
Constraint-based Analysis of BroadastProtoolsGiorgio Delzanno1, Javier Esparza2, and Andreas Podelski11 Max-Plank-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�uken, Germanye-mail: fdelzanno j podelskig�mpi-sb.mpg.de2 Tehnishe Universit�at Munhen, Arisstr. 21, 80290 M�unhen, Germanyesparza�informatik.tu-muenhen.deAbstrat. Broadast protools are systems omposed of a �nite but ar-bitrarily large number of proesses that ommuniate by rendezvous (twoproesses exhange a message) or by broadast (a proess sends a mes-sage to all other proesses). The paper desribes an optimized algorithmfor the automati veri�ation of safety properties in broadast proto-ols. The algorithm heks whether a property holds for any number ofproesses.1 IntrodutionBroadast protools [EN98℄ are systems omposed of a �nite but arbitrarily largenumber of proesses that ommuniate by rendezvous (two proesses exhangea message) or by broadast (a proess sends a message to all other proesses).They are a natural model for problems involving readers and writers, suh asahe-oherene problems.From a mathematial point of view, broadast protools an be regarded asan extension of vetor addition systems or Petri nets. Their operational seman-tis is a transition system whose states are tuples of integers. Moves betweentransitions are determined by a �nite set of aÆne transformations with guards.Vetor Addition Systems orrespond to the partiular ase in whih the matrixof the aÆne transformation is the identity matrix.In [EFM99℄, Esparza, Finkel and Mayr show that the problem of deidingwhether a broadast protool satis�es a safety property an be redued to aspeial reahability problem, and using results by Abdulla et al., [ACJ+96℄ (seealso [FS98℄), they prove that this problem is deidable. They propose an ab-strat algorithm working on in�nite sets of states. The algorithm starts with theset of states to be reahed, and repeatedly adds to it the set of its immediatepredeessors until a �xpoint is reahed.As shown e.g. in [Kin99,DP99℄, linear arithmeti onstraints an be used to�nitely represent in�nite sets of states in integer valued systems. Symboli modelheking algorithms an be de�ned using the `satis�ability' and the `entailment'test to symbolially ompute the transitive losure of the predeessor relationde�ned over sets of states. However, in order to obtain an eÆient algorithm itis ruial to hoose the right format for the onstraints.



In this paper we disuss di�erent lasses of onstraints, and propose linearonstraints with disjoint variables as a very suitable lass for broadast proto-ols. We show that the operations of omputing the immediate predeessors andheking if the �xpoint has been reahed an both be eÆiently implemented.We also propose a ompat data struture for these onstraints.We have implemented a speialized heker based on our ideas, and usedit to de�ne a symboli model heking proedure for broadast protools. Asexpeted, the solver leads to a signi�ant speed-up with respet to proeduresusing general purpose onstraint solvers (HyTeh [HHW97℄ and Bultan, Gerberand Pugh's model heker based on the Omega library [BGP97℄). We presentsome experimental results for both broadast protools and weighted Petri Nets.2 Broadast Protools: Syntax and Semantis2.1 SyntaxA broadast protool is a triple (S;L;R) where{ S is a �nite set of states.{ L is a set of labels, omposed of a set �l of loal labels, two sets �r�f?g and�r �f!g of input and output rendez-vous labels, and two sets �b�f??g and�b � f!!g of input and output broadast labels, where �l; �r; �b are disjoint�nite sets. The elements of � = �l [�r [�b are alled ations.{ R � S � L � S is a set of transitions satisfying the following property: forevery a 2 �b and every state s 2 S, there exists a state s0 2 S suh thats a??�! s0. Intuitively, this ondition guarantees that a proess is always willingto reeive a broadasted message.We denote (s; l; s) 2 R by s l! s0. The letters a; b; ; : : : denote ations. Ren-dezvous and broadast labels like (a; ?) or (b; !!) are shortened to a? and b!!. Werestrit our attention to broadast protools satisfying the following additionalonditions: (i) for eah state s and eah broadast label a?? there is exatly onestate s0 suh that s a??�! s0 (determinism); (ii) eah label of the form a, a!, a?and a!! appears in exatly one transition.Consider the following example:
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The �nite-state automata in the �gure models the behaviour of a system of iden-tial proesses that rae for using a shared resoure. Initially, all proesses are inthe state think. Before aessing its own ritial setion, a proess broadaststhe request lok!!. In reply to the broadast (lok??) the remaining proessesare fored to move to the state wait (an abstration of a queue). After using theresoure, the proess in the ritial setion broadasts the message unlok!! inorder to restore the initial on�guration. The key point here is that the desrip-tion of the protool is independent of the number of proesses in the network.2.2 SemantisLet B = (S;L;R) be a broadast protool, and let S = fs1; : : : ; sng. A on�g-uration is a vetor  = h1; : : : ; ni where i denotes the number of proesses instate si for i : 1; : : : ; n.Moves between on�gurations are either loal (a proess moves in isolationto a new state), rendezvous (two proesses exhange a message and move tonew states), or broadasts (a proess sends a message to all other proesses; allproesses move to new states). Formally, the possible moves are the smallestsubset of INn��� INn satisfying the three onditions below, where ui denotesthe on�guration suh that ui(si) = 1 and ui(sj) = 0 for j 6= i, and where  a! 0denotes (; a; 0) 2 R.{ If si a! sj , then  a! 0 for every , 0 suh that (si) � 1 and 0 = �ui+uj .I.e. one proess is removed from si, and one proess is added to sj .{ If si a!! sj and sk a?! sl, then  a! 0 for every , 0 suh that (si) � 1,(sk) � 1 and 0 = � ui � uk + uj + ul.I.e. one proess is removed from si and sk, and one proess is added to sjand sl.{ If si a!!�! sj , then  a! 0 for every , 0 suh that (si) � 1 and 0 an beomputed from  in the following three steps:1 = � ui (1)2(sk) = Xfsljsl a??�!skg 1(sl) (2)0 = 2 + uj (3)I.e. the sending proess leaves si (1), all other proesses reeive the broadastand move to their destinations (2), and the sending proess reahes sj (3).Thanks to the onditions (i) and (ii) of Setion 2.1, the on�guration 0 isompletely determined by  and the ation a.We denote by � the pointwise order between on�gurations, i.e.  � 0 ifand only if (si) � 0(si) for every i : 1; : : : ; n. A parameterized on�guration isa partial funtion p:S ! IN . Loosely speaking, p(s) = ? denotes that the num-ber of proesses on state s is arbitrary. Formally, a parameterised on�gurationdenotes a set of on�gurations, namely those extending p to a total funtion.



2.3 Cheking safety propertiesIn this paper we study the reahability problem for broadast protools, de�nedas follows:Given a broadast protool B, a parameterized initial on�guration p0and a set of on�gurations C, an a on�guration  2 C be reahed fromone of the on�gurations of p0?In [EFM99℄ this problem is shown to be deidable for upwards-losed sets C.1A set C is upwards-losed if  2 C and 0 �  implies 0 2 C. The mutual exlu-sion property of the example in the introdution an be heked by showing thatno on�guration satisfying Use � 2 (an upwards-losed set) is reahable from aninitial on�guration satisfying Wait = 0;Use = 0. It is shown in [EFM99℄ thatthe model-heking problem for safety properties an be redued to the reaha-bility problem for upwards-losed sets. (Here we follow the automata-theoretiapproah to model-heking [VW86℄, in whih a safety property is modelled asa regular set of dangerous sequenes of ations the protool should not engagein.)The algorithm of [EFM99℄ for the reahability problem in the upwards-losedase is an \instantiation" of a general bakwards reahability algorithm presentedin [ACJ+96℄ (see also [FS98℄). De�ne the predeessor operator as follows:pre(C) = f j  a�! 0; 0 2 Cg:I.e., pre takes a set of on�gurations C0, and delivers its set of immediate pre-deessors. The algorithm repeatedly applies the predeessor operator until a�xpoint is reahed, orresponding to the set of all predeessors of C0. If this setontains some initial on�gurations, then C0 is reahable.Pro Reah(C0 : upwards-losed set of on�gurations)C := C0;repeatold C := C;C := old C [ pre(old C);until C = old C;return CThe algorithm works beause of the following properties: (i) if C is upwards-losed, then so is pre(C); (ii) the set of minimal elements of an upwards-losedset with respet to the pointwise order is �nite (see also Setion 4); (iii) therepeat loop terminates. To prove property (i), we observe that we an assoiateto eah label a 2 � [EFM99℄:{ The set of on�gurations Oa from whih a an our.In the ase of loal moves and broadasts there is a state si suh that Oa =f j (si) � 1g. In the ase of rendezvous there are states si; sj suh thatOa = f j (si) � 1 and (sj) � 1g.1 On the other hand, the problem is undeidable for singleton sets!.



{ An aÆne transformation Ta(x) = Ma � x + ba suh that if  a! 0, then0 = Ta().Ma is a matrix whose olumns are unit vetors, and b is a vetor of integers.(Atually, the omponents of b belong to f�1; 0; 1g, but our results an beextended without hanges to the ase in whih they are arbitrary integernumbers. An example is disussed in Setion 8.)It follows that pre(C) an be omputed by the equationpre(C) = [a2�(Oa \T�1a (C)) (4)Hene if C is upwards-losed then so is pre(C). Properties (ii) and (iii) are animmediate onsequene of the well-knownLemma 1 (Dikson's Lemma). Let v1;v2; : : : be an in�nite sequene of ele-ments of INk. There exists i < j suh that vi � vj (pointwise order).The only known upper-bound for the number of iterations until terminationis non-primitive reursive [MA84℄. However, despite this result, the algorithman still be applied to small but interesting examples.3 Symboli Representation via ConstraintsA linear arithmeti onstraint (or onstraint for short) is a (�nite) �rst-orderformula �1^ : : :^�n. with free variables (impliitly existentially quanti�ed), andsuh that eah �i is an atomi formula (onstraint) built over the prediates=;�;�; >;< and over arithmeti expressions (without multipliation betweenvariables) built over +;�; �; 0; 1, et.The solutions (assignments of values to the free variables that make theformula true) of a onstraint � over the domain D are denoted by [[�℄℄D . In thesequel we always take D = ZZ, and abbreviate [[�℄℄ZZ to [[�℄℄. We often representthe disjuntion of onstraints �1 _ : : : _ �n as the set f�1; : : : ; �ng.Constraints an be used to symbolially represent sets of on�gurations of abroadast protool. Given a protool with states fs1; : : : ; sng, let x = x1; : : : ; xnbe a vetor of variables, where xi is intended to stand for the number of proessesurrently in state si. We assume that variables range over positive values (i.e.,eah variable xi omes with an impliit onstraint xi � 0). A on�guration  =h1; : : : ; ni is simply represented as the onstraint Vni=1 xi = i. A parametrion�guration p = hp1; : : : ; pni is represented as the onstraint Vni=1 �i where: ifpi 2 IN then �i is the atomi onstraint xi = i, and if pi = ? then �i is theatomi onstraint xi � 0.As an example, the ow of proesses aused by the lok broadast in theprotool of the introdution is desribed by the inequality below (where, forlarity, we use Think ;Wait ;Use instead of x1; x2; x3 and we omit the equalitiesof the form x0i = xi).Think � 1 ^ Think 0 = 0 ^Wait 0 = Think +Wait � 1 ^ Use 0 = Use + 1



Let C be a lass of onstraints denoting exatly the upwards-losed sets, i.e.,if a set S is upwards-losed then there is a set of onstraints � � C suh that[[�℄℄ = S, and vieversa. We an use any suh lass C to derive a symboli versionSymb-ReahC of the proedure Reah:Pro Symb-ReahC(�0 : set of onstraints of C)� := �0;repeatold � := �;� := old � [ preC(old �);until EntailC(�; old �);return �where (a) C is losed under appliation of preC , (b) [[preC(�)℄℄ = pre([[�℄℄), and() EntailC(�; 	) = true if and only if [[�℄℄ � [[	 ℄℄.Condition (b) on preC an be reformulated in syntati terms. Let � be a setof onstraints, and for eah ation a let Ga be a onstraint suh that [[Ga℄℄ = Oa(we all Ga the guard of the ation a). We have T�1a ([[�℄℄) = [[�[x=Ta(x)℄℄℄. Byequation (4) we obtainpreC(�) � _a2�;�2�Ga ^ �[x=Ta(x)℄ (5)where � denotes logial equivalene of onstraints.In the next setions we investigate whih lasses of onstraints are suitablefor Symb-ReahC . We onsider only lasses C denoting exatly the upwards-losed sets. In this way, the termination of Symb-ReahC follows diretly fromthe termination of Reah, under the proviso that there exist proedures foromputing preC(�) and for deiding EntailC(�; 	).The suitability of a lass C is measured with respet to the following param-eters:(1) The omputational omplexity of deiding EntailC(�; 	).(2) The size of the set preC(�) as a funtion of the size of �.A note about terminology. Given two sets of onstraints �, 	 , we refer to theontainment problem as the deision problem Entail(�; 	) = true for two setsof onstraints �, 	 , whereas we refer to the entailment problem as the deisionproblem Entail(f�g; f g) = true for onstraints � and  .4 NA-onstraints: No AdditionA NA-onstraint is a onjuntion of atomi onstraints of the form xi � k, wherexi 2 fx1; : : : ; xng and k is a positive integer.The lass of NA-onstraints denotes exatly the upwards losed sets. If � is aset of NA-onstraints then [[�℄℄ is learly upwards-losed. For the other diretion,observe �rst that an upwards-losed set C is ompletely haraterised by its set of



minimal elementsM , where minimality is taken with respet the pointwise order�. More preisely, we have C = [m2MUp(m), where Up(m) = f j  � mg.The set M is �nite by Dikson's lemma, and Up(m) an be represented by theonstraint x1 � m(s1) ^ : : : ^ xn � m(sn). So the set C an be represented bya set of NA-onstraints.4.1 Complexity of the ontainment problem in NAThe ontainment problem an be solved in polynomial time. In fat, the followingproperties hold. Let �, 	 be sets of NA-onstraints. Then,{ � entails 	 if and only if for every onstraint � 2 � there is a onstraint 2 	 suh that � entails  .{ Vni=1 xi � ki entails Vni=1 xi � li if and only if ki � li for i : 1; : : : ;m.Thus, the worst-ase omplexity of the test `� entails 	 ' is O(j�j � j	 j �n), wheren is the number of variables in � and 	 .4.2 Size of the set preNA(�)Let � be a set of NA-onstraints. By equation (5), preNA(�) must be equivalentto the setWa2�;�2�Ga^�[x=Ta(x)℄. Unfortunately, we annot hoose preNA(�)equal to this set, beause it may ontain onstraints of the form xi1 + : : :+xim �k. However, when evaluating variables on positive integers, a onstraint of theform xi1 + : : :+ xim � k is equivalent to the following set (disjuntion) of NA-onstraints: _hk1;:::;kmixi1 � k1 ^ : : : ^ xim � km;where eah tuple of positive integers hk1; : : : ; kmi represents an ordered partitionof k, i.e. k1 + : : :+ km = k. (Moreover, it is easy to see that this is the smallestrepresentation of xi1+: : :+xim � k with NA-onstraints.) We de�ne the operatorpreNA as the result of deomposing all onstraints with additions of (5) into NA-onstraints.The ardinality of preNA(�) depends on the number of ordered partitions ofthe onstants appearing in onstraints with additions. For x1+ : : :+xm � k, thisnumber, denoted by �(m; k), is equal to the number of subsets of f1; 2; : : : ; k +m� 1g ontaining m� 1 elements, i.e.,�(m; k) = �k +m� 1n� 1 � = �k +m� 1k � :If  is the biggest onstant ourring in onstraints of �, and n, a are thenumber of states and ations of the broadast protool, we get jpreNA(�)j 2O(j�j �a��(n; )). This makes NA-onstraints inadequate for ases in whih theonstants  � n, initially or during the iteration of algorithm Symb-ReahNA. Inthis ase we get �(n; ) � 4np�n , whih leads to an exponential blow-up.



4.3 Conlusion.NA-onstraints have an eÆient entailment algorithm, but they are inadequateas data struture for Symb-Reah. Whenever the onstants in the onstraintsreah values similar to the number of states, the number of onstraints growsexponentially.The blow-up is due to the deomposition of onstraints with additions intoNA-onstraints. In the following setion we investigate whether onstraints withadditions are a better data struture.5 AD-onstraints: With AdditionAn AD-onstraint is a onjuntion of atomi onstraints xi1 + : : : + xim � kwhere xi1 ; : : : ; xim are distint variables of fx1; : : : ; xng, and k is a positive in-teger. A onstraint in AD an be haraterized as the system of inequalitiesA � x � b where A is a 0-1 matrix.It is easy to see that AD-onstraints denote exatly the upwards-losedsets. Sine AD-onstraints are equivalent to disjuntions of NA-onstraints, theyonly denote upwards-losed sets, and sine they are more general than NA-onstraints, they denote them all.5.1 Complexity of the ontainment problem in AD.The following result shows that even the entailment test between two AD-onstraints is diÆult to deide.Proposition 1 (Entailment in AD is o-NP omplete). Given two AD-onstraints � and  , the problem `� entails  ' is o-NP omplete.Proof. By redution from HITTING SET [GJ78℄. An instane of HITTING SETonsists of a �nite set S = fs1; : : : ; sng, a �nite family S1; : : : ; Sm of subsets ofS, and a onstant k � n. The problem is to �nd T � S of ardinality at most kthat hits all the Si, i.e., suh that Si \ T 6= ;.Take a olletion of variables X = fx1; : : : ; xng. Let � be a onjuntion ofatomi onstraints �i, one for eah set Si, given by: If Si = fsi1 ; : : : ; sini g, then�i = xi1 + : : :+ xini � 1. Let  = x1 + : : :+ xn � k + 1.If � does not entail  , then there is a valuation V :X ! IN that satis�es �but not  . Let T be the set given by: si 2 T if and only V (xi) > 0. Sine Vsatis�es �, T is a hitting set. Sine V does not satisfy  , it ontains at most kelements.If T is a hitting set with at most k elements, then the valuation V :X ! INgiven by V (xi) = 1 if si 2 T , and 0 otherwise, satis�es � but not  .This implies that entailment of AD-onstraints is o-NP-hard. Completenessfollows by noting that the ontainment problem for sets of linear arithmetisonstraints is o-NP omplete [Sri92℄. utThe following orollary immediately follows.



Corollary 1 (Containment in AD is o-NP omplete). Given two sets ofAD-onstraints � and 	 , the problem `� entails 	 ' is o-NP omplete.5.2 Size of the set preAD(�)We an de�ne preAD(�) = _a2�;�2�Ga ^ �[x=Ta(x)℄sine the right hand side is a set of AD-onstraints whenever � is. If a is thenumber of ations of the broadast protool, then jpreAD(�)j 2 O(j�j � a).5.3 ConlusionAD-onstraints are not a good data struture for Symb-Reah either, due to thehigh omputational ost of heking ontainment and entailment. This resultsuggests to look for a lass of onstraints between NA and AD.6 DV-onstraints: With Distint VariablesDV-onstraints are AD-onstraints of the formx1;1 + : : :+ x1;n1 � k1 ^ : : : ^ xm;1 + : : :+ xm;nm � km ;where xi;j and xi0;j0 are distint variables (DV) for all i; j; i0; j0. In other words,a DV-onstraint an be represented as A � x � b where A is a 0-1 matrix withunit vetors as olumns.Sine DV-onstraints are more general than NA-onstraints, but a partiularase of AD-onstraints, they denote exatly the upwards-losed sets.6.1 Complexity of the ontainment problem in DV.Entailment between sets of DV-onstraints an still be very expensive, as shownby the following result.Proposition 2 (Containment in DV is o-NP omplete). Given two setsof DV-onstraints � and 	 , the problem `� entails 	 ' is o-NP omplete.Proof. By redution from INDEPENDENT SET [GJ78℄. An instane of INDE-PENDENT SET onsists of a �nite graph G = (V;E) and a onstant k � jV j.The problem is to �nd I � V of ardinality at most k suh that for every u; v 2 Ithere is no edge between u and v.Assume V = fv1; : : : ; vng. Take a olletion of variables X = fx1; : : : ; xng.The set � ontains a onstraint xi � 1 for i : 1 : : : n, and xi + xj � 1 for everyedge (vi; vj) 2 E. The set 	 is the singleton f g, where  = x1+: : :+xn � k+1.If � does not entail  , then there is a valuation V :X ! IN that satis�es �but not  . Let I be the set given by: si 2 I if and only V (xi) > 0. Sine V



satis�es �, I is an independent set. Sine V does not satisfy  , it ontains atmost k elements.If I is an independent set with at most k elements, then the valuation V :X !IN given by V (xi) = 1 if si 2 I , and 0 otherwise, satis�es � but not  . utHowever, and di�erently from the AD-ase, heking entailment between twoAD-onstraints an be done in polynomial time. Let V ar(�) denote the set offree variables ourring in the onstraint �, and let Cons() denote the onstantourring in the atomi onstraint . We have the following result:Proposition 3. Let � and  be an arbitrary and an atomi DV-onstraint,respetively. Let � be the largest set of atomi onstraints Æ in � suh thatVar(Æ) � Var(). Then, � entails  if and only if �Æ2�Cons(Æ) � Cons().Proof. ()): Assume �Æ2�Cons(Æ) < Cons(). Then, any valuation that assignsCons(Æ) to one variable in Æ and 0 to the others, and 0 to the remaining variablesof Var(), satis�es � but not .((): Clearly � entails �. Sine � is a DV-onstraint, � entails the onstraintPxi2Var(Æ) xi � �Æ2�Cons(Æ). Sine Var(Æ) � Var() and PÆ2� Cons(Æ) �Cons(), it also entails Pxi2Var() xi � Cons(), whih is the onstraint . utFor instane, we have that x1 + x2 � a ^ x3 � b entails x1 + x2 + x3 + x4 �  ifand only if a+ b � .Sine � entails  if and only if � entails eah atomi onstraint of  , we getthe followingCorollary 2 (Entailment in DV is in P). Given two DV-onstraints � and , it an be heked in polynomial time whether � entails  .Sine the symboli proedure for the reahability problem requires to hekontainment, and not entailment, Corollary 2 does not seem to be of muh use at�rst sight. However, it allows to de�ne a new reahability proedure by replaingthe EntailC(�; old �) test in Symb-Reah by the loal ontainment test:forall � 2 � exists  2 old �Clearly, the loal ontainment test implies the ontainment test, and so the newproedure is partially orret. The risk of weakening the �xpoint test is that wemay end up with a non-terminating algorithm. Fortunately, this turns out notto be the ase, as shown by the following proposition.Proposition 4. The proedure Symb-ReahDV terminates.Proof. Let X be a set of variables. Given Y � X , let Y � k denote the onstraintPxi2Y xi � k.Let � be a DV-onstraint on X . We de�ne the funtion f� whih assigns toY � X a natural number as follows:f�(Y ) = �k if � ontains the onstraint Y � k0 otherwise



Observe that f� is well de�ned beause � is a DV-onstraint. De�ne the pointwiseordering � on these funtions, given by f� � f if f�(Y ) � f (Y ) for everysubset Y of X . We prove that the loal ontainment test orresponds exatlyto the pointwise ordering. I.e., for DV-onstraints, � entails  if and only iff�(Y ) � f (Y ).{ If f� � f , then � entails  .Let Y � k be an atomi onstraint of  . It follows from f�(Y ) � f (Y ) that� ontains a onstraint Y � k0 suh that k0 � k. So every solution of � is asolution of Y � k.{ If � entails  , then f� � f .We prove the ontraposition. Let Y � X suh that f�(Y ) < f (Y ). Then  ontains a onstraint Y � k, and � ontains a onstraint Y � k0 suh thatk0 < k (if � ontains no onstraint Y � k0 we an assume that it ontainsthe onstraint Y � 0). Sine � is a DV-onstraint, it has a solution X0 suhthat Y0 = k0. So X0 does not satisfy Y � k, and so � does not entail  .Assume now that Symb-ReahDV does not terminate. Then, the i-th iteration ofthe repeat loop generates at least one onstraint �i suh that �i does not entail�j for any i > j. By the result above, the sequene of funtions f�i satis�esf�i 6� f�j for any i > j. This ontradits Dikson's lemma (onsider a funtionf� as a vetor of IN2jXj). ut6.2 Size of the set preDV(�)If � is a set of DV-onstraints, then the set of onstraints (5) may ontainAD-onstraints with shared variables. However, eah onstraint in set (5) iseither a DV-onstraint or has one of the two following forms: � ^ xi � 1 or� ^ xi � 1 ^ xj � 1, where � is a DV-onstraint with at most one ourrene ofxi and xj . The onstraints of the form xi � 1 orrespond to the `guards' of thetransition rules of the protool. Thus, in order to maintain onstraints in DV-form, all we have to do is to merge the `guards' and the remaining DV-onstraint(i.e. �). The operator preDV is de�ned as the result of applying the followingnormalization: Given a onstraint x � 1 ^ x+ y1 + : : :+ ym � k ^ � where, byhypothesis, x does not our in �, replae it by the equivalent set of onstraintsk�1_i=0(x � k � i ^ y1 + : : :+ ym � i ^ �) :In the worst ase, it is neessary to redue eah new onstraint with respet totwo guards, possibly generating O(k2) new onstraints. Thus, if a is the numberof ations of the protool and  is the maximum onstant ourring in the set �of DV-onstraints, we have jpreDV(�)j 2 O(j�j � a � 2).



6.3 ConlusionDV-onstraints are a good ompromise between AD and NA-onstraints. Theappliation of preDV does not ause an exponential blow up as in the ase ofNA-onstraints. Furthermore, though the ontainment test is o-NP omplete, itan be relaxed to an entailment of low polynomial omplexity, unlike the ase ofAD-onstraints. Moreover, as shown in the next setion, sets of DV-onstraintsan be ompatly represented.7 EÆient Representation of Sets of ConstraintsDV-onstraints an be manipulated using very eÆient data-strutures and op-erations. We onsider onstraints over the variables fx1; : : : ; xng.Eah atomi DV-onstraint �xi2Y xi � k an be represented as a pair hb; ki,where b is a bit-vetor, i.e., b = hb1; : : : ; bni and bi = 1 if xi 2 Y , and 0otherwise. Thus, a DV-onstraint an be represented as a set of pairs. Basedon this enoding, the deision proedure of Corollary 2 an be de�ned usingbitvetor operations not and or . (1 denotes the bitvetor ontaining only 1's.)Pro Entails(str1 ; str2 : odings of DV-onstraints)var s : integerfor all pairs hb2; k2i in str2s := 0;for all pairs hb1; k1i in str1if (not(b1) or b2) = 1 then s := s+ k1 endifendforif s < k2 then return false endifendfor;return true8 ExamplesIn this setion we present and disuss some experimental results. We �rst showsome examples of systems and properties that we were able to verify automat-ially, and then we ompare the exeution times obtained by using di�erentonstraint systems.The protool shown in Fig. 1 models a network of proesses aessing twoshared �les (alled `a' and `b') under the last-in �rst-served poliy. When aproess wants to write on one of the �les all proesses reading it are rediretin the initial state I. In the state I a proess must send a broadast beforestarting reading a �le: in this ase all writers are sent bak to the state I (last-in �rst-served). Note that proesses operating on `b' simply skip the broadastonerning operations on `a' and vie versa. The protool must ensure mutual
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Fig. 1. Last-in �rst-served aess to two resoures.exlusion between readers and writers. The initial parameterized on�gurationof the protool isI � 1; Sa = 0; Sb = 0; Ea = 0; Eb = 0;Ma = 0;Mb = 0 :We prove that the unsafe on�gurations Sa � 1;Ma � 1 are not reahable.In Fig. 2, we desribe a entral server model [ABC+95℄. Proesses in statethink represent thinking lients that submit jobs to the CPU. A number ofproesses may aumulate in state waitpu. The �rst job requesting the CPU�nds it idle and starts using it. A job that ompletes its servie proeeds toa seletion point where it ontinues requesting the I/O subsytem or leaves theentral system. No spei� poliy is spei�ed for the queues of waiting jobs. In theinitial state of the broadast protool in Fig. 2 an arbitrary number of proessesare in state think, whereas one proess is respetively in state idlepu, idledisk,noint. The protool must ensure that only one job at a time an use the CPU andthe I/O subsytem. The ow of proesses is represented by a olletion of rulesover 17 variables (one for eah state). The initial parameterized on�guration ofthe protool is Think � 1; Idlepu = 1; Idledisk = 1; No-int = 1;
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Fig. 2. Central Server System.with all other variables equal to zero. We prove that the unsafe on�gurationsUsepu � 2 is not reahable.Petri Nets an be seen as a speial ase of broadast protools where the on-straints generated during the analysis are in NA-form. Consider the Petri net of[Ter94℄ shown in Fig. 3, whih desribes a system for manufaturing tables (forinstane, transition t4 assembles a table by taking a board from the plae p6and four legs from the plae p5). The onstraint-based representation introduesa variable for eah plae and for eah transition. The variables orrespondingto transitions ount the number of times a transition is �red during the exeu-tion. There is a rule for eah transition. For instane, the rule orresponding totransition t4 isP6 � 1; P5 � 4; P 06 = P6 � 1; P 05 = P5 � 4; P 07 = P7 + 1; T 04 = T4 + 1In [Ter94℄ it is shown that an initial marking of this is deadlok-free (i.e.,no sequene of transition ourrenes an lead to a deadlok) if and only if itenables a sequene of transition ourrenes ontaining t1 at least three timesand all other transitions at least twie. Based on this preliminary result we anthen ompute all deadlok-free initial states. They are exatly the predeessorsstates of the statesT1 � 3; T2 � 2; T3 � 2; T4 � 2; T5 � 2; T6 � 2
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Fig. 3. Manufaturing System modeled as a Choie-free Petri Net.interseted with the initial states of the system, i.e., those suh that Ti = 0 forall i and P5 = P6 = P7 = 0. The result of the �xpoint omputation is given bythe following set of onstraintsP1 � 10; P2 � 1; P3 � 2 P1 � 8; P2 � 3 P1 � 12; P3 � 2P1 � 6; P2 � 5; P3 � 2 P1 � 8; P3 � 1; P4 � 1 P1 � 6; P4 � 2P1 � 6; P2 � 1; P3 � 1; P4 � 18.1 Comparison of exeution timesWe have tested the previous examples on HyTeh (polyhedra representation ofsets of on�gurations, full entailment test), on Bultan, Gerber and Pugh's modelheker based on the Omega library for Presburger arithmeti [BGP97℄, and onthe speialized model heker we have introdued in the paper (DV-onstraintrepresentation of sets of states, loal entailment test). HyTeh works on realarithmeti, i.e., it employs eÆient onstraint solving for dealing with linearonstraints. The results are shown in the following table, where `Presb' refers tothe model heker of [BGP97℄, and `BitVetor' to our heker.Fig Rules Unsafe States Steps BitVetor1 HyTeh1 Presb21 21 Sa � 1,Ma � 1 2 <1s <1s not testedUsepu � 2 7 <1s 5.5s 40sUsepu � 3 10 <1s 16s 290s2 9 Usepu � 4 13 <1s 40s 1558sUsepu � 8 25 15s 578s not testedUsepu � 10 31 76s 1738s not tested3 6 T1 � 3, ^i>1Ti � 2 24 1090s >6h 19h50m1 On a Sun Spar 5.6. 2 On a Sun Ultra Spar.
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