Asynchronous (time-warp) versus synchronous
(event-horizon) simulation time advance in BSP

Mauricio Marin

Programming Research Group, Computing Laboratory, University of Oxford
E-mail: mmarin@comlab.ox.ac.uk

Abstract. This paper compares the very fundamental concepts behind
two approaches to optimistic parallel discrete-event simulation on BSP
computers [10]. We refer to (i) asynchronous simulation time advance
as it is realised in the BSP implementation of Time Warp [3], and
(ii) synchronous time advance as it is realised in the BSP implementation
of Breathing Time Buckets [8]. Our results suggest that asynchronous
time advance can potentially lead to more efficient and scalable simula-
tions in BSP.

1 Introduction

As BSP is a (bulk) synchronous model of parallel computing [10], the obvi-
ous method of parallel discrete-event simulation [2, 7] on BSP computers seems
to be synchronisation protocols based on synchronous time advance, such as
Breathing Time Buckets [8]. In this paper we show that using synchronous time
advance on a BSP computer might not be a good idea for two reasons. Firstly,
synchronous simulation methods force the execution of periodical parallel min-
reductions during which no interesting advance in simulation time can be made.
These operations take some number of BSP supersteps to complete [10], and the
simulation is stopped during their execution. The cumulative cost of these oper-
ations is relevant since the total number of min-reductions is equal to the total
number of supersteps used to process the simulation events. Secondly and more
importantly, synchronous methods impose barriers in simulation time which tend
to reduce the rate of time advance per superstep of the simulation. This increases
the total number of supersteps dedicated to parallel event-processing. Equiva-
lently, time barriers tend to decrease the number of events that are processed in
each superstep.

In BSP, supersteps are delimited by the barrier synchronisation of all the pro-
cessors. In turn this operation takes some amount of real time to complete and
it can become comparatively expensive in simulation models where the amount
of computation involved in the processing of events is small (e.g., queuing net-
works). As many real life simulations can easily demand the execution of hun-
dreds of thousands of event-processing supersteps, a significant reduction of the
total number of supersteps can also cause a significant reduction of the total
running time of the simulation. In addition, the cost of the remaining barrier

synchronisation of processors can be amortised by the processing of a compara-
tively larger number of events per superstep.

On the other hand, approaches based on asynchronous time advance do not
stop the simulation to perform periodical min-reductions, and simulation time
barriers are not required (cf., [6]). For symmetric work-loads and excluding min-
reduction supersteps, we have observed that as the size of the simulation model
scales up, the rate of simulation time advance per superstep decreases compar-
atively faster using synchronous time advance. In particular, synchronous time
advance requires on the average O(v/P/In In P) times more event-processing
supersteps than asynchronous time advance, with P being the total number of
logical processes (LPs). Moreover, for any simulation model, we show that the
number of supersteps for the asynchronous approach is at most the supersteps
required by the synchronous approach, and in the end the total number of su-
persteps required by the asynchronous approach is optimal for any model. In
addition, for the same symmetric work-loads, we have observed that load bal-
ance tends to be better under asynchronous time advance for moderate level
of aggregation of LPs onto processors (here load balance refers to balance in
computation and communication as it is understood in BSP), whereas load bal-
ance is optimal in both approaches when the aggregation of LPs is large enough
(domain of current practical simulations).

Obviously the nature of simulation work-loads is completely irregular and
it is hard (perhaps impossible) to draw general conclusions about the overall
running time achieved by protocols based on the two approaches analysed in this
paper. We contribute with the analysis of an important performance indicator,
namely total number of supersteps. In our view, the results presented in this
paper suggest that the domain of simulation models and current BSP machines
in which protocols based on synchronous time advance can be efficient should be
expected to be limited. As to the development of general purpose BSP simulation
environments, we conjecture that protocols based on asynchronous time advance
offer better opportunities to achieve scalable performance.

2 Two approaches to time advance

Approaches based on the event-horizon concept [9] like Breathing Time Buckets
[8], advance in simulation time in a synchronous manner by consuming super-
steps as in figure 1.a. Note that here we do not consider the additional super-
steps required for min-reductions which compute a new global event-horizon on
each cycle. That is, each cycle of the pseudo-code shown in this figure should
be followed by a min-reduction. Approaches like Time Warp [3], on the other
hand, advance in simulation time in an asynchronous manner [6] by consuming
supersteps as in figure 1.b. Note that only silent min-reductions are needed in
these approaches since values such as global virtual time (GVT) [3] are calculated
without stopping the simulation. That is, these min-reductions are carried out
using the same supersteps used to simulate events. We call these two styles of
superstep advance as SYNC and ASYNC respectively.

Lemma 1. The total number of supersteps required by ASYNC is optimal.

Proof: Dependencies among events form trees. If the occurrence of event e
generates event e, then e; is a child of e. If ey is scheduled to occur in a different
processor and e takes place at superstep s, then e; must be processed at least
in the superstep s + 1. But the simulation of e; may be delayed up to some
superstep s’ > s + 1 if earlier events take place in e;’s processor at superstep s'.
In this case, each descendant of e; may only take place at superstep > s’ and
if an e;’s decendant takes place in another processor, it may occur at least in
superstep s’ + 1. In this sense we say that every event has an initial “energy”
which indicates the minimum superstep at which it can take place.

Figure 1.b helps us to realise that given any set of events to be processed
during the whole simulation, the superstep counters are only updated with the
initial energy of chronological events that cannot be processed in earlier super-
steps. This rule is inductively applied in each processor from the first to the
last superstep. In this way the simulation, as mapped onto the processors, is
completed in the minimum number of supersteps. O

Lemma 2. The total number of supersteps required by ASYNC is at most the
supersteps of SYNC.

Proof: A subset Eg of all simulation events are the events that mark the event-
horizon times. These events are not necessarily causally related and they may
be generated in different processors. Also note that these events are the least
timestamped messages buffered during the respective SYNC supersteps. The size
|E| of this subset is the total number of supersteps required by SYNC since by
construction these events cannot occur in the same superstep.

Consider the simulation with ASYNC. The first chronological event in Ey
is necessarily the first event processed by one of the processors in its second
superstep. However, the remaining processors may advance farther in time dur-
ing their first superstep since they are not barrier synchronised by event-horizon
times. This implies that more than one horizon event may be processed in the
second superstep of ASYNC. Similar argument applies to the following super-
steps so that, in general, SYNC is not optimal in supersteps. Both approaches
require identical number of supersteps when, for example, each event in Ep is
causally related so that they must be simulated sequentially. O

Lemma 3. Under assumption of unlimited memory, Time Warp as realised in
BSP can approxzimate the supersteps of ASYNC within log P supersteps.

Proof: The lemma follows trivially by letting Time Warp process every available
event (with time within the simulation period), correct erroneous computations
accordingly, and start a new GVT calculation in each superstep. O

Note that processing every available event per superstep may lead to large
roll-back overheads. However, near-optimal supersteps can be achieved at low
overheads by limiting the number of events processed in each superstep [6].

Generate N initial pending events;

Tz := oo; [event horizon time]
Sz < &; [buffer]
loop

if TimeNextEvent() > Tz then
SStep := SStep + 1;
Schedule(Sz);
Ty = Q5
Sz «+ b,

endif

e := NextEvent();

e.t ;= e.t + Timelncrement();

p := e.p; [e occurs in processor p|

Generate N initial pending events;
[e.s indicates the minimal superstep at
which the event e may take place in

processor e.p.]
loop
e := NextEvent();
p = e.p; [e occurs in processor p|
if e.s > SStep[p] then
SStep[p] := e.s;
endif
e.t := e.t + Timelncrement();
e.p := SelectProcessor();
if p=e.p then

e.p := SelectProcessor(); e.s := SStep[p];
if e.p # p then else
Sz < Sz U{e}; e.s 1= SStep[p] + 1;
Tz := MinTime(Sz); endif
else Schedule(e);
Schedule(e); endloop
endif
endloop The total number of supersteps is the
maximum of the P values in array SStep.
(a) SYNC (b) ASYNC

Fig. 1. Sequential programs describing the rate of superstep advance in two approaches
to parallel simulation. This program, called the hold-model [11], simulates work-loads of
systems such as queuing networks. Schedule() stores events in the set of pending events.
NextEvenit() retrieves from this set the event with the least time. Timelncrement()
returns random time values. SelectProcessor() returns a number between 0 and P — 1
selected uniformly at random. The variable/array SStep maintains the current number
of supersteps of the simulated BSP machine.

3 Average case analysis

It is not difficult to see that the number of supersteps per unit simulation time,
denoted by S, required by SYNC and ASYNC is the optimal, S, = 1, for
fully connected communication topology when the Timelncrement function of
figures 1 returns 1. However, when this function returns random values, say
exponentially distributed, the S, values increase noticeably as shown in the
following analysis (details in [5]). We assume one LP per processor.

Suppose that the initial event-list has N pending events e with timestamps
e.t. Let X be a continuous random variable with p.d.f. f(z) and c.d.f. F(z). A
hold operation consists of (i) retrieving the event e* with the least timestamp
from the event-list, (ii) creating an event e with timestamp et = e*.t + X,
and (iii) storing e in the event-list. e* is discarded so that N remains constant

throughout the whole sequence of hold operations. It is known [11] that after
executing a long sequence of hold operations the probability distribution of the
times e.t approaches an steady state distribution with p.d.f. g(y) = (1 - F(y))/u
where p = E[X]. We represent the e.t values with the random variable Y. The
values of Y are measured relative to the timestamp of the last event e* retrieved
by the last hold operation. Let G(y) be the c.d.f. of Y.

SYNC: We use the above defined f(z) and g(z) probability density functions
to calculate SYNC’s S;,, say Sy, as follows. Let A be the minimum of the N
random variables Y. Since Prob[A > 2] = G(z)N the c.d.f. of Ais Mu(z) =
1-G(z)N. Let B be the minimum of the N random variables resulting from the
sum of X and Y. The variable B represents the time of ‘rhe event- horizon The

c.d.f. of X+Y, say Fy(z), can be calculated using Fy(z) = fo (z — t)g(t)dt
or Fy(z fo (z — t)f(t)dt. The c.d.f. of B is then MB() = 1— FR(z)V
Note ‘rha‘r E[B] — E[A] is the average time advance per superstep. Thus if the

simulation ends at time 7' > 1, then it will require an average of T'/(E[B]— E[A])
supersteps to complete. Therefore S; = 1/(E[B] — E[A]).

Let us consider the negative exponential distribution with mean p = 1 for
time increments X. In this case f(z) = g(z) = e *, therefore E[A] is given by

:/ MA(t)dt:/ e Ntdt = — |
0 0

and E[B] is
N N i
e 1 N 1
_ —t t 1 7Nt .
E[B]_'/O (e '4te Z()/ dt = Nz(>'(ﬁ>
Using the approximation given in [4] (pp. 112-117) we obtain
5 31
BE[B] ~ 2 il
(Bl ~ 1N

so that

].
—\/_
\/_

Let us now consider SYNC’s event—efﬁciency Ey¢, say E%, which is defined
as the ratio of the optimal number of events to the average mazimum number
of events processed in each processor per superstep. This is a measure of load
balance in computation and communication for the studied symmetric work-
load. On average, a total of m events take place in each superstep. Given a
sensible distribution of LPs onto the P processors, by Valiant’s theorem [10] we
learn that the average maximum number of events per superstep should tend
to the optimal m/P as m scales up. Thus for m large enough the efficiency is
close to 1. For exponential distribution, m ~ 3v/N [5, 9]. Define D = N/P.
Regression analysis on simulation data from the program in figure 1.a (validated

with numerical evaluation of the expected maximum of P binomial random
variables) produces (asymptotically) for exponential distribution [5],

D1/4
Bi= ey

ASYNC: In this case there is no global synchronisation in simulation time.
In a given superstep each LP p; simulates events with time less than the minimum
event time of all new events (messages) arriving to p; from other LPs by the next
superstep. For large number of LPs (which justifies parallel simulation itself), it
is reasonable to assume that a significant amount of LPs will work with its own
statistically independent local event-horizon. The average instance of this local
event-horizon being the average minimum of D independent random variables
Z = X +Y. Thus, from the previous results for SYNC, these comments lead to
a first view of ASYNC’s S, say S} ~ O(V/D) for fixed number of LPs P. That
is, we conjecture that for P > 1 and D > 1, S asymptotically tends to the
Sp value of a SYNC simulation with just D events. In the following we provide
evidence supporting this claim.

The LPs advance the simulation in a generally different amount of time in
each superstep. Note that the average time advance per superstep is by definition
1/S,. Let us consider a lower bound T, for this time advance. Consider all the
order statistics associated with the set of N random variables Z = X + Y.
Thus T, = Average among the first P values E[Z;], where the lower bound T,
comes from the assumption that the first P order statistics of Z are all located
in a different LP. However, the actual average cannot be much larger than T,
since any difference Z; — Zj, increases very slowly with N. For example, for
exponential distribution, the maximum Zp increases only logarithmically with
N [1]. In this case we conjecture that the true average time advance per superstep
is ~ 1.25/v/D. Let us then compare T}, with this quantity.

Unfortunately calculating T}, is mathematically intractable. Thus we per-
formed the following experiment. For large N, say N = 10* we generated
I = 10% different instances of a set of N random values X + Y, with X and
Y being exponentially distributed. For each instance ¢ we calculated the partial
sums Sum|i, P] = % Zle Zy with 1 < P < N, so that T, for a particular D
is given by T), = 7 Zf:] Suml[i, ¥]. The results show that in the range D > 10,

T, behaves like O(1/+/D). Assuming T, = 3 (P/N)® least squares regression on
the points (log T}, log P) produced a = 0.47738 and 8 = 0.01194 which should
be compared with the conjectured a = 0.5 and 8 = 0.0125 resulting from the
curve 1.25/\/5.

We now consider the effect of P in S} when D is fixed. Let x; be the sum
of £ > 1 random variables with p.d.f. f(z) so that they represent the time
increments of events forming a thread of causally related events. Then, for any
positive difference between LP time advances, say A = T; — Tj, there is some
non-zero probability that T; < T;+€;+xi < Tj+€; for some €;,€; > 0, such that
T;+€; + X, is the time of the next event e; in LP p; after superstep s. This event
e; is processed in some superstep s’ with s +1 < s’ < s+ k+ 1. An increase in

P implies an increase in the diversity of T; values and thereby an increase in the
probability of events of type “e;”. Thus, for fixed D, S} may increase in about
k supersteps with P. For exponential distribution the k values are Poisson. The
average k for the maximum time interval A = Zy — Z; is bounded from above
by Znx = O(In N). So a conservative upper bound for S; is O(In P). However,
similar experiment to the above described tells us Zp < 11ln In P in the range
D > 10. This leads to
S, ~Inln P VD.

This expression was validated with simulation results obtained with the pro-
gram in figure 1.b. Regression analysis on data from the same program produces
(asymptotically) for exponential distribution [5],

7 D/4 1
77 (Inln P)1/2In P 4+ DV/4 <ln P In D) '

Comments: Note that the ratio S;/S; behaves in practice as O(V/P) for
large systems. For fixed P and large D values, SYNC'’s efficiency is better than
ASYNC’s efficiency. For large P’s, P'/* goes to oc faster than (In In P)*/21n P.
Thus for large P and small D (practical simulation models) the efficiency of
ASYNC is better than SYNC efficiency. However, the expression for E} was
obtained considering just one LP per processor. As more LPs are put on the
processors, E% improves noticeably. This is so because the variance of the cumu-
lative sum of co-resident LP time advances is reduced as the number of LPs per
processor increases. Consequently, the variance of the number of events simu-
lated in each processor decreases [5]. Conversely, E} is insensitive to the relation
Dy, D = m/P with Dy, being the number of LPs per processor. Another impor-
tant point here is that we can always move ASYNC towards SYNC by imposing
upper limits to the number of events processed in each processor and superstep
(this filters peaks). If these limits are sufficiently small, ASYNC degenerates to
SYNC [5].

To compare the two approaches under more practical grounds we performed
experiments with programs similar to those shown in figure 1. First note that the
work-load generated by these programs is equivalent to a fully connected queu-
ing network where each node (LP) contains infinite servers. The service times
are given by the time increments of events. In our experiments we considered
a more realistic queuing network: one non-preemptive server per node, expo-
nential service times, fully connected topology, and unlimited queue capacities
with moderate number of jobs flowing throughout the network (closed system).
Figure 2 shows the results. The comparison is made in terms of Rs = S;/S;
and Rp = E}/E}‘ The plotted data clearly show that ASYNC outperforms
SYNC in a wide range of parameters (the minimal value of Rg in figure 2.a is
1.9). The data indicate that Rg increases as VP and Ry decreases when N and
P scale up simultaneously. In other words, the results show that ASYNC has
better scalability than SYNC. In addition, the level of aggregation of LPs onto
processors contribute to further increase Rg and decrease Rg. In particular, for
fixed P, the ratio Rg increases as /D, in figure 2.a.

100 —r—TT T 7 T T 1T T 1T T 1T 7171 I8 pxr—T—T T T T T T T

1.6 D=2 ©—
1.4 8 +—
1.2 32 25— _|
L 128 >— |
0.8 .
0.6 -
o4l 1 v 11T

1 2 3 45 6 7 8 9 101112 1 2 3 45 6 7 8 9101112

(a) VP (b) v

Fig. 2. Fully-connected non-preemptive single-server queuing network with exponential
service times. Figure a: Rs= supersteps-SYNC/supersteps-ASYNC. Figure b: Rp=
AvgMaxEv-SYNC/AvgMaxEv-ASYNC where AvgMaxEv is the average maximum
number of events per superstep. D;,= number of LPs per processor, and P = number
of processors. Initially D = 8 “jobs” are scheduled in each LP (server).

References

1. R. Felderman and L. Kleinrock. “An upper bound on the improvement of asyn-
chronous versus synchronous distributed processing”. In SCS Multiconference on
Distributed Simulation V.22, pages 131 136, Jan. 1990.

2. R.M. Fujimoto. “Parallel discrete event simulation”. Comm. ACM, 33(10):30 53,
Oct. 1990.

3. D.R. Jefferson. “Virtual Time”. ACM Trans. Prog. Lang. and Syst., 7(3):404 425,
July 1985.

4. D. E. Knuth. “The Art of Computer Programming, Vol. 1, Fundamental algo-
rithms”. Addison-Wesley, Reading, Mass., 1973.

5. M. Marin. “Simulation time advance in BSP”. Technical Report Oxford Univer-
sity, May 1998. http://www.comlab.ox.ac.uk/oucl/groups/bsp/.

6. M. Marin. “Time Warp On BSP Computers”. Technical Report Oxford Univer-
sity, Feb. 1998. To appear in 12th European Simulation Multiconference.

7. D.M. Nicol and R. Fujimoto. “Parallel simulation today”. Annals of Operations
Research, 53:249 285, 1994.

8. J.S. Steinman. “SPEEDES: A multiple-synchronization environment for paral-
lel discrete event simulation”. International Journal in Computer Simulation,
2(3):251 286, 1992.

9. J.S. Steinman. “Discrete-event simulation and the event-horizon”. In 8th Work-
shop on Parallel and Distributed Simulation (PADS’9/), pages 39-49, 1994.

10. L.G. Valiant. “A bridging model for parallel computation”. Comm. ACM, 33:103
111, Aug. 1990.

11. J.G. Vaucher. “On the distribution of event times for the notices in a simulation
event list”. INFOR, 15(2):171 182, May 1977.

This article was processed using the I¥TEX macro package with LLNCS style

