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Abstract

This paper shows that a broad class of dynamic models of diffusion of new tech-

nology (usually estimated using duration models) can be estimated using data with

extreme censoring i.e. when only discrete choice data is available in the form of re-

peated cross-sections. This finding should have broad relevance across numerous fields

where such models are currently used, since it opens up new potential sources of data.

For example expenditure surveys are commonly available for most countries in this for-

mat. We present Monte Carlo evidence to show that the maximum likelihood estimator

is consistent and efficient in this context. We also apply this methodology to estimate a

diffusion model of Internet services at home for U.S. consumers. We use publicly avail-

able Current Population Survey (CPS) data to estimate these models. Consequently

we are able to test for the existence of and, estimate the dimensions of the so-called

Digital Divide. These estimates also allow us to make forecasts of Internet penetration

in the United States across various levels of aggregation (geographic and demographic).

∗I would like to thank Patrick Bayer, Hanming Fang, Martin Pesendorfer, Gustav Ranis and Subrata

Sen for many helpful discussions, seminar participants at Yale and also other IO folks at Yale who have all

provided valuable suggestions and encouragement at different times.
†Corresponding Address: Department of Economics, Yale University. 37 Hillhouse Avenue, New Haven.

CT 06520, e-mail:mainak.sarkar@yale.edu



1 Introduction

The digital divide is broadly defined as the concern that certain groups in the population

might not have access to information technology and therefore be somehow handicapped

in their lives (for example they will have fewer employment opportunities in the future in

an increasingly wired job market etc.). In many ways these concerns are a continuation of

long-standing policy goals in the United States, Canada as well as in many other OECD

countries of universal service. This is defined by the 1934 Telecommunications Act as

follows:

“. . .to make available, so far as possible, to all people of the United States a

rapid efficient nation-wide and worldwide wire and radio communications service

with adequate facilities at reasonable charges.”

In practice this definition as well as the policies advocated for its achievement has evolved

over time.1 In its current form, the Telecom Act of 1996 extends this concept to the

provision of new, high-speed telecom services to public institutions such as libraries, schools

and medical institutions. Also known as the E-rate program it uses revenue generated by

taxes on long distance calls to subsidize Internet access for these institutions (about 2 billion

dollars). Additionally Hausman (1998) finds that these programs cost about 2.25 billion

dollars to administer every year. The general public also enjoys implicit subsidies from the

Internet Tax Freedom Act of 1998 which initially placed a three year moratorium on all

taxes on Internet access and has since then been extended for an additional three years.2

Many authors have pointed out that in the context of ‘universal service’ such policies

fly in the face of economic logic, since most developed countries have telephone penetration

rates of over 90%. Also most econometric studies report a very low price elasticity of access,

for residential demand for telephones (see Crandall and Waverman (2000) and the studies

cited there). Similarly for the Internet it is hard to justify the policies undertaken and the

large efficiency costs generated therein, since Kridel, Rappoport, and Taylor (1999) reports

similar findings for Internet access. Earlier studies such as Beckert (2000) also report a low
1In order to achieve these goals, in the past explicit subsidies such as the Linkup and Lifeline programs

has been undertaken by the FCC, as well as implicit subsidies provided for local telephone rates.
2Set to expire this November the House of Representatives voted overwhelmingly in favor of extending

this bill, on Sept. 17, 2003.
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price elasticity of demand for bandwidth.3 The evidence provided in favor of the digital

divide is flimsy at best (see Compaine (2001)). The series of studies done at the behest of the

Clinton administration4 provides limited information in this regard since the methodology

used there is primarily descriptive (cross-tabulations etc.) and static in nature. Similarly

other scientific studies such as Hoffman, Novak, and Schlosser (2001) which uses a simple

static discrete choice framework to test for a digital divide across various races is not entirely

satisfactory.

Melnikov (2000) and Gandal, Kende, and Rob (2000) show that in the context of new

technologies static models of discrete choice are inadequate and a dynamic model with

foresight is required. They show that for new technologies rapid improvements in quality

introduces a potential bias into the estimates obtained from static discrete choice models,

due to intertemporal substitution. Low levels of adoption might simply be due to the

option value of waiting as new and better technologies come along (and/or prices fall) and

not because of the digital divide. Melnikov (2000) also shows that static estimates of the

value attached to quality implies an exploding sales pattern over time as quality improves

exponentially, however in reality for most new goods such a pattern is not observed in real

data. Therefore they stress the need for estimating forward-looking models of consumer

behavior where future benefits from improvements in technology are endogenized.

In this paper I present such a model of technology adoption and show that it can generate

the patterns observed in the real world. I go on to show that the salient features of the model

can be adequately summarized under certain circumstances by parametric duration models.

I use publicly available data from the Current Population Survey (CPS to estimate these

models. The data is in the form of repeated cross-sections, and naturally the question arises

whether dynamic duration models can be estimated using such data. I provide evidence

in the affirmative, using Monte Carlo simulations I show that the maximum likelihood

estimator in this context is consistent and even efficient for certain models. Therefore

this paper should have two contributions, first it estimates a dynamic model of technology

adoption with an application to the Internet, therefore we can test for the existence of the

digital divide as well as forecast its dimensions in the short to medium run if it exists, this

has serious policy implications as discussed before. Additionally this study shows that a
3Elasticities were estimated using data generated from a controlled experiment conducted on the Berkeley

campus, also known as the INDEX project.
4Reported in the Falling Through the Net series of publications, available online at the FCC website as

well as summarized in Compaine (2001).
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broad class of diffusion models can be estimated using repeated cross-sectional data, which

opens up new potential sources of data for any field where such models are currently used.

Also Besley and Case (1993) claims that in the context of adoption of new technology,

since self-reported adoption times tend to be notoriously unreliable i.e. have very high

measurement errors, discrete choice data of current usage might provide better estimates.

The rest of the paper is laid out as follows, in section 2 we discuss related studies,

following which in section 3 we present a simple model of technology adoption. Section

4 introduces the most commonly used duration models and section 5 discusses estimation

strategies using RCS data. Section 6 presents monte carlo evidence regarding the MLE and

in section 7 we present our main results and finally section 8 concludes.

2 Related Work

This study draws its inspiration from several sources: the marketing literature on new

product diffusion, in economics the literature on diffusion of new technology and also the

literature in sociology on diffusion of innovations and learning in social networks and lastly

the statistical literature on survival analysis.

Schumpeter called diffusion the third pillar of technical progress along with invention

and innovation. There exists a very large literature in economics on the diffusion of new

technology, studying for the most part adoption decisions by firms, for various process

innovations.5 This literature is too large and diverse to be adequately summarized here,

the reader is instead referred to the excellent surveys by Geroski (2000) and more recently

Hall and Khan (2003). The empirical literature is usually dated to have originated with

the seminal contribution by Griliches (1957), studying adoption decisions of farmers, for

new varieties of corn seeds. Gruber and Verboven (2001) applies a similar methodology

to estimate the diffusion of mobile telephones in the European Union. Numerous issues

have been considered in this context both on the demand side (adopter side) such as firm

size, market concentration etc.,6 as well as the supply side (technology and supply features)
5Process innovations are defined as improvements in the production process as opposed to product

innovations which are improvements in a final good or service.
6Schumpeter also hypothesized that market power should accelerate diffusion; others have pointed out

theoretical reasons against it. Numerous empirical studies in this field therefore seek to estimate the rela-

tionship between firm size and adoption decisions.
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such as improvements in quality, uncertainty in utility, seller concentration etc. Many of

the insights developed in this literature do not translate to this case since this study focuses

on consumer adoption decisions.

This study is instead closer in spirit to the marketing literature on the diffusion of new

goods, since it models adoption decisions by households. The workhorse model in this con-

text is the Bass (1969) model, which has been remarkably successful over time in predicting

diffusion patterns for numerous goods. For an excellent survey of this literature refer to

Roberts and Lattin (2000) and Mahajan, Muller, and Bass (1991). A useful way to classify

the various models is by their levels of aggregation, for instance the models considered by

Griliches and Bass study diffusion at the market level. These models have found wide ap-

plicability across numerous studies particularly due to their parsimonious representation of

the diffusion process, usually summarized by a few variables which are then related to the

characteristics of the new technology or the adopter. Only market level data is required

for estimation. The literature on diffusion of innovations in sociology7 (see for example

Rogers (1995))is conceptually close to the marketing literature, the diffusion process is ex-

plained by an epidemic model of learning by consumers.8 Note that for most new products

/ technologies an S-shaped market level adoption curve is observed i.e. initially adoption

proceeds slowly but accelerates over time, all models mentioned in this study generate such

a curve.

Alternatively, a separate class of models stresses consumer heterogeneity as the driving

force behind the diffusion process. These disaggregate consumer level models are usually

more intuitive since they have a basis in consumer utility theory. However such models

require consumer level micro data for their estimation and for forecasting purposes as well,

thereby limiting their use. It is argued that consumers are heterogeneous in terms of their

utility for the new product and therefore have diverse reservation values, which in turn leads

to staggered adoption dates, i.e. a diffusion curve at the market level (Davies (1979) first

considered such models). It is common to use duration models to estimate these models, see

for example Hannan and McDowell (1984), Rose and Joskow (1990) and Berndt, Pindyck,

and Azoulay (2000). Note that in this context although heterogeneity can be explicitly

tested for, consumer learning or network effects are not identified separately. A third
7Diffusion is defined more broadly in this context as any new social behavior.
8Information about the new product spreads like an epidemic through contact between an infected person

(current user) and an uninfected (uninformed) person. Therefore a larger infected population leads to faster

adoption.
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category of models explicitly specifies and estimates consumer learning, see for example

Chatterjee and Eliashberg (1990) and Erdem and Keane (1996).9 Policies to accelerate

adoption rates for new technologies are considered by Stoneman and David (1986).

Lastly for a current review of survival analysis from an econometrics perspective refer to

Berg (2000). Duration models have been used widely in the economics literature to study

diverse phenomenon such as government program impact on unemployment spells (Meyer

(1990)), criminal recidivism (Schmidt and Witte (1989)), runs on banks (Henebry (1996))

and currency crises (Glick and Rose (1999)).

3 A Simple Structural Model

In this section we present a stylized model of technology adoption. This model is a

modified version of the model introduced by Cameron and Heckman (1998) [henceforth

CH ], which studies the impact of family background variables on schooling decisions for

five cohorts of American men. Others such as Davies (1979) had studied similar models

in the technology diffusion literature, Geroski (2000) calls this broad class of models probit

models. Note that conceptually the decision to terminate further education is very similar

to adoption of new goods and/or technology. Therefore many of the insights derived by

the authors in the context of schooling are relevant to individual adoption decisions as well.

We first report several critical features derived by the authors which serves as a cautionary

tale for the diffusion literature.

Numerous authors have estimated logit and probit models with cross-sectional data on

adoptions. In particular a number of authors studying the digital divide had used such tools

(see discussion above). With multiple cross-sections or with a single cross-section and recall

data10 earlier authors such as Goolsbee and Klenow (2002) had estimated period specific

adoption probabilities over time. Let Dt be a dummy variable denoting usage/adoption at

time t, then the probability of adoption in period t conditional on not having adopted by

period t − 1 and given a set of time-varying covariates Xt, i.e.

Pr(Dt = 1|Xt = xt, Dt−1 = 1) = Pt,t−1(xt) (1)
9A dynamic programming model with Bayesian learning process is usually assumed.

10Self-reported past date of adoption.
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is usually parameterized as a standard logit or probit model as follows:

Logit Pt,t−1(xt) =
exp(x′

tβt)
1 + exp(x′

tβt)
or,

Probit Pt,t−1(xt) = Φ(x′
tβt)

These models which formulate the consumer’s decision as a static problem are funda-

mentally flawed since adoption decisions typically are intertemporal (since improvements

in quality are enodgenized) and therefore valuation/beliefs depend on the whole history of

past shocks in more complicated ways than captured by a simple logit/probit formulation.

CH show that behavioral models that can generate such behavior implicitly makes strong

assumptions such as myopic consumers and/or a martingale process for the period specific

shock to valuation. Additionally they show that,

• In the presence of omitted variables / unobserved heterogeneity, dynamic selection

over time makes the coefficients biased in ambiguous ways,11 making the coefficients

harder to interpret.

• Theorem 4-5 in the CH study show that in the presence of unobserved heterogeneity

and if both X and β is the same for all transitions then the model is non-parametrically

unidentified and depends upon strong distributional assumptions for identification.

Next we consider a modified version of the simple behavioral model presented in CH.

It consists of forward-looking, profit maximizing, heterogeneous individuals maximizing

the discounted present value of consumption. The adoption decision can be framed in

terms of an optimal stopping problem. There is a return as well as a cost associated with

postponing adoption, the return in this case comes from a downward trend in hedonic

prices (price adjusted for quality improvements12) that is almost always observed for all

new technologies. The cost is in the form of forgone benefits of consumption in the current

period.

Formally given individual characteristics X = x, let the cost from waiting be C(t|x). We

assume that this is weakly convex and increasing in waiting time t. As long as per period
11The sign of the bias depends critically on distributional assumptions about the unobs. heterogeneity

term.
12Improvements in characteristics such as reliability, lowering of uncertainty in benefits through consumer

learning etc.
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benefits are strictly positive, total cost will increase over time. The convexity assumption

says that benefits (usually) rise more than proportionately over time; this is not unreason-

able for most new technologies and is particularly appropriate for the Internet given the

explosive nature of its growth in the recent past. The Internet is a strong network good,

with quality directly proportional to the number of users, therefore as the number of users

increases so does the number of potential correspondents for e-mail, chat etc., as well as

websites / sources of information. Therefore per period foregone benefit from consumption

can be assumed to rise at least initially. Also assume that c(0|x) = 0 for all x, which is not

unreasonable for pure network goods as it is worthless with no other users.13 Assume that

the returns function R(t) is strictly concave (at least upto a point t̄) and weakly increasing

in t. This is justified if quality increases or price decreases with certainty early in the life of

all new technologies, but this peters out over time. Also assume that R(0) > 0, which says

that everyone knows with certainty that quality will improve. Without loss of generality

we assume the R function is the same for everyone since all individual specific differences

can be absorbed in the cost function. Notice that subjective discount factors are embedded

in both the returns and costs functions. Optimal adoption time is then the solution to the

following maximization problem:

max
t

R(t) − C(t|x), t ∈ [0,∞) (2)

Given our assumptions about the shape of the returns and cost functions this function

is well behaved and concave with a unique maximum which is positive since R(0) > 0

and C(0|x) = 0. This model retains the essential feature of earlier diffusion models with

heterogeneity since any factor that increases benefits or raises the cost of waiting necessarily

lowers reservation values leading to an earlier adoption times. For simplicity we also assume

the following:

Assumption 1 The cost function is multiplicatively separable, i.e. C(t|x) = c(t)κ(x).

Assumption 2 The individual effect can be decomposed into observed and unobserved com-

ponents, i.e. κ(x) = λ(x)ε where ε is unobserved factors.

Assumption 3 The unobserved factors are independent of X, and distributed as follows:

E(ε) = 1. Also we assume that cost is non-negative i.e. ε, λ(x) ≥ 0.
13This is a simplifying assumption that ensures an interior solution for the consumer’s problem, no loss

of generality results since adoption can happen at t + ε with ε → 0 in the limit.
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Here unobserved factors represent all omitted variables that influence the adoption decision

observed by the individual but not by the analyst.14 Later on we will assume a random

effects model where the unobserved factor could be interpreted as unobserved ability or

technological sophistication.

Example 1: Let the return curve be a quadratic of time R(t) = at − bt2 for t ≤ a/2b

and R(t) = a2/4b for t > a/2b, with suitable a, b > 0, this curve is concave and increasing

in t upto a/2b. Also let the cost curve be C(t|x) = ctλ(x)ε and c > 0, this is weakly convex

and also increasing over time. Then the first order conditions from problem (2) implies the

following:

R′(t∗) = C ′(t∗|x) or, (3)

a − bt∗ = cλ(x)ε or,

t∗ =
a − cλ(x)ε

2b

If we assume that unobserved factor ε is distributed as normal with unit mean and variance

σ2, then the probability of adoption by time T can be written as:

Pr (t∗ ≤ T |x) = Pr
(

a − cλ(x)ε
2b

≤ T

)

= Pr
(

a − 2bT
cλ(x)

≤ ε

)

= 1 − Φ
(

(1/σ2)
{

a − 2bT
cλ(x)

− 1
})

(4)

where Φ is the cumulative distribution of the standard normal variate. For simplicity of

notation using the fact that both the return and cost curves are at least weakly increasing

and therefore R′, C ′ ≥ 0, define the function:

exp[ρ(t)] = R′(t)/c′(t) t ∈ [0,∞)

Then by the definition of c(t) = C(t|x)/(λ(x)ε) and using the assumptions made earlier

regarding the shape of the curves, i.e.

R′(t) > 0, R′′(t) < 0 and C ′(t) > 0, C ′′(t) ≥ 0 ⇒ c′(t) > 0, c′′(t) ≥ 0
14If we write κ(x) = exp(x′β) then let xo be observed variables and xu be unobserved and correspondingly

βo and βu their coefficients, then κ(x) = exp(x′
oβo + x′

uβu) = λ(x)ε where λ(x) = exp(x′
oβo) and ε =

exp(x′
uβu).
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we can show that ρ(t) is a monotonous and therefore invertible function of t.15 Specifically

we can show that
dρ(t)
dt

=
d

dt
[log(R′/c′)] =

c′2

R′

(
R′′

c′′
− c′

)
(5)

by the concavity of R and the weak convexity of c the first term is negative and since

both are increasing functions of time the second term is as well, which implies ρ′(t) < 0.

Therefore given ε, the optimal stopping time using this notation is:

t∗ = ρ−1{log(λ(x)) + log(ε)} = ρ−1{x′β + log(ε)}

Then we can write the probability of failure by time T as:

Pr(t ≤ T |X = x) = Pr
[
exp(ρ(T ))

λ(x)
≤ ε

]

Letting λ(x) = exp(−x′β) as before we see that:

Pr(t ≤ T |X = x) = Pr
(
ρ(T ) + x′β) ≤ log(ε)

)
(6)

If we assume that log ε is distributed with pdf g(log ε) then we can derive the distribution of

adoption times as follows; in particular if we assume that it is distributed normal with mean

zero16 and variance σ2
log ε, then we can show that this gives us the standard probit model

(see below). When the data is interval censored i.e. adoption is known to have occurred

within an interval of time (discrete case), this assumption leads to an ordered probit model

(this is the model used by CH). Note that alternative parametric models of discrete choice

can be derived using different assumptions about the distribution of log ε.

Pr(t ≤ T |X = x) =
∫ ∞

ρ(T )+x′β
g(log ε)d log ε (7)

= 1 − Φ
(

ρ(T ) + x′β
σlog ε

)

Manski (1988) shows that such models are identified upto affine transformations, which

implies the need for the assumptions, E(log ε) = 0 which fixes the location and σ2
log ε = 1

to normalize the scale.
15Under the assumption of weak concavity of R(t) one can show that equilibrium adoption time is always

less than t̄, given a weakly convex c(t) function, therefore ρ(t) is monotonic in the relevant range.
16This follows from assumption 3 above that E(ε) = 0.
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3.1 Uncertainty

In this model we assume either that consumers know about benefits and costs with

certainty or the uncertainty about benefits and/or costs remain constant over time, i.e. it

is endogenized into the original decision process. If individuals receive new information

every period then they face a new optimization problem every period. Estimating such a

structural model of consumer learning with uncertainty as considered by Chatterjee and

Eliashberg (1990) and Erdem and Keane (1996), requires fairly detailed information about

the consumer and/or strong assumptions need to be made about the information updating

process. Given the nature of the data we use it is well beyond the scope of this paper.

In the next section we present a simple stochastic model of consumer learning, where

consumer valuations follow a random walk with drift. Compared to the Bayesian learning

models used by the other studies this specification has the added advantage of having a

simple closed form solution.

4 Duration Models

For simplicity we consider only continuous time models here, since it makes derivations

of various functions considerably easier and can be extended to a discrete setup with minor

modifications. Duration models are defined either in terms of a hazard rate or equivalently

using an underlying distribution of time to adoption. Let us define time to adoption T

as a random variable with cumulative distribution function F (t) and distribution function

denoted by f(t). Then the hazard rate is defined as the probability of failure in the interval

∆t conditional on survival until time t i.e.

h(t) = lim
∆t→0

Pr(t ≤ T ≤ t + ∆t | T ≥ t)
∆t

(8)

and by definition this can be shown to be,

h(t) =
f(t)
S(t)

where S(t) = 1 − F (t) (9)

The function S(t) is sufficiently important in our analysis that it is worth defining sepa-

rately. Typically referred to as the survivor function it refers to the proportion of the total

population that has not failed yet at time t, or

S(t) = Pr(T ≥ t) (10)
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4.1 Behavioral Model

First we consider what kind of a duration model is implied by the model of technology

adoption presented in the last section. Note that equation (7) above defines the distribution

of adoption times t given the distribution of the unobserved heterogeneity term log ε i.e.

g(log ε). Using the definition of the survivor function, the relation in (9) and using the

Leibniz rule if we differentiate equation (7) we find

h(t) =
f(t)

1 − F (t)
=

F ′(t)
1 − F (t)

= −ρ′(t)
{

g(ρ(t) + x′β)
1 − F (t)

}
(11)

We consider two examples of standard symmetric distributions for the heterogeneity terms

and show they lead to standard duration models considered below. First assume that log ε

is distributed as a logistic distribution, i.e.

G(log ε) =
exp{log ε}

1 + exp{log ε} g(log ε) =
exp(log ε)

{1 + exp(log ε)}2

Using this in (11) gives us the following hazard rate:

h(t) = G(log ε) = −ρ′(t)[1 + exp{ρ(t) + x′β}]−1 (12)

We know that ρ′(t) < 0 (from (5) above), therefore if we assume exp[ρ(t)] = tα where

α < 0. We can write the hazard rate as follows:

h(t) =
(−α)tα−1exp(x′β)
1 + exp(x′β)tα)

(13)

which is simply the hazard rate for the log-logistic model (see table 1 below).

Also if we assume that α = −1 then ρ(t) = − log t, then by using the definition of the

survivor function from (9) and (11) we can write

S(t) = 1 − F (t) = Φ
(− log t + x′β

σlog ε

)
(14)

note that this survivor function is identical to the lognormal model where log t is distributed

as

log t ∼ N(x′β, σ2
log t) where σlog t = σlog ε

as defined below in table 1.

Example 2: A simulation exercise was performed to study the dynamic individual

and market level behavior predicted by this model. We drew one hundred samples each
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with N = 5000 data points, we randomly generated a single covariate x ∼ N(0, 0.25)

and a constant with parameters β0 = 1, β1 = 1. The return function was taken to be

R(t) = exp[(1 − t)/10] which is increasing and concave in t, the cost function was taken

as c(t) = 1 − exp[(t − 50)/10], with t ∈ [0, 50].17 The resulting failure time distribution is

symmetric about the mean and approximately normal as expected. We plot the simulated

hazard rates (averaged over all samples) in figure (1). We find that the hazard is non-

monotonic, increasing initially and then declining. Most data obtained from real studies

also follow a similar pattern.18

Hazard Distribution f(t)

Figure 1: Simulation Results for the Adoption Model

4.2 Parametric Specifications

The various models discussed here vary in terms of two important characteristics. First

the behavior of the underlying hazard rate over time with no covariates or constant covari-

ates, i.e. given the characteristics of the person and given that he has not adopted by time

t, is he more or less likely to adopt as t increases. This is known as duration dependence

and it may be positive, negative or constant depending on whether the underlying hazard

increases, declines or stays constant over time. The second crucial difference lies in the

modeling of consumer heterogeneity, depending on specification while some models allow
17Which implies that it is increasing and convex as assumed earlier.
18For examples see Lancaster (1990)
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the covariates to affect only the location of the distribution other models allow the location,

scale and shape of the distribution to change with the covariates. For an extensive survey

of the various models refer to Berg (2000) and Lancaster (1990).

Model Hazard Survivor Shape Other

Rate Function parameter pars.

Weibull αλαtα−1 exp{−(λt)α} α λ = exp{−X ′β}
Monotonic

Lognormal φ(y)
σt(1−Φ(y)) 1 − Φ(y) µ, σ log(T ) ∼ N(µ, σ2)

Non-monotonic µ = exp(X ′β)

Log-logistic λαtα−1

1+λtα
1

1+λtα λ, α λ = exp(X ′β)

Non-monotonic

Prop. g(X)h0(t) No closed h0(t) g(X) = exp(X ′β)

Hazard form Flexible

Cont. ν exp(X ′β)h0(t) No closed h0(t) g(X) = exp(X ′β)

Mixture form Flexible νi ∼ f(ν; η)

Table 1: Various Duration Models

The most commonly used models in this literature are summarized in table 1. Perhaps

the most widely used model is the Weibull partly due to its simplicity, however it has a

monotonic underlying hazard rate which may or may not be appropriate in this context. If

consumers learn about the new technology then one expects the baseline hazard to increase

(α > 1). On the other hand there is also dynamic selection bias, i.e. the population left

behind each period might have a lower average ability (or any other unobserved variables

not included in λ), leading to a declining hazard over time (α < 1). Thirdly the hazard

rate can be constant over time (if the adoption process is entirely random). More real-

istic non-monotonic hazards are provided by the other two parametric models reported

in table 1. The lognormal model also widely used has an inverted U-shaped hazard with

initially increasing and then declining hazard rates, which is more commonly observed in

real world data. It has a single maxima depending on X ′β, also it can be homoscedastic

or heteroscedastic σ = σ(X). Also note that in the Weibull the covariates act as a scale

factor increasing or decreasing the hazard proportionately for all t which is not very flexi-

ble, whereas in the lognormal and the log-logistic model the location and the shape of the
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hazard rate depends on the covariates. An additional advantage of the log-logistic model

is that there exists closed form expressions for both the hazard and the survivor function.

The log-logistic model in non-monotonic only if α ≥ 1.

Apart from these parametric models numerous studies have estimated a proportional

hazards model which assumes that the baseline hazard rate and the covariates that affect the

hazard rate are multiplicatively separable. This model is flexible enough to include all types

of duration dependence since the underlying hazard h0(t) is estimated non-parametrically.

However it has the shortcoming that non-parametric estimation depends heavily on the

multiplicative separability of the baseline hazard which might be a strong assumption in

certain contexts. An extension of the proportional hazards model is the so called mixture

models, which assumes an unobserved heterogeneity term ν also enters the hazard rate

multiplicatively. The distribution of ν can be assumed to be either discrete (finite mixtures)

or continuous.

Among discrete mixing distributions the most popular choice is the binomial distrib-

ution, and similarly the gamma distribution for the continuous case given that it has the

unique advantage of being sufficiently flexible and also the likelihood function has a closed

form solution. An alternative approach suggested by Heckman and Singer (1984) assumes

a discrete distribution and maximizes over the number of points of support. Also known as

the NPMLE (non-parametric MLE) although conceptually attractive in reality we found

just as numerous authors before that it has frequent convergence problems. Elbers and

Ridder (1982) shows that such mixture models are identified under fairly mild conditions.

4.3 A Stochastic Learning Model

In this section we show that a stochastic learning model (for example match models

considered by Jovanovic (1979)19) can lead to hazard rates that are very similar to para-

metric models considered above. We assume that individuals each period observe a noisy

signal regarding the value of the new technology (specific to them). Using this signal they

update their beliefs every period using Bayes Rule. Then one can show that this stochastic

process of consumer valuations follows a simple random walk with drift.20 This process in

continuous time is also known as the Wiener process. Let z(t) denote consumer valuation
19He used a similar setup to estimate optimal tenure in a job search model with match specific uncertainty

and learning over time.
20For proof see Jovanovic (1979). Melnikov (2000) considers similar processes for their simplicity.
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which is updated as new information comes in every period (instantaneously in a continuous

time setup). The Wiener process can be written as follows:

dz(t) = µdt + η(t)σ
√

dt (15)

where η(t) are independently distributed standard normal shocks i.e. η(t) ∼ N(0, 1). With-

out loss of generality assume z(0) = 0 or that consumers have no information on the new

technology (at the instant) when it is launched all advertising and promotional activities

take place after product launch. In that case increments in z(t) are independent normal

variates with mean µt and variance σ2t respectively.

If reservation values for adoption are either fixed α(x) or declining21 α(x)−γ(x)t,22 using

a standard result on the Wiener process we can show that time to adoption is distributed

as a duration model also known as the Inverse Gaussian distribution which is:23

f(t) =
α

σt3/2
φ

(
α − µt

σ
√

t

)
∀ t ≥ 0 (16)

where φ(y) is the pdf of the standard normal. This model is very similar to other dura-

tion models presented before in terms of hazard rates, therefore we do not estimate this

separately. We also take it as added justification for the duration models fitted to data.

Note that in the last section we derived a duration model starting with a simple be-

havioral model with no idiosyncratic shocks to consumer beliefs. Whereas in this section

we showed that a duration model may also be the result of consumer learning with het-

erogeneity. Is there any way to differentiate the two? This question has been considered

by numerous other authors as well. Unfortunately in our instance we could not find a

consistent method to econometrically identify and test this hypothesis. In a separate paper

Sarkar (2003) tests this hypothesis using a different approach, by identifying each individ-

ual’s potential network of contacts and finds strong evidence in support of it.
21As prices fall or quality improves.
22Formally the two cases are very similar since the time trend γt can be absorbed into the drift term µ.
23For example see Lancaster (1990) for proof.
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5 Estimation

5.1 Extreme Censoring

Frequently in the real world the data available to the investigator is right censored

(observed data is min(T,C) with censoring at time C ) and the method for controlling for

this in the estimation process is well documented, for example see Lancaster (1990). This

is usually achieved by rewriting the log-likelihood function to incorporate censoring. In the

real world of course other more complicated forms of censoring is sometimes observed in the

data. One of them is interval-censoring that arises routinely in biostatistics, for example

the onset of disease can only be known to have occurred between two test dates which might

be sufficiently far apart. A number of authors have estimated statistical failure models that

take this kind of censoring into consideration. This type of censoring is usually referred to

as “case 2” interval censored data in the literature. Huang and Rossini (1997) considers

the asymptotic properties of MLE estimates of semi-parametric models with this kind of

censored data.

However the data we have is in the form of repeated cross-sections (henceforth RCS),

since the survey was conducted over several waves. RCS data can be considered to be an

extreme form of interval-censoring, the only information available from the sample is that

failure or transition occurred before tj when the jth wave of the sample was collected. It

is closer to “case 1” interval censoring, in this case what is observed is

(tj, δ,X) ∈ R+ × {0, 1} × Rd

where δ = 1{T≤tj} indicating whether T has occurred or not by time tj . Other situations

where such data arise naturally are animal tumorigenicity experiments the existence of

tumors can be verified only at natural death or sacrificing the animal which is done at

different times, see Finkelstein (1986).

In this context, Huang (1996) shows that the MLE estimates of a semi-parametric

model is asymptotically efficient. RCS is very similar to “case 1” censoring since each

observation is interval-censored over the interval (−∞, tj ] for the j wave of the survey. The

only difference being that in most survey data this interval is the same for all observations

collected in each wave. Intuitively this interval is less informative than knowing that failure

occurred in a relatively short interval (t1, t2) in the disease studies, or when intervals are

randomly selected for different individuals.
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However we find that all is not lost, certain parametric family of failure models can be

estimated by rewriting the likelihood in terms of the survivor functions (defined above).

The MLE estimator retains the advantages of maximum likelihood estimation, i.e. it is

consistent and distributed as
√

N asymptotic normal.24

The data we have consists of m = 1, 2, . . . ,M cross-sections of Nm individuals at times

t1, t2, . . . , tM . We will follow convention and denote individual i observed at time t as i(t)).

Therefore, let Xi(t) denote the characteristics of individual i in the survey collected at time

t. The variable we are interested in is coded as a binary variable yi(t) = 1 if individual i(t)

is a user of the new technology and yi(t) = 0 otherwise.

We outline here two additional assumptions that we need to make for duration models

to be identified in this context.

Assumption 4 Adoption is an absorbing state, i.e. if yi(t) = 1 → yi(t+) = 1 for all t+ ≥ t.

Assumption 5 Alternatively assume that the analyst has at her disposal a variable that

summarizes whether the individual ever used the new technology given that she is not using

it now, i.e. zi(t)|(yi(t) = 0) ∈ {0, 1}.

Note that the first assumption is very common in the literature on adoption and this is

usually justified by noting that adoption usually implies that the new technology is supe-

rior/more productive compared to older preexisting technologies, for rational consumers.

More generally in this setup if this is unlikely to be true, the model is also identified under

the weaker condition that individuals may terminate usage but the data indicating past

usage is available to the analyst.

If both assumptions are violated then our methodology outlined below fails, no duration

model can be estimated using such repeated cross-sectional discrete choice data. The intu-

ition for this is simple, yi(t) helps us partition the sample into two sets as follows, denoting

the unobserved adoption time as ta if yi(t) = 1 we know that for individual i(t) adoption

took place before the survey was conducted (at time t) i.e.

yi(t) =

{
1 iff ta ≤ t

0 ta ∈ [t + ε,∞)
24It is easy to verify the sufficient Kiefer-Wolfowitz conditions in this case.
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If adoption is not an absorbing state then this one-to-one relationship does not hold

anymore since yi(t) = 0 includes two groups of people those who have not yet adopted the

technology i.e. ta ∈ [t+ε,∞) as well as those who had adopted but since then have stopped

using it ta ≤ t. However all is not lost as long as we have another variable that serves the

same purpose as yi(t) did before, i.e.

zi(t)|(yi(t) = 0) =

{
1 iff ta ≤ t

0 ta ∈ [t + ε,∞)

In the absence of such information one has to make further assumptions regarding the

proportion of users who adopt and subsequently stop using the technology to be able to

estimate any kind of a duration model.

5.2 Likelihood

The likelihood in this case is the standard discrete choice likelihood with probabilities

of success given by the survivor function from before. Since following our discussion from

before we can partition the data into two sets of past adopters and future adopters, therefore

we can write the likelihood function as follows

L =
∏

yi(t)=1

Prob(τi ≤ t)
∏

yi(t)=0

Prob(τi > t) (17)

Under the assumption that individuals are independently and identically distributed (i.i.d)

we can simplify the log likelihood function as follows (after taking logarithm and using the

definition of the survivor function S(t) from (9) above),

LL =
∑

t∈{t1,t2,...,tM}

Nm∑
i=1

[
yi(t) log(1 − Si(t)) + (1 − yi(t)) log Si(t)

]
(18)

Since most standard parametric distributions (F (t)) have closed form solutions for the sur-

vivor function S(t) this log-likelihood can be maximized to obtain the maximum likelihood

estimates (MLE ) of the parameters. For example using the definition of the Weibull hazard

rate from table (1) we can write its log-likelihood as follows:

LL =
∑

t∈{t1,t2,...,tM}

Nm∑
i=1

[
yi(t) log(1 − exp{(exp(−X ′β)tα)}) − (1 − yi(t))(exp(−X ′β)tα)

]
(19)
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similarly for other parametric forms discussed before. Some shortcomings of this approach

include the heavy computational burden involved in maximizing non-linear functions.

5.3 Semi-parametric estimation

It is evident that non-parametric estimation methods such as the Kaplan-Meier cannot

be applied in this context since the actual durations are not known.25 In theory this can

be done for instance with ‘case 1’ interval censoring when the censoring is at random times

for each observation. However with RCS data most observations share a common censoring

time which is simply the date when that particular wave of the survey was conducted.

However we show that semi-parametric estimation might be possible in this context. Con-

sider the mixed proportional hazard model introduced earlier (see table (1) above), which

in some sense is the most general semi-parametric model out there. The usual approach

taken in the literature is to allow one component of this mixture to vary freely and to spec-

ify the other, for example Meyer (1990) assumes a unit mean gamma distribution for the

unobserved heterogeneity term and allows a non-parametric specification of the baseline

hazard. Conversely, others assume a parametric form for the baseline hazard and allows

the heterogeneity distribution to be flexible (for example see Heckman and Singer (1984)).

In order to estimate the proportional hazard model in this context, we need the survivor

function for the model, in order to derive the likelihood. We use the fundamental relation

in this context:

S(t) = exp
(
−

∫ t

0
h(s)ds

)
(20)

and using the definition of mixture models from table (1) (for the moment assume that ν

is known and the survivor function conditional on ν is Sν), we get

Sν(t) = exp
(
−

∫ t

0
ν exp(x′β)h0(s)ds

)
(21)

In order to evaluate this integral we could use either a flexible parametric form for the

baseline hazard rate h0(t), say a second order polynomial which can capture the U-shaped

empirical hazards often obtained in the real world. Therefore assuming h0(t) = α0 + α1t +

α2t
2, gives us

Sν(t) = exp
(−ν exp(x′β)[α0t + α1t

2/2 + α2t
3/3]

)
(22)

25Horowitz (1999) and (1996) discusses various methods for semi-parametric estimation of both the base-

line hazard as well as the mixture distribution.
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Alternatively from (21)

Sν(t) = exp
(
−ν exp(x′β)

∫ t

0
h0(s)ds

)
(23)

Then let us define the variable exp(γ(t)) =
∫ t
0 h0(s)ds which when substituted in (23) gives

us

Sν(t) = exp
(−ν exp[x′β + γ(t)]

)
(24)

as before let the heterogeneity term be distributed as νi ∼ f(ν; η) then the unconditional

survivor function can be found by taking expectations using the distribution of the unknown

heterogeneity term.

S(t) =
∫

exp
(−ν exp[x′β + γ(t)]

)
f(ν; η)dν (25)

Similarly for the polynomial case. The log likelihood is obtained by substituting expression

(25) in (18) above. The γ(t) terms are called splines, in this case with five waves of data,

there are five splines to be estimated alongside the usual parameters β and, with unobserved

heterogeneity, η also needs to be estimated. In this context it is customary to assume a

gamma distribution for this heterogeneity term with unit mean and variance σ2 in order to

avoid numerical integration, since the gamma distribution provides a closed form solution

for equation (25), as follows:

S(t) =
[
1 + σ2 exp{x′β + γ(t)}]1/σ2

(26)

6 Monte Carlo Results

In this section we present evidence to support our claim that duration models can be

estimated using discrete choice data in the form of RCS. This claim is not immediately

obvious given the heavily censored nature of the data. We show empirically that all the

models we consider are indeed identified and the MLE estimator is efficient for small samples

in certain situations. Usually surveys with RCS data such as expenditure surveys have a

broad coverage with very many observations. This fact somewhat counteracts the loss of

information from the censoring and we find that one can get arbitrarily close estimates of

the true values, particularly with parametric models when they are correctly specified. We

largely follow the methodology laid out by Hendry (1984) in the context of Monte Carlo

studies.
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For uniformity and to maintain comparability across models, in all the studies reported

below we usually consider a single covariate x and a constant term with coefficients β1 and

β0 respectively. We start off with the Weibull model given its widespread usage in the

literature, the results are reported in table 2. We consider two variants of the model, the

top half of the table reports evidence from a monotonically declining hazard (α = 0.5) and

the bottom half considers an increasing hazard rate (α = 1.5). To highlight the loss of

information from RCS data we contrast it with data containing actual durations measured

upto the second decimal place which (almost surely) rules out any ties in the actual data.26

The parameters are chosen for the data generating process (henceforth DGP) such that

about 10 − 15% of the observations are censored at t = 100 (most real life data would

contain similar censoring percentages). Similarly the distribution for the single covariate x

was selected with the same goal. Note that in most models discussed here a higher value

of x implies longer durations. We found that for all the studies reported here the scale

factor (of time) chosen did not affect the estimates, particularly for the models with actual

durations, however they had a very large impact on estimates obtained from the RCS data.

Intuitively this makes sense since RCS provides snapshots of the failure process and if most

failures occur early on in the process, the cross-sections collected later on contain very little

additional information.

The DGP proceeds as follows, we first generate the covariate x from a normal distrib-

ution with mean 2 and variance 1. We generate 100 samples each of size 1000, containing

actual durations. Since it is important for comparison purposes to use the same data for

the different methods (see Hendry (1984),Baker and Melino (2000)), if we need a data set

of N = 100 we use the first 100 obs. for each sample and so on. In the second step we use

this data to generate the RCS data, without loss of generality we take four cross-sections

equi-spaced over time and of equal size (five for the proportional hazards model reported

below). The discrete data in the form of RCS are generated at times t(j) = {4, 8, 12, 16}.27
We found that the results do not vary significantly for the RCS data provided the cross-

sections are of comparable size, time intervals do not vary significantly and collectively they

contain sufficient variation in terms of failure percentages.

For the Weibull model we found that in both cases with actual durations known the

parameter estimates are very close to the true values even with very small samples N = 100.
26In reality usually the data is far more discretized.
27Since almost 50% of adoptions occur by period 20, these times were calibrated to match proportions of

adoptions in the real data.
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MLE α β0 β1 Obs.

True Values 0.5 1.0 1.0

Durations 0.51 0.98 1.00 100

(0.05) (0.47) (0.22)

RCS 0.50 -25.11 22.50 100

(0.35) (96.18) (75.67)

RCS 0.50 0.92 1.08 500

(0.12) (0.50) (0.47)

RCS 0.51 0.99 1.01 1000

(0.09) (0.33) (0.21)

True Values 1.5 1.0 1.0

Durations 1.51 1.00 1.00 500

(0.06) (0.07) (0.03)

RCS 1.51 0.96 1.03 500

(0.21) (0.22) (0.15)

SE in parentheses. No ties, 100 samples.

Table 2: Weibull Hazards with Repeated Cross-sections

Not surprisingly for RCS data we need a much larger sample to obtain reasonable estimates

as expected. However the estimates obtained are consistent, arbitrarily close estimates of

the true value can be obtained with RCS data for samples of size 500 or larger in this

setup. For very large samples of 1000 or 10, 000 (not reported) we found little difference

between the two models. Also we found that the shape of the baseline hazard (increasing

/ decreasing / constant) does not have any impact on these conclusions.

We next consider by turns two other parametric models widely used for their simplicity.

The top half of table 3 reports the results from the log-logistic model and bottom half does

so for the lognormal model. For the log-logistic we assume the parameter value of α = 1,

which generates a U-shaped hazard. Here we find that surprisingly the log-logistic is highly

efficient and converges to the true values for very small samples of around 100 only, with a

larger sample the coefficients are highly significant as well.

For the lognormal model we consider a homoscedastic model with σ = 1. We find that

the RCS data actually performs better for very small samples of 100 in terms of consistency,

22



Log-logistic α β0 β1 Obs.

True Values 1.0 1.0 1.0

Duration 1.01 0.96 1.03 100

(0.08) (0.25) (0.19)

RCS 1.05 0.99 1.08 100

(0.49) (1.05) (0.27)

RCS 0.97 0.90 1.02 500

(0.20) (0.45) (0.14)

RCS 1.00 1.00 0.99 1000

(0.16) (0.35) (0.08)

Lognormal σ β0 β1

True Values 1.0 1.0 1.0

Duration 0.88 1.31 0.72 500

(0.03) (0.09) (0.04)

RCS 1.1 0.96 1.036 500

(0.352) (0.227) (0.164)

RCS 0.99 0.98 1.00 1000

(0.20) (0.15) (0.10)

SE in parentheses. No ties, 100 samples.

Table 3: Lognormal/Log-logistic Hazards with Repeated Cross-sections

compared to actual durations, and with larger samples of 500 or more it is also efficient.

Therefore in both cases we found that sample sizes of at least 1000 were more than sufficient

with RCS data to consistently estimate the true parameters of the model. Typically census

collected survey data sets (such as expenditure surveys) tend to have hundreds of thousands

of observations (see below), therefore we can expect the estimates to be highly significant.28

28In this context we also tried the MCEM algorithm, which is an implementation of the standard EM

algorithm widely used in this literature, using monte carlo integration. We found that with RCS data this

algorithm performs adequately, the estimates are actually better with sample size of 500 than with actual

durations. Using this approach potentially any model that can be estimated using actual durations can also

be estimated with RCS data, since actual durations can be treated as unobserved data and conditioned on.

However we abandoned this approach due the extreme computational burden involved with even modest

sample sizes. Note that it has been suggested that one needs 10, 000 random draws for an accurate estimate

of the expectation step.
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Model I Model II

True (β = 1) β̂ β̂ σ̂2 σ2 = 1/η

(a) Actual Durations 0.998 0.566 1

(0.05) (0.04)

(b) Discrete data (with ties) 0.953 0.537 1

(0.05) (0.04)

(c) Discrete data (coarse grid) 0.795 0.448 1

(0.04) (0.03)

(d) Repeated Cross-sections 0.479 0.354 1

(5 waves) (0.03) (0.03)

(e) With EM correction for het. 1.221 0.295 1

(0.03) (0.10)

(f) Actual durations 0.712 0.5

(0.05)

(g) With EM correction for Het. 1.137 0.321 0.5

(0.02) (0.07)

(h) Repeated Cross-sections 0.349 0.5

(5 waves) (0.03)

All max. partial likelihood est. except RCS data.

SE in parentheses. 100 samples N=1000

Table 4: Proportional Hazards with Repeated Cross-sections

The proportional hazards results are reported in tables (4) and (5). In the first table we

consider two versions the standard one and the mixture one i.e., with and without unob-

served heterogeneity. Model II includes a gamma unobserved heterogeneity term (several

variants are considered). It has been well documented that with interval censored data and

particularly with unobserved heterogeneity the partial likelihood estimates29 are seriously

biased. We also show in the top half how the bias increases with increasing discretization

of time30 See Lancaster (1990) for an EM correction in this context which controls for such

heterogeneity. As expected the bias worsens with the variation in the heterogeneity term

(as measured by the variance of the gamma distribution). In table 5 we consider two alter-
29Standard methodology used for semi-parametric estimation of these models.
30As observations are only observed at more discrete (longer) intervals of time.
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native ways of estimating a mixture model with RCS data. We find that the estimates are

consistent with no heterogeneity, or when it is explicitly controlled for in the estimation

process. Polynomial specifications of the baseline hazard usually performs better with or

without heterogeneity. However when the heterogeneity is controlled for a spline based

piecewise constant hazard is highly efficient and unbiased.

RCS data (5 waves) β̂ σ̂2

A. Polynomial baseline hazard

DGP: β = 1, h0 = 0.05, no Het.

(a) no heterogeneity 1.017

(0.08)

DGP: β = 1, h0 = 0.1 w/ Het.

(b) gamma het. σ2 = 0.5 0.76

(0.06)

(c) gamma het. σ2 = 2 0.50

(0.05)

B. Spline baseline hazard

(d) gamma het. σ2 = 0.5 0.59

(0.11)

(e) gamma het. σ2 = 2 0.40

(0.07)

splines and het. correction

(f) gamma het. σ2 = 0.5 1.065 2.24

(0.32) (1.52)

(g) gamma het. σ2 = 2 0.70 1.70

(0.18) (1.13)

SE in parentheses. 100 samples N=1000

Table 5: Prop. Haz. with RCS II (Quasi-likelihood approach)
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7 Data

The data for this study was obtained from the Census and is part of the Current Pop-

ulation Survey (CPS) conducted by the Bureau of the Census for the Bureau of Labor

Statistics (BLS). This data is publicly available online at the BLS website.31 The CPS has

been conducted by the Census for over fifty years and it is a monthly survey of approx-

imately 50,000 US households. The CPS was primarily designed to obtain a snapshot of

the U.S. labor market. The data includes information on a variety of demographic charac-

teristics including age, sex, race, marital status, and educational attainment of household

members. The labor market data includes detailed information on each household member’s

occupation, industry, and class of worker etc.

Periodically supplemental questions on a variety of topics are also added to the regular

CPS questionnaire. We use data from one of these supplements that the Census calls

Internet and Computer Usage Supplement.32 The CPS survey conducted in the following

months included this supplement: November 1994, October 1997, December 1998, August

2000 and September 2001. Respondents were asked in addition to the regular questions on

demographics and labor market variables whether they use computers at home/work and

what are the primary purposes it is used for. Similarly they were asked whether they have

an Internet connection at home and if so how do they connect and to what purpose do

they use the Internet, for example searching for jobs, reading the news etc. Additionally

the 2000 version of the survey also asked people whether they had a high-speed Internet

connection (Cable / DSL) and how much they paid for the connection.

For an overview of the methodology followed in designing the survey refer to Technical

Paper 63RV (2002).33 The survey uses a rotating panel, i.e. each household is interviewed

for four months, then rested for eight months and then again interviewed for four months

before they are retired permanently. This implies that the data is in the form of repeated

cross-sections and not any sort of panel data. Other relevant demographic and economic

data at various levels of geographic aggregation was also obtained from the 2000 census.
31http://www.bls.census.gov/cps/computer/computer.htm
32This data was collected by the Census on behest of the NTIA for their Falling Through the Net series

of publications (see above), studying the Digital Divide.
33For additional documentation on methodology refer to the CPS website www.bls.census.gov/cps/
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7.1 Descriptive Analysis

Here we present some salient features of the data. We conduct our analysis at the

household level since we believe the decision to have Internet service at home is a household

decision. In the data a particular member of the household is designated as a primary

householder or a reference person (generally the person who rents/owns the family home).

All demographic variables like age, sex, marital status etc., refers to this person in the

household. Table 6 reports the characteristics of the 2001 sample, the samples analyzed for

the other years were found to be very similar in characteristics (not reported here). Apart

from age all other variables reported are dummy variables and the sample mean therefore

represents the percentage of the overall sample which belongs to this category. These figures

roughly correspond to the distribution of these variables obtained separately from the 2000

Census.

Variable Mean Variable Mean

2001 2001

N 56,634 Education

Male 0.537 Less than HS 0.151

Age 49.21 HS Dip. (or GED) 0.312

Income College (or Ass. Deg.) 0.273

≤ 25, 000 0.262 Bachelor’s Degree 0.17

25,000-50,000 0.249 Advanced Degree 0.094

50,000-75,000 0.154 MSA 0.746

≥ 75, 000 0.171 Central City 0.227

Ethnicity Rural (Non-MSA) 0.249

White 0.853 Northeast 0.218

Black 0.102 South 0.294

Asian / Pac. Isle. 0.033 Midwest 0.257

Hispanic* 0.074 West 0.234

Source: 2001 Current Population Survey data.

Table 6: Some Descriptive Statistics
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7.2 Variables of Interest

We use the CPS data to construct the variables of interest as follows. We use data

from five cross-sections and in four of them (2001, 2000, 1998 and 1997) households were

explicitly asked whether they had access to the Internet, if they had either a personal

computer or Web TV at home. If not then they were asked whether they had ever used

the Internet from home. We use the responses to these questions to construct the primary

dependent variable Internet, which is a dummy variable taking on the value one if the

household is a current or past user of the Internet and zero otherwise. However, for the

1994 sample34 respondents were asked whether they had a personal computer at home, the

specifications of the computer and various other usage questions, for example does anyone

in this household use the computer for reading the news etc. In this case we infer that

the household had access to the Internet if the household had a computer with a modem

and if the respondent answered yes to any of the questions regarding usage that require an

Internet connection.

For education the baseline case is taken to be no high school diploma or equivalent

(GED). The following categories are subsequently included as dummy variables, a) high

school diploma or GED, b) some college but no degree or an associate degree in a vocational

or academic program, c) bachelors degree and, d) any advanced degree including a master’s

degree, or professional or doctorate degree. The CPS following the Census 2000 convention

classifies Hispanics as an ethnicity and not as a separate race, i.e. being of parental origin

from certain South/Central American countries, therefore racially they are classified as

either white or black. However in our study we found substantial differences with other

whites and blacks and do control for them as a separate ethnic group. We take the baseline

case as whites of non-Hispanic origin and use dummy variables to control for black non-

Hispanic households and Hispanic (both whites and blacks) households, and Asians.35

34In 1994 the Internet was still a highly specialized technology only used by a few people in academics

and in the military. We include this sample since theoretically the current expansion of the Internet can be

traced back to the invention of the World Wide Web (WWW) by Tim Berners-Lee in 1991, which predates

the sample.
35Which also includes Pacific Islanders and natives of Hawaii etc.
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7.3 Aggregate Diffusion Trends

We start of by reporting simple trends observed in the data for the two main variables

of interest for this study, the ownership of computers and access to the Internet. As noted

earlier most new innovations have been observed to follow a S-shaped curve of diffusion.

A simple model generating such a pattern of diffusion is the logistic growth model used by

Griliches (1957). Let Pit be the percentage of the population using the Internet in market

i at time t, and let Ki be the ceiling or equilibrium value for this market i.e. the number

of final users that we expect will ever use the Internet in this market. This model assumes

that ceiling values are stationary and do not change as the technology improves over time.

The model can be defined as follows:

Pit =
Ki

1 + e−(ait+bitt)
(27)

where ai is interpreted as the origin of the diffusion process for market i, and bi is the

slope of the linearized trend and measures the speed of diffusion in market i. Applying

the logistic transformation and adding a normal error term leads to the following linear

relationship:

log

(
Pit

Ki − Pit

)
= ai + bit + εit (28)

which can be estimated using ordinary least squares method. Usually the parameters ait

and bit are defined as functions of the characteristics of the market and/or technology.

Year Computer Internet

(%) (%)

November 1994 24.1 6.1

October 1997 36.6 18.3

December 1998 42.1 26.2

August 2000 51.8 41.9

September 2001 56.6 50.6

Source: Own calculations using CPS data.

Table 7: Diffusion Process

For our purposes we are only interested in aggregate diffusion for the whole country.

In table 7 below we report the aggregate diffusion for the these two technologies, we find
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that computers which have been available for much longer had ownership of around 24%

by the beginning of this study and increased to about 57% by the end (2001). Whereas the

Internet which was available to the general public only in the early nineties had a usage

level of about 6% by the beginning of the study and increased to about 51% by the end

of this period. This data is then used to fit the logistic growth model described above.

A significant advantage of aggregate diffusion models is that it has been observed to fit

the data extremely well for various new goods, despite its parsimonious representation and

limited behavioral basis. The observed trends are reported in figures 2 (a)-(b) below. Figure

2 (b) fits the logistic model for the trend in Internet usage and similarly figure 2 (a) does so

for computer ownership. These models are estimated in two steps, first the ceiling value or

maximum usage for the country estimated by maximizing the fit (R2) via a grid search.36

The maximum in both cases is uniquely defined and in the second step we use this value

of K to construct the dependent variable and estimate a and b respectively.

Another interesting feature obtained as a byproduct of this analysis is that we can find

the maximum usage levels for both of these technologies. We find that the maximum level

of usage for the Internet to be around 84% at its peak whereas the PC reaches universal

adoption i.e. ceiling value K = 100. Needless to say these estimates need to be taken

with caution since it has been observed in numerous cases that accuracy of such forecasts

increases with more data and also with a higher level of current adoption i.e. later stages

of the diffusion process.

Table 8 reports the breakup by technology for Internet access. Unfortunately we do not

have data on prices for all years but only for the years 1998 and 2000. Starting with the

2000 sample the CPS also had questions on broadband technologies used by the households.

The top half of the table gives the breakup between the major technologies that can be

used by households to access the net, whereas the bottom half reports the market share of

various broadband technologies which might be interesting in its own right.37 The baseline

technology used by most households to access the net remains the dialup modem with

prices for access remaining roughly stationary over the period for which we have data
36We search for Ki over the following interval: [usage in 2001 + 5% , 100%]. We divide it into a fine grid

and for each potential value of Ki we estimate the OLS regression of equation 28 above.
37There has been much debate in recent times, particularly in regulatory circles, over the asymmetric

regulation of two related broadband technologies, cable and DSL. Local telephone companies are obliged by

law to allow (for a charge) the use of their facilities to competing ISPs offering DSL services to the consumer.

Whereas there is currently no such requirements for cable service providers despite the fact that most cable

franchises enjoy monopoly status in most of their home markets across the country.
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(a) Computer (b) Internet

Figure 2: Internet and Computer Ownership Trends

(1998–2000). The other alternative touted for people who are reluctant to learn to use the

computer simply to access the net is the Web TV, which allows the consumer to check

e-mail and generally browse the net by connecting a set top box (similar to cable TV) to

their television. We find that although web TV usage increases from 1998 through 2000

it starts to fizzle out by 2001 when population usage fell dramatically from around 1.7%

to less than 1%. Broadband technologies have enjoyed significant growth in recent times

with their share of the Internet access market growing from around 10% in 2000 to about

18% by the end of 2001. Among the broadband technologies we find that cable which was

available earlier had more than fifty percent share of this market and actually expanded

its share to over 65% by the end of 2001, with DSL actually losing market share.38 This is

inspite of the fact that cable was more expensive compared to DSL on an average.39 For

completeness we also report the market share of other technologies like cellular and the

older ISDN. The newest sample has a somewhat different classification methodology and

therefore these figures are omitted in the table.40

38DSL technology was marred by frequent problems with installation which have been subsequently re-

solved.
39Note that the prices reported are generally lower than what an informal search over the Internet reveals

since a lot of consumers had promotional temporary deals which unfortunately we cannot distinguish from

the long term regular price paid for service.
40In the 2001 sample all other technologies are pooled together in the category others.
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Type of Access 1998 2000 2001

(%) Avg. Price (%) Avg. Price (%)

Dialup 24.9 17.4 37.44 16.842 41.62

(8.46) (9.33)

Web TV 1.28 18.04 1.72 20.137 0.62

(8.58) (10.47)

Broadband 4.35 26 9.35

(15.02)

a) DSL 32.48 23.83 30.05

(14.99)

b) Cable 51.66 29.45 65.35

(14.87)

c) Cellular / 5.06 19.44

Satellite (11.55)

d) Other (ISDN) 10.8 19.12

(12.51)

Standard errors in parentheses

Table 8: Type of Access

8 Results

8.1 Discrete Models

We start by presenting the familiar evidence usually cited in support of the digital

divide, using standard discrete choice models such as the logit and probit. These models

are useful in providing a snapshot of the diffusion process particularly when a single cross-

section is available to the analyst. Based on the simple behavioral model presented earlier

we estimate a logit and probit model with year specific dummies included for the pooled

sample. These estimates are presented in table 9. We find that age lowers the probability

of adoption, higher income and education raise this probability. The racial divide is also

documented with blacks and Hispanics much less likely to adopt the Internet. Also we note

the rural urban divide in adoption patterns.
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8.2 Duration Models

In order to use duration models we need to specify the exact duration of the process,

for this two relevant dates are required, first the date of origin i.e. the date from when

the good / technology is available to the household for adoption and second, the actual

date of adoption. Unfortunately we could not locate any data on the initial availability

of the Internet by geographic location. Therefore as origin we take January 1993, since

this was the year when by most indicators the Internet began its explosive growth. Each

survey date is coded as months from this date. In table 10 we report the estimates from

the three standard duration models most often used in empirical work. The coefficients all

have the expected signs, note that a negative sign in this context implies a positive influence

i.e. it moves the mean adoption time of the distribution to the left on the time axis. We

find that increasing age of the householder delays adoption and similarly the higher the

family income and higher the education level of the householder the more likely it is to

adopt the Internet early. Not surprisingly we find a digital divide in terms of a difference

in adoption timing among various racial and ethnic groups even after controlling for other

demographic variables. The only surprisingly result is that we find a negative sign for

Asian origin, however the estimate is not significant. The distributional parameters implies

a monotonically increasing hazard rate for the Weibull since α > 1, and a U-shaped one for

the other two models (by definition for the lognormal and, since α > 1 for the log-logistic).

In table 11 we take the models from before and add a set of geographic dummy variables

for the northeast, Midwest and the west (south being the excluded dummy). We also add

rural and central city dummies to measure the urban versus rural divide in technology

usage as well as any inner city phenomenon. Note however that central cities as defined

in the CPS are fairly large areas and measure the whole downtown of any metropolitan

area and only excludes the suburbs. Unfortunately we could not obtain data at a more

disaggregate level. In this table we also report the results for the proportional hazards

model and the mixture model with gamma heterogeneity. The standard effect of income,

age, gender, education and race stays the same as before. As expected both living in rural

areas and in central cities lowers the probability of adoption. Geographically living in the

northeast increases adoption probabilities all else equal, the Midwest is actually behind the

south in diffusion rates and the west is significantly ahead (California strongly influences

this result). Therefore we find that there is some truth to the rural urban digital divide

from these estimates.
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Table 9:

Simple Adoption Model

Discrete Logit Probit

Models* (1) (2) (3) (4)

Age of Householder -0.026 -0.026 -0.015 -0.015

(0.000) (0.000) (0.000) (0.000)

Male 0.191 0.198 0.112 0.116

(0.014) (0.014) (0.008) (0.008)

Income 0.842 0.841 0.477 0.476

$25,000-50,000 (0.018) (0.019) (0.010) (0.010)

$50,000-75,000 1.497 1.496 0.864 0.863

(0.021) (0.021) (0.012) (0.012)

$75,000 2.020 2.016 1.176 1.174

(0.022) (0.023) (0.013) (0.013)

Education1 0.713 0.702 0.381 0.375

(No HS degree) (0.028) (0.029) (0.015) (0.015)

Education2 1.323 1.308 0.739 0.730

(HS / some college) (0.028) (0.029) (0.016) (0.016)

Education3 1.652 1.622 0.933 0.917

(College degree) (0.030) (0.031) (0.017) (0.017)

Education4 1.849 1.821 1.046 1.030

(Graduate Degree) (0.033) (0.034) (0.019) (0.019)

Hispanic -0.651 -0.670 -0.373 -0.384

(0.029) (0.031) (0.017) (0.018)

Black -0.793 -0.786 -0.456 -0.451

(0.026) (0.027) (0.015) (0.015)

Asian -0.001 -0.021 0.002 -0.009

(0.379) (0.040) (0.022) (0.023)

Rural -0.256 -0.246 -0.150 -0.143

(0.018) (0.036) (0.010) (0.021)

Central City -0.071 -0.094 -0.039 -0.053

(0.017) (0.019) (0.010) (0.011)

MSA dummies No Yes No Yes

Log-likelihood -93,024 -92,040 -92,973 -91,991

Standard errors (robust) in parentheses. N=220,758

*All specifications used household weights.

All include year dummies for four years.
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Table 10:

Parametric Duration Models I

Weibull Lognormal Log-logistic

Age of Householder 0.014 0.017 0.025

(0.000) (0.000) (0.000)

Male -0.082 -0.101 -0.0145

(0.003) (1.869) (0.011)

Income -0.555 -0.564 -0.838

$25,000-50,000 (0.002) (0.016) (0.011)

$50,000-75,000 -0.918 -1.020 -1.489

(0.011) (0.020) (0.014)

$75,000 & above -1.186 -1.409 -2.050

(0.017) (0.026) (0.015)

Education1 -0.526 -0.444 -0.711

(No HS degree) (0.002) (1.549) (0.011)

Education2 -0.867 -0.853 -1.296

(HS / some college) (0.006) (0.008) (0.015)

Education3 -1.016 -1.072 -1.609

(College degree) (0.019) (0.009) (0.016)

Education4 -1.112 -1.206 -1.813

(Graduate Degree) (0.014) (0.011) (0.019)

Hispanic 0.315 0.379 0.558

(0.018) (0.018) (0.023)

Black 0.437 0.513 0.76

(0.007) (0.017) (0.017)

Asian -0.013 -0.026 -0.041

(0.018) (0.022) (0.032)

Constant 4.158 5.515 8.018

(0.006) (0.004) (0.008)

Distribution α = 1.295 σ = 1.170 α = 1.567

parameters log α = 0.259 log σ = 0.157 log α = 0.449

(shape of pdf) (0.003) (0.002) (0.002)

Log-Likelihood -93,925 -93,994 -93,837

Standard errors in parentheses. N=220,758
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Table 11:

Duration Models II

Proportional Hazard cols.(3–4)

Weibull Log-logistic Log-logistic No Het. Gamma

QMLE Het.

Age of Householder 0.014 0.025 0.025 0.018 0.028

(0.000) (0.000) (0.000) (0.000) (0.001)

Male -0.086 -0.155 -0.154 -0.123 -0.199

(0.007) (0.011) (0.008) (0.007) (0.012)

Income -0.546 -0.827 -0.844 -0.708 -0.893

$25,000-50,000 (0.015) (0.017) (0.009) (0.012) (0.016)

$50,000-75,000 -0.901 -1.465 -1.484 -1.168 -1.60

(0.015) (0.017) (0.011) (0.012) (0.02)

$75,000 & above -1.157 -2.008 -2.047 -1.501 -2.187

(0.021) (0.018) (0.013) (0.013) (0.023)

Education1 -0.521 -0.707 -0.687 -0.68 -0.757

(No HS degree) (0.014) (0.015) (0.013) (0.016) (0.037)

Education2 -0.852 -1.278 -1.272 -1.112 -1.40

(HS / some college) (0.014) (0.016) (0.012) (0.015) (0.034)

Education3 -0.999 -1.588 -1.579 -1.314 -1.761

(College degree) (0.017) (0.018) (0.012) (0.016) (0.04)

Education4 -1.099 -1.798 -1.762 -1.446 -1.986

(Graduate Degree) (0.029) (0.022) (0.009) (0.018) (0.043)

Hispanic 0.315 0.627 0.639 0.471 0.724

(0.017) (0.023) (0.016) (0.017) (0.032)

Black 0.429 0.747 0.752 0.571 0.854

(0.014) (0.018) 0.012 (0.016) (0.029)

Asian 0.029 0.041 -0.009 0.042 0.057

(0.019) (0.031) (0.017) (0.021) (0.045)

Standard errors in parentheses. N=220,758

Non-parametric splines used for baseline hazard.
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Table 11:

Duration Models II (cont.)

Proportional Hazard col. (3–4)

Weibull Log-logistic Log-logistic No Het. Gamma

QMLE Het.

Northeast -0.037 -0.083 0.013 -0.091 -0.144

(0.009) (0.015) (0.010) (0.011) (0.03)

Midwest 0.034 0.05 0.096 -0.049 -0.062

(0.012) (0.015) (0.010) (0.01) (0.019)

West -0.101 -0.19 -0.133 -0.179 -0.271

(0.011) (0.015) (0.010) (0.01) (0.028)

Rural 0.12 0.217 0.319 0.165 0.256

(0.011) (0.013) (0.020) (0.01) (0.02)

Central City 0.049 0.087 0.084 0.063 0.088

(0.011) (0.013) (0.008) (0.009) (0.021)

Constant* 4.116 7.997 8.014

(0.008) (0.011) (0.011)

Distribution α = 1.3 α = 1.575 α = 1.585 σ2 = 0.297**

parameters log α = 0.262 log α = 0.454 log α = 0.461 log σ2 = −1.214

(shape of pdf) (0.02) (0.002) (0.002) (0.02)

Log-Likelihood -93,703 -93,607 −213, 584# -92,851 -92,212

Standard errors in parentheses. N=220,758

Non-parametric splines used for baseline hazard.

*Constant for the proportional hazard model is not identified.

**σ2 is the variance of the gamma heterogeneity term

# This likelihood is weighted and therefore not comparable to the others.
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Table 12:

Duration Models III

Log-Logistic Model

Fixed Effects, Large Urban Sample#

MSAs* Counties* 10 Largest Restricted

MSAs Model**

Age of Householder 0.026 0.027 0.025 0.025

(0.001) (0.002) (0.001) (0.001)

Male -0.166 -0.163 -0.194 -0.195

(0.02) (0.058) (0.031) (0.03)

Income -0.804 -0.844 -0.801 -0.796

$25,000-50,000 (0.024) (0.178) (0.093) (0.046)

$50,000-75,000 -1.453 -1.451 -1.484 -1.478

(0.028) (0.038) (0.047) (0.049)

$75,000 & above -1.99 -2.059 -1.963 -1.955

(0.03) (0.954) (0.049) (0.051)

Education1 -0.631 -0.69 -0.611 -0.611

(No HS degree) (0.036) (0.255) (0.059) (0.06)

Education2 -1.162 -1.246 -1.123 -1.126

(HS / some college) (0.046) (0.195) (0.058) (0.059)

Education3 -1.496 -1.529 -1.409 -1.409

(College degree) (0.037) (0.2) (0.061) (0.061)

Education4 -1.707 -1.702 -1.685 -1.68

(Graduate Degree) (0.045) (0.216) (0.066) (0.065)

Hispanic 0.631 0.67 0.659 0.673

(0.034) (0.079) (0.056) (0.054)

Black 0.707 0.805 0.693 0.708

(0.03) (0.064) (0.058) (0.046)

Asian 0.04 0.086 -0.033 -0.025

(0.04) (0.41) (0.626) (0.063)

Central City 0.107 -0.087 0.174 0.187

(0.017) (0.039) (0.185) (0.031)

Log-Likelihood -39,199 -17,981 -13,180 -13,190

MSAs/ Counties 75 31 10 10

N 92,567 37,816 32,695 32,695

Standard errors in parentheses. *Only MSAs/counties with N ≥ 500.

#All specifications include other geographic variables.

**Restricted model refers to baseline model with no fixed effects.
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8.3 Model Selection

We considered two alternative model selection criteria commonly used in the literature

the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

defined as follows:

AIC : −2 log(L̂) + 2K BIC : −2 log(L̂) + log(N)K

where K is the number of parameters, N is sample size and L̂ is the maximized value

of the log-likelihood. In this context they yield identical results as follows, first the three

common parametric models presented in table 10 have the same number of parameters

and the same sample size therefore comparing their likelihoods we find that the log-logistic

has highest log-likelihood value and therefore is the clear choice. Unfortunately due to the

complex weighing scheme used for the QMLE this likelihood is not directly comparable to

the other models. However from table 11 we find that the proportional hazards has a lower

value of both statistics (AICLL −AICPH = 1504 and BICLL −BICPH = 1561). Similarly

we can show that both values are even lower for the mixture model, therefore we conclude

that among all the models considered the mixture model with gamma heterogeneity and

splines as baseline hazards do the best in describing the data.

8.4 Quasi-maximum likelihood

Most survey data is collected through stratified random sampling, i.e. the population

is divided into stratas and then randomly some strata are selected and households from

that strata are sampled. Sample weights are usually provided which gives the inverse of

the probability of selection for the household or the number of similar households in the

population. Within strata households are usually selected based on demographics which

implies endogenous sampling i.e. selection of sample depends on X. Earlier Hausman and

Wise (1981) had shown that in such cases estimates of the linear model using weights (usu-

ally sample weights) can provide consistency and asymptotic normality. Wooldridge (2001)

derives similar results for a broad class of M-estimators which includes the maximum like-

lihood as a special case, he shows that with endogenous sampling an unweighted estimator

might be inconsistent but still retains the feature of asymptotic normality. He also shows

that a weighted version of MLE, using sample weights which is generally referred to as
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quasi maximum likelihood (QMLE in the literature, is both consistent and asymptotically

normal. Therefore we reestimate the QMLE for the log-logistic model reported in table

11. We find that none of the main coefficients change significantly from their earlier un-

weighted estimates. Only changes are in the estimates for Asian which changes sign but is

insignificant and, in the geographic dummy variables for the northeast and the Midwest,

the former changes signs however both turn out to be insignificant.

8.5 Testing for heterogeneity

A potentially serious issue, mentioned in the literature, is the presence of unobserved

heterogeneity due to either unobserved variables such as ability or measurement error.

Heckman and Singer (1984) show through monte carlo simulations that the existence of such

factors seriously biases the results obtained. There are several ways to test for unobserved

heterogeneity (see discussion above). The simplest way is to assume a random effects model

with the unobserved factor distributed across the population as a unit gamma distribution.

The standard nested test for unobserved heterogeneity in this context verifies whether the

variance of the estimated gamma distribution is zero. The variance is reported in table 11,

since it was constrained to be positive in the estimation procedure, σ2 = 0 implies here

log σ2 = −∞, which can be safely rejected at all levels of significance. However we do find

that the variance estimated is small and almost negligible at 0.3. Similarly a likelihood ratio

test rejects the hypothesis of no unobserved heterogeneity. Specifically in this context the

restricted model is the standard proportional hazards model (column 4) and the unrestricted

model is the mixture model (column 5), denoting the respective log-likelihood values as LR

and LU , we can write the test statistic as follows:

−2[LR − LU ] = −2[−92, 851 + 92, 212] = 1278 ⇒ Pr(χ2
1 ≥ 1278) ≈ 1.0

In table 12 we take a different approach by assuming clustering, that is we define aggregate

fixed effects for each location, i.e. we assume that people living in different locations funda-

mentally differ in terms of their unobserved ability, however for simplicity all observations

from that location share the same fixed effect.41 An example might be San Francisco (with

Silicon Valley) compared to any other location in the country, the group effect essentially

captures the fact that a priori one expects a higher likelihood of adoption for people living

there. Even at the aggregate MSA level the data contains more than 300 unique locations
41We consider this a compromise since we do not have enough data to identify true individual fixed effects.
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and we found given the highly non-linear nature of the log-likelihood it was not feasible to

include all such variables. Note that for rural consumers we do not have sufficient data to

estimate locational fixed effects, therefore we restrict our sample to large MSAs or counties

with large populations (most MSAs contain a number of counties). Based on the monte

carlo simulations reported earlier we decided that a sample of 500 was reasonable to esti-

mate the log-logistic model and so we only chose MSAs or counties with more than 500

observations in the pooled sample. This left us with data on 75 MSAs and 31 counties.

In our first specification we define the locational fixed effects as a linear function of the

characteristics of that location i.e. δk = Zkη where Zk are MSA/county characteristics such

as income, age or educational distribution. This simplifies estimation since we can write:

λi = exp{X ′
iβ + Zikη}

The estimates for the MSA and county level are reported in the first two columns of

table 12. We do not find any significant differences from our baseline estimates in table

11, although they are estimating somewhat different model, the former is estimated for

the whole country and the latter primarily for large urban centers and densely populated

suburbs. Estimates remain similar in substance although standard errors rise due to fewer

observations and also due to multicollinearity between X and Z. We find our estimates for

the racial divide is actually larger and still highly significant. For the counties we find a

reversal of sign for the central city dummy which is due to insufficient observations.42 As

before a likelihood ratio test of the restriction of H0 : η = 0 is overwhelmingly rejected.

Instead of projecting the locational fixed effects on characteristics of the location we

now allow a more flexible specification of the unobserved heterogeneity term by including

a constant fixed effect for each location. However this flexibility comes at a cost, we found

convergence to be a serious problem the more dummy variables we added. Therefore we

settled on a compromise, we picked out only ten MSAs with the most number of observations

and estimated the model with nine dummy variables for locations. The estimates are

reported in column 3 in table 12, and in the next column we report the estimates from the

restricted model (our baseline log-logistic model) for comparison. As before a likelihood

ratio test rejects the null hypothesis of no heterogeneity at 5% level of testing.

−2[LR − LU ] = −2[−13, 190 + 13, 180] = 20 = Pr(χ2
9 ≤ 20) = 0.982

42Note that the rural dummy from before is dropped due to the nature of the sample.
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8.6 Other Models

We considered by turns the non-parametric MLE suggested by Heckman and Singer

(1984), however as noted by other authors (for example see Baker and Melino (2000)), we

found the maximization routine failed to converge. In this situation others have arbitrarily

assumed a binomial distribution and estimated the model, however for lack of space we do

not report these results here. Also we found the split population model mentioned above to

be extremely unstable and almost always failed to converge particularly for larger samples,

we also do not report those results here.

9 Predictions for Individuals

9.1 Predictive Power

A potential use for such models is to predict the adoption of new technology by indi-

viduals. In this section we consider how well does the models presented above achieve that

goal. Since adoption is a discrete event and the duration models presented here provide

adoption probabilities at each date, one can calculate the goodness of fit measure R2 which

is the correlation coefficient between the dependent binary variable and predicted proba-

bilities. However it is well known that in the context of limited dependent variables this

measure does not have the explained variation interpretation as in linear regression models

(see for example Maddala (1983)). To measure graphically the goodness of fit of the models

considered here we take two of the parametric models and plot their distribution function

(cdf F (t|x;β)) against the actual distribution function (adoption rates) obtained from the

data, we consider the lognormal and the log-logistic model here in figures 3 (a)–(b).

A more intuitive approach used by Schmidt and Witte (1989) is to predict individual

adoption probabilities and choose a cutoff such that people with predicted probability higher

than this are predicted to adopt and vice versa. From our perspective a highly stylized

dynamic model can be considered a huge success if it can reasonably predict adoption in

the real world. Then such models can be used to solve one of the key issues of marketing a

new product that is to identify the early adopters and encourage them through incentives

or information. Alternatively from a policy perspective in the context of the digital divide,

it is imperative to identify the groups in the population who are the least likely to adopt
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(a) Lognormal (b) Log-logistic

Figure 3: Predicted vs. Actual Distribution function

in the near future such that incentives can be better targeted towards them.

It is well known that in general any econometric model fits well to data used to estimate

it, since we are interested in the forecasting powers of the models presented, intuitively we

want to check for the out-of-sample properties of the estimates. We therefore divide the

sample into two halves picked randomly43 with one half used to estimate the model and

other half used for validation of the model. The pooled sample after division leads to an

estimation sample of size 110, 673 and a validation sample of 110, 085.

The evidence is presented in table 13.44 The predictive success of the model therefore

can be summarized by two statistics, the false positive rate, i.e. how many are predicted

to adopt by the model and who do not and similarly the false negative rate defined as

the converse. The table is to be read as follows, first the data is arranged in ascending

order of adoption probability and for certain percentile values the actual adoption rates

are calculated. For example from columns 1–2 of table 13 the actual adoption rate for the

top percentile of the population (arranged based on predictions by the model) is actually

89.5%. The false positive rate can be calculated from this table, given that the adoption

rate for the whole sample 30.1%, we arrange the data in ascending order of probability
43Random sampling without replacement such that each observation is selected for estimation with prob-

ability half.
44The log-logistic model is used for prediction purposes with all variables except the fixed effects included.
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Upper All Lower All

Percentile Years Percentile Years

0.5 89.7 99.5 29.7

1.0 89.5 99.0 29.4

5.0 86.9 95.0 27

10.0 81.5 90.0 24.3

20.0 73.0 80.0 19.2

30.0 65.7 70.0 14.7

40.0 59.1 60.0 10.6

50.0 52.5 50.0 7.5

60.0 46.6 40.0 5.0

70.0 41.4 30.0 3.4

80.0 37.0 20.0 2.1

90.0 33.2 10.0 0.9

95.0 31.5 5.0 0.3

99.0 30.3 1.0 0.5

99.5 30.1 0.5 0.2

Log-logistic mode. Estimation N = 110, 673.

Validation sample N = 110, 085

Table 13: Accuracy of Individual Predictions

and take the top 30% of the population and calculate this statistic as 34.3%.45 Similarly

columns 3–4 of the same table can be used to calculate the false negative rate, if the data

is arranged in descending order of predicted adoption probabilities using the same cutoff

as before of the bottom 70% who are predicted not to adopt only 14.7% do. Also we note

that the prediction improves over time (not reported) which is expected since the model

only explains part of the variation over time.46

45Since from the table among the top 30% of the predicted adoptions 65.7% do and the rest don’t.
46Given a time trend any model with some predictive power, the fit will improve over time.
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9.2 Forecasting Diffusion Patterns

An attractive feature of duration models is that it allows us to forecast adoption rates

at various levels of aggregation once the parameters of the underlying model has been

estimated. We consider four dimensions of the digital divide over the next several years

and plot the results implied by the full model in figures 4 and 5. The divide in terms of

race has perhaps received the most attention, we find in figure 4(a) that this divide remains

for the next several years with a 10 − 15% difference in adoption rates for the Internet

among various races, note that there is hardly any difference between Hispanics and blacks

although both lag from the population majority. In case of income (figure 4(b)) we find that

divide actually widens over the next few years before all economic groups in the population

approach similar rates of adoption well into the future.

The divide when expressed in terms of education in figure 5(a), shows that the difference

within the various groups with some college education or higher to be very small and closes

fast, although those without a high school degree tend to lag behind them for a while into

the future. Lastly the FCC has expressed much concern over the divide between urban

and rural areas, we do not find evidence of any such divide (once all other demographic

variables are controlled for) either now or developing in the near future.

(a) Race (b) Income

Figure 4: Predicted Racial and Income Divides
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(a) Education (b) Rural

Figure 5: Predicted Education and Rural Divide

10 Conclusion

The main contribution of this paper is twofold, first I show that a range of duration

models can be estimated using repeated cross-sections data. I also apply this methodology

to the question of the digital divide, a topic which has generated much controversy in

recent times, since significant subsidies have been allocated by the government to bridge

this divide. I show that such models can provide a useful heuristic treatment which might

be of independent interest (who adopts first etc.), as well as provide forecasts for future

adoption levels. Additionally they also allow us to test for any heterogeneity in adoption

patterns in the population, both observed and unobserved. To summarize our findings, we

find that the digital divide is largely a temporary phenomenon which is forecast to close

in the short to medium run by itself, with existing policies. However in the short run

differences in access will persist at least for the next two decades, which by itself might be

considered significant.

My current work focuses on extending this model to the standard application of duration

models, which is program evaluation. One of the main features of these models is that they

allows us to test for differences in diffusion processes. Therefore one can estimate the

impact of programs such as the E-rate program which subsidizes access to the Internet

for schools and libraries, in terms of its overall impact on the diffusion process for various

socio-economic groups, i.e. in bridging the so-called digital divide. Static models used by
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other authors are inadequate in this context for reasons discussed before and a dynamic

model is called for.
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