
A Symmetry Breaking Constraint forIndistinguishable Values ?Ian P. Gent??S
hool of Computer S
ien
e, University of St. Andrews, Fife KY16 9SS, UnitedKingdom. ipg�d
s.st-and.a
.ukAbstra
t. It is very 
ommon in 
onstraint programming that the valuesa set of variables 
an take are indistinguishable: for example in graph
olouring the names of 
olours 
an be inter
hanged freely. Breaking su
hsymmetry is important for eÆ
ient sear
h. In this paper I present a
onstraint to break this kind of symmetry. I present two variants, these
ond of whi
h is remarkably elegant but less generally useful. I provethat both 
onstraints have the intended theoreti
al property of uniquelyfor
ing assignments and thereby breaking all symmetry. These are the�rst published 
onstraints I am aware of for this task. I outline sometheoreti
al and pra
ti
al questions that are raised.1 Introdu
tionVery often in 
onstraint programming, we have to break some symmetry inherentin the problem we are modelling. If we don't then we get a multitude of solutions,and sear
h many equivalent non-solutions. A very 
ommon 
ondition is that ofindistinguishable values, where the values a set of variables 
an take doesn'tmatter [2℄.Typi
al examples are graph-
olouring and bin pa
king. In graph 
olouring,we might have to label ea
h edge of a graph with a 
olour, with the a
tual 
oloursbeing irrelevant. If there are k 
olours, there are k! di�erent solutions for ea
hessentially di�erent solution, with the 
olours being permuted. In bin pa
king,we might have to put ea
h number into one of k bins. If all bins have the same
apa
ity, there are again k! di�erent versions of ea
h solution, this time the binsbeing permuted.Sometimes it is quite easy to see how to break symmetry. Other times, it is notquite so obvious. For example, suppose we are solving number partitioning, whi
his essentially bin pa
king with only two bins. An easy way to break symmetryis to insist that the �rst number must go into the �rst bin. This does break thekey symmetry, but it is not so obvious how to apply this idea when we have 3 or? The author thanks past and present members of the APES resear
h group, of whi
hhe is a member, for helpful dis
ussions: www.d
s.st-and.a
.uk/~apes. He alsothanks reviewers for en
ouraging me to do the proofs.?? I dedi
ate this paper to my wife, daughter, and the 
itizens of the USA | September12, 2001.



2more bins. If we insist the �rst number goes into the �rst bin, we 
an't demandthat the se
ond must go into the se
ond bin, as the se
ond number might alsohave to go into the �rst. While we 
an insist that the ith number 
annot gointo a bin larger than number i, this leaves number 3 with two symmetri
alpossibilities if numbers 1 and 2 both go into bin 1: it 
an go into either bin 2 orbin 3. This diÆ
ulty disallows the normal solution used of imposing monotoni
ity
onstraints when we have indistinguishable variables.In this paper I present a solution to this problem. One solution in a languagelike Ilog Solver would be to write demons to �re whenever bin assignments weremade, ensuring that symmetry was not broken. Alternatively, 
onstraints 
anbe added during sear
h for any set of symmetries, in
luding those arising fromindistinguishable values [1, 4℄. However, my solution is extensional, i.e. worksthrough addition of 
onstraints, rather than the de�nition of 
ode to run when
ertain events happen or 
onstraints added dynami
ally during sear
h.2 A general symmetry breaking 
onstraint forindistinguishable valuesSuppose that we have a set of numbered variables I1 , a set of numbered values V ,and an assignment of values to obje
ts, A : I ! V . Presumably the assignmentA is 
onstrained in other ways by the rest of the 
onstraint program, for examplein 
olouring a di�eren
e 
onstraint would be imposed on A(i) and A(j) if i andj represented adja
ent nodes.I will assume that the set of values is indistinguishable, just as the set of
olours in a graph 
olouring problem is, or a set of bins with identi
al 
apa
itiesis in a bin pa
king problem. So we wish to break the symmetry by demandingthat only one assignment A is 
onsidered for ea
h set of symmetri
ally equivalentassignments. I will do this by using the ordering inherent in the numbering ofI and V . Typi
ally I will be integers from 0 to n� 1 and V integers from 0 tok � 1. I will assume for simpli
ity that this is the 
ase.2We work on equivalen
e 
lasses of variables taking the same value. Ea
h 
lasshas a least numbered variable, i.e. a least member of I . We 
an take advantageof this arbitrary ordering to break symmetry. I �rst introdu
e a new fun
tion R,for \representative." For any i 2 I , R(i) will be the least numbered variable withthe same value as variable i under the assignment A. We now have a unique labelfor ea
h equivalen
e 
lass, so we 
an use this to impose monotoni
ity 
onstraints.Spe
i�
ally, the values will be assigned in order of representative: the 
lass withleast numbered representative will be given value 0; the 
lass with the next leastnumbered representative will be given value 1; and so on.1 You 
an think of I as the indi
es of variables, for example in Ilog Solver the indi
esin an array of variables.2 It is also ne
essary to assume this in my Ilog Solver implementation as when I didnot assume this, I 
ame a
ross what looks like an obs
ure bug in Solver 4.3.



3To make this 
on
rete, I introdu
e a further new assignment M . This repre-sents the maximum value of all variables from 0 to i. The following 
onstraintstie in A, M , and R, and break the symmetry on A.A(i) = A(R(i)) (1)R(i) = R(R(i)) (2)R(i) � i (3)M(0) = A(0) = R(0) = 0 (4)M(i) = max(M(i� 1); A(i)) [i 6= 0℄ (5)R(i) = i, A(i) =M(i� 1) + 1 [i 6= 0℄ (6)R(i) < i, A(i) �M(i� 1) [i 6= 0℄ (7)A(R(i)) = M(R(i)) (8)1. For any i 2 I , the value of its representative is the same as its value.2. The representative of any i 2 I is its own representative. For example, ifelement 2 is element 7's representative, the representative of element 2 mustitself be 2.3. For any i 2 I , its representative is lower or equally numbered than itself.4. Sin
e I am assuming that values and indi
es start from 0, the representativeof 0 must be 0, and indeed this is redundant as it is implied by (3). Further,variable 0 must take the �rst value, 0, and thus the maximum of values upto index 0 must be 0.5. The 
onstraint (5) simply makes ea
h M(i) the maximum of all A(j) forj � i.6. The 
onstraint (6) says that where we need a new value for A(i), then imust be its own representative: no j < i 
an have A(j) = A(i) be
auseA(i) > M(i� 1) �M(j) � A(j).The �nal two 
onstraints are redundant. I in
lude them as they might helpunderstanding, or in pra
ti
e might make implementation more eÆ
ient throughbetter propagation. The proof below does not use the last two 
onstraints.7. The 
onstraint (7) means that if R(i) < i, then we 
annot use a new value forA(i), and propagation should ensure that M(i) =M(i� 1). It is redundantbe
ause 
onstraint (6) is a double impli
ation, and if R(i) 6= i then R(i) < ifrom (2), and be
ause if A(i) 6=M(i� 1)+1 then A(i) �M(i� 1) from (5).8. The �nal 
onstraint states that the value of R(i) must always be a pointwhere the 
ounterM `ti
ks'. We 
an't have that A(R(i)) < M(R(i)) be
ausethat means that A(R(i)) takes the same value as some A(j) for j < i, andwe do not want this to happen. The 
onstraint is also redundant. We knowthat R(R(i)) = R(i) from (2). So the index R(i) satis�es the left hand sideof (6), so we have that A(R(i)) =M(R(i)� 1)+1. So from (5) we have thatA(R(i)) =M(R(i)) if i 6= 0, and this is trivially true from (4) otherwise.



4 Taken together the above 
onstraints break all symmetry based on indistin-guishable values. This statement 
an be formalised into a theorem, dependingon the assumption that we have determined allTheorem 1 If the above set of 
onstraints are added to a 
onsistent problem inwhi
h equivalen
e 
lasses of values of A are given by statements A(i) = A(j)and A(i) 6= A(j), then there are unique satisfying values of A, R, and M . Forea
h i, R(i) is the least numbered variable with the same value as i and M(i) isthe maximum value taken by variables 0 : : : i.Proof. We work by indu
tion on i, assuming that for k � i, A(k) is uniquelydetermined and the 
laimed properties for R and M .For the indu
tion base, 
onstraint (4) trivially gives the values M(0) =A(0) = R(0) = 0 satisfying all the properties 
laimedWe now 
onsider the variable i + 1 for the indu
tion step. There are two
ases, depending on whether A(i+ 1) is equal to some earlier value.If no value k � i has A(k) = A(i + 1) then R(i + 1) = i + 1 from (1) and(3). Clearly the 
laimed property of R holds for i + 1. From (6), we have thatA(i+ 1) =M(i) + 1. By the indu
tion hypothesis, M(i) is the maximum valueof A(k) for k � i, so in parti
ular A(i + 1) is uniquely determined. Constraint(5) gives that M(i + 1) = A(i + 1), establishing that M(i + 1) is the 
laimedmaximum value.If we have that A(i + 1) = A(k) for some k � i, we �rst note that A(k)is uniquely determined and thus that A(i + 1) is set to the same value. Theindu
tion hypothesis gives M(i) � A(k) = A(i+1), so 
onstraint (5) then givesM(i+ 1) =M(i), establishing the 
laimed property of M . Sin
e the right handside of (6) is false, we have that R(i+1) 6= i+1, and so (3) gives R(i+1) < i+1.The only 
onsistent values k for R(i+1) must satisfy A(i+1) = A(k) from (1).Consider any k whi
h is not the least numbered variable with the same value. Wehave from indu
tion that R(k) < k. But then k 
annot be the value of R(i+ 1)as it would not satisfy 
onstraint (2). The only remaining value of R(i+1) is theleast index j taking the same value as A(i+ 1), 
ompleting the indu
tion step.I believe that the new 
onstraint satis�es one desirable property. That is, allvalues of A, M , and R 
an be determined by a 
onstraint solver by propagationalone without any ba
ktra
king, on
e the equivalen
e 
lasses of variables takingthe same values have been determined. I was 
areful in the above presentationto ensure that every dedu
tion was either on simple impli
ation given values ofvariables, or on removal of values not satisfying 
onstraints. Both these steps aretaken by standard ar
 
onsisten
y algorithms. The indu
tive nature of the proofwould be mirrored by propagation iteratively setting the values for i = 0; 1; 2;et
. However, to prove my belief formally we would have to 
onsider the waythat array 
onstraints su
h as A(R(i)) = A(i) are dealt with in a given solver (orformal abstra
tion of a 
onstraint solver) and I'm not 
urrently sure how this isdone.3 So it remains possible that a given solver might need to ba
ktra
k if itdoes not make all the immediate dedu
tions I have assumed in the above proof.3 Pointers appre
iated



53 Implementation in Ilog SolverThe key feature of my 
onstraints are the use of fun
tion values as indi
es, as forexample the use of R(i) in A(R(i)) = A(i). The 
onstraint solving language IlogSolver allows this through the use of the array 
onstraint [5℄. I have written a IlogSolver (Version 4.3) 
onstraint IanSymmetry to en
apsulate these 
onstraints.The result to the user is that symmetry breaking 
an be a
hieved by a oneline expression of a single 
onstraint. With M , R and A as arrays, Solver hasde�ned array indexing in a general way so that we 
an write A[R[i℄℄ == A[i℄for example, even though we don't know the value of R[i℄With this syntax, theabove only needs O(n + k) 
onstraints, though I don't know if the array index
onstraints use more spa
e internally.As a trivial example of its use, in a number partitioning problem with 5numbers to go into two bins, the de
laration Il
IntVarArray A(m,5,0,1);de
lares the array A to be the assignment of numbers to bins. Symmetry on thisis broken by the one linerIanSymmetry(m,A);The argument m is Ilog's sear
h manager, and I wrote IanSymmetry to post thesymmetry breaking 
onstraints to this manager when it is 
reated.To date, I have not programmed more than toy examples using this 
on-straint, so 
annot demonstrate its pra
ti
al utility or otherwise. 44 A spe
ial 
aseThe 
onstraint I have proposed may not seem parti
ularly elegant. In a spe
ial
ase, everything be
omes mu
h more beautiful.Suppose that we don't need to make the set of values V be the integers0 : : : k � 1. In fa
t, suppose that we 
an identify the sets V and I . That is, thepossible values for integers i 2 I is the set I itself. Assuming that two di�erentintegers i and j take the same value, of 
ourse there will be gaps in the set ofused values, but that need not be a problem. Remember that we are dealing withsituations where the a
tual values are arbitrary, and are just names of 
olours orbins. In pra
ti
al terms, we may not 
are at all about the values V , but perhapsjust want to know how many are set. For example, in a bin pa
king problem wemight just want to know how many bins are used, i.e. the number of di�erentvalues A(i). Su
h information 
an be derived in a 
onstraint language from thevalues of A: the number of di�erent values 
an be expressed as the number ofindi
es i satisfying A(i) = i.In this situation, the somewhat 
onfusing set of 
onstraints in the general 
ase
ollapses elegantly. The key is that we 
an identify the two fun
tions A, and R,making them one and the same fun
tion. If we do not 
are that the values should4 I did break some symmetry in matrix models this way, but I omit it as it was lessinteresting than the other work on matrix models at to this workshop [3, 6℄.



6be 
onse
utive, we dis
ard the fun
tionM and its asso
iated 
onstraints. We areleft only with the 
onstraints A(A(i)) = A(i)A(i) � iThese extremely simple and elegant 
onstraints do indeed break all symme-try, where any values may be used as long as we preserve equivalen
e 
lasses.However, we still want to know that the 
onstraints do break the symmetry 
or-re
tly: there is mu
h less to prove so the basi
 
orre
tness result is mu
h simpler.For example, there is no need to prove that variables with the same value havethe same representative: sin
e values and representatives are the same thing,there is nothing to prove.Theorem 2 If the above set of 
onstraints are added to a 
onsistent problem inwhi
h equivalen
e 
lasses of values of A are given by statements A(i) = A(j)and A(i) 6= A(j), then there are unique satisfying values of A. For ea
h i, thevalue A(i) is the least numbered variable with the same value as i.Proof. We work by indu
tion on i, assuming that for k � i, A(k) is uniquelydetermined with the 
laimed property.We now 
onsider the variable i+1 for the indu
tion step. If no value j � i hasA(j) = A(i+1) then the �rst 
onstraint disallows any value j � i for A(i+1) {otherwise we would have A(j) = A(A(i+ 1)) = A(i+ 1). The se
ond 
onstraintfor
es A(i+ 1) to be the only remaining value, i+ 1.If we have that A(i + 1) = A(j) for some j � i, then by the indu
tionhypothesis the value A(j) is the least numbered variable with the same valueas A(j), and this is also the least numbered variable with the same value asA(i+ 1), as required.Again I have implemented this as a spe
ial purpose 
onstraint IanSymmetrySelf,the Self indi
ating that domain of the array is the array itself.4.1 An unexpe
ted appli
ationIn many 
ases one 
an get rid of symmetry just by insisting that the values of therelevant variables are monotoni
. For example, in 
hapter 24 of the User Manual[5℄, Ilog present a solution to the n-queens problem. They start o� assuming thatthe variables will be pairs of x-y lo
ations for the queens. This has symmetry in(say) the y lo
ations, as these will turn out just to be permutations of 0 : : : n�1.Ilog then say that they will impose an ordering 
onstraint y0 < y1 < : : : < yn�1.But a
tually, that is not what they do in the implementation: they take the nextstep and do not even bother to 
onstru
t the y variables at all.It o

urred to me to try to apply my new 
onstraint to this situation. Sin
ewe have identi�ed a symmetry, in the y variables, it would be ni
e if we 
ouldjust express this, rather than have to work out the reformulation whi
h gets rid



7of the symmetry. While the reformulation may not be too hard to see in this
ase, the general issue of reformulating to avoid symmetry is very diÆ
ult.This is an interesting 
ase for my 
onstraint. First, it is natural to apply thespe
ial 
ase, be
ause there are 100 y variables whi
h take 100 possible values.Se
ond, my 
onstraint was not designed with any appli
ation su
h as this inmind. My 
onstraint was designed for 
ases where it is not so obvious how toavoid the symmetry. In this 
ase we 
an easily avoid the symmetry by posting
onstraints y(i� 1) < y(i).I 
oded up the spe
ial 
ase in Solver, via the 
lass IanSymmetrySelf. I tookIlog's nqueens 
ode from the distribution, and 
hanged it only by adding the yvariables and expressing the symmetry and all di�erent 
onstraintsIl
IntVarArray y(m, nqueen, 0, nqueen-1);IanSymmetrySelf breaksymmetry(m,y);m.add(Il
AllDiff(y));and by 
hanging the lines whi
h 
reate variables representing diagonalsfor (i = 0; i < nqueen; i++) {x1[i℄ = x[i℄+i;x2[i℄ = x[i℄-i;}to allow for the fa
t that we don't know the value of y[i℄for (i = 0; i < nqueen; i++) {x1[i℄ = x[i℄+y[i℄;x2[i℄ = x[i℄-y[i℄;}I tested this out and for n = 100 it took roughly twi
e as long to solve theproblem with one more fail, �nding a di�erent solution. The reason it works sowell is that it qui
kly works out that a
tually y(i) = i for all i. That's be
ausey(0) � 0 so y(0) = 0; and y(1) � 1 and y(1) 6= 0, so y(1) = 1, and so on. 5 Giventhat twi
e as long was only 0.44 se
onds, that's not bad. I think avoiding �ndinga problem reformulation is well worth 0.24 
pu se
onds.What I thought was a general symmetry 
onstraint works well in a 
ase I didnot design it for. It's always ni
e when something works outside the s
ope youoriginally planned it for. My symmetry 
onstraint does this.5 Dis
ussion & Further WorkWhile my solution is general for indistinguishable values, it may have some draw-ba
ks. First, it only 
aptures one kind of symmetry, while others may be presentin the problem: for example if at some later stage two bins both have the sameredu
ed 
apa
ity, they have an undesirable symmetry whi
h this 
onstraint doesnot address. Se
ond, I do not yet how this 
onstraint propagates. It may bethat propagation takes pla
e too late: it may be that the symmetry 
onstraints5 Given that, I don't understand why it found a di�erent solution.



8don't fail until after 
onsiderable sear
h has been done in an invalid part of thesear
h spa
e. There are subtle intera
tions between sear
h strategy and symme-try propagation. For example, if our sear
h 
arefully 
onstru
ted bin 3, it mighthave to entirely re
onstru
t it if symmetry demanded it had to be bin 2 instead.The third drawba
k is that it might well be less eÆ
ient than a spe
ial purpose
onstraint wired into solver by demons.Despite these potential drawba
ks, I feel the new 
onstraint is valuable inproviding a simple way for breaking symmetry in the 
ommon 
ase of indistin-guishable values. It is parti
ularly easy if somebody has implemented it in the
onstraint language that you have used.There are a number of dire
tions for future resear
h. I would be happy todis
uss these with anyone wishing to help.First, there is the theoreti
al validation of the 
onstraints I have introdu
ed.I have established basi
 
orre
tness, but it remains to be shown whether thevalues of the asso
iated arrays 
an be established only through propagation. Itis also interesting to establish the intera
tion of these 
onstraints with the sear
hpro
ess, sin
e they presuppose a unique preferred assignment.Se
ond, empiri
al work is needed to establish the pra
ti
al usefulness of the
onstraints. It is possible that they meet theoreti
al desiderata while being im-pra
ti
al for one reason or another.Finally, I suggest that one of the main issues fa
ing this and many otherpie
es of work on symmetry is the intera
tion between symmetries. Constraintproblems often have mu
h symmetry in several di�erent parts of the problem.These intera
t in 
ompli
ated ways. The natural way to address one set of sym-metries might be through a symmetry breaking 
onstraint; a se
ond might beaddressed through reformulating part of a problem; and a third set of symmetriesmight be addressed by a te
hnique su
h as symmetry breaking during sear
h.To ensure that su
h te
hniques 
an be 
ombined 
orre
tly in theory and e�e
-tively in pra
ti
e is one of the big questions fa
ing those resear
hing symmetrybreaking in 
onstraint programming.Referen
es1. R. Ba
kofen and S. Will. Ex
luding symmetries in 
onstraint-based sear
h. InPro
eedings, CP-99. Springer, 1999. LNCS 1713.2. B. Benhamou. Study of symmetry in Constraint Satisfa
tion Problems. In Pro
eed-ings PPCP'94, pages 246{254, May 1994.3. P. Fleiner, A. Fris
h, B. Hni
h, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh. Sym-metry in matrix models. Te
hni
al Report APES-30-2001, APES group, 2001. Avail-able from http://www.d
s.st-and.a
.uk/ apes/reports/apes-30-2001.ps.gz. Submit-ted to SymCon'01 (Symmetry in Constraints), CP2001 post-
onferen
e workshop.4. I.P. Gent and B.M. Smith. Symmetry breaking in 
onstraint programming. InW. Horn, editor, Pro
eedings of ECAI-2000, pages 599{603. IOS Press, 2000.5. ILOG S.A. ILOG Solver 4.3 User's Manual. ILOG, 1998.6. B.M. Smith and I.P. Gent. Redu
ing symmetry in matrix models: Sbds v. 
on-straints. Te
hni
al Report APES-31-2001, APES Resear
h Group, September 2001.Available from http://www.d
s.st-and.a
.uk/~apes/apesreports.html.


