time to complete andit can become comparatively expensive in simulation models where the amountof computation involved in the processing of events is small (e.g., queuing net-works). As many real life simulations can easily demand the execution of hun-dreds of thousands of event-processing supersteps, a signi�cant reduction of thetotal number of supersteps can also cause a signi�cant reduction of the totalrunning time of the simulation. In addition, the cost of the remaining barrier

synchronisation of processors can be amortised by the processing of a compara-tively larger number of events per superstep.On the other hand, approaches based on asynchronous time advance do notstop the simulation to perform periodical min-reductions, and simulation timebarriers are not required (cf., [6]). For symmetric work-loads and excluding min-reduction supersteps, we have observed that as the size of the simulation modelscales up, the rate of simulation time advance per superstep decreases compar-atively faster using synchronous time advance. In particular, synchronous timeadvance requires on the average O(pP=ln ln P) times more event-processingsupersteps than asynchronous time advance, with P being the total number oflogical processes (LPs). Moreover, for any simulation model, we show that thenumber of supersteps for the asynchronous approach is at most the superstepsrequired by the synchronous approach, and in the end the total number of su-persteps required by the asynchronous approach is optimal for any model. Inaddition, for the same symmetric work-loads, we have observed that load bal-ance tends to be better under asynchronous time advance for moderate levelof aggregation of LPs onto processors (here load balance refers to balance incomputation and communication as it is understood in BSP), whereas load bal-ance is optimal in both approaches when the aggregation of LPs is large enough(domain of current practical simulations).Obviously the nature of simulation work-loads is completely irregular andit is hard (perhaps impossible) to draw general conclusions about the overallrunning time achieved by protocols based on the two approaches analysed in thispaper. We contribute with the analysis of an important performance indicator,namely total number of supersteps. In our view, the results presented in thispaper suggest that the domain of simulation models and current BSP machinesin which protocols based on synchronous time advance can be e�cient should beexpected to be limited. As to the development of general purpose BSP simulationenvironments, we conjecture that protocols based on asynchronous time advanceo�er better opportunities to achieve scalable performance.2 Two approaches to time advanceApproaches based on the event-horizon concept [9] like Breathing Time Buckets[8], advance in simulation time in a synchronous manner by consuming super-steps as in �gure 1.a. Note that here we do not consider the additional super-steps required for min-reductions which compute a new global event-horizon oneach cycle. That is, each cycle of the pseudo-code shown in this �gure shouldbe followed by a min-reduction. Approaches like Time Warp [3], on the otherhand, advance in simulation time in an asynchronous manner [6] by consumingsupersteps as in �gure 1.b. Note that only silent min-reductions are needed inthese approaches since values such as global virtual time (GVT) [3] are calculatedwithout stopping the simulation. That is, these min-reductions are carried outusing the same supersteps used to simulate events. We call these two styles ofsuperstep advance as SYNC and ASYNC respectively.

Lemma1. The total number of supersteps required by ASYNC is optimal.Proof: Dependencies among events form trees. If the occurrence of event egenerates event e1, then e1 is a child of e. If e1 is scheduled to occur in a di�erentprocessor and e takes place at superstep s, then e1 must be processed at leastin the superstep s + 1. But the simulation of e1 may be delayed up to somesuperstep s0 > s+1 if earlier events take place in e1's processor at superstep s0.In this case, each descendant of e1 may only take place at superstep � s0 andif an e1's decendant takes place in another processor, it may occur at least insuperstep s0 + 1. In this sense we say that every event has an initial \energy"which indicates the minimum superstep at which it can take place.Figure 1.b helps us to realise that given any set of events to be processedduring the whole simulation, the superstep counters are only updated with theinitial energy of chronological events that cannot be processed in earlier super-steps. This rule is inductively applied in each processor from the �rst to thelast superstep. In this way the simulation, as mapped onto the processors, iscompleted in the minimum number of supersteps. 2Lemma2. The total number of supersteps required by ASYNC is at most thesupersteps of SYNC.Proof: A subset EH of all simulation events are the events that mark the event-horizon times. These events are not necessarily causally related and they maybe generated in di�erent processors. Also note that these events are the leasttimestamped messages bu�ered during the respective SYNC supersteps. The sizejEH j of this subset is the total number of supersteps required by SYNC since byconstruction these events cannot occur in the same superstep.Consider the simulation with ASYNC. The �rst chronological event in EHis necessarily the �rst event processed by one of the processors in its secondsuperstep. However, the remaining processors may advance farther in time dur-ing their �rst superstep since they are not barrier synchronised by event-horizontimes. This implies that more than one horizon event may be processed in thesecond superstep of ASYNC. Similar argument applies to the following super-steps so that, in general, SYNC is not optimal in supersteps. Both approachesrequire identical number of supersteps when, for example, each event in EH iscausally related so that they must be simulated sequentially. 2Lemma3. Under assumption of unlimited memory, Time Warp as realised inBSP can approximate the supersteps of ASYNC within logP supersteps.Proof: The lemma follows trivially by letting Time Warp process every availableevent (with time within the simulation period), correct erroneous computationsaccordingly, and start a new GVT calculation in each superstep. 2Note that processing every available event per superstep may lead to largeroll-back overheads. However, near-optimal supersteps can be achieved at lowoverheads by limiting the number of events processed in each superstep [6].

Generate N initial pending events;TZ := 1; [event horizon time]SZ �; [bu�er]loopif TimeNextEvent() > TZ thenSStep := SStep + 1;Schedule(SZ);TZ := 1;SZ �;endife := NextEvent();e:t := e:t + TimeIncrement();p := e:p ; [e occurs in processor p]e:p := SelectProcessor();if e:p 6= p thenSZ SZ [feg;TZ := MinTime(SZ);elseSchedule(e);endifendloop

Generate N initial pending events;[e:s indicates the minimal superstep atwhich the event e may take place inprocessor e:p.]loope := NextEvent();p := e:p ; [e occurs in processor p]if e:s > SStep[p] thenSStep[p] := e:s;endife:t := e:t + TimeIncrement();e:p := SelectProcessor();if p = e:p thene:s := SStep[p];elsee:s := SStep[p] + 1;endifSchedule(e);endloopThe total number of supersteps is themaximum of the P values in array SStep.(a) SYNC (b) ASYNCFig. 1. Sequential programs describing the rate of superstep advance in two approachesto parallel simulation. This program, called the hold-model [11], simulates work-loads ofsystems such as queuing networks. Schedule() stores events in the set of pending events.NextEvent() retrieves from this set the event with the least time. TimeIncrement()returns random time values. SelectProcessor() returns a number between 0 and P � 1selected uniformly at random. The variable/array SStep maintains the current numberof supersteps of the simulated BSP machine.3 Average case analysisIt is not di�cult to see that the number of supersteps per unit simulation time,denoted by Sp, required by SYNC and ASYNC is the optimal, Sp = 1, forfully connected communication topology when the TimeIncrement function of�gures 1 returns 1. However, when this function returns random values, sayexponentially distributed, the Sp values increase noticeably as shown in thefollowing analysis (details in [5]). We assume one LP per processor.Suppose that the initial event-list has N pending events e with timestampse:t. Let X be a continuous random variable with p.d.f. f(x) and c.d.f. F (x). Ahold operation consists of (i) retrieving the event e� with the least timestampfrom the event-list, (ii) creating an event e with timestamp e:t = e�:t + X ,and (iii) storing e in the event-list. e� is discarded so that N remains constant

throughout the whole sequence of hold operations. It is known [11] that afterexecuting a long sequence of hold operations the probability distribution of thetimes e:t approaches an steady state distribution with p.d.f. g(y) = (1�F (y))=�where � = E[X]. We represent the e:t values with the random variable Y . Thevalues of Y are measured relative to the timestamp of the last event e� retrievedby the last hold operation. Let G(y) be the c.d.f. of Y .SYNC: We use the above de�ned f(x) and g(x) probability density functionsto calculate SYNC's Sp, say Ssp, as follows. Let A be the minimum of the Nrandom variables Y . Since Prob[A > x] = G(x)N the c.d.f. of A is MA(x) =1�G(x)N . Let B be the minimum of the N random variables resulting from thesum of X and Y . The variable B represents the time of the event-horizon. Thec.d.f. of X + Y , say F2(x), can be calculated using F2(x) = R x0 F (x � t)g(t)dtor F2(x) = R x0 G(x � t)f(t)dt. The c.d.f. of B is then MB(x) = 1 � F2(x)N .Note that E[B] � E[A] is the average time advance per superstep. Thus if thesimulation ends at time T � 1, then it will require an average of T=(E[B]�E[A])supersteps to complete. Therefore Ssp = 1=(E[B]�E[A]).Let us consider the negative exponential distribution with mean � = 1 fortime increments X . In this case f(x) = g(x) = e�x, therefore E[A] is given byE[A] = Z 10 MA(t) dt = Z 10 e�N t dt = 1N ;and E[B] isE[B] = Z 10 (e�t+t e�t)N dt = NXi=0 �Ni �Z 10 ti e�N t dt = 1N NXi=0 �Ni �i!� 1N �i :Using the approximation given in [4] (pp. 112-117) we obtainE[B] � 54 1pN + 34 1N ;so that Ssp � 45 pN :Let us now consider SYNC's event-e�ciency Ef , say Esf , which is de�nedas the ratio of the optimal number of events to the average maximum numberof events processed in each processor per superstep. This is a measure of loadbalance in computation and communication for the studied symmetric work-load. On average, a total of m events take place in each superstep. Given asensible distribution of LPs onto the P processors, by Valiant's theorem [10] welearn that the average maximum number of events per superstep should tendto the optimal m=P as m scales up. Thus for m large enough the e�ciency isclose to 1. For exponential distribution, m � 54pN [5, 9]. De�ne D = N=P .Regression analysis on simulation data from the program in �gure 1.a (validated

with numerical evaluation of the expected maximum of P binomial randomvariables) produces (asymptotically) for exponential distribution [5],Esf = D1=4P 1=4 ln P +D1=4 :ASYNC: In this case there is no global synchronisation in simulation time.In a given superstep each LP pi simulates events with time less than the minimumevent time of all new events (messages) arriving to pi from other LPs by the nextsuperstep. For large number of LPs (which justi�es parallel simulation itself), itis reasonable to assume that a signi�cant amount of LPs will work with its ownstatistically independent local event-horizon. The average instance of this localevent-horizon being the average minimum of D independent random variablesZ = X + Y . Thus, from the previous results for SYNC, these comments lead toa �rst view of ASYNC's Sp, say Sap � O(pD) for �xed number of LPs P . Thatis, we conjecture that for P � 1 and D � 1, Sap asymptotically tends to theSp value of a SYNC simulation with just D events. In the following we provideevidence supporting this claim.The LPs advance the simulation in a generally di�erent amount of time ineach superstep. Note that the average time advance per superstep is by de�nition1=Sap . Let us consider a lower bound Tp for this time advance. Consider all theorder statistics associated with the set of N random variables Z = X + Y .Thus Tp = Average among the �rstP values E[Zi], where the lower bound Tpcomes from the assumption that the �rst P order statistics of Z are all locatedin a di�erent LP. However, the actual average cannot be much larger than Tpsince any di�erence Zi � Zk increases very slowly with N . For example, forexponential distribution, the maximum ZN increases only logarithmically withN [1]. In this case we conjecture that the true average time advance per superstepis � 1:25=pD. Let us then compare Tp with this quantity.Unfortunately calculating Tp is mathematically intractable. Thus we per-formed the following experiment. For large N , say N = 104, we generatedI = 103 di�erent instances of a set of N random values X + Y , with X andY being exponentially distributed. For each instance i we calculated the partialsums Sum[i; P] = 1P PPk=1 Zk with 1 � P � N , so that Tp for a particular Dis given by Tp = 1I PIi=1 Sum[i; ND]. The results show that in the range D � 10,Tp behaves like O(1=pD). Assuming Tp = � (P=N)� least squares regression onthe points (log Tp; logP) produced � = 0:47738 and � = 0:01194 which shouldbe compared with the conjectured � = 0:5 and � = 0:0125 resulting from thecurve 1:25=pD.We now consider the e�ect of P in Sap when D is �xed. Let �k be the sumof k � 1 random variables with p.d.f. f(x) so that they represent the timeincrements of events forming a thread of causally related events. Then, for anypositive di�erence between LP time advances, say � = Tj � Ti, there is somenon-zero probability that Tj < Ti+�i+�k < Tj+�j for some �i; �j � 0, such thatTi+�i+�k is the time of the next event ej in LP pj after superstep s. This eventej is processed in some superstep s0 with s+ 1 < s0 � s+ k + 1. An increase in

P implies an increase in the diversity of Ti values and thereby an increase in theprobability of events of type \ej". Thus, for �xed D, Sap may increase in aboutk supersteps with P . For exponential distribution the k values are Poisson. Theaverage k for the maximum time interval � = ZN � Z1 is bounded from aboveby ZN = O(ln N). So a conservative upper bound for Sap is O(ln P). However,similar experiment to the above described tells us ZP < 1 ln ln P in the rangeD � 10. This leads to Sap � ln ln P pD :This expression was validated with simulation results obtained with the pro-gram in �gure 1.b. Regression analysis on data from the same program produces(asymptotically) for exponential distribution [5],Eaf = D1=4(ln ln P)1=2 ln P +D1=4 � 1ln P ln D� :Comments: Note that the ratio Ssp=Sap behaves in practice as O(pP) forlarge systems. For �xed P and large D values, SYNC's e�ciency is better thanASYNC's e�ciency. For large P 's, P 1=4 goes to1 faster than (ln ln P)1=2 ln P .Thus for large P and small D (practical simulation models) the e�ciency ofASYNC is better than SYNC e�ciency. However, the expression for Eaf wasobtained considering just one LP per processor. As more LPs are put on theprocessors, Eaf improves noticeably. This is so because the variance of the cumu-lative sum of co-resident LP time advances is reduced as the number of LPs perprocessor increases. Consequently, the variance of the number of events simu-lated in each processor decreases [5]. Conversely, Esf is insensitive to the relationDlpD = m=P with Dlp being the number of LPs per processor. Another impor-tant point here is that we can always move ASYNC towards SYNC by imposingupper limits to the number of events processed in each processor and superstep(this �lters peaks). If these limits are su�ciently small, ASYNC degenerates toSYNC [5].To compare the two approaches under more practical grounds we performedexperiments with programs similar to those shown in �gure 1. First note that thework-load generated by these programs is equivalent to a fully connected queu-ing network where each node (LP) contains in�nite servers. The service timesare given by the time increments of events. In our experiments we considereda more realistic queuing network: one non-preemptive server per node, expo-nential service times, fully connected topology, and unlimited queue capacitieswith moderate number of jobs owing throughout the network (closed system).Figure 2 shows the results. The comparison is made in terms of RS = Ssp=Sapand RE = Esf=Eaf . The plotted data clearly show that ASYNC outperformsSYNC in a wide range of parameters (the minimal value of RS in �gure 2.a is1.9). The data indicate that RS increases as pP and RE decreases when N andP scale up simultaneously. In other words, the results show that ASYNC hasbetter scalability than SYNC. In addition, the level of aggregation of LPs ontoprocessors contribute to further increase RS and decrease RE . In particular, for�xed P , the ratio RS increases as pDlp in �gure 2.a.

(a)02040
6080100

1 2 3 4 5 6 7 8 9 10 11 12pP
RS Dlp=2 3

33 3 3 3 3 38 +++ + + + + +32 222 2 2 2 2 2128 ��� � � � � �
(b)0.40.60.811.2
1.41.61.8

1 2 3 4 5 6 7 8 9 10 11 12pP
RE Dlp=2 333 3 3 3 3 38 +++ + + + + +32 222 2 2 2 2 2128 ��� � � � � �Fig. 2. Fully-connected non-preemptive single-server queuing network with exponentialservice times. Figure a: RS= supersteps-SYNC/supersteps-ASYNC. Figure b: RE=AvgMaxEv-SYNC/AvgMaxEv-ASYNC where AvgMaxEv is the average maximumnumber of events per superstep. Dlp= number of LPs per processor, and P = numberof processors. Initially D = 8 \jobs" are scheduled in each LP (server).References1. R. Felderman and L. Kleinrock. \An upper bound on the improvement of asyn-chronous versus synchronous distributed processing". In SCS Multiconference onDistributed Simulation V.22, pages 131{136, Jan. 1990.2. R.M. Fujimoto. \Parallel discrete event simulation". Comm. ACM, 33(10):30{53,Oct. 1990.3. D.R. Je�erson. \Virtual Time". ACM Trans. Prog. Lang. and Syst., 7(3):404{425,July 1985.4. D. E. Knuth. \The Art of Computer Programming, Vol. 1, Fundamental algo-rithms". Addison-Wesley, Reading, Mass., 1973.5. M. Mar��n. \Simulation time advance in BSP". Technical Report Oxford Univer-sity, May 1998. http://www.comlab.ox.ac.uk/oucl/groups/bsp/.6. M. Mar��n. \Time Warp On BSP Computers". Technical Report Oxford Univer-sity, Feb. 1998. To appear in 12th European Simulation Multiconference.7. D.M. Nicol and R. Fujimoto. \Parallel simulation today". Annals of OperationsResearch, 53:249{285, 1994.8. J.S. Steinman. \SPEEDES: A multiple-synchronization environment for paral-lel discrete event simulation". International Journal in Computer Simulation,2(3):251{286, 1992.9. J.S. Steinman. \Discrete-event simulation and the event-horizon". In 8th Work-shop on Parallel and Distributed Simulation (PADS'94), pages 39{49, 1994.10. L.G. Valiant. \A bridging model for parallel computation". Comm. ACM, 33:103{111, Aug. 1990.11. J.G. Vaucher. \On the distribution of event times for the notices in a simulationevent list". INFOR, 15(2):171{182, May 1977.This article was processed using the LATEX macro package with LLNCS style

