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Abstract. Petri net variants are widely used as a workflow modelling
technique. Recently, UML activity diagrams have been used for the same
purpose, even though the syntax and semantics of activity diagrams has
not been yet fully worked out. Nevertheless, activity diagrams seem very
similar to Petri nets and on the surface, one may think that they are
variants of each other. To substantiate or deny this claim, we need to
formalise the intended semantics of activity diagrams and then compare
this with various Petri net semantics. In previous papers we have defined
two formal semantics for UML activity diagrams that are intended for
workflow modelling. In this paper, we discuss the design choices that un-
derlie these two semantics and investigate whether these design choices
can be met in low-level and high-level Petri net semantics. We argue
that the main difference between the Petri net semantics and our seman-
tics of UML activity diagrams is that the Petri net semantics models
resource usage of closed, active systems that are non-reactive, whereas
our semantics of UML activity diagrams models open, reactive systems.
Since workflow systems are open, reactive systems, we conclude that
Petri nets cannot model workflows accurately, unless they are extended
with a syntax and semantics for reactivity.

1 Introduction

Petri nets are a popular technique for modelling the control flow dimension of
workflows. When modelling workflows, people tend to draw nodes that represent
tasks or activities, and arrows between the nodes that represent sequencing of
activities. The resulting diagrams look like Petri nets, and so Petri nets seem a
natural technique for modelling workflows [2,22]. The following arguments are of-
ten used to support this: Petri nets are graphical, they have a formal semantics,
they can express most of the desirable routing constructs, there is an abun-
dance of analysis techniques for proving properties about them, and finally they
are vendor-independent. Most of these arguments do not refer to the domain
of workflow modelling (only the routing argument does) and point out advan-
tages of Petri nets in general. Moreover, since Petri nets already existed before
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workflow management systems were invented, their semantics is not specifically
intended for workflow modelling. So none of these arguments state why and how
Petri nets are useful for workflow modelling. This is unsatisfactory for analysis
purposes, since analysing a Petri net workflow model presupposes that the Petri
net models the real workflow accurately.

Recently, UML activity diagrams [56] have also been used for workflow mod-
elling. They too are graphical, use bubbles and arrows, are vendor-independent,
and can express most desirable routing constructs. Unfortunately, the OMG se-
mantics [56] is not formal (nor precise), and it is not intended for workflow
modelling [28]. We therefore defined two semantics for UML activity diagrams
that are intended for workflow modelling [27,28]. The goal is to use these se-
mantics for analysing workflow models in activity diagram notation by means of
model checking [16,25]. The first semantics is a high-level semantics, based upon
the Statemate semantics of statecharts [37], that is easy to analyse (both for
a computer and for a person) but somewhat abstract. By contrast, the second
semantics is low-level and resembles both the behaviour of an abstract workflow
system and the informal OMG semantics of UML state machines, but it is more
difficult to analyse than the first semantics. We have implemented verification
support using model checking for the first semantics in our diagram editing tool
TCM [17,25].

In this paper we discuss the design choices that underlie both our formal
execution semantics. Since our purpose is to make analysis of activity diagram
workflow models possible, the semantics must be an accurate representation of
workflow behaviour. Our design choices are therefore motivated in terms of the
domain of workflow modelling. Using these choices as a yard stick, we investigate
how well Petri nets can model some important aspects of workflow modelling.
We hope this provides relevant arguments for and against the claim that Petri
nets are useful for workflow modelling.

This approach may seem subjective, since other persons might make other
design choices, and consequently they might draw other conclusions about the
suitability of Petri nets for workflow modelling. However, we think that the
choices we have made in our semantics are reasonable, because they are moti-
vated by the domain of workflow modelling. Even if one does not agree with
the choices we made, our discussion gives – we hope – more insight in possible
answers to the question what actually is a Petri net [20].

Our most important design choice is that the semantics for activity diagrams
must be reactive. The token-game semantics, which is characteristic for Petri
nets, does not represent reactivity, which is characteristic of workflow systems.
A Petri net transition can fire if all its input places are in the current mark-
ing [48,51]. But in a reactive system a transition can be taken (fired) if all its
source nodes (input places) are in the current configuration (marking) and its
trigger event occurs [37,56]. This trigger event is an event in the environment
of the system, that the system will react to by taking the transition. Although
Petri nets in our view are not reactive, we will study different ways of simulating
reactive behaviour in different Petri net variants.



In the sequel, we presuppose some basic knowledge of Petri nets and high-
level Petri nets (see e.g. [40,48,51,53,54]). We have looked at Petri net variants
that are traditionally used to model and analyse workflows, namely Workflow
Nets [2,3], Information Control Nets [22], INCOME/WF [49], FunSoft nets [18],
MILANO WFMS [9]. Next, we have looked at Petri net variants that are not
specifically tailored towards workflow modelling but nevertheless can be useful:
Open Nets [10], Petri nets with synchronous communication [15], Signal-Event
Nets [36,29], Contextual Nets [47,30], Zero-Safe nets [12], and several variants
of Object-Oriented Petri Nets [8,46]. More information about some of these
references can be found in recent overviews and collections about the use of
Petri nets for workflow modelling [1,55]. A comparison of our semantics with
other formal modelling techniques (in particular Statemate [37,59]) can be
found elsewhere [26].

Structure. We start by explaining some characteristics of workflows and work-
flow systems in more detail. In Section 3 we discuss our two activity diagram
semantics and the design choices that underlie these semantics. We also discuss
the properties of every basic statechart step semantics, used in both Statem-
ate [37] and UML [56]. We have adopted these properties as well in both our
formal semantics. In Section 4 we study whether and how our semantics can be
simulated in Petri nets. In particularly, we discuss whether and how the state-
chart step semantics can be modelled in Petri nets. We end with conclusions.

2 Workflow

This section is based on literature (amongst others [2,45,60]) and several case
studies that we did. A workflow is a set of business activities that are ordered
according to a set of procedural rules to deliver a service. A workflow model (also
known as workflow specification) is the definition of a workflow. An instance of
a workflow is called a case. In a case, work items are passed and manipulated.
An example of a case is the process that handles the insurance claim of John
Smith. An example of a work item is the claim form of John Smith. The defi-
nition, creation, and management of workflow instances is done by a workflow
management system (WFMS), on the basis of workflow models.

In general, two important dimensions of workflows are the control-flow di-
mension and the resource dimension [2,45]. The control-flow dimension concerns
the ordering of activities (or tasks) in time (what has to be done). The resource
dimension concerns the organisational structure (who has to do it). Since both
Petri nets and UML activity diagrams only model the control-flow dimension,
we here focus on modelling the control-flow dimension of workflows. When we
use the term workflow model, we refer to a model that describes the control-flow
dimension.

Activities are done by actors. An activity is an amount of work that is unin-
terruptible and that is performed in a non-zero span of time by an actor. In an
activity, case attributes are updated. Case attributes are work items and other
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relevant data. The case may be distributed over several actors. Each distributed
part of the case has a local state. There are two kinds of local state.

– In an activity state an actor is executing an activity in a part of the case.
For every activity there should be at least one activity state, but different
activity states can represent execution of the same activity.

– In a wait state, the case is waiting for some external event or temporal event.
A special event is that the actor who has to do the next activity becomes
available.

We allow multiple instances of states to be active at the same time. For
example, the activity diagram in Fig. 1 shows two parallel activities Produce
partial order and Fill partial order that each trigger an instance of Send partial
shipment (the notation is explained in the next section). The result is that two
instances of Send partial shipment may be active at the same time. The global
state of the case is therefore a multiset (rather than a set) of the local states of
the distributed parts of the case.

Actors are people or machines. Actors are grouped according to roles. A role
is a set of characteristics of actors. A role can refer to skills, responsibility, or au-
thority for people, and it can refer to computing capabilities for machines [45,61].
Roles link actors and activities. The modelling of actors and roles, and the con-
nection with workflow models falls outside the scope of this paper.

The effect of an activity can be constrained declaratively with a pre- and
post-condition. The effect cannot be specified fully since execution of the activity
falls outside the scope of the WFMS. The pre-condition also functions as guard:
as long as it is false, the activity cannot be performed.

The WFMC [61] specifies four possible ordering relationships between activ-
ities: sequence, choice, parallelism and iteration. Van der Aalst et al. identified
more ordering relationships [7]. And, to facilitate readability and re-use of work-
flow definitions, an ordered set of activities can be grouped into one compound
activity. A compound activity can be used in other workflow definitions. A non-
compound activity is called an atomic activity.

Architecture (Fig. 2). The following architecture is based upon amongst oth-
ers [14,34,45,60]. A workflow system (WFS), which is a WFMS instantiated
with one or more workflow models, connects a database system and several
applications that are used by actors to do work for the cases. In this paper we



Router

Queue event
Workflow System

event
start 
activity
instance

Clocktime time

Database
System

var

user

Application

CRUD

 event

Clock Managerevent

CRUD = Create, Read, Update, Delete item in Database System

Fig. 2. Abstract workflow system architecture

assume that the WFS controls a single case (a generalisation to a WFS that con-
trols multiple cases is straightforward). The main components of the WFS are
the queue and the router. The environment interacts with the WFS by putting
events in the queue. On basis of these events and the current state of the case,
the router component of the WFS routes the case as prescribed by the workflow
model of the case. As a result, some new activity instances can be started. Note
that the case attributes are updated during an activity by the actors, not by the
WFS. For example, an actor may update a work item by editing it with a word
processor. The transitions between the states (active or waiting), on the other
hand, are performed by the WFS, not by an actor. By taking these transitions
the WFS routes the case. All attributes of a case are stored in the database.
The state of the case is maintained by the WFS itself. Scheduled timeouts are
maintained and raised by the clock manager on basis of the internal clock.

3 UML Activity Diagrams

Syntax. We explain the syntax by means of a small example. In Fig. 3 the work-
flow of “Processing Complaints” is shown (converted from a Petri net model
in [2]; see Fig. 7 below). Ovals represent activity states and rounded rectan-
gles represent wait states. In an activity state, some activity is busy executing
whereas in a wait state, an external event is waited for, e.g. a deadline must oc-
cur, or some third party must send some information. Wait states are also used
if the current parallel branch needs to synchronise with another parallel branch.
An activity state is called an action state in UML [56]. The workflow starts in
the black dot (the initial state) and ends at the bull’s eye (the end state). A
bar represents a fork (more than one outgoing edge) or a join (more than one
incoming edge). A diamond represents a choice (more than one outgoing edge)
or a merging of different choices (more than one incoming edge).

State nodes are linked by directed edges, that express sequence. An edge
can be labelled by e[g ]/a where e is an event expression, g a guard expression,
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and a an action expression. Each of these three components is optional. The
meaning of these labels is that in order for the edge to be taken, event e must
have occurred and guard g is true. When the edge is taken, the system performs
action a. An edge that leaves an activity state is implicitly labelled with the
completion event of the corresponding activity. We forbid that an edge that
leaves an activity state has any other event expression in its label, since that
would denote an interrupt, whereas an activity cannot be interrupted, since it is
atomic. A special group of event expressions are the temporal event expressions,
e.g. after(2 weeks) in Fig. 3 (which means that 2 weeks after state WAIT-1 is
entered the corresponding edge can be taken). A guard expression can refer to
variables of the activity graph. The variables of an activity graph are booleans,
integers and strings. Special guard expressions are the in and else predicates.
Predicate in(node name) is true if and only if the system is in state node name.
Predicate else can only be used to label an edge that leaves a choice state node
(represented by diamond). It abbreviates the negation of the disjunction of the
guard labels of the other edges that leave the choice node. For example, the else
predicate used immediately after Check processing abbreviates not ok. The only
action expressions we allow are (sequences of) send event actions to specify event
generation. We do not allow other action expressions in an edge label since these
would change the case attributes, which we do not want, since case attributes
are changed by actors, not by the WFS.

Semantics. Our semantics is based upon the following line of reasoning. We use
a UML activity diagram as a workflow model. A workflow model prescribes how
a workflow system should behave. Hence, a UML activity diagram prescribes
how a WFS should behave. We therefore motivate and define our execution
semantics in terms of workflow systems.

In our opinion, workflow systems have the following characteristics.



1. A WFS is reactive. A reactive system runs in parallel with its environment
and responds or reacts to input events by creating certain desirable effects in
the environment [38,58]. For a WFS, characteristic input events are activity
termination events, in Fig. 3 for example that the Register activity termi-
nates. And characteristic desirable effects for a WFS are the enabling of new
activity instances.

2. A WFS has coordination functionality. A WFS does not execute the
activities themselves, but it merely coordinates the execution of the activities
by the actors (people or machines). For example, in Fig. 3 the WFS does not
register the complaint itself, but merely tells the relevant actors that one of
them can start registering the complaint. Case attributes are only changed
in activities by actors, not by the WFS.

Each semantics is a mapping of a syntactic domain into a semantic domain.
The semantic domain we use in this paper is that of a run (to be precise, a set
of runs). A run (or a trace) is a sequence of states connected by state changes.
We assume that state changes are instantaneous. So time can only elapse in a
state.

Since a run is a possible behaviour of a WFS, states of the run are states of
the WFS. Components of a state of a run are:

– the state of the case (i.e, which states in the activity diagram are active,
possibly multiple times),

– the queue of input events of the WFS,
– the case attributes and their values, and
– the scheduled time-outs and the value of the global clock.

A queue of input events is needed because of the first characteristic: a WFS is
a reactive system. In a reactive system state changes are caused by input events.
This means that the WFS must have some interface with the environment to
observe the input events. We therefore use an input queue in which events are
kept. The case attributes are needed to evaluate the guard conditions on the
edges, i.e., they are only used for routing the case.

The second WFS characteristic, coordination, has several implications. First,
activities are done by the environment in states of the WFS, i.e, during an activ-
ity state the WFS waits for an activity to complete (see Section 2). Second, an
activity is specified declaratively, in particular its postcondition. An imperative
specification would imply that the WFS does the activity. But the outcome of
an activity is not computed by the WFS. Third, in a reaction case attributes
are not changed. Instead, changing (updating) of case attributes is done by the
environment. Also, the WFS does not maintain the case attributes, this is done
by the environment (database). But the WFS must ensure that no two interfer-
ing activities are active simultaneously. Two activities interfere with each other
if they update the same case attribute. The WFS ensures non-interference by
not routing to a state in which some activities interfere with each other.

Within this general picture, still a wide variety of semantics for activity dia-
grams can be chosen. In previous work, we have defined two semantics. The first
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one is a requirements-level semantics [27] that is based upon the Statemate
semantics of statecharts [37]. In the requirements-level semantics, the WFS is
considered as a black box. In specifying requirements for the WFS, we are inter-
ested in qualitative requirements (what should be done), but not in quantitative
requirements (how well it should be done), e.g. how fast a response is. We there-
fore abstract away from internal implementation details of the WFS. The best
way to do this is to adopt the perfect synchrony hypothesis [11]. For a WFS,
this hypothesis states that the WFS starts reacting to events immediately when
it receives them, and also that the WFS reacts infinitely fast to these events. In
a reaction, therefore, the whole input queue is read and the case is immediately
routed, i.e., the state of the case is updated, and the input queue is reset again.
Note that in this semantics the queue is actually a set of input events. Figure 4
shows an example run of the activity diagram in Fig. 3 under this semantics. In
each state, the set of busy activities is shown.

In the second semantics [28] the perfect synchrony hypothesis is dropped. So
a reaction of the WFS takes time, and input events are not immediately reacted
to. We call this semantics the implementation-level semantics. This semantics
stays close to the informal UML definition of state machines [56] (underlying
UML statecharts) and the architecture of workflow systems [14,45,60,34]. In the
implementation-level semantics, the WFS is considered as a white box, consisting
of the components shown in Fig. 2. The Router component is responsible for
producing the desired reaction: routing the case to the new state, enabling some
new activity instances to start. The Router component, however, has limited
capacity. It processes one event at a time (rather than arbitrarily many as in the
requirements-level semantics) and it takes time to process an event (whereas in
the requirements-level semantics the WFS is infinitely fast). When the Router
starts routing, it picks some input event from the queue. When it finishes routing
the case, it updates the state of the case, it enables some new activities to start, it
schedules some new timeouts and it removes some scheduled timeouts, because
they have become irrelevant in the new state of the case. Next, the Router
starts processing the next event from the queue. Since the next input events
might have arrived while the Router was busy with a reaction, the content of
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the queue might have changed during routing (whereas this is is impossible in
the requirements-level semantics, since there routing is instantaneous). Figure 5
shows an example run of the activity diagram in Fig. 3 under this semantics. In
this figure, the term routing denotes that the Router is busy.

Evaluating the two semantics, the requirements-level semantics is easy to
analyse, but somewhat abstract, whereas the implementation-level semantics is
more concrete, but more difficult to analyse, both for a workflow designer as for a
verification tool. The reason for this is that in the implementation-level semantics
there is a delay between the occurrence of an event and the subsequent reaction of
the WFS to that event occurrence, whereas in the requirements-level semantics,
there is no such delay. For example, the run in Fig. 5 is harder to match with
the activity diagram than the run in Fig. 4. Moreover, the implementation-level
semantics is more difficult to analyse for a verification tool, because there will
be more states due to the delay in response to event occurrences.

In future work, we intend to focus on analysis of functional (logical) properties
of workflow models, for example the absence of deadlock. For such properties,
it does not matter whether the requirements-level semantics or implementation-
level semantics is chosen: if a workflow model contains for example a deadlock in
one semantics, it also will have the deadlock in the other semantics and vice versa.
So we can use the requirements-level semantics for analysis of such properties
with the assurance that the analysis result will also hold when the workflow
model is executed under the implementation-level semantics.

Note that we do not specify how the environment behaves. In general, the
exact behaviour of the environment is unknown. In our model checking seman-
tics, we have simply assumed that the environment can behave in every possible
way, i.e., chaotically, but it must respect the dependencies between value change
input events (see Section 4 for more details). For analysis purposes, we assume
that the environment behaves in a fair way [25].

Step semantics. The key part in both of the previous semantics is the execution
of a step. A step is a collection of edges that are enabled in a certain state. By
taking a step, the system reacts to events and routes the case to a new state.



In both semantics, we have adopted the same step semantics of statecharts. We
here give a brief introduction to and motivation for this step semantics. More
details can be found elsewhere [27,28,26].

We consider two cases. The first one is the basic case, in which action expres-
sions on edges are not considered. Although statecharts are (in)famous for the
numerous semantics invented for them, all semantics agree upon the definition
of a step for the basic case that we present below. In the second case, event gen-
eration is taken into account. Adding event generation to the basic case, divides
the group of statechart step semantics in two.

The basic case. In the basic case, (1) we do not consider internal event generation
by the system in transitions, (2) an edge can be labelled with a single event only,
and (3) we do not consider priority of transitions. Below we will add the first
feature. The second feature is enforced by the UML definition [56]. The third
feature is omitted from the current semantics of activity diagram, but can be
added without a problem.

In the basic case, all the statechart step semantics exhibit the following three
properties. This includes the most well-known ones of Harel and Naamad [37],
implemented in the Statemate toolset as well as the different UML statechart
step semantics [56], and the fixpoint semantics by Pnueli and Shalev [52].

First we list two of the three properties present in every statechart step
semantics.

– Events can occur simultaneously. The alternative would be to assume
that no two events can occur at the same time. There are two reasons for
rejecting this alternative. First, although the chance of two events occurring
simultaneously is rather small, it is not equal to zero. Second, the reactive
system (WFS) will respond to events by inspecting the contents of the queue.
If no two events can occur simultaneously, the rate at which events occur
in the environment must be slower that the rate at which the WFS reads
input events (sampling rate). We do not want to impose such a restriction
upon the environment and therefore do not make such an assumption. From
this choice, it follows that two event occurrences are either simultaneous, or
some time elapses between them. Note that this assumption is also made in
our implementation-level semantics, although the Router will process only
one event at a time.

– Events live for the duration of a step only. During execution of the
system, the event queue is filled with events. The system reads the events
from the event queue and reacts to them. There should however be some
removal policy. If an event is not removed after it is processed, it would
continue to have an effect, which is undesirable. Since the result of the event
occurrences is the taking of a step, the events should be removed after this
response has finished.

If the system processes events from the event queue, it reacts to these events
by taking a step. In every statechart step semantics, a step is a bag of enabled
edges that must be consistent and maximal. We explain these notions shortly.



First, the configuration of a system is the bag of nodes that are currently active
(in Petri net terminology: a marking). An edge is enabled iff its sources are
contained in the current configuration, its trigger events is being processed now,
and its guard condition is true. A bag of enabled edges is consistent iff all edges
can be taken simultaneously, i.e., the union of their sources is contained in the
current configuration. Finally, the bag must be maximal, i.e., adding another
enabled edge makes the resulting bag inconsistent.

The above definition of a step is a generalisation of the statechart step se-
mantics, since in statechart the configuration is always a set, rather than a bag,
and consequently, steps in a statechart are always sets, rather than bags.

In Statemate and in UML there is in addition a priority constraint, stating
that edges with higher priority should be added first to a step. The precise
definition of when an edge has priority over another one differs [42].

We now explain the third property of basic statechart steps in the basic case.

– Steps are maximal. Not imposing this constraint would imply that some
edges that are enabled would not have to be part of the step, so would
not have to be taken. Since an event is removed from the input after the
subsequent step has been taken, this would mean that some input events
would not cause all their effects, although, according to the workflow model,
they should have these effect (namely all enabled edges should be taken).
In other words, then the WFS would not react fully to these input events.
That is why we require that a step be maximal.

Note that the maximality constraint is motivated in terms of reactive systems.
For active systems, such a motivation would no longer hold, since then the system
can decide itself what to do and does not have to do as much as possible. This
gives an explanation for the fact that in Petri nets the maximality constraint is
usually not adopted.

We emphasise that statechart steps in the Statemate semantics, UML se-
mantics and the fixpoint semantics all share these three properties.

Event generation. Next, we extend the basic case by allowing for event generation
by the system. An event can be generated by taking an edge. Figure 6 gives an
example (send actions follow the slash). Some of the edges have an identifier
for ease of reference. The label on the edge t1 states that if the edge is taken
(because e occurs and WAIT-1 is active), then event f is generated. Please note
that communication by means of event-generation is always asynchronously, not
synchronously (rendez-vous or hand-shaking).

There are two different ways of interpreting event generation. The first one is
to let the generated events have an effect in the current step (chosen in the fix-
point semantics [52]), the second one is to let the generated events have an effect
in the next step (chosen in the Statemate semantics [37]). To illustrate the dif-
ferences between these two options, suppose in Fig. 6 the current configuration
is [WAIT-1,WAIT-2] and event e occurs. If edge t1 is taken, then according to the
fixpoint semantics event f is immediately available and consequently edge t3 can
be taken simultaneously with edge t1. Whereas in the Statemate semantics,
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event f can only be sensed after the step in
which it is generated is taken, so after edge t1
is taken. Consequently, if the current configura-
tion is {WAIT-1,WAIT-2}, and event e occurs,
in the fixpoint semantics either step {t1,t2} or
{t1,t3} is taken, but in the Statemate se-
mantics, step {t1,t2} is taken. The step {t1,t3}
is counter intuitive here, since it seems that
event e is ignored in node WAIT-2. So there
are circumstances in which the fixpoint seman-
tics computes a counter intuitive step (this was
first pointed out by Leveson et al. [43] using a similar example, but they mistak-
enly attribute the fixpoint semantics to Statemate). That is why in practice
the Statemate approach is taken, even in the UML, where events are called
signals. (We do not have operation calls in our activity diagram semantics.) We
have adopted the Statemate interpretation for event generation as well, since
it is also adopted by UML. As an aside, note in this interpretation too, there are
anomalies. One may for example get infinite loops in which events are generated
for ever, because some events cause each other to occur [43].

The state of the practice. We do not know of any commercial WFMS that
allows for the specification of workflow models using UML activity diagrams. But
few of the current commercial workflow systems offer some support for modelling
events [13]. We therefore expect that the constructs of our semantics related to
events will be hard to express in workflow models of existing commercial WFMSs.
On the other hand, our event broadcast semantics, in which one event can trigger
more one edge, is similar to the publish-subscribe notification mechanism used
in middleware application and recently adopted in the industry standard for
workflow interoperability [50], defined by OMG and WFMC. Also, in active
database systems [57] an execution semantics for rules is adopted that is similar
to the semantics for edges that we use. In particular, in active databases a
generated event has an effect in the next step, not in the current step. So in
active databases also the Statemate interpretation is chosen (although the
link with statecharts is not made by for example Widom and Ceri [57]). Also,
the possibility of nontermination of the rule processing algorithm due to rules
that trigger each other, is a well known feature of active databases [57].

Recently, UML activity diagrams have been proposed to model e-business
services in e-business standards like ebXML [21]. We expect that process man-
agement tools that support e-business services will use UML activity diagrams.
In for example ebXML, the event features of activity diagrams are used quite
extensively: events are the standard means of communication between different
business partners. Events are also used quite extensively in business modelling,
especially in UML-based approaches, for example [24]. In academia, several
WFMS research prototypes use event-based workflow models (e.g. [13,33,35,59]),
often inspired by active databases [57].
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4 Modelling Workflows with Petri Nets

We now investigate how several – what we think are – important aspects of
workflow models are modelled in Petri nets. We will compare the Petri net
workflow models with our two semantics of UML activity diagrams. We take
our requirements-level semantics as point of comparison, since it most resembles
the Petri net semantics. At the end of this Section, we will discuss how the
implementation-level semantics can be modelled in Petri nets. In order to make
a fair comparison we assume that a Petri net models a WFS too.

Remark on terminology: from now on, we will use the standard Petri net ter-
minology of place (corresponds to state node), transition (corresponds to edge),
and marking (corresponds to configuration). By “step” we mean a statechart
step, unless stated otherwise.

4.1 Modelling Events

Several researchers that use Petri nets for workflow modelling have recognised
the importance of input events for workflow modelling ([2,41]), even though using
the a different name: ‘trigger’. Figure 7, taken from Van der Aalst [2], presents
a typically example of the use of input events in a Petri net. (This Petri net
models the same workflow as the activity diagram in Fig. 3.) The envelope and
the clock denote external and temporal trigger events respectively.

Unfortunately, although the importance of input events is recognised, hardly
ever a semantics is given for them. Van der Aalst [3] gives an interesting moti-
vation for abstracting from events for analysis purposes, that we will discuss in
Section 4.6. But first we study two approaches to model events in ordinary Petri
nets and compare both approaches with our semantics of input events.
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Event as token. For each input event a place is defined. The place represents
a kind of interface with the environment. If the interface place is filled with a
token, the input event occurs, otherwise it does not occur. The interface place
is connected with all transitions that are triggered by the input event.

This is the approach taken in Trigger Modelling [41]; it is also suggested
as an appropriate semantics for trigger events in Workflow Nets [2]. In these
approaches, the environment is not specified, but the suggestion is made that the
environment fills the interface places spontaneously, but no formal semantics is
presented. Open nets [10] gives a formal semantics for nets with interface places,
which could be used for Trigger Modelling and Workflow Nets.

One important difference of the event-as-token approach with our semantics
of events is that in the event-as-token approach one event occurrence triggers
at most one transition whereas in our semantics one event can trigger more
than one transition (edge). This is because we have event broadcasting in our
semantics, rather than point to point communication. For example, in Fig. 6 one
occurrence of event e can trigger the two edges t1 and t2 simultaneously. Since in
the standard Petri net semantics, firing a transition implies that its input tokens
are consumed, in the standard Petri net semantics only one transition can fire
because of one event occurrence.

One might wonder whether event broadcasting is desirable. In other words,
isn’t the standard Petri net interpretation of consuming events, so having an
event trigger at most one transition, better? We think event broadcasting is
desirable for the following reasons. First, if an event would trigger a single tran-
sition only, the event would not have all the effect that is specified in the workflow
model. For example, a cancel event that stops a workflow would be awkward to
model. In the event-as-token approach, a cancel event could only stop one par-
allel branch, whereas in our semantics an event is global for the whole workflow
and there a cancel event can stop the whole workflow. To cancel a workflow in
the event-as-token approach, for every parallel branch a separate cancel event
needs to be generated.

Second, the broadcast mechanism is used quite extensively in the field of
workflow systems. Several non-Petri net based WFMS prototypes [13,33,35,59])
also use a broadcast semantics in their workflow models. The industry stan-
dard for workflow interoperability [50], defined by OMG and WFMC, uses a
so-called publish-subscribe notification mechanism, which is similar to our broad-
cast semantics. An exception are XML and EDI based workflow specifications,



which currently only use point-to-point communication between business part-
ners. However, some of these approaches [21] will adopt publish-subscribe noti-
fication in the near future. Also, these approaches do not specify what commu-
nication mechanism are used within an organisation, since it falls outside the
scope of these frameworks. So even in these approaches, a broadcast mechanism
can be used for intra-organisational communication.

Third, we observe that our broadcast semantics is equivalent to a point-to-
point semantics if all the used event names in the activity diagram are unique.
But, as we will explain next, it is not possible to fully capture the broadcast
semantics with point-to-point communication, since the exact addressee is not
always known at design time and may depend upon the current state of the case.

There are several ways to simulate the effect of event broadcasting in Petri
nets. The most obvious one is to use transition fusion and glue the edges with the
same event label together. Although this would work for the example in Fig. 6,
this is only a partial solution, for two reasons. The first one is that it depends
upon the current configuration (marking) of the activity diagram whether or
not two edges are taken simultaneously. For example, in Fig. 8 the two edges
are only taken simultaneously if the current configuration is [WAIT-1,WAIT-2].
Otherwise, if for example the configuration is [WAIT-1,B] and e occurs, than
only t1 is taken and configuration [WAIT-3,B] is reached. So, only at run-time
it is known which edges need to be fused together, whereas transition fusing is
applied at design time. Second, applying transition fusion at design time does
not solve this problem, since the original edges cannot be left out. For example,
if in Fig. 8 edges t1 and t2 are fused together into t12, then edges t1 and t2 must
remain in the model, since it possible that either one of them is taken separately
from the other. Consequently, if the current configuration is [WAIT-1,WAIT-2]
and event e occurs, it still might be possible that only say t1 is taken, and not
the fused edge t12.

Another possible way to simulate event broadcasting is to fill the interface
place with as many tokens as needed to prevent that a transition cannot fire
because of a lack of tokens. But the exact number of tokens that is needed is
not known beforehand, since the number of transitions to be fired depends upon
the current WFS state. Consequently, a lot of spare tokens would have to be
introduced. This blurs the difference between two occurrences of the same event
at different times and two copies of the same event occurrence. Although this
could be resolved by time stamping tokens, the resulting semantics would be
overly complex and more involved than the statechart step semantics.

A better alternative is to model the control flow between an interface place
and a transition that it triggers as a read arc [47], also known as context relation.
A read arc from a place to a transition means that although a token must be
present in the place to let the transition fire, this token is not consumed. (A
read arc from a transition to a place is impossible.) Technically, a flow relation
is added to the usual Petri net semantics that specifies the read arcs [47].

But even using read arcs, the event semantics we give to value change events
cannot be adequately modelled. A value change event is the event that a boolean



condition on some variable x becomes true, e.g. [x > 10]. In our semantics, if
there are two value change events referring to the same variable, e.g. [x > 10]
and [x > 15] then there might be a dependency between them, e.g. if [x > 15]
occurs then [x > 10] might also occur, but not necessarily. For example, if
x changes from 11 to 16, then [x > 15] occurs but [x > 10] does not (since
x already was greater than 10). But if x changes from 9 to 16, both events
do occur simultaneously. This cannot be modelled faithfully in the event-as-
token approach (even a dependency relation between interface places, stating
something like “if that interface place is filled, this one must be filled as well”
does not solve this problem).

A final drawback of the event-as-token approach is that the resulting Petri
net looks like ravioli, since the place where the input token e resides must be
connected to all transitions that are triggered by e.

Event as transition. In Petri nets, one can simulate an event by labelling a tran-
sition with the event name and interpret the firing of the transition as the event
occurrence. By specifying synchronisation constraints [15,29] between the event
transition and the system transitions, it can be specified that an event occurrence
triggers a system transition. Note, however, that then the environment is being
modelled explicitly, rather than implicitly as in the event-as-token approach. In
other words, the whole Petri net is now a model of both the environment and
the WFS, rather than of the WFS only.

One advantage of this semantics is that it is very easy to specify that one
event occurrence can trigger more than one system transition, since the synchro-
nisation constraint is specified as just a relation between transitions.

But, as in the event-as-token approach, the dependency between value change
events cannot be modelled faithfully, because the presence of the dependency
depends upon the previous value of the corresponding variable.

Conclusion. We conclude that in both the event-as-token and the event-as-
transition approach, we cannot model our full event semantics, since the depen-
dency between value change events cannot be modelled completely. But both the
combination of open nets with read arcs, and nets with synchronisation between
transition are certainly steps in the right direction. In the next subsection, we
will study how well the statechart step semantics can be modelled using these
two approaches.

4.2 Modelling Steps

In the previous subsection we identified the two ways, open nets with read arcs,
and nets with synchronisation constraints between transitions, that come closest
to our event semantics (but nevertheless they are still different from it). We now
study whether and how well the statechart step semantics can be modelled in
these approaches. We focus both on the basic statechart step semantics and
the event generation semantics. For each approach, we study whether the three
properties of the basic statechart step semantics are met or not. And if they are
not met, we study whether they can be met.



Event as token. If we take the Petri net step semantics, it is no problem in
this approach to model that events can occur simultaneously. But in the event-
as-token approach, it is difficult to specify that events live for the duration of
one step only, without changing the semantics of open nets at this point. The
removal of an event occurrence has to be modelled by a separate transition that
removes the token from the interface place. But the sequence ‘event occurrence-
system reaction-event removal’ which is key part of the basic statechart step
semantics, is not part of the standard Petri net semantics. It seems to us that it
is impossible to model this sequence using standard Petri net semantics, since in
this semantics any sequence of transitions, obeying the firing rules, is allowed.
So, it could be possible that under the standard Petri semantics an event lives
longer than a step.

Recently, a new Petri net variant, called zero safe nets [12], has been proposed
that seems a good starting point for modelling the statechart step semantics. In
zero safe nets, some places, called zero places, represent unobservable system
states. A marking in which one or more zero places are filled is unstable, other-
wise it is stable. During execution, the system moves from one stable marking
(in which zero places are not filled) to another stable marking via a sequence of
unstable markings. By modelling event places as zero places, the statechart step
semantics can be simulated to some extent. Still there is a difference: zero safe
nets have a constraint that all stable tokens present at the begin stable marking
must be consumed during the sequence. For the statechart step semantics, this
would mean that relevant transitions must fire immediately, which is of course
not true.

Finally, the constraint that steps are maximal is not present in standard Petri
net semantics. Rather, steps in the Petri net semantics can be any consistent
subset of the bag of enabled transitions. Of course, the maximality constraint
could be added without a problem (like incidentally done by some authors,
e.g. [29]), but it does not seem very intuitive for the standard Petri net semantics.
In fact, Foremniak and Starke [29] have considerably changed the standard Petri
net semantics. We discuss their approach in more detail below.

Event as transition. There are several Petri net variants that have incorpo-
rated synchronisation between transitions in their models[15,8,29]. The work of
Christensen and Hansen [15] introduces the concept of synchronous transitions.
They focus on symmetric synchronisation. Object-oriented Petri nets [8,46] use
both symmetric and asymmetric synchronisation between transitions, i.e., one
transition has the initiative, the other one follows. All these references stick to
the standard interleaving semantics, which differs considerably from the state-
chart step semantics, amongst others because the maximality constraint is not
required.

Finally, in signal-event nets [36,29] the standard Petri net step semantics is
abandonded in favour of a semantics in which also a maximality constraint is
adopted. Signal-event nets are introduced by Hanisch and Lüder [36] in order
to model discrete event systems. To model a discrete event system, both the
behaviour of an uncontrolled plant and of a controller that guides the behaviour



of the plant is modelled. Hanisch and Lüder argue that discrete event systems
cannot be faithfully modelled using ordinary Petri nets. Discrete event systems
are an excellent example of reactive systems: the controller must react to the
behaviour of the plant and it does this in order to maintain the plant in a desired
state. It is therefore interesting to note the similarities (and differences) between
the execution semantics of signal-event nets and that of statecharts. Foremniak
and Starke [29] introduce an execution semantics for signal-event nets. The key
part of the execution of a signal-event net is a step. Before we discuss their
definition of a step in more detail, we fix some terminology [29]. A transition
is forced it is triggered by another transition; otherwise it is spontaneous. (So
in standard Petri nets, every transition is spontaneous.) A transition t can be
forced by more than one transition. There are two options in that case: either
all trigger transitions must occur simultaneously to trigger t (AND), or only one
trigger transition has to occur in order to trigger t (XOR). We only consider the
XOR interpretation here.

A set s of transitions is signal complete iff

i if s only contains spontaneous transitions, it is signal complete.
ii if s is signal complete, t 6∈ s is forced and t is triggered by a transition t ′ ∈ s,

then s ∪ {t} is signal complete.

A step s must satisfy the following constraints:

1. s contains transitions that are fired spontaneously, i.e., without being trig-
gered by another transition,

2. the input places and input conditions (for read arcs) contain sufficient tokens
for all transitions in the step to fire,

3. s is signal-complete,
4. for every non-spontaneous transition t ′ that is not in s, set s ∪{t ′} does not

satisfy 1-3.

We can easily see the correspondence with our semantics: spontaneous transi-
tions are transitions in the environments, representing events, whereas forced
transitions are transitions in the workflow model (so done by the WFS). Con-
straint 1 states that every step must be triggered by at least one event. Constraint
2 states that all the transitions in the step must be enabled and consistent. Con-
straint 3 says that a transition that is triggered by an input event e can only be
part of the step if e occurs. Constraint 4 states that the step be maximal. It is
not difficult to see, that these constraints are indeed equivalent to the constraints
we discussed in Section 3 for the basic statechart step semantics.

But, this definition differs with our semantics w.r.t. the generation of events
during a step, since it assumes that events generated by the system are sensed im-
mediately in the same step (as in the statechart fixpoint semantics [52]), whereas
we assume that they are sensed after the current step has been taken (as in
Statemate [37] and UML [56]). To illustrate this, we translate the activity di-
agram in Fig. 6, shown in the left-hand side of Fig. 9, into a signal-event net,
shown as the right-hand side of Fig. 9. The interrupt arcs represent triggering;
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Fig. 9. Event generation modelled in signal-event nets

the triggered (forced) transition is pointed at. Suppose the current marking of the
signal-event net is [WAIT-1,WAIT-2] and transition e occurs. Then both [e,t1,t2]
as [e,t1,t3] are valid steps, according to the constraints listed above. This is sim-
ilar to the behaviour of the corresponding activity diagram (statechart) under
the statechart fixpoint semantics of Pnueli and Shalev [52], as we explained in
Section 3. But in our semantics [27,28], only [t1,t2] would be possible. As ex-
plained in Section 3, we regard the fixpoint semantics (and thus the signal-event
step semantics) as counter intuitive here, since it seems that e is ignored in state
node WAIT-2 if step [t1,t3] is taken.

It is easy to show that the signal-event net execution semantics is a strict
subset of the fixpoint statechart semantics (strict because in the statechart vari-
ant on which the fixpoint semantics is defined, an edge can be labelled with a
negative event (¬e), which is true iff the event does not occur. Negative events
cannot be defined in signal-event nets).

A more intricate example is presented in Fig. 10. The predicate in(x ) that
is used in the activity diagram, evaluates to true iff node x is contained in the
current configuration. It can be translated into a Petri net construct using read
arcs and inhibitor arcs. Inhibitor arcs are necessary to model not in(x). In Fig. 10,
read arcs are lines, so do not have an arrow; inhibitor arcs are lines with a circle
at the transition end. If the current configuration is [A,WAIT-1] and at the same
time activity A terminates and event e occurs, then in our semantics a sequence
of steps is taken such that finally configuration [final,B] is reached. But in the
corresponding signal-event net, configuration [final,WAIT-2] is reached and event
done is not responded to and is lost! Consequently, the final configuration will
never be reached in that case. This is clearly undesirable. We therefore prefer
our semantics of event generation.

Of course, now the question arises whether our semantics of event generation
can be simulated in signal-event nets. We think that this is impossible, since in



WAIT−2

A
/done

B
done

A

WAIT−1

B

B terminatesA terminates

environment

environment

WFS

done

WAIT−1
e[in(A)]

WAIT−2

e

e[not in(A)]

(a)

(b)

Fig. 10. Activity diagram and a similar signal-event net

both our semantics [27,28] the input set acts as a kind of registry in which the
events that are generated during a step are stored. This can only be simulated by
treating events as tokens; if events are treated as transitions, events get lost after
the step in which the events are generated completes. But above, we discussed
the inadequacy of the event-as-token approach to model our step semantics. We
come back to this issue in the conclusion of this subsection below.

Another point is that in general, statecharts have a priority constraint to deal
with certain forms of nondeterminism. These are not present in the definition
signal-event nets. Other differences between activity diagrams and signal-event
nets are that (1) steps in signal-event nets are sets of transitions, rather than
bags (but we could not find a compelling reason in Foremniak and Starke [29]
why this is the case; probably the extension to bags is easily made), and (2) the
environment must be modelled explicitly in signal-event nets, but not in activity
diagrams.

Conclusion. Both in the event-as-token approach as in the event-as-transition
approach, the statechart step semantics we have adopted cannot be modelled.
However, in the event-as-transition approach, the signal-event net semantics re-
sembles the statechart step semantics we use closely. But the signal-event se-
mantics has a fixpoint semantics of generated events, whereas we have not. Our
semantics of event-generation can only be modelled using the event-as-token ap-



proach. It might therefore be worthwhile to try to incorporate the concepts used
in signal-event nets into the event-as-token approach. Especially the concept of
a forced transition seems promising. This concepts seems to be present in zero
safe nets as well.

4.3 Modelling Data

The standard way to incorporate data in Petri nets is to use coloured tokens [40].
Coloured tokens are tokens that have attribute values. These attributes val-
ues are modified in/by transitions. Another way is to interpret places as predi-
cates [31]. But then instances of the predicates can be seen as tokens that can
change value when a transition consumes them. So, in both approaches, tokens
carry data.

Therefore, the straightforward way to model case attributes in Petri nets is
to attach these attributes to tokens. But attaching case attributes tokens suffers
from the following problems.

Who updates case attributes. If case attributes are updated in some transition,
than this transition cannot be part of the workflow model, because the WFS
who executes the workflow model does not update case attributes, it only routes
the case. (See Section 3). In other words, the environment (the actor) must be
specified explicitly by a transition in order to let the case attributes change value.

Data integrity. Several tokens may represent the same case attributes. Ideally,
this situation should be prohibited, since an attribute may then inconsistently
have several different values (i.e., the different tokens may assign different values
to the same attribute). In terms of transaction theory, the isolation property
fails to hold, since activities that update the tokens are not isolated from the
other executing activities.

One possible solution is to represent each case attribute by a single coloured
token. Then each transition that reads or writes the attributes must have this
token as input and outputs the token when it finishes. Although the isolation
property is then ensured, in standard Petri nets two read activities cannot be
simultaneously active, since both consume the same token. That is not what
we want, because the concurrency of the WFS is then reduced. In addition, the
resulting net would look like ravioli if there are many case attributes.

To circumvent this, read arcs [47] can be used for read access. Interestingly,
apparently read arcs have been proposed just to solve this problem of simulta-
neously access to shared data [30]. But unfortunately, read arcs do not solve the
problem satisfactorily. To illustrate this, consider the Petri net with read arcs in
Fig. 11. Data item x is updated and read by activity A and read only by B. In
this net, although x cannot be updated and read simultaneously, it is possible
that A reads a value of x that is subsequently changed by B. So, A and B are
not isolated from each other (viewing both activities A and B as separate trans-
actions.) Therefore, this solution does not satisfy our needs. (De Francesco et
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al. [30] do not address this issue; they only consider the question when two Petri
net executions are view equivalent.)

In fact, in our semantics [27] we have ensured that if two activities are con-
flicting, that is, one of them writes a case attributes that the other one reads
or writes, then they cannot be active simultaneously. In the computation of a
step, we have put the extra constraint that by taking the step a configuration
is reached that has no conflicting activities. This conflict relation can of course
be specified in the control flow as well, using for example a mutex place for each
pair of conflicting activities. The mutex place acts as a kind of semaphore: the
activity that can consume the token in the mutex place may be active and change
the data item it likes and when it terminates it puts a token in the mutex place.
A solution using mutex places would, however, clutter the workflow model with
a lot of arrows, and again, we have a ravioli model, that is even more unreadable
and incomprehensible than the workflow model presented in Fig. 11.

Conclusion. We conclude that data can be modelled in Petri nets using read
arcs, mutex places, and an explicit representation of the environment in the
form of actors that update the case attributes. But, the resulting net is overly
complex, unreadable and uncomprehensible. We think that a solution using local
variables (used in Petri nets modelling flowcharts [32]) is more simple and elegant
and therefore preferable.

4.4 Modelling Activities

In a Petri net, there are two options to model an activity: as a transition or as
a place. Almost every Petri net workflow model seems to take the first option,
whereas if an activity diagram is viewed as a Petri net, the second option seems
to be taken. We discuss the advantages and disadvantages of each option.

Activity is transition. In every Petri net workflow model that we know of, this
interpretation is adopted, probably because of the intuition that an activity
is something which changes the state of the case (the state is assumed to be
modelled by the input tokens). There are, however, some mismatches between
the properties of an activity and the properties of a transition. First, a transition



takes no time to execute, whereas an activity does. There are two ways to solve
this problem. The first solution is to decompose the transition into a “begin
activity transition” and “end activity” transition that are connected by a place
representing “activity busy executing”. This solution results in a Petri net that is
quite similar to an activity diagram. Then the execution of an activity is actually
represented by a place. This approach is taken by for example Van der Aalst,
Van Hee and Houben [6] and Desel and Erwin [19]. See the next item below for
a discussion of this approach.

The second solution is to use timed or stochastic Petri nets, in which a
transition can have a duration. In most timed and stochastic Petri net variants
a transition still fires instantaneously, but it takes time before a transition is
enabled. The transition in that case actually represents the starting or ending
of an activity rather than the complete execution of the activity. This is not
harmful for analysis purposes, but it gives a slightly awkward model of WFS
reality. Analysis of timed and stochastic Petri nets is far more complex and
involved than analysis of simple low-level nets.

However, our main objection against modelling an activity as a transition
is the following. In Petri nets, a transition is executed by the system that the
Petri net models. Hence, if a transition models an activity, this implies that the
WFS does the activity. This approach violates the WFS characteristic that an
activity is performed by an actor in the environment of the WFS, not by the
WFS itself. And it is this characteristic that creates the need for reactivity in a
WFS. By contrast, in our semantics the WFS does not do activities; it merely
routes cases. In Petri nets that model activities as transitions, the routing is not
modelled at all. Therefore, such Petri nets do not model a WFS.

As an aside, note that in some variant of Workflow Nets [5], some transitions
can be labelled with a silent action that is not observable for the environment.
Van der Aalst [4] suggests to use the silent step to model routing transitions.
Transitions labelled with an observable action then represent workflow tasks.
However, in that semantics, the silent action can be abstracted away from some-
times. For example, a sequential workflow model with two tasks a and b and a
routing transition from a to b is equal to a model in which a is directly followed
by b. It is unclear how this abstraction can be related to the execution of real
workflow models: a WFS always routes a case after an activity completes. In our
view, routing cannot be abstracted away from.

Of course, one could model the environment also in the Petri net workflow
model, and let the activity be performed by the environment part of the Petri net
model. But then the relationship with the corresponding part of the workflow is
unclear, i.e., what should the WFS do while the environment is busy performing
some activity?

Activity is place. To the best of our knowledge, this interpretation is never
chosen in Petri nets. Most people modelling a workflow in Petri nets probably
would find this interpretation counter-intuitive since (as they argue) during an
activity the case is changed, whereas a place is static (the local part of the case
is not changed). We disagree, however, with this argument, since for a WFS



an activity state does represent something static, namely the WFS waits for an
actor to complete the activity. The only dynamic behaviour of the WFS is when
some activity completes and the case must be routed to a new state.

Nevertheless, the Petri net people who find this interpretation counter-intuitive
are right to some degree. Whether we represent activities as places or as tran-
sitions, in Petri nets case attributes can only be changed in transitions, not in
places. This corresponds to the fact that Petri nets model closed, active systems,
in which the environment, i.e., that which it outside the Petri net, does not play
any role. Any model of an open, reactive system, on the other hand, does allow
for a change of case attributes during a state (place), namely if the change is
initiated by the environment! (These changes are implicitly modelled and not
explicitly represented by an edge in the diagram.) And this is exactly what hap-
pens during an activity: the environment (i.e., an actor using an application)
updates case attributes, whereas the WFS waits for the activity to terminate.
Consequently, to model change of case attributes in a Petri net, we must model
the environment explicitly in the Petri net as well.

Conclusion. As stated above, in most Petri nets workflow models the first option
is adopted. The only motivation that is given for this interpretation is that this is
“straightforward”. We think that the real, underlying motivation is based upon
the following properties of Petri nets: (1) a transition represents some change by
the system, whereas a place represents a static condition on the Petri net model,
and (2) a Petri net model can only change state by firing transitions. The two
properties imply that all changes are caused by behaviour of the system itself. In
other words, changes cannot occur due to the environment of the system. Conse-
quently, any modelling language having these properties cannot faithfully model
open, reactive systems; instead, they are more suitable for modelling closed, ac-
tive systems. Petri nets are useful for example to represent (scarce) resource
usage, e.g. the allocation of actors to activities.

4.5 Modelling the Implementation-Level Semantics

In the implementation-level semantics, only a single event can be processed at at
a time. Therefore, a queue is needed to store events that occur while the Router
is busy processing some event. We now discuss whether this can be simulated
using the event-as-token and event-as-transition approaches.

In the event-as-token approach, a queue can be modelled straightforwardly
by switching to Petri nets with integers (counters) as is done in the FunSoft
approach [23]. And a special place can be introduced to store the event that is
currently being processed by the Router. But still, since in the event-as-token
approach the statechart step semantics we use, cannot be simulated very well,
the implementation-level semantics cannot be simulated very well either.

In the event-as-transition approach (signal-event nets), queues cannot be
modelled, since the effect of an event is lost after the step in which it occurs is
completed. So, if in the environment an event occurs (a spontaneous transition
fires), the WFS must react immediately, since otherwise the event will be lost. So,



in the event-as-transition approach, the implementation-level semantics cannot
be simulated at all.

We conclude that the implementation-level semantics cannot be modelled
satisfactorily using Petri nets.

4.6 Petri Nets for Workflow Modelling

We conclude this Section by discussing the Petri net models we found in liter-
ature that are used to model and analyse workflows. Van der Aalst, Van Hee
and Houben [6] use high-level nets to model and analyse Petri net based work-
flow models that also model resources. Van der Aalst [3] uses Workflow nets,
low-level Petri nets with a single start and a single end place, to verify proper
termination of a workflow model. Although Van der Aalst recognises the need for
modelling input events, he abstracts away from them for analysis purposes for
two reasons [3]. His first argument is that the environment cannot be modelled
completely; from the point of view of the WFS it behaves nondeterministically.
This is best modelled, he says, by leaving the events out. His second argument
is that if an abstracted workflow is correct, the concrete one will also be. But as
we showed above both arguments fail to hold if there is a dependency between
different events in the same workflow model and if one event can trigger more
than one transition. In these cases, abstracting from events will lead to differ-
ent behaviour in the abstract model, when compared to the concrete model.
Consequently, the verification results obtained for the abstract net might not be
reliable anymore.

FunSoft nets [18] are high-level nets for software process modelling, but they
can also be used for workflow modelling. Their semantics is defined in terms
of Predicate/Transition nets [31]. FunSoft nets focus on the flow of resources
(objects), like business documents, through an organisation and do not focus
on modelling events. Some shorthands are defined to model for example FIFO
queues. Several analysis techniques, including verification have been developed
for FunSoft nets [18].

INCOME/WF [49] is a a workflow management system based on high-level
Petri nets where the tokens are nested relations. Nested relations are introduced
to increase the concurrency of the net: the actual transitions are defined on the
basic elements of the relation, not on the relation itself. This means that still
for the basic elements, no concurrency exists, since the standard Petri net firing
rule is employed, in which a transition consumes all tokens it reads.

Information/Control Nets [22] are a high-level Petri net variant for workflow
modelling. The focus is on the modelling of resources, like documents, not on
the modelling of events. The standard Petri net semantics for high-level nets is
used.

Milano [9] is a research prototype to investigate the issue of flexible workflow
models. The Petri nets that are used do not contain events, loops, data, real-time.
Moreover, these nets must be safe.

It is interesting to notice, from this brief overview, that most Petri net work-
flow models provide little support for modelling events. And if a notation for



events is suggested, no formal semantics for them is given. Most approaches in-
terpret tokens as resources that are being used by activities in transitions to
deliver a requested service for a customer. However, the assumption seems to be
implicitly made that resources are scarce, since no two transitions can consume
the same token simultaneously. This assumption is questionable: certainly, some
resources are scarce, but also a wide variety of resources, especially information
carriers, are not. (None of these Petri net variants uses read arcs.)

5 Discussion and Conclusion

From our comparison of our semantics with Petri net semantics, we draw the
following conclusions. First, Petri nets model closed systems. All changes in Petri
nets occur because of the firing of some transitions in the net that represent ac-
tivity of some part of the system itself, rather than some activity in the system’s
environment. Second, standard Petri nets model active systems, rather than re-
active ones. A transition is enabled if its input places are filled. Also, an enabled
transition does not have to fire immediately. Our semantics is reactive. An edge
in an activity diagram is enabled if its source state nodes are in the current
configuration and its trigger event occurs in the environment. And an enabled
edge must fire immediately. That is why we impose a maximality constraint on
steps in our semantics. This constraint is lacking for standard Petri nets.

In Petri nets, reactivity can be simulated to some extent by modelling the
environment in the Petri net as well. This is done, for example, in a recently
proposed variant of Petri nets, called signal-event nets. These nets are also mo-
tivated by the domain of reactive systems. Signal-event nets have a complex
semantics that differs considerably from the standard Petri net token-game se-
mantics (amongst others, a maximality constraint is imposed on steps). Since
their semantics is so different from the token-game semantics, it is questionable
whether these are Petri nets at all. We showed that signal-event nets behave
similar to the fixpoint step semantics for statecharts, defined ten years earlier
by Pnueli and Shalev [52]. We are convinced that it is impossible to simulate in
Petri nets the Statemate interpretation of event generation, that is also used
in UML. However, it might be worthwhile to try to incorporate the concepts of
signal-event nets into Petri net variants that model events as tokens, for example
open nets. The resulting Petri net variants would likely be closer to the State-
mate interpretation of event generation than any of the currently existing Petri
net variants, but we expect such variants will still be different.

Third, Petri nets in general model scarce resources, rather than unscarce
ones. A transition can only fire if there are enough input tokens present, i.e.,
enough scarce resources are available. Using read arcs this can be circumvented,
because with a read arc a token can be tested without being consumed. Thus,
read arcs allow for elegant specification of concurrent access to shared data.
However, if an activity is seen as a transaction, as is usually done in workflow
modelling, read arcs must be combined with mutex places to enforce isolation



between activities. We prefer our own approach using local variables, since it is
more simple.

Fourth, the Petri nets that came closest to the requirements-level semantics
we gave to activity diagrams contained inhibitor arcs, read arcs, synchronisa-
tion between transitions, and coloured tokens with timestamps. These nets had
to contain both a description of the workflow and of the environment. Roughly
speaking, the net had twice as many nodes compared to the corresponding activ-
ity diagram. Such Petri nets are truly gargantuan and difficult to analyse, both
for a workflow modeller and a verification tool. (For example, a lot of the anal-
ysis results for standard Petri nets do not carry over to signal-event nets [29].)
And even with these Petri nets, the possible dependencies between value change
events could not be modelled. Moreover, these Petri nets still stay far away from
our implementation-level semantics. They do not resemble it at all.

Also, one of the acclaimed advantages of Petri nets, that there is an abun-
dance of analysis techniques available for them, is only true for low-level nets; its
applies to a lesser extent to high-level nets. As we showed, not every desirable
construct can be modelled in low-level and high-level nets; read arcs, inhibitor
arcs and synchronisation constraints are needed as well. But for these latter net
variants, there are only very few analysis techniques available.

Of course, these conclusions are based upon our assumption that a work-
flow model describes the behaviour of a WFS. One could argue whether this
assumption is valid. In fact, does not a Petri net workflow model describe an or-
ganisation, rather than a computerised system? But even then, the interaction
between the organisation and its environment must be modelled (customers,
government, suppliers,...), since the organisation is a reactive system as well.
Consequently, Petri net models of organisational behaviour suffer from the same
problems as Petri net models of WFS behaviour: they cannot model reactivity.

From the above, it follows that if a Petri net is used to model a reactive
system, the reactivity of that system is abstracted away from. But we consider
reactivity to be one of the most important aspects of workflow modelling. If
reactivity is abstracted away from, then at least some justification should be
given that assures that the analysis results on the Petri net model will also carry
over to a reactive setting. We do not think such justification has been given yet.
If no justification is given, it is unclear what the relationship is between a Petri
net model and the actual execution of a similar workflow model by a WFS. We
conclude that Petri nets cannot faithfully model reactive systems, unless they
are extended with a syntax and semantics for reactivity

Finally, Petri net variants are sometimes used as workflow modelling language
in workflow management systems, for example in Cosa [44] and MQSeries [39,45].
This does not mean, however, that these WMFSs also use the Petri net semantics!
For example, in Cosa, activities are modelled as transitions. In the token game
semantics of Petri nets, a transition fires instantaneously whereas in real life an
activity will not be performed instantaneously. So, although the Petri net syntax
is used, it is very doubtful whether the Petri net semantics is used. We think
that this observation holds for other workflow management tools as well, since



most adhere to the reference model of the Workflow Management Coalition [60]
that, as we do, views workflow systems as reactive systems (cf. Fig. 2) that have
coordination functionality.
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