A Symmetry Breaking Constraint for
Indistinguishable Values *

TIan P. Gent**

School of Computer Science, University of St. Andrews, Fife KY16 9SS, United
Kingdom. ipg@dcs.st-and.ac.uk

Abstract. It is very common in constraint programming that the values
a set of variables can take are indistinguishable: for example in graph
colouring the names of colours can be interchanged freely. Breaking such
symmetry is important for efficient search. In this paper I present a
constraint to break this kind of symmetry. I present two variants, the
second of which is remarkably elegant but less generally useful. I prove
that both constraints have the intended theoretical property of uniquely
forcing assignments and thereby breaking all symmetry. These are the
first published constraints I am aware of for this task. I outline some
theoretical and practical questions that are raised.

1 Introduction

Very often in constraint programming, we have to break some symmetry inherent
in the problem we are modelling. If we don’t then we get a multitude of solutions,
and search many equivalent non-solutions. A very common condition is that of
indistinguishable values, where the values a set of variables can take doesn’t
matter [2].

Typical examples are graph-colouring and bin packing. In graph colouring,
we might have to label each edge of a graph with a colour, with the actual colours
being irrelevant. If there are k colours, there are k! different solutions for each
essentially different solution, with the colours being permuted. In bin packing,
we might have to put each number into one of k£ bins. If all bins have the same
capacity, there are again k! different versions of each solution, this time the bins
being permuted.

Sometimes it is quite easy to see how to break symmetry. Other times, it is not
quite so obvious. For example, suppose we are solving number partitioning, which
is essentially bin packing with only two bins. An easy way to break symmetry
is to insist that the first number must go into the first bin. This does break the
key symmetry, but it is not so obvious how to apply this idea when we have 3 or

* The author thanks past and present members of the APES research group, of which
he is a member, for helpful discussions: www.dcs.st-and.ac.uk/~apes. He also
thanks reviewers for encouraging me to do the proofs.

** I dedicate this paper to my wife, daughter, and the citizens of the USA — September
12, 2001.

more bins. If we insist the first number goes into the first bin, we can’t demand
that the second must go into the second bin, as the second number might also
have to go into the first. While we can insist that the i'" number cannot go
into a bin larger than number i, this leaves number 3 with two symmetrical
possibilities if numbers 1 and 2 both go into bin 1: it can go into either bin 2 or
bin 3. This difficulty disallows the normal solution used of imposing monotonicity
constraints when we have indistinguishable wvariables.

In this paper I present a solution to this problem. One solution in a language
like Tlog Solver would be to write demons to fire whenever bin assignments were
made, ensuring that symmetry was not broken. Alternatively, constraints can
be added during search for any set of symmetries, including those arising from
indistinguishable values [1,4]. However, my solution is extensional, i.e. works
through addition of constraints, rather than the definition of code to run when
certain events happen or constraints added dynamically during search.

2 A general symmetry breaking constraint for
indistinguishable values

Suppose that we have a set of numbered variables I' | a set of numbered values V,
and an assignment of values to objects, A : I — V. Presumably the assignment
A is constrained in other ways by the rest of the constraint program, for example
in colouring a difference constraint would be imposed on A(i) and A(j) if 4 and
J represented adjacent nodes.

I will assume that the set of values is indistinguishable, just as the set of
colours in a graph colouring problem is, or a set of bins with identical capacities
is in a bin packing problem. So we wish to break the symmetry by demanding
that only one assignment A is considered for each set of symmetrically equivalent
assignments. I will do this by using the ordering inherent in the numbering of
I and V. Typically I will be integers from 0 to n — 1 and V integers from 0 to
k — 1. I will assume for simplicity that this is the case.?

We work on equivalence classes of variables taking the same value. Each class
has a least numbered variable, i.e. a least member of I. We can take advantage
of this arbitrary ordering to break symmetry. I first introduce a new function R,
for “representative.” For any i € I, R(i) will be the least numbered variable with
the same value as variable i under the assignment A. We now have a unique label
for each equivalence class, so we can use this to impose monotonicity constraints.
Specifically, the values will be assigned in order of representative: the class with
least numbered representative will be given value 0; the class with the next least
numbered representative will be given value 1; and so on.

! You can think of I as the indices of variables, for example in Ilog Solver the indices
in an array of variables.

2 Tt is also necessary to assume this in my Ilog Solver implementation as when I did
not assume this, I came across what looks like an obscure bug in Solver 4.3.

To make this concrete, I introduce a further new assignment M. This repre-
sents the mazimum value of all variables from 0 to i. The following constraints
tie in A, M, and R, and break the symmetry on A.

A(i) = A(R(7)) (1)
R(i) = R(R(1)) (2)
R(i) < (3)
M@©) = A0) = RO) = 0 (4)
M(i) = max(M(i — 1), A@) [i #0] (5)
Ri)=ie A(i) =M@ - 1)+1 [i#0] (6)
R(i) < i A@) < M(@i — 1) [i # 0] (7)
A(R(i)) = M(R()) (8)

1. For any ¢ € I, the value of its representative is the same as its value.

2. The representative of any i € I is its own representative. For example, if
element 2 is element 7’s representative, the representative of element 2 must
itself be 2.

3. For any i € I, its representative is lower or equally numbered than itself.

4. Since I am assuming that values and indices start from 0, the representative
of 0 must be 0, and indeed this is redundant as it is implied by (3). Further,
variable 0 must take the first value, 0, and thus the maximum of values up
to index 0 must be 0.

5. The constraint (5) simply makes each M (i) the maximum of all A(j) for
j<i.

6. The constraint (6) says that where we need a new value for A(i), then i
must be its own representative: no j < 4 can have A(j) = A(i) because
A(i) > M(i = 1) > M(j) > A).

The final two constraints are redundant. I include them as they might help
understanding, or in practice might make implementation more efficient through
better propagation. The proof below does not use the last two constraints.

7. The constraint (7) means that if R(i) < ¢, then we cannot use a new value for
A(i), and propagation should ensure that M (i) = M (i — 1). It is redundant
because constraint (6) is a double implication, and if R(i) # i then R(i) < i
from (2), and because if A(7) # M (i —1) + 1 then A(i) < M (i —1) from (5).

8. The final constraint states that the value of R(i) must always be a point
where the counter M ‘ticks’. We can’t have that A(R(i)) < M (R(i)) because
that means that A(R(i)) takes the same value as some A(j) for j < i, and
we do not want this to happen. The constraint is also redundant. We know
that R(R(i)) = R(i) from (2). So the index R(i) satisfies the left hand side
of (6), so we have that A(R(i)) = M(R(i) — 1)+ 1. So from (5) we have that
A(R(i)) = M(R(3)) if i # 0, and this is trivially true from (4) otherwise.

Taken together the above constraints break all symmetry based on indistin-
guishable values. This statement can be formalised into a theorem, depending
on the assumption that we have determined all

Theorem 1 If the above set of constraints are added to a consistent problem in
which equivalence classes of values of A are given by statements A(i) = A(j)
and A(i) # A(j), then there are unique satisfying values of A, R, and M. For
each i, R(i) is the least numbered variable with the same value as i and M (i) is
the maximum value taken by variables 0. ..1.

Proof. We work by induction on i, assuming that for £ < i, A(k) is uniquely
determined and the claimed properties for R and M.

For the induction base, constraint (4) trivially gives the values M(0) =
A(0) = R(0) = 0 satisfying all the properties claimed

We now consider the variable i + 1 for the induction step. There are two
cases, depending on whether A(i + 1) is equal to some earlier value.

If no value k < i has A(k) = A(i + 1) then R(i +1) =i + 1 from (1) and
(3). Clearly the claimed property of R holds for i + 1. From (6), we have that
A(i+ 1) = M (i) + 1. By the induction hypothesis, M (i) is the maximum value
of A(k) for k < i, so in particular A(i 4+ 1) is uniquely determined. Constraint
(5) gives that M (i + 1) = A(i + 1), establishing that M (i + 1) is the claimed
maximum value.

If we have that A(i + 1) = A(k) for some k < i, we first note that A(k)
is uniquely determined and thus that A(i + 1) is set to the same value. The
induction hypothesis gives M (i) > A(k) = A(i + 1), so constraint (5) then gives
M (i + 1) = M (i), establishing the claimed property of M. Since the right hand
side of (6) is false, we have that R(i+1) #i+1, and so (3) gives R(i +1) < i+ 1.
The only consistent values k for R(i + 1) must satisfy A(i + 1) = A(k) from (1).
Consider any k which is not the least numbered variable with the same value. We
have from induction that R(k) < k. But then k cannot be the value of R(i + 1)
as it would not satisfy constraint (2). The only remaining value of R(i+1) is the
least index j taking the same value as A(i + 1), completing the induction step.

I believe that the new constraint satisfies one desirable property. That is, all
values of A, M, and R can be determined by a constraint solver by propagation
alone without any backtracking, once the equivalence classes of variables taking
the same values have been determined. I was careful in the above presentation
to ensure that every deduction was either on simple implication given values of
variables, or on removal of values not satisfying constraints. Both these steps are
taken by standard arc consistency algorithms. The inductive nature of the proof
would be mirrored by propagation iteratively setting the values for ¢ = 0,1, 2,
etc. However, to prove my belief formally we would have to consider the way
that array constraints such as A(R(i)) = A(4) are dealt with in a given solver (or
formal abstraction of a constraint solver) and I’'m not currently sure how this is
done.? So it remains possible that a given solver might need to backtrack if it
does not make all the immediate deductions I have assumed in the above proof.

3 Pointers appreciated

3 Implementation in Ilog Solver

The key feature of my constraints are the use of function values as indices, as for
example the use of R(i) in A(R(i)) = A(i). The constraint solving language Ilog
Solver allows this through the use of the array constraint [5]. T have written a Ilog
Solver (Version 4.3) constraint TanSymmetry to encapsulate these constraints.
The result to the user is that symmetry breaking can be achieved by a one
line expression of a single constraint. With M, R and A as arrays, Solver has
defined array indexing in a general way so that we can write A[R[i]] == A[i]
for example, even though we don’t know the value of R[i] With this syntax, the
above only needs O(n + k) constraints, though I don’t know if the array index
constraints use more space internally.

As a trivial example of its use, in a number partitioning problem with 5
numbers to go into two bins, the declaration IlcIntVarArray A(m,5,0,1);
declares the array A to be the assignment of numbers to bins. Symmetry on this
is broken by the one liner

TanSymmetry(m,A);

The argument m is Ilog’s search manager, and I wrote IanSymmetry to post the
symmetry breaking constraints to this manager when it is created.

To date, I have not programmed more than toy examples using this con-
straint, so cannot demonstrate its practical utility or otherwise. *

4 A special case

The constraint I have proposed may not seem particularly elegant. In a special
case, everything becomes much more beautiful.

Suppose that we don’t need to make the set of values V be the integers
0...k —1. In fact, suppose that we can identify the sets V and I. That is, the
possible values for integers i € I is the set I itself. Assuming that two different
integers ¢ and j take the same value, of course there will be gaps in the set of
used values, but that need not be a problem. Remember that we are dealing with
situations where the actual values are arbitrary, and are just names of colours or
bins. In practical terms, we may not care at all about the values V', but perhaps
just want to know how many are set. For example, in a bin packing problem we
might just want to know how many bins are used, i.e. the number of different
values A(7). Such information can be derived in a constraint language from the
values of A: the number of different values can be expressed as the number of
indices i satisfying A(i) = i.

In this situation, the somewhat confusing set of constraints in the general case
collapses elegantly. The key is that we can identify the two functions A, and R,
making them one and the same function. If we do not care that the values should

* T did break some symmetry in matrix models this way, but T omit it as it was less
interesting than the other work on matrix models at to this workshop [3, 6].

be consecutive, we discard the function M and its associated constraints. We are
left only with the constraints

These extremely simple and elegant constraints do indeed break all symme-
try, where any values may be used as long as we preserve equivalence classes.
However, we still want to know that the constraints do break the symmetry cor-
rectly: there is much less to prove so the basic correctness result is much simpler.
For example, there is no need to prove that variables with the same value have
the same representative: since values and representatives are the same thing,
there is nothing to prove.

Theorem 2 If the above set of constraints are added to a consistent problem in
which equivalence classes of values of A are given by statements A(i) = A(j)
and A(i) # A(j), then there are unique satisfying values of A. For each i, the
value A(i) is the least numbered variable with the same value as i.

Proof. We work by induction on i, assuming that for £ < i, A(k) is uniquely
determined with the claimed property.

We now consider the variable i+ 1 for the induction step. If no value 5 < i has
A(j) = A(i + 1) then the first constraint disallows any value j < i for A(i + 1)
otherwise we would have A(j) = A(A(i + 1)) = A(i + 1). The second constraint
forces A(i + 1) to be the only remaining value, 7 + 1.

If we have that A(i + 1) = A(j) for some j < i, then by the induction
hypothesis the value A(j) is the least numbered variable with the same value
as A(j), and this is also the least numbered variable with the same value as
A(i + 1), as required.

Again I have implemented this as a special purpose constraint TanSymmetrySelf,
the Self indicating that domain of the array is the array itself.

4.1 An unexpected application

In many cases one can get rid of symmetry just by insisting that the values of the
relevant variables are monotonic. For example, in chapter 24 of the User Manual
[5], Hlog present a solution to the n-queens problem. They start off assuming that
the variables will be pairs of x-y locations for the queens. This has symmetry in
(say) the y locations, as these will turn out just to be permutations of 0...n— 1.
Tlog then say that they will impose an ordering constraint yg < y1 < ... < Yp_1-
But actually, that is not what they do in the implementation: they take the next
step and do not even bother to construct the y variables at all.

It occurred to me to try to apply my new constraint to this situation. Since
we have identified a symmetry, in the y variables, it would be nice if we could
just express this, rather than have to work out the reformulation which gets rid

of the symmetry. While the reformulation may not be too hard to see in this
case, the general issue of reformulating to avoid symmetry is very difficult.

This is an interesting case for my constraint. First, it is natural to apply the
special case, because there are 100 y variables which take 100 possible values.
Second, my constraint was not designed with any application such as this in
mind. My constraint was designed for cases where it is not so obvious how to
avoid the symmetry. In this case we can easily avoid the symmetry by posting
constraints y(i — 1) < y(4).

I coded up the special case in Solver, via the class [anSymmetrySelf. T took
Tlog’s nqueens code from the distribution, and changed it only by adding the y
variables and expressing the symmetry and all different constraints

IlcIntVarArray y(m, nqueen, O, nqueen-1);
IanSymmetrySelf breaksymmetry(m,y) ;
m.add(I1cAl1Diff (y));

and by changing the lines which create variables representing diagonals

for (i = 0; i < nqueen; i++) {
x1[i] = x[i]+i;
x2[i] = x[i]-i;}

to allow for the fact that we don’t know the value of y[i]

for (i = 0; i < nqueen; i++) {
x1[i] = x[il+y[il;
x2[1] = x[i]-y[il;}

I tested this out and for n = 100 it took roughly twice as long to solve the
problem with one more fail, finding a different solution. The reason it works so
well is that it quickly works out that actually y(i) = ¢ for all i. That’s because
y(0) < 0s0y(0) =0; and y(1) < 1 and y(1) # 0, so y(1) = 1, and so on. ® Given
that twice as long was only 0.44 seconds, that’s not bad. I think avoiding finding
a problem reformulation is well worth 0.24 cpu seconds.

What T thought was a general symmetry constraint works well in a case I did
not design it for. It’s always nice when something works outside the scope you
originally planned it for. My symmetry constraint does this.

5 Discussion & Further Work

While my solution is general for indistinguishable values, it may have some draw-
backs. First, it only captures one kind of symmetry, while others may be present
in the problem: for example if at some later stage two bins both have the same
reduced capacity, they have an undesirable symmetry which this constraint does
not address. Second, I do not yet how this constraint propagates. It may be
that propagation takes place too late: it may be that the symmetry constraints

% Given that, I don’t understand why it found a different solution.

don’t fail until after considerable search has been done in an invalid part of the
search space. There are subtle interactions between search strategy and symme-
try propagation. For example, if our search carefully constructed bin 3, it might
have to entirely reconstruct it if symmetry demanded it had to be bin 2 instead.
The third drawback is that it might well be less efficient than a special purpose
constraint wired into solver by demons.

Despite these potential drawbacks, I feel the new constraint is valuable in
providing a simple way for breaking symmetry in the common case of indistin-
guishable values. It is particularly easy if somebody has implemented it in the
constraint language that you have used.

There are a number of directions for future research. I would be happy to
discuss these with anyone wishing to help.

First, there is the theoretical validation of the constraints I have introduced.
I have established basic correctness, but it remains to be shown whether the
values of the associated arrays can be established only through propagation. It
is also interesting to establish the interaction of these constraints with the search
process, since they presuppose a unique preferred assignment.

Second, empirical work is needed to establish the practical usefulness of the
constraints. It is possible that they meet theoretical desiderata while being im-
practical for one reason or another.

Finally, T suggest that one of the main issues facing this and many other
pieces of work on symmetry is the interaction between symmetries. Constraint
problems often have much symmetry in several different parts of the problem.
These interact in complicated ways. The natural way to address one set of sym-
metries might be through a symmetry breaking constraint; a second might be
addressed through reformulating part of a problem; and a third set of symmetries
might be addressed by a technique such as symmetry breaking during search.
To ensure that such techniques can be combined correctly in theory and effec-
tively in practice is one of the big questions facing those researching symmetry
breaking in constraint programming.

References

1. R. Backofen and S. Will. Excluding symmetries in constraint-based search. In
Proceedings, CP-99. Springer, 1999. LNCS 1713.

2. B. Benhamou. Study of symmetry in Constraint Satisfaction Problems. In Proceed-
ings PPCP’9}, pages 246-254, May 1994.

3. P.Fleiner, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh. Sym-
metry in matrix models. Technical Report APES-30-2001, APES group, 2001. Avail-
able from http://www.dcs.st-and.ac.uk/ apes/reports/apes-30-2001.ps.gz. Submit-
ted to SymCon’01 (Symmetry in Constraints), CP2001 post-conference workshop.

4. I.P. Gent and B.M. Smith. Symmetry breaking in constraint programming. In
W. Horn, editor, Proceedings of ECAI-2000, pages 599-603. IOS Press, 2000.

5. ILOG S.A. ILOG Solver 4.8 User’s Manual. ILOG, 1998.

6. B.M. Smith and I.LP. Gent. Reducing symmetry in matrix models: Shds v. con-
straints. Technical Report APES-31-2001, APES Research Group, September 2001.
Available from http://www.dcs.st-and.ac.uk/ apes/apesreports.html.

