
A Symmetry Breaking Constraint forIndistinguishable Values ?Ian P. Gent??Shool of Computer Siene, University of St. Andrews, Fife KY16 9SS, UnitedKingdom. ipg�ds.st-and.a.ukAbstrat. It is very ommon in onstraint programming that the valuesa set of variables an take are indistinguishable: for example in grapholouring the names of olours an be interhanged freely. Breaking suhsymmetry is important for eÆient searh. In this paper I present aonstraint to break this kind of symmetry. I present two variants, theseond of whih is remarkably elegant but less generally useful. I provethat both onstraints have the intended theoretial property of uniquelyforing assignments and thereby breaking all symmetry. These are the�rst published onstraints I am aware of for this task. I outline sometheoretial and pratial questions that are raised.1 IntrodutionVery often in onstraint programming, we have to break some symmetry inherentin the problem we are modelling. If we don't then we get a multitude of solutions,and searh many equivalent non-solutions. A very ommon ondition is that ofindistinguishable values, where the values a set of variables an take doesn'tmatter [2℄.Typial examples are graph-olouring and bin paking. In graph olouring,we might have to label eah edge of a graph with a olour, with the atual oloursbeing irrelevant. If there are k olours, there are k! di�erent solutions for eahessentially di�erent solution, with the olours being permuted. In bin paking,we might have to put eah number into one of k bins. If all bins have the sameapaity, there are again k! di�erent versions of eah solution, this time the binsbeing permuted.Sometimes it is quite easy to see how to break symmetry. Other times, it is notquite so obvious. For example, suppose we are solving number partitioning, whihis essentially bin paking with only two bins. An easy way to break symmetryis to insist that the �rst number must go into the �rst bin. This does break thekey symmetry, but it is not so obvious how to apply this idea when we have 3 or? The author thanks past and present members of the APES researh group, of whihhe is a member, for helpful disussions: www.ds.st-and.a.uk/~apes. He alsothanks reviewers for enouraging me to do the proofs.?? I dediate this paper to my wife, daughter, and the itizens of the USA | September12, 2001.



2more bins. If we insist the �rst number goes into the �rst bin, we an't demandthat the seond must go into the seond bin, as the seond number might alsohave to go into the �rst. While we an insist that the ith number annot gointo a bin larger than number i, this leaves number 3 with two symmetrialpossibilities if numbers 1 and 2 both go into bin 1: it an go into either bin 2 orbin 3. This diÆulty disallows the normal solution used of imposing monotoniityonstraints when we have indistinguishable variables.In this paper I present a solution to this problem. One solution in a languagelike Ilog Solver would be to write demons to �re whenever bin assignments weremade, ensuring that symmetry was not broken. Alternatively, onstraints anbe added during searh for any set of symmetries, inluding those arising fromindistinguishable values [1, 4℄. However, my solution is extensional, i.e. worksthrough addition of onstraints, rather than the de�nition of ode to run whenertain events happen or onstraints added dynamially during searh.2 A general symmetry breaking onstraint forindistinguishable valuesSuppose that we have a set of numbered variables I1 , a set of numbered values V ,and an assignment of values to objets, A : I ! V . Presumably the assignmentA is onstrained in other ways by the rest of the onstraint program, for examplein olouring a di�erene onstraint would be imposed on A(i) and A(j) if i andj represented adjaent nodes.I will assume that the set of values is indistinguishable, just as the set ofolours in a graph olouring problem is, or a set of bins with idential apaitiesis in a bin paking problem. So we wish to break the symmetry by demandingthat only one assignment A is onsidered for eah set of symmetrially equivalentassignments. I will do this by using the ordering inherent in the numbering ofI and V . Typially I will be integers from 0 to n� 1 and V integers from 0 tok � 1. I will assume for simpliity that this is the ase.2We work on equivalene lasses of variables taking the same value. Eah lasshas a least numbered variable, i.e. a least member of I . We an take advantageof this arbitrary ordering to break symmetry. I �rst introdue a new funtion R,for \representative." For any i 2 I , R(i) will be the least numbered variable withthe same value as variable i under the assignment A. We now have a unique labelfor eah equivalene lass, so we an use this to impose monotoniity onstraints.Spei�ally, the values will be assigned in order of representative: the lass withleast numbered representative will be given value 0; the lass with the next leastnumbered representative will be given value 1; and so on.1 You an think of I as the indies of variables, for example in Ilog Solver the indiesin an array of variables.2 It is also neessary to assume this in my Ilog Solver implementation as when I didnot assume this, I ame aross what looks like an obsure bug in Solver 4.3.



3To make this onrete, I introdue a further new assignment M . This repre-sents the maximum value of all variables from 0 to i. The following onstraintstie in A, M , and R, and break the symmetry on A.A(i) = A(R(i)) (1)R(i) = R(R(i)) (2)R(i) � i (3)M(0) = A(0) = R(0) = 0 (4)M(i) = max(M(i� 1); A(i)) [i 6= 0℄ (5)R(i) = i, A(i) =M(i� 1) + 1 [i 6= 0℄ (6)R(i) < i, A(i) �M(i� 1) [i 6= 0℄ (7)A(R(i)) = M(R(i)) (8)1. For any i 2 I , the value of its representative is the same as its value.2. The representative of any i 2 I is its own representative. For example, ifelement 2 is element 7's representative, the representative of element 2 mustitself be 2.3. For any i 2 I , its representative is lower or equally numbered than itself.4. Sine I am assuming that values and indies start from 0, the representativeof 0 must be 0, and indeed this is redundant as it is implied by (3). Further,variable 0 must take the �rst value, 0, and thus the maximum of values upto index 0 must be 0.5. The onstraint (5) simply makes eah M(i) the maximum of all A(j) forj � i.6. The onstraint (6) says that where we need a new value for A(i), then imust be its own representative: no j < i an have A(j) = A(i) beauseA(i) > M(i� 1) �M(j) � A(j).The �nal two onstraints are redundant. I inlude them as they might helpunderstanding, or in pratie might make implementation more eÆient throughbetter propagation. The proof below does not use the last two onstraints.7. The onstraint (7) means that if R(i) < i, then we annot use a new value forA(i), and propagation should ensure that M(i) =M(i� 1). It is redundantbeause onstraint (6) is a double impliation, and if R(i) 6= i then R(i) < ifrom (2), and beause if A(i) 6=M(i� 1)+1 then A(i) �M(i� 1) from (5).8. The �nal onstraint states that the value of R(i) must always be a pointwhere the ounterM `tiks'. We an't have that A(R(i)) < M(R(i)) beausethat means that A(R(i)) takes the same value as some A(j) for j < i, andwe do not want this to happen. The onstraint is also redundant. We knowthat R(R(i)) = R(i) from (2). So the index R(i) satis�es the left hand sideof (6), so we have that A(R(i)) =M(R(i)� 1)+1. So from (5) we have thatA(R(i)) =M(R(i)) if i 6= 0, and this is trivially true from (4) otherwise.



4 Taken together the above onstraints break all symmetry based on indistin-guishable values. This statement an be formalised into a theorem, dependingon the assumption that we have determined allTheorem 1 If the above set of onstraints are added to a onsistent problem inwhih equivalene lasses of values of A are given by statements A(i) = A(j)and A(i) 6= A(j), then there are unique satisfying values of A, R, and M . Foreah i, R(i) is the least numbered variable with the same value as i and M(i) isthe maximum value taken by variables 0 : : : i.Proof. We work by indution on i, assuming that for k � i, A(k) is uniquelydetermined and the laimed properties for R and M .For the indution base, onstraint (4) trivially gives the values M(0) =A(0) = R(0) = 0 satisfying all the properties laimedWe now onsider the variable i + 1 for the indution step. There are twoases, depending on whether A(i+ 1) is equal to some earlier value.If no value k � i has A(k) = A(i + 1) then R(i + 1) = i + 1 from (1) and(3). Clearly the laimed property of R holds for i + 1. From (6), we have thatA(i+ 1) =M(i) + 1. By the indution hypothesis, M(i) is the maximum valueof A(k) for k � i, so in partiular A(i + 1) is uniquely determined. Constraint(5) gives that M(i + 1) = A(i + 1), establishing that M(i + 1) is the laimedmaximum value.If we have that A(i + 1) = A(k) for some k � i, we �rst note that A(k)is uniquely determined and thus that A(i + 1) is set to the same value. Theindution hypothesis gives M(i) � A(k) = A(i+1), so onstraint (5) then givesM(i+ 1) =M(i), establishing the laimed property of M . Sine the right handside of (6) is false, we have that R(i+1) 6= i+1, and so (3) gives R(i+1) < i+1.The only onsistent values k for R(i+1) must satisfy A(i+1) = A(k) from (1).Consider any k whih is not the least numbered variable with the same value. Wehave from indution that R(k) < k. But then k annot be the value of R(i+ 1)as it would not satisfy onstraint (2). The only remaining value of R(i+1) is theleast index j taking the same value as A(i+ 1), ompleting the indution step.I believe that the new onstraint satis�es one desirable property. That is, allvalues of A, M , and R an be determined by a onstraint solver by propagationalone without any baktraking, one the equivalene lasses of variables takingthe same values have been determined. I was areful in the above presentationto ensure that every dedution was either on simple impliation given values ofvariables, or on removal of values not satisfying onstraints. Both these steps aretaken by standard ar onsisteny algorithms. The indutive nature of the proofwould be mirrored by propagation iteratively setting the values for i = 0; 1; 2;et. However, to prove my belief formally we would have to onsider the waythat array onstraints suh as A(R(i)) = A(i) are dealt with in a given solver (orformal abstration of a onstraint solver) and I'm not urrently sure how this isdone.3 So it remains possible that a given solver might need to baktrak if itdoes not make all the immediate dedutions I have assumed in the above proof.3 Pointers appreiated



53 Implementation in Ilog SolverThe key feature of my onstraints are the use of funtion values as indies, as forexample the use of R(i) in A(R(i)) = A(i). The onstraint solving language IlogSolver allows this through the use of the array onstraint [5℄. I have written a IlogSolver (Version 4.3) onstraint IanSymmetry to enapsulate these onstraints.The result to the user is that symmetry breaking an be ahieved by a oneline expression of a single onstraint. With M , R and A as arrays, Solver hasde�ned array indexing in a general way so that we an write A[R[i℄℄ == A[i℄for example, even though we don't know the value of R[i℄With this syntax, theabove only needs O(n + k) onstraints, though I don't know if the array indexonstraints use more spae internally.As a trivial example of its use, in a number partitioning problem with 5numbers to go into two bins, the delaration IlIntVarArray A(m,5,0,1);delares the array A to be the assignment of numbers to bins. Symmetry on thisis broken by the one linerIanSymmetry(m,A);The argument m is Ilog's searh manager, and I wrote IanSymmetry to post thesymmetry breaking onstraints to this manager when it is reated.To date, I have not programmed more than toy examples using this on-straint, so annot demonstrate its pratial utility or otherwise. 44 A speial aseThe onstraint I have proposed may not seem partiularly elegant. In a speialase, everything beomes muh more beautiful.Suppose that we don't need to make the set of values V be the integers0 : : : k � 1. In fat, suppose that we an identify the sets V and I . That is, thepossible values for integers i 2 I is the set I itself. Assuming that two di�erentintegers i and j take the same value, of ourse there will be gaps in the set ofused values, but that need not be a problem. Remember that we are dealing withsituations where the atual values are arbitrary, and are just names of olours orbins. In pratial terms, we may not are at all about the values V , but perhapsjust want to know how many are set. For example, in a bin paking problem wemight just want to know how many bins are used, i.e. the number of di�erentvalues A(i). Suh information an be derived in a onstraint language from thevalues of A: the number of di�erent values an be expressed as the number ofindies i satisfying A(i) = i.In this situation, the somewhat onfusing set of onstraints in the general aseollapses elegantly. The key is that we an identify the two funtions A, and R,making them one and the same funtion. If we do not are that the values should4 I did break some symmetry in matrix models this way, but I omit it as it was lessinteresting than the other work on matrix models at to this workshop [3, 6℄.



6be onseutive, we disard the funtionM and its assoiated onstraints. We areleft only with the onstraints A(A(i)) = A(i)A(i) � iThese extremely simple and elegant onstraints do indeed break all symme-try, where any values may be used as long as we preserve equivalene lasses.However, we still want to know that the onstraints do break the symmetry or-retly: there is muh less to prove so the basi orretness result is muh simpler.For example, there is no need to prove that variables with the same value havethe same representative: sine values and representatives are the same thing,there is nothing to prove.Theorem 2 If the above set of onstraints are added to a onsistent problem inwhih equivalene lasses of values of A are given by statements A(i) = A(j)and A(i) 6= A(j), then there are unique satisfying values of A. For eah i, thevalue A(i) is the least numbered variable with the same value as i.Proof. We work by indution on i, assuming that for k � i, A(k) is uniquelydetermined with the laimed property.We now onsider the variable i+1 for the indution step. If no value j � i hasA(j) = A(i+1) then the �rst onstraint disallows any value j � i for A(i+1) {otherwise we would have A(j) = A(A(i+ 1)) = A(i+ 1). The seond onstraintfores A(i+ 1) to be the only remaining value, i+ 1.If we have that A(i + 1) = A(j) for some j � i, then by the indutionhypothesis the value A(j) is the least numbered variable with the same valueas A(j), and this is also the least numbered variable with the same value asA(i+ 1), as required.Again I have implemented this as a speial purpose onstraint IanSymmetrySelf,the Self indiating that domain of the array is the array itself.4.1 An unexpeted appliationIn many ases one an get rid of symmetry just by insisting that the values of therelevant variables are monotoni. For example, in hapter 24 of the User Manual[5℄, Ilog present a solution to the n-queens problem. They start o� assuming thatthe variables will be pairs of x-y loations for the queens. This has symmetry in(say) the y loations, as these will turn out just to be permutations of 0 : : : n�1.Ilog then say that they will impose an ordering onstraint y0 < y1 < : : : < yn�1.But atually, that is not what they do in the implementation: they take the nextstep and do not even bother to onstrut the y variables at all.It ourred to me to try to apply my new onstraint to this situation. Sinewe have identi�ed a symmetry, in the y variables, it would be nie if we ouldjust express this, rather than have to work out the reformulation whih gets rid



7of the symmetry. While the reformulation may not be too hard to see in thisase, the general issue of reformulating to avoid symmetry is very diÆult.This is an interesting ase for my onstraint. First, it is natural to apply thespeial ase, beause there are 100 y variables whih take 100 possible values.Seond, my onstraint was not designed with any appliation suh as this inmind. My onstraint was designed for ases where it is not so obvious how toavoid the symmetry. In this ase we an easily avoid the symmetry by postingonstraints y(i� 1) < y(i).I oded up the speial ase in Solver, via the lass IanSymmetrySelf. I tookIlog's nqueens ode from the distribution, and hanged it only by adding the yvariables and expressing the symmetry and all di�erent onstraintsIlIntVarArray y(m, nqueen, 0, nqueen-1);IanSymmetrySelf breaksymmetry(m,y);m.add(IlAllDiff(y));and by hanging the lines whih reate variables representing diagonalsfor (i = 0; i < nqueen; i++) {x1[i℄ = x[i℄+i;x2[i℄ = x[i℄-i;}to allow for the fat that we don't know the value of y[i℄for (i = 0; i < nqueen; i++) {x1[i℄ = x[i℄+y[i℄;x2[i℄ = x[i℄-y[i℄;}I tested this out and for n = 100 it took roughly twie as long to solve theproblem with one more fail, �nding a di�erent solution. The reason it works sowell is that it quikly works out that atually y(i) = i for all i. That's beausey(0) � 0 so y(0) = 0; and y(1) � 1 and y(1) 6= 0, so y(1) = 1, and so on. 5 Giventhat twie as long was only 0.44 seonds, that's not bad. I think avoiding �ndinga problem reformulation is well worth 0.24 pu seonds.What I thought was a general symmetry onstraint works well in a ase I didnot design it for. It's always nie when something works outside the sope youoriginally planned it for. My symmetry onstraint does this.5 Disussion & Further WorkWhile my solution is general for indistinguishable values, it may have some draw-baks. First, it only aptures one kind of symmetry, while others may be presentin the problem: for example if at some later stage two bins both have the sameredued apaity, they have an undesirable symmetry whih this onstraint doesnot address. Seond, I do not yet how this onstraint propagates. It may bethat propagation takes plae too late: it may be that the symmetry onstraints5 Given that, I don't understand why it found a di�erent solution.



8don't fail until after onsiderable searh has been done in an invalid part of thesearh spae. There are subtle interations between searh strategy and symme-try propagation. For example, if our searh arefully onstruted bin 3, it mighthave to entirely reonstrut it if symmetry demanded it had to be bin 2 instead.The third drawbak is that it might well be less eÆient than a speial purposeonstraint wired into solver by demons.Despite these potential drawbaks, I feel the new onstraint is valuable inproviding a simple way for breaking symmetry in the ommon ase of indistin-guishable values. It is partiularly easy if somebody has implemented it in theonstraint language that you have used.There are a number of diretions for future researh. I would be happy todisuss these with anyone wishing to help.First, there is the theoretial validation of the onstraints I have introdued.I have established basi orretness, but it remains to be shown whether thevalues of the assoiated arrays an be established only through propagation. Itis also interesting to establish the interation of these onstraints with the searhproess, sine they presuppose a unique preferred assignment.Seond, empirial work is needed to establish the pratial usefulness of theonstraints. It is possible that they meet theoretial desiderata while being im-pratial for one reason or another.Finally, I suggest that one of the main issues faing this and many otherpiees of work on symmetry is the interation between symmetries. Constraintproblems often have muh symmetry in several di�erent parts of the problem.These interat in ompliated ways. The natural way to address one set of sym-metries might be through a symmetry breaking onstraint; a seond might beaddressed through reformulating part of a problem; and a third set of symmetriesmight be addressed by a tehnique suh as symmetry breaking during searh.To ensure that suh tehniques an be ombined orretly in theory and e�e-tively in pratie is one of the big questions faing those researhing symmetrybreaking in onstraint programming.Referenes1. R. Bakofen and S. Will. Exluding symmetries in onstraint-based searh. InProeedings, CP-99. Springer, 1999. LNCS 1713.2. B. Benhamou. Study of symmetry in Constraint Satisfation Problems. In Proeed-ings PPCP'94, pages 246{254, May 1994.3. P. Fleiner, A. Frish, B. Hnih, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh. Sym-metry in matrix models. Tehnial Report APES-30-2001, APES group, 2001. Avail-able from http://www.ds.st-and.a.uk/ apes/reports/apes-30-2001.ps.gz. Submit-ted to SymCon'01 (Symmetry in Constraints), CP2001 post-onferene workshop.4. I.P. Gent and B.M. Smith. Symmetry breaking in onstraint programming. InW. Horn, editor, Proeedings of ECAI-2000, pages 599{603. IOS Press, 2000.5. ILOG S.A. ILOG Solver 4.3 User's Manual. ILOG, 1998.6. B.M. Smith and I.P. Gent. Reduing symmetry in matrix models: Sbds v. on-straints. Tehnial Report APES-31-2001, APES Researh Group, September 2001.Available from http://www.ds.st-and.a.uk/~apes/apesreports.html.


