
Load-balaning iterative omputationson heterogeneous lusterswith shared ommuniation linksArnaud Legrand, H�el�ene Renard, Yves Robert, and Fr�ed�eri VivienLIP, UMR CNRS-INRIA-UCBL 5668, �Eole normale sup�erieure de Lyon, FranefArnaud.Legrand,Helene.Renard,Yves.Robert,Frederi.Vivieng�ens-lyon.frAbstrat. We fous on mapping iterative algorithms onto heteroge-neous lusters. The appliation data is partitioned over the proessors,whih are arranged along a virtual ring. At eah iteration, independentalulations are arried out in parallel, and some ommuniations takeplae between onseutive proessors in the ring. The question is to de-termine how to slie the appliation data into hunks, and assign thesehunks to the proessors, so that the total exeution time is minimized.A major diÆulty is to embed a proessor ring into a network that typ-ially is not fully onneted, so that some ommuniation links have tobe shared by several proessor pairs. We establish a omplexity result as-sessing the diÆulty of this problem, and we design a pratial heuristithat provides eÆient mapping, routing, and data distribution shemes.1 IntrodutionWe investigate the mapping of iterative algorithms onto heterogeneous lusters.Suh algorithms typially operate on a large olletion of appliation data, whihis partitioned over the proessors. At eah iteration, some independent alula-tions are arried out in parallel, and then some ommuniations take plae. Thissheme enompasses a broad spetrum of sienti� omputations, from meshbased solvers to signal proessing, and image proessing algorithms. An abstratview of the problem is the following: the iterative algorithm repeatedly operateson a retangular matrix of data samples. This matrix is split into vertial sliesthat are alloated to the omputing resoures. At eah step of the algorithm,the slies are updated loally, and then boundary information is exhanged be-tween onseutive slies. This geometrial onstraint advoates that proessorsbe organized as a virtual ring. Then eah proessor only ommuniates twie,one with its predeessor in the ring, and one with its suessor. There is noreason to restrit to a uni-dimensional partitioning of the data, and to map itonto a uni-dimensional ring of proessors. But uni-dimensional partitionings arevery natural for most appliations, and we show that �nding the optimal one isalready very diÆult.The target arhiteture is a fully heterogeneous luster, omposed of di�erent-speed proessors that ommuniate through links of di�erent bandwidths. On



the arhiteture side, the problem is twofold: (i) selet the proessors that par-tiipate in the solution and deide for their ordering (whih de�nes the ring);(ii) assign ommuniation routes between eah pair of onseutive proessors inthe ring. One major diÆulty of this ring embedding proess is that some of theommuniation routes will (most probably) have to share some physial om-muniation links: indeed, the ommuniation networks of heterogeneous lusterstypially are far from being fully onneted. If two or more routes share the samephysial link, we have to deide whih fration of the link bandwidth is assignedto eah route. One the ring and the routing have been deided, there remainsto determine the best partitioning of the appliation data. Clearly, the qualityof the �nal solution depends on many appliation and arhiteture parameters.Setion 2, is devoted to the preise and formal spei�ation of our optimiza-tion problem, denoted as SharedRing. We show that the assoiated deisionproblem is NP-omplete. Then, setion 3 deals with the design of polynomial-time heuristis to solve the SharedRing problem. We report some experimentaldata in Setion 4. Finally, we state some onluding remarks in Setion 5. Dueto the lak of spae, we refer the reader to [6℄ for a survey of related papers.2 Framework2.1 Modeling the platform graphComputing osts. The target omputing platform is modeled as a direted graphG = (P;E). Eah node Pi in the graph, 1 � i � jP j = p, models a omputingresoure, and is weighted by its relative yle-time wi: Pi requires wi time-steps to proess a unit-size task. Of ourse the absolute value of the time-unitis appliation-dependent, what matters is the relative speed of one proessorversus the other.Communiation osts. Graph edges represent ommuniation links and are la-beled with available bandwidths. If there is an oriented link e 2 E from Pi toPj , be denotes the link bandwidth. It takes L=be time-units to transfer one mes-sage of size L from Pi to Pj using link e. When several messages share the link,eah of them reeives a fration of the available bandwidth. The frations of thebandwidth alloated to the messages an be freely determined by the user, ex-ept that the sum of all these frations annot exeed the total link bandwidth.The eXpliit Control Protool XCP [5℄ does enable to implement a bandwidthalloation strategy that omplies with our hypotheses.Routing. We assume we an freely deide how to route messages between proes-sors. Assume we route a message of size L from Pi to Pj , along a path omposedof k edges e1; e2; : : : ; ek. Along eah edge em, the message is alloated a frationfm of the bandwidth bem . The ommuniation speed along the path is boundedby the link alloating the smallest bandwidth fration: we need L=b time-unitsto route the message, where b = min1�m�k fm. If several messages simultane-ously irulate on the network and happen to share links, the total bandwidthapaity of eah link annot be exeeded.



Appliation parameters: omputations. W is the total size of the work to beperformed at eah step of the algorithm. Proessor Pi performs a share �i:W ,where �i � 0 and Ppi=1 �i = 1. We allow �j = 0, meaning that proessor Pjdo not partiipate: adding more proessors indues more ommuniations whihan slow down the whole proess, despite the inreased umulated speed.Appliation parameters: ommuniations in the ring. We arrange the partiipat-ing proessors along a ring. After updating its data slie, eah ative proessorsends a message of �xed length H to its suessor. To illustrate the relation-ship between W and H , we an view the original data matrix as a retangleomposed of W olumns of height H , so that one single olumn is exhangedbetween onseutive proessors in the ring.Let su(i) and pred(i) denote the suessor and the predeessor of Pi in thevirtual ring. There is a ommuniation path Si from Pi to Psu(i) in the network:let si;m be the fration of the bandwidth bem of the physial link em that isalloated to the path Si. If a link er is not used in the path, then si;r = 0. Leti;su(i) = 1minem2Si si;m : Pi requires H:i;su(i) time-units to send its message ofsizeH to its suessor Psu(i). Similarly, we de�ne the path Pi from Pi to Ppred(i),the bandwidth fration pi;m of em alloated to Pi, and i;pred(i) = 1minem2Pi pi;m .Objetive funtion. The total ost of one step in the iterative algorithm is themaximum, over all partiipating proessors, of the time spent omputing andommuniating:Tstep = max1�i�p Ifig[�i:W:wi +H:(i;pred(i) + i;su(i))℄where Ifig[x℄ = x if Pi is involved in the omputation, and 0 otherwise. Insummary, the goal is to determine the best way to selet q proessors out of thep available, to assign them omputational workloads, to arrange them along aring, and to share the network bandwidth so that Tstep is minimized.2.2 The SharedRing optimization problemDe�nition 1 (SharedRing(p,wi,E,bem,W ,H)). Given p proessors Pi of yle-times wi and jEj ommuniation links em of bandwidth bem , given the total work-load W and the ommuniation volume H at eah step, minimizeTstep=min1�q�p min�2�q;pPqi=1 ��(i)=1max1�i�q ���(i):W:w�(i)+H:(�(i);�(i�1 mod q)+�(i);�(i+1 mod q))� (1)In Equation 1, �q;p denotes the set of one-to-one funtions � : [1::q℄ ! [1::p℄whih index the q seleted proessors that form the ring, for all andidate valuesof q between 1 and p. For eah andidate ring represented by suh a � funtion,there are onstraints hidden by the introdution of the quantities �(i);�(i�1 mod q)and �(i);�(i+1 mod q), whih we gather now. There are 2q ommuniating paths:



the path Si from P�(i) to its suessor Psu(�(i)) = P�(i+1 mod q) and the path Pifrom P�(i) to its predeessor Ppred(�(i)) = P�(i�1 mod q), for 1 � i � q. For eahlink em in the interonnetion network, let s�(i);m (resp. p�(i);m) be the frationof the bandwidth bem that is alloated to the path S�(i) (resp. P�(i)). We havethe equations:(1� i�q; 1�m�E; s�(i);m�0; p�(i);m�0; Pqi=1(s�(i);m + p�(i);m)�bem1� i�q; �(i);su(�(i))= 1minem2S�(i) s�(i);m ; �(i);pred(�(i))= 1minem2P�(i) p�(i);mSine eah ommuniating path S�(i) or P�(i) will typially involve a few edges,most of the quantities s�(i);m and p�(i);m will be zero. In fat, we have writtenem 2 S�(i) if the edge em is atually used in the path S�(i), i.e. if si;m is notzero (and similarly, em 2 P�(i) if pi;m is not zero). Note that, when q and � areknown, the whole system of (in)equations is quadrati in the unknowns �i, si;j ,and pi;j (we expliit this system on an example in [6℄).From Equation 1, we see that the optimal solution involves all proessors assoon as the ratio WH is large enough: then the impat of the ommuniationsbeomes small in front of the ost of the omputations, and the omputationsshould be distributed to all resoures. Even in that ase, we have to deide howto arrange the proessors along a ring, to onstrut the ommuniating paths,to assign bandwidths ratios and to alloate data hunks. Extrating the \best"ring seems to be a diÆult ombinatorial problem.2.3 ComplexityThe following result states the intrinsi diÆulty of the SharedRing problem(see [6℄ for the proof):Theorem 1. The deision problem assoiated to the SharedRing optimizationproblem is NP-omplete.3 HeuristisWe desribe, in three steps, a polynomial-time heuristi to solve SharedRing:(i) the greedy algorithm used to onstrut a solution ring; (ii) the strategy used toassign bandwidth frations during the onstrution; and (iii) a �nal re�nement.3.1 Ring onstrutionWe onsider a solution ring involving q proessors, numbered from P1 to Pq .Ideally, all these proessors should require the same amount of time to omputeand ommuniate: otherwise, we would slightly derease the omputing load ofthe last proessor and assign extra work to another one (we are impliitly usingthe \divisible load" framework [6℄). Hene (see Figure 1) we have for all i (indiesbeing taken modulo q):Tstep = �i:W:wi +H:(i;i�1 + i;i+1): (2)



time
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p1 p2 p3 p4 p5

�4:W:w4H:3;4�3:W:w3�2:W:w2�1:W:w1
proessorsFig. 1. Summary of omputation and ommuniation times with q = 5 proessors.Sine Pqi=1 �i = 1, Pqi=1 Tstep�H:(i;i�1+i;i+1)W:wi = 1. With wumul = 1Pqi=1 1wi :Tstep =W:wumul 1 + HW qXi=1 i;i�1 + i;i+1wi ! (3)We use Equation 3 as a basis for a greedy algorithm whih grows a solutionring iteratively, starting with the best pair of proessors. Then, it iterativelyinludes a new node in the urrent solution ring. Assume we already have aring of r proessors. We searh where to insert eah remaining proessor Pk inthe urrent ring: for eah pair of suessive proessors (Pi; Pj) in the ring, weompute the ost of inserting Pk between Pi and Pj . We retain the proessorand pair that minimize the insertion ost. To ompute the ost of inserting Pkbetween Pi and Pj , we resort to another heuristi to onstrut ommuniatingpaths and alloate bandwidth frations (see Setion 3.2) in order to ompute thenew osts k;j (path from Pk to its suessor Pj), j;k, k;i, and k;i. One wehave these osts, we an ompute the new value of Tstep as follows:{ We update wumul by adding the new proessor Pk into the formula.{ In Prs=1 �(s);�(s�1)+�(s);�(s+1)w�(s) , we suppress the terms orresponding to thepaths between Pi to Pj and we insert the new terms k;j+k;iwk , j;kwj and i;kwi .This step of the heuristi has a omplexity proportional to (p � r):r times theost to ompute four ommuniating paths. Finally, we grow the ring until wehave p proessors. We return the minimal value obtained for Tstep. The totalomplexity is Ppr=1(p� r)rC = O(p3)C, where C is the ost of omputing fourpaths in the network. Note that it is important to try all values of r, beauseTstep may not vary monotonially with r (for instane, see Figure 5 below).3.2 Bandwidth alloationWe now assume we have a r-proessor ring, a pair (Pi; Pj) of suessive proessorsin the ring, and a new proessor Pk to be inserted between Pi and Pj . Togetherwith the ring, we have built 2r ommuniating paths to whih a fration of theinitial bandwidth has been alloated. To build the new four paths involving Pk,



we use the graph G = (V;E; b) where b(em) is what has been left by the 2r pathsof the bandwidth of edge em. First we re-injet the bandwidths frations used bythe ommuniation paths between Pi and Pj . Then to determine the four paths,from Pk to Pi and Pj and vie-versa:{ We independently ompute four paths of maximal bandwidth, using a stan-dard shortest path algorithm in G{ If some paths happen to share some links, we use an analytial method toompute the bandwidth frations minimizing Equation 3 to be alloated.Then we an ompute the new value of Tstep as explained above, and derive thevalues of the �i. Computing four paths in the network osts C = O(p+ E).3.3 Re�nementsShematially, the heuristi greedily grows a ring by peeling o� the bandwidthsto insert new proessors. To diminish the ost of the heuristi, we never re-alulate the bandwidth frations that have been previously assigned. When theheuristi ends, we have a q-proessor ring, q workloads, 2q ommuniating paths,bandwidth frations and ommuniation osts for these paths, and a feasiblevalue of Tstep. As the heuristi ould appear over-simplisti, we have implementedtwo variants aimed at re�ning its solution. The idea is to keep everything but thebandwidth frations and workloads. One we have seleted the proessor and thepair minimizing the insertion ost in the urrent ring, we perform the insertionand reompute all the bandwidth frations and workloads. We an re-evaluatebandwidth frations using a global approah (see [6℄ for details):Method 1: Max-min fairness. We ompute �rst the bandwidths frationsusing the traditional bandwidth-sharing algorithm [1℄ maximizing the mini-mum bandwidth alloated to a path, then the �i so as to equate all exeutiontimes (omputations followed by ommuniations), thereby minimizing Tstep.Method 2: quadrati resolution. One we have a ring and all the ommu-niating paths, the program to minimize Tstep is quadrati in the unknowns�i, si;j and pi;j . We use the KINSOL library [7℄ to numerially solve it.4 Experimental results4.1 Platform desriptionWe experimented with two platforms generated with the Tiers network genera-tor [3℄. Due to lak of spae, and as the results are equivalent, we only report onthe �rst platform. All results an be found in [6℄. The Tiers generator produesgraphs having three levels of hierarhy (LAN, MAN and WAN). The platformsare generated by seleting about 30% of the LAN nodes (the boxed nodes inFigure 2) whih are the omputing nodes: the other nodes are simple routers.The proessing powers of the omputing nodes are randomly hosen in a list
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Fig. 2. Boxed nodes are omputing nodes: there are 37 of them, onneted through 47routers, and 91 ommuniation links.orresponding to the proessing powers (evaluated using a LINPACK benh-mark [2℄) of a wide variety of mahines. The link apaities are assigned, usingthe lassi�ation of the Tiers generator (LAN link, . . . ), with values measuredby pathhar [4℄ between mahines sattered in Frane, USA, and Japan.4.2 ResultsFigure 3 plots the number of proessors used in the solution ring. As expeted,this number dereases as the ratio H=W inreases: additional omputationalpower does not pay o� the ommuniation overhead. Figure 5 presents the nor-malized exeution time as a funtion of the size of the solution ring for variousommuniation-to-omputation ratios: the optimal size is reahed with fewerproessors as the ratio inreases. Finally, we try to assess the usefulness of thetwo variants introdued to re�ne the heuristi (Figure 4). Surprisingly enough,the impat of both variants is not signi�ant: the best gain is 3%. Thus the plainversion of the heuristi turns out to be both low-ost and eÆient.5 ConlusionThe major limitation to programming heterogeneous platforms arises from theadditional diÆulty of balaning the load. Data and omputations are not evenlydistributed to proessors. Minimizing ommuniation overhead beomes a hal-lenging task. In this paper, the major emphasis was towards a realisti modelingof onurrent ommuniations in luster networks. One major result is the NP-ompleteness of the SharedRing problem. Rather than the proof, the resultitself is interesting, beause it provides yet another evidene of the intrinsi diÆ-ulty of designing heterogeneous algorithms. But this negative result should not
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