
University of Massachusetts - Amherst

From the SelectedWorks of Anna Liu

2009

Capturing Data Uncertainty in High-Volume
Stream Processing
Yanlei Diao
Boduo Li
Anna Liu, University of Massachusetts - Amherst
Liping Peng
Charles Sutton, et al.

Available at: http://works.bepress.com/anna_liu1/3/

http://www.umass.edu
http://works.bepress.com/anna_liu1/
http://works.bepress.com/anna_liu1/3/

Capturing Data Uncertainty in High-Volume
Stream Processing

Yanlei Diao†, Boduo Li†, Anna Liu†, Liping Peng†, Charles Sutton§,
Thanh Tran† Michael Zink†

†University of Massachusetts Amherst §University of California Berkeley

ABSTRACT
We present the design and development of a data stream
system that captures data uncertainty from data collection
to query processing to final result generation. Our system
focuses on data that is naturally modeled as continuous ran-
dom variables such as many types of sensor data. To provide
an end-to-end solution, our system employs probabilistic
modeling and inference to generate uncertainty description
for raw data, and then a suite of statistical techniques to
capture changes of uncertainty as data propagates through
query operators. To cope with high-volume streams, we ex-
plore advanced approximation techniques for both space and
time efficiency. We are currently working with a group of
scientists to evaluate our system using traces collected from
real-world applications for hazardous weather monitoring
and for object tracking and monitoring.

1. INTRODUCTION
As sensor networks continue to expand into various as-

pects of everyday life, we are witnessing uncertain data
streams, where data is incomplete, imprecise, and even mislead-
ing, emanating from a variety of environments. For instance,
uncertain data streams have been observed in environmental
monitoring sensor networks [18], Radio Frequency Identifi-
cation (RFID) networks [33, 61], GPS systems [35], camera
sensor networks [39], and radar sensor networks [40]. As
such data streams are fed into existing stream processing
systems to support tracking and monitoring applications, the
results presented to end applications are often of unknown
quality. Furthermore, volumes of such data streams and per-
formance requirements of real-world applications preclude
the use of complex data analysis in an offline manner.

Our research is particularly motivated by two emerging
sensing applications. The first is object tracking and monitor-
ing using RFID technology, in particular, wide-range mobile
readers that enable cost-effective deployments in inventory
management [22], healthcare [22], library management [20],
etc. Data streams from mobile RFID readers carry primitive

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

information about sensed objects and are highly noisy due
to the sensitivity of sensing to the orientation of reading and
many environmental factors. When such streams are used to
support monitoring applications, e.g., to detect safety viola-
tions regarding flammable objects, the quality of alerts sent
to the end application is of significant concern.

The second application is hazardous weather monitoring
using radar networks [40]. In this application, a wide-area
radar network collects a large amount of meteorological data
and feeds such data into a real-time processing system to
predict natural disasters such as tornados and severe storms.
Uncertainty in such data arises in radar scanning, data com-
pression, merging of different radar streams, etc. Prediction
results derived from such data can thus be error-prone. Given
the potential social impact of this system, it is absolutely vital
to capture the quality of its prediction results.

The two applications above present a number of challenges
to data stream systems: (i) Observed data is inherently in-
complete and noisy, and the noise varies with time and
location. (ii) Observed data is different from data needed
for further processing. In RFID-based tracking and moni-
toring, observed data contains tag ids of objects while data
of interest to monitoring applications concerns object loca-
tions. In weather monitoring, observed data is raw signal
data whereas data needed for further processing is a numeric
description of each unit area of space in terms of reflectivity,
wind speed, etc. Hence, given raw data streams, a stream
system needs to handle both the mismatch between observed
data and data of interest and the noise in observed data. (iii)
In these applications, data streams can arrive at a rate higher
than in traditional sensing applications, e.g., 200Mb/sec from
a single radar node. Such high volumes require that process-
ing of raw data must keep up with stream speed. (iv) In these
applications, after raw data is transformed into a suitable
format, it undergoes sophisticated query processing to de-
rive high-level information. A related challenge is to capture
uncertainty as data propagates through query operators until
the final result and do so at stream speed.

In this paper, we present the design and development of a
data stream system that captures data uncertainty from data
collection to query processing to final result generation. To
support uncertainty as a first-class citizen, our system models
uncertain data items using continuous random variables (which
are natural to most types of sensor data) and describes their
uncertainty using probability density functions (pdf). The
pdfs are transformed as data propagates through various
operators. The final result can be described directly using its
pdf or a confidence region, depending on the application. To

capture uncertainty in high-volume stream processing, our
system employs efficient techniques that are grounded in
probability and statistical theory, and are particularly suited
for manipulation of continuous random variables. Our sys-
tem consists of two main components:

1. Transforming raw streams into tuple streams with
quantified uncertainty. In real-world sensing applications,
raw data streams emanate from devices without any uncer-
tainty description. Transforming raw data by addressing both
the mismatch between observed data and data of interest
and the noise in observed data is a crucial initial step to-
wards building an uncertainty-aware stream system. Recent
research on sensor data cleaning and processing has applied
probabilistic modeling and smoothing to temperature and
light data [18, 19], GPS readings [35], and RFID data from
static readers [21, 33]. However, these techniques do not ad-
dress the mismatch of data formats in our target applications
and performance requirements for such data transformation.

Our system takes a new approach to transforming raw data
streams into tuple streams with quantified uncertainty. This
approach fundamentally extends existing stream systems
with the ability (i) to model the underlying data generation
process and (ii) to use this model and principled probabilis-
tic techniques to infer data of interest. More precisely, the
inference procedure computes a distribution of values for the
uncertain data needed in later processing, and outputs each
inference result in a tuple carrying the obtained distribution.
Our system performs such inference on high-volume streams
by leveraging sampling and other advanced statistical tech-
niques to achieve low cost and scalability.

2. Relational processing of tuple streams under uncer-
tainty. As tuple streams propagate through various opera-
tors, our system also captures uncertainty of intermediate
results as well as the final result. While the type of sensor
data may vary in our applications, capturing uncertainty of
processing results can be supported by a unified framework
because data processing in these applications involves a com-
mon set of relational operators such as aggregation and join.
To quantify result uncertainty of a relational operator, our
system computes a distribution of values for each particular
result that would be produced by the operator in a certain
world. From this distribution, our system can also generate
confidence regions and error bounds when needed.

There has been a recent surge of research on probabilistic
databases [1, 3, 4, 9, 12, 38, 60, 62] and probabilistic stream
processing [11, 31]. Most of existing work models tuples
using discrete random variables and evaluates queries in a
finite set of possible worlds. For efficiency, many systems
avoid computing query result distributions by returning only
a ranked list of results [48], decoupling and postponing result
distribution calculation [3], or partially characterizing result
distributions [11]. Unfortunately, these techniques do not
apply to our problem for two reasons: (i) The continuous
nature of sensor data dictates the use of continuous random
variables and techniques suitable for them. (ii) Our goal
to capture result uncertainty requires sufficient knowledge
about the entire result distribution, which is especially impor-
tant for uncertainty analysis of a pipeline of operators. This
requirement precludes us from using existing techniques that
compromise result distributions for simplified processing.

Among recent work on continuous random variables, Cheng
et al. [9] supports aggregation of n uncertain tuples using
n− 1 integrals, hence inefficient for stream processing. Other

work [25, 30] generates samples over the distribution of n ran-
dom variables, runs query processing using these samples,
and collects the results of these samples into a result distri-
bution. It is an open question how many samples these algo-
rithms need to capture complex real-world distributions and
if they can scale for high-volume streams, e.g., 200Mb/sec.

Given our goal of accurate and fast characterization of each
result distribution, we propose algorithms based on statisti-
cal theory that are natural to continuous random variables
and particularly suited for their common distributions. It
turns out that for many typical database operations such
as aggregation and join over continuous variables, we can
devise efficient algorithms for exact derivation of result dis-
tributions. If such results can be approximated with a small
bounded error, we further consider approximation for even
better performance. In certain complex scenarios where exact
derivation is not possible, we explore fast, effective approxi-
mation suited for high-volume streams.

In the rest of the paper, we describe our target applications
in more detail in Section 2, present our system architecture
in Section 3, and outline technical issues in the two main
system components in Sections 4 and 5.

2. MOTIVATING CASE STUDIES
In this section, we describe two sensing applications that

our system aims to support.

2.1 Object Tracking and Monitoring
In the first application, RFID mobile readers are used to

monitor a storage area such as a warehouse, a retail store, or
a library. The storage area contains shelves S and objects O
affixed with RFID tags. The shelf tags are at known locations
but object tags are not. Usually, objects stay on the same
shelf but sometimes move from one shelf to another. A
mobile RFID reader provides the only means to observe the
area. The reader can be either a handheld reader used by
humans, or mounted on robots for automated monitoring
and order processing (e.g., Kiva systems [37]). The mobile
reader repeatedly scans the storage area. In each scan, it
produces readings that contain the tag ids of observed objects,
the tag ids of observed shelves, and optionally the location of
the reader. These readings have two important characteristics,
described as follows.

First, while the monitoring application wants precise object
locations for further processing, the observed data simply
contains observed tag ids—this is a fundamental limitation
of an identification technology. Even if the reader returns
its location, this does not directly reveal the object location,
which can be twenty feet away in any direction. Second, the
observed data is highly noisy. It is a well-known fact that
the read rate of RFID readers is far less than 100% due to
environment factors such as occluding metal objects, interfer-
ence, and contention among tags. Moreover, mobile readers
may read objects from arbitrary angles and distances, hence
particularly susceptible to variable read rates.

Despite these data quality issues, the monitoring appli-
cation needs accurate object locations to derive high-level
information. We illustrate such needs using a fire monitor-
ing application. Assume that raw RFID readings can be
transformed into a stream of tuples each containing (time,

tag id of Oi, (x, y, z)p), where (x, y, z)p denotes the un-
certain (x, y, z) location of the object.

The first query detects potential violations of a fire code:

display of solid merchandise shall not exceed 200 pounds
per square foot of shelf area. The nested Select-From query
simply adds two attributes to each tuple, the square foot
area that each object belongs to, computed by a function on
its (x, y, z)p location, and the weight of the object, retrieved
by another function using its tag id. Then the outer query
considers tuples in each 5 second window, groups them
based on the square foot area, computes the total weight of
the objects in each group. For groups with the total weight
greater than 200 pounds, it reports the area and the total
weight. The query is written as if the object location were
precise, so the user does not need to worry about this issue.

Q1: Select Rstream(R2.area, sum(R2.weight))
From (Select Rstream(*, area(R.(x,y,z)) As area,

weight(R.tag id) As weight)
From RFIDStream R [Now])
R2 [Range 5 seconds]

Group By R2.area
Having sum(R2.weight) > 200 pounds

The second query triggers an alert when a flammable object
is detected in a area with a high temperature. The query
takes two inputs: an object location stream as described
above, and a temperature stream in form of (time, (x, y, z),
tempp). The query selects flammable objects from one input
and joins them with the temperature stream based on the
equality of location. Again, the query is written as if the
location of an object and the temperature at a location were
precise.

Q2: Select Rstream(R.tag id, R.(x, y, z), T.temp)
From RFIDStream [Range 3 seconds] as R,

TempStream [Range 3 seconds] as T
Where object type(R.tag id) = ‘flammable’ and

T.temp > 60 ℃ and
loc equals(R.(x, y, z), T.(x,y,z))

2.2 Hazardous Weather Monitoring
The Engineering Research Center for Collaborative Adap-

tive Sensing of the Atmosphere (CASA) [7] is leading an
effort to create distributed radar sensor networks with the
goal to detect and monitor hazardous weather events like
tornados [40]. To achieve this goal, CASA radar sensor net-
works are developed based on a closed loop system: In every
60 second cycle (called an epoch), data is transmitted from
the radars to a central node where detection algorithms are
executed. This information is then used to re-steer the radars,
i.e., determining the scanning behavior of each single radar
in the next epoch. This approach allows for the tracking of
tornados or the scanning of a weather event with multiple
radars to obtain a more accurate measurement.

The first CASA testbed consists of 4 radar nodes covering
an area of 7,000 square km in southwestern Oklahoma and
a central node that runs detection algorithms and controls
the scanning of the individual radars. The region in which
the testbed is located receives an average of four tornado
warnings and 53 thunderstorm warnings each year [40].

A fundamental problem that emerges in this system is the
possibility of detection errors caused by the uncertainty in
the data generated by the radars and in the data transformed
in various processing stages. In the following, data quality
issues that can contribute to potential detection errors are
described in more detail. The order of the description follows
the path that the data takes through the system in each epoch,

Results

Merging

 Detection / Predication

Raw Data

Averaged
Moment Data

Raw Data

Averaged
Moment Data

wireless
transmission

Figure 1: The path of data collection and processing in a CASA
radar network for hazardous weather monitoring.

i.e., from the radars through wireless links to the center node
as shown in Figure 1.

High-volume raw data. In each epoch, radars scan the
atmosphere based on the control commands received from
the central node. Each radar sends pulses at a rate of ap-
proximately 2000 pulses per second as it rotates to scan. A
time series data structure is created for each pulse, which
contains 832 range gates (measuring the distance from the
radar) and a data item with four 32-bit floating numbers for
each range gate. Hence, the raw data is generated at a rate
of 1.66 million data items, or 205Mb, per second.

Noise in raw data can result from a variety of factors,
including electronic device noise, instability of transmit fre-
quency, quality issues of the system clock, the positioner, and
the antenna, and finally environmental noise.

Averaged moment data. The radar’s signal processor
transforms the large amount of raw pulse data into moment
data, which is a numeric description of each unit area of
space (called a voxel) using real-valued attributes such as
reflectivity, velocity, and spectral width.

Moment data can be generated for each data item in the
raw pulse data. However, the resulting data volume may
exceed the wireless bandwidth available for transmission to
the central node and stress the tornado detection algorithm
running there. Hence, in the current system moment data is
generated by averaging over the data items from N consecu-
tive pulses but for the same gate. This averaging operation
is essentially a temporal aggregation used to reduce data
volume. But this operation may result in loss of precision in
the processing of large-volume uncertain data.

Merged data. The central node merges streams of mo-
ment data from different radars that monitor overlapping
regions. The merge procedure converts data from polar co-
ordinates (centered at each radar) to Cartesian coordinates
(latitude/longtitude/elevation), and fuses (or in the database
terminology, joins) spatially overlapping data from multi-
ple radars. Then meteorological detection algorithms are
executed to detect tornados, severe storms, etc.

The data quality issue in the merging step is that the con-
version from polar to Cartesian systems can cause uneven
distribution of data density in the Cartesian system, hence
affecting the quality of merged data. The issue is impaired
by the fact that measurements for a certain Cartesian coor-
dinate might be taken at different altitudes. For instance,

Table 1: Tornado detection using averaged moment data from 38 seconds of raw data taken on May 9th 2007 during a
tornadic event. The averaging size 40 is used to represent detection results using fine-grained data. The reported detection
results are averaged over 4 sector scans in the 38 second period.

Averaging Size Moment Data Size (MB) Detection Running Time (sec.) Num. of Reported Tornados False Negatives
40 9.22 27 3.75 0
60 6.15 23 1.5 2.25
80 4.62 21 0.5 3.25

100 3.7 21 0.25 3.75
200 1.87 20 0 3.75
500 0.76 20 0 3.75
1000 0.39 20 0 3.75

the beams of two radars might overlap perfectly in the 2-
dimensional plane but with a significant offset in the 3rd
dimension (altitude).

The quality issues mentioned above could lead to errors
in the detection of meteorological hazards, including the
failure to detect a tornado, misclassification of a detected
tornado, and error in reported location of a detected tornado.
Given the potential social impact of the CASA radar system,
it is absolutely vital that it be augmented with the ability to
capture data uncertainty and quantify result quality. This
ability will enable end users, including National Weather
Service forecasters, emergency managers, and scientists, to
interpret detection results in a more meaningful way and to
make better-informed decisions.

In our project, we aim to address all three uncertainty is-
sues described above. We have performed an initial study
to investigate the uncertainty regarding the averaging of
moment data in more detail. In this study, we obtained 38
seconds of raw data taken in the CASA testbed on May 9th

2007 during a tornadic event. We conducted an experiment
in which the number of raw pulses used for averaging was
varied. Table 1 shows the results for this experiment. Each
row represents one run of the experiment where the only
difference between experiments is the number of pulses av-
eraged. To investigate the impact of averaging, we ran a
tornado detection algorithm on the averaged data. Columns
2 and 3 of Table 1 show the file size of the averaged data and
the running time of the detection algorithm (executed on a
commodity PC with Intel Xeon 2.13 GHz CPU and 4GB of
RAM). Columns 4 and 5 show the detection results, averaged
over 4 sector scans of the radar in the 38 second period.

There are two constraints that have to be taken into account
when evaluating the results of this experiment. First, as
already mentioned the CASA system is a closed-loop system
which has to operate on a 60 second cycle to be able to
track fast moving weather events like tornados. In that 60
second period, there is roughly a 20 second time window
allocated for the execution of the detection algorithm. Second,
the available guaranteed bandwidth on the wireless links
between the radars and the central node is 4 Mbps.

Taking these two constraints into account, it is evident
from Table 1 that only the 500 and 1000 pulse averaging cases
can be used in the existing system. The results also show that
the uncertainty introduced by the high number of averaged
pulses diminishes the quality of the results of the detection
algorithm: in these two cases the detection algorithm would
not report any tornado at all. This is a serious issue since
there are spotter reports of at least a funnel cloud (which is

Confidence
region

T1

T2

A1

A3

A2

J1

A4T3

Mean
Variance
Bounds

Archieved
tuples

tuples w.
lineage

Figure 2: Architecture of an uncertainty-aware stream system.

basically a tornado but does not touch the ground) for the
May 9th event in the coverage area of the radar.

On the other hand, using data with a less number of av-
erage pulses would increase the accuracy of the detection
algorithm significantly. But the current CASA system does
not have this information available because it cannot capture
the effect of averaging over noisy radar streams. Once such
information becomes available, the CASA system can decide
dynamically to which data it can apply aggressive averaging
without affecting the result, hence making CPU and band-
width available for other data for which detailed analysis
increases the quality of detection results significantly.

3. SYSTEM ARCHITECTURE
In this section, we describe the architectural design of an

uncertainty-aware data stream system. Our system supports
stream processing in the general box-arrow paradigm [6]. In
this paradigm, a box represents a query operator and boxes
are connected using arrows that represent the dataflow from
one operator to another. This box-arrow diagram can be
either compiled from a query (e.g., Q1 and Q2 in Section 2.1)
or obtained from a scientific workflow (e.g., the workflow in
the CASA radar system). Our system extends the box-arrow
architecture in two aspects:

Data Capture and Transformation (T) Operator. The task
of capturing uncertainty of raw data streams is encapsulated
in a new “data capture and transformation” (T) operator.
Allocated for each sensor device, a T operator serves as an
ingress operator for the stream processing network. It offers
two functions: First, it transforms raw data into a format
suitable for further processing, e.g., a tuple stream with each

tuple carrying an object location in the RFID application,
or each tuple carrying velocity for each voxel in the radar
application. Second, it includes a probability density func-
tion (pdf) in each output tuple. It is evident that to analyze
uncertainty of further processing results, we need the pdf of
each tuple—merely having mean, variance, and error bounds
does not allow us to capture uncertainty of subsequent query
processing results. Figure 2 illustrates such transformation
for several T operators.

It is important to note that if the tuples produced by a T
operator are independent, the pdf in each tuple completely
characterizes its distribution. However, there are scenarios
where the produced tuples are correlated, in particular, tem-
porally correlated. In our system, the temporally correlated
tuples, X1, X2, ..., Xn, each carry a conditional distribution
p(Xn|Xn−1, ..., Xn−k) where k ≥ 1. This way, a subsequent
operator can construct their joint distribution, when needed,
by multiplying these conditional distributions.

Extended Query Operators. Tuples output from the T
operators are fed into downstream relational operators for
further processing. Our system focuses on selection, aggrega-
tion, and join operators because they are common in query
processing and particularly useful to our target applications.
Besides their obvious application in the RFID example, they
can also model various operations in the radar system. For
instance, the averaging operation in moment data generation
can be modeled using aggregation, and the merging of two
radar streams is a special form of join.1

In our system, a query operator takes a sequence of tuples
and produces a sequence of tuples that contain one of the
following items:

I If the query operator is the last operator, its output tu-
ples can carry full distributions, or alternatively, statis-
tics such as the confidence region (a set of values whose
confidence is over a threshold), mean, variance, or error
bounds, depending on the application.

I If the query operator is an intermediate one and its
output tuples are independent, each output tuple then
carries its own distribution.

I If the query operator is an intermediate one and its
output tuples can be correlated, each output tuple then
contains its lineage, that is, a set of independent tuples
produced from an upstream operator or the tuples from
the initial T operators that were used to produce this tu-
ple. If the input tuples of this operator are independent,
it archives these input tuples for later computation of
the query result distributions.

Figure 2 illustrates the third case using the operator A4. Its
subsequent operator, also the final query operator, J1 uses the
tuple lineage and previously archived independent tuples to
compute its result distributions.

These two extensions of the existing data stream architec-
ture are described in detail in the following sections.

4. UNCERTAINTY OF RAW DATA STREAMS
The foundation for building an uncertainty-aware stream

system is to capture uncertainty of raw data close to the sen-
sor that produces the data—this is a task of the data capture
and transformation (T) operator in our system. To do so,

1The final detection algorithm in the radar system is not relational.
After knowing its input data quality, we will employ a suitable
learning method to capture its result quality in our future work.

we model the data in the transformed format as continuous
random variables that cannot be directly observed (hidden
variables X), and the data in the input format as continuous
or discrete random variables that can be observed (evidence
variables O). The task of data transformation and quantify-
ing data uncertainty amounts to computing the conditional
distribution p(X|O).

While our problem has traditionally been the purview
of statistical machine learning [34], it poses a tremendous
challenge to existing techniques due to the performance re-
quirements of stream systems. For instance, our experimental
results show that to transform a raw RFID data stream to
an object location stream, a standard probabilistic inference
technique can process only 0.1 reading per second for 20
objects [59]—this is neither efficient nor scalable for the data
stream applications that we aim to support. Our work also
differs from recent work in the database community that
applies statistical or machine learning techniques to sensor
types such as temperature and light [18, 19], GPS readings
[35], and RFID data from static readers [21, 33]. This is be-
cause the new types of sensor data in our applications render
different, and often more complex, statistical models, and yet
pose more demanding performance requirements.

The main goal in our design of the data capture and trans-
formation operator is to choose appropriate statistical ma-
chine learning techniques and further optimize them so that
they can be performed for high-volume streams. Below, we
describe a number of statistical techniques and optimizations
employed in our system.

4.1 Modeling and Inference for Streams
The design of a data capture and transformation (T) op-

erator consists of two steps: First, we model the underlying
data generation process using a machine learning technique,
calling graphical modeling, that captures how a sensor pro-
duces data from the true state of world with various types
of noise. Next, we employ probabilistic inference to trans-
form observed data into data of interest based on the data
generation model. We illustrate this approach using mobile
RFID data streams (more details are available in our recent
publication [59]). The description in this subsection provides
a technical context for the optimization issues discussed in
the following subsections.

The first step in the design of a T operator is to develop a
probabilistic model that captures the dynamic and noisy data
generation process. Formally, the model is a joint probability
distribution over all hidden and evidence variables in the
problem domain. In the case of mobile RFID readers, hidden
variables X are the object locations, and evidence variables O
are the readings of objects, readings of shelf tags with known
locations, and the reported reader location. Edges in the
model capture dependencies among variables, e.g., the true
object location and reader location jointly determining if the
object is observed at time t.

Our graphical model is further divided into several com-
ponents that describe how data is generated from the state
of the world, e.g., the RFID sensing process, and how the
state of world changes, e.g., the object location change. Each
component is described using a local probability distribution.
For instance, a distribution for RFID sensing can be devised
using logistic regression over factors such as the distance and
angle between the reader and an object. Then, the theory
of graphical modeling allows us to write the complete joint

distribution using the product of these local distributions.
The second step is to compute the distribution of hidden

variables Xt given observations O1..t from the joint distribu-
tion for the data generation process. In the RFID application,
p(Xt|O1..t) captures the distribution of true object locations
given their observations by a mobile reader. The challenge
is to perform accurate inference at stream-speed and for a
large number of objects.

We approach this problem by adopting sampling-based
inference since exact inference is intractable for our prob-
lem. A common method, called particle filtering, maintains
a list of samples (termed particles) of the state of all hidden
variables and weights the samples based on all observations
received thus far. Over time the weighted particles become
an approximation of the target conditional distribution.

Our system employs a series of optimizations of a particle
filter to achieve efficiency and scalability in stream processing.
Factorization breaks a large particle over all hidden variables
into smaller particles over individual hidden variables while
obeying the dependency constraints in our graphical model.
This allows us to reduce the worst case of an exponential
number of particles to a linear number of particles for each
variable (object). After factorization, spatial indexing can fur-
ther limit the set of variables that must be processed at each
time step, since a reader can only observe a small set of
objects at a time. After object particles stabilize in a small
region, compression can further reduce the number of parti-
cles needed for each object. Through these optimizations,
our system improves particle filtering from processing 0.1
reading per second given 20 objects to over 1000 readings per
second in most cases given 20,000 objects, e.g., achieving 7
orders of magnitude improvement in scalability.

4.2 Exploring Speed-Accuracy Tradeoffs
Sampling-based inference presents a fundamental tradeoff

between accuracy and performance. Figure 3(a) and 3(b)
show the results of performing inference for a highly noisy
trace of RFID readings. In particular, these figures show
that the inference error reduces but the computation cost
increases as we increase the number of particles used for
each object. Hence, it is important to determine this tradeoff
dynamically given application requirements.

If the application has an accuracy requirement, our system
finds the minimum number of particles that allows inference
to meet the accuracy requirement. To measure inference ac-
curacy dynamically, our system uses reference objects with
known true information. In the RFID example, these objects
are shelf tags at fixed locations that are known a priori. Then
our system (conceptually) replicates the nodes of these objects
in the graphical model such that one copy serves as evidence
variables and the other as hidden variables. This way, we can
obtain estimated locations from the copy of hidden variables
and compare them with the true locations to measure infer-
ence accuracy. To dynamically adjust the number of particles,
our system uses a feedback control method: it starts with a
relatively small number of particles and keeps doubling this
number before meeting the accuracy requirement. After that,
it reduces the number of particles by a constant each time
until it finds the smallest number. A similar method can be
used to maximize accuracy while meeting the application
performance requirement.

4.3 Approximating Result Distributions

The third issue is how to generate an output stream with
sufficient statistics about uncertainty. In the RFID example,
each tuple in the output stream describes the estimated lo-
cation of an object. Some applications may require only the
confidence region of the estimated location, e.g., with 90%
confidence that the object is in a certain range. Some other
applications, however, may require further processing of the
location stream. To capture uncertainty of such further pro-
cessing, each tuple in the location stream must carry the full
distribution of the object location. We call the distribution in
each tuple the tuple-level distribution.

A direct way to generate a tuple-level distribution is to
include in each tuple the weighted samples (particles) used
in inference. This is naturally a sample-based representation
of the tuple-level distribution. An obvious problem with this
approach is that every tuple now carries tens or hundreds
of samples. This will increase the stream volume by one or
two orders of magnitude. In addition, it will slow down
further query processing because those samples need to be
processed one at a time.

For both time and space efficiency, our system converts a
sample-based tuple level distribution into an approximate
parametric distribution such as a Gaussian distribution or
more flexible distributions. Our system does so by mini-
mizing the KL divergence (a standard measure of “distance”
between distributions) KL(p̂‖q), where p̂ is the sample-based
tuple level distribution, and q is the target parametric distri-
bution. Assume p̂ to be a list of value-weight pairs, {(xi, wi)}.
Consider a Gaussian distribution N(µ, σ2) for q. Then,

KL(p̂‖q) = ∑
i

wi · log
wi

q(xi)

= ∑
i

wi · log(wi · σ ·
√

2π) + ∑
i

wi ·
(xi − µ)2

2σ2

Minimizing KL(p̂‖q) allows us to find the optimal Gaussian
parameters to represent p̂. That is, µ = ∑i wi · xi and σ2 =
∑i wi · (xi − µ)2. Hence, we can efficiently convert a sample-
based distribution to the closest Gaussian using two scans of
the list of samples. Similar formulas are available to convert
sample-based distributions into multivariate Gaussians.

While approximating a sample-based distribution using a
Gaussian distribution is efficient, there are scenarios where
we have to consider more flexible parametric distributions
to reduce the error of such approximation. In the RFID
application, an object may have recently moved from one
location to another. The samples for this object’s location can
be temporarily spread over two locations. Approximating
these samples using a single Gaussian is obviously inaccu-
rate. Then a mixture of Gaussians may be appropriate, in
which one component of the Gaussian corresponds to the
possibility that the object has not moved, while the other
represents possible new locations of the object. Selecting
the number of mixture components, that is, the number of
”humps” in the mixture, can be done using standard model
selection techniques such as Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). Both
of these techniques attempt to choose a number of compo-
nents that explain the data well while penalizing models that
require many mixture components.

4.4 Alternative Techniques for Extremely High
Volume Streams

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 100 1000 10000

In
fe

re
nc

e
E

rr
or

 in
 X

Y
 P

la
nc

e
(f

t)
Number of Objects

50 particles
100 particles
200 particles

(a) Inference error

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 1000 10000

T
im

e
pe

r
E

ve
nt

 (
m

s)

Number of Objects

200 particles
100 particles

50 particles

(b) CPU time

Figure 3: Accuracy and performance results for a high noisy RFID trace.

We described above the design issues for the data capture
and transformation operator using the RFID application. We
are also investigating these issues for the weather monitoring
application. In the second application, the raw data stream
contains pulse data from each radar and the transformed
stream contains a tuple for each voxel that has moment data
including reflectivity, velocity, etc. for that voxel.

Our idea of modeling the data generation process and
augmenting the transformed stream with a distribution for
each tuple still applies. However, this application presents
two challenges to graphical modeling that aims to completely
characterize the data generation process. The first challenge
is the complexity of the data generation process. As men-
tioned in §2.2, the quality of observed data is affected by
many factors such as environmental noise, electronic device
noise, instability of transmit frequency, and inaccuracy of the
system clock, the positioner, and the antenna. Precisely de-
scribing a data generation process involving all these factors
requires significant domain knowledge. The second chal-
lenge is that the data volume in this application is extremely
high, e.g., 1.66 million data items (205Mb) per second. It
is an open question if sampling-based inference, even with
optimizations, can keep up with such stream speeds.

To cope with the complexity of the problem and the ex-
tremely high stream volume, we seek alternative modeling
techniques that allow us to quickly obtain an approximation
of the distributions of the moment data. We observe that
in this application, the transformation from the raw data
to the moment data is deterministic and based on precise
formulas (unlike the RFID application). Hence, we can ob-
tain the transformed moment data stream and characterize
its uncertainty using a relatively simple time series model.
For a concrete example, consider the velocity data for a par-
ticular voxel. We denote the obtained velocity series using
variables O1, ..., Ot, and their true values using variables X1,
..., Xt. We can describe the uncertainty of velocity data using
p(X1, ..., Xt|O1, ..., Ot). To do so, we consider the Autore-
gressive Moving Average (ARMA) Model that captures how
Xt relates to the previous variables (autoregression) and the
noise factors in the recent period (moving average). Formally,

Xt =
p

∑
i=1

aiXt−i +
q

∑
i=1

biεt−i + εt + C

where εt is the noise term for time t, and C is a constant.
There are well known numeric methods that given observed
data, find the ARMA(p,q) model together with the coeffi-

cients that best fits the data. These fitting methods, however,
may take many passes over the data to find the best fitting.
Hence, they may still be slow for the stream volume in the
CASA system.

For improved efficiency, we reduce the overhead of model-
ing to the minimum using two techniques. First, we model
Xt simply using the moving average model (MA) with no
autoregression. This assumption is likely to hold for a short
sequence of data: due to frequent sampling, a short sequence
of data tends to describe the same phenomena, hence obvi-
ating the need of autoregression, but with correlated noise
factors. As such, the work needed for modeling is to identify
sequences where the MA assumption holds. Based on statis-
tical theory, sequences obeying the MA assumption can be
identified by computing their k-lag autocorrelations, which
can be performed using at most two scans of the input se-
quence. Second, if we know that the first query operator
on the transformed stream is aggregation such as average
and sum, which is true in the CASA system, we do not need
to fit the MA model precisely. This is because we can use
the Central Limit Theorem to obtain asymptotic results for
aggregation, disregarding the precise input distributions, as
long as the MA assumption holds.

5. UNCERTAINTY OF QUERY PROCESS-
ING RESULTS

After uncertain tuple streams are generated from the raw
data from each sensor device, they then go through various
operators to produce final results. Hence, it is also impor-
tant to capture uncertainty of such processing results. Our
system considers common relational operators, including se-
lection, aggregation, and join, which provide general support
for both of our target applications. Our system quantifies
result uncertainty of each query operator by computing a
distribution for each result tuple. More precisely, a result
distribution is a distribution of values for each tuple that
would be produced by the operator in a certain world, e.g.,
the total weight for each square foot area for Q1 and the
temperature of each object for Q2 from Section 2.1. The main
goal is to characterize result distributions of these operators
accurately and efficiently for high-volume streams.

Characterizing result distributions for inputs involving
continuous random variables is a difficult task. Existing solu-
tions have been based on either an integral-based approach
[9] or a sampling-based approach [25, 57]. The former ap-
proach is an exact derivation of the result distribution, based
on statistical theory for continuous random variables. The

derived distribution is accurate but the computation is slow.
For instance, for aggregation over n input tuples, the two
variable convolution algorithm in [9] uses n-1 integrals. The
latter approach discretizes the continuous distributions and
samples from the discretized distributions. When a small
number of samples is used, the computation is fast but with
potential loss of accuracy. To accurately characterize complex
real-world distributions, the number of samples needed can
be large, and hence the performance suffers.

A main idea underlying our work is to explore advanced
statistical techniques that are natural and particularly suited
for continuous random variables. These techniques include
using common continuous distributions and Gaussian mix-
ture distributions as models, and using characteristic func-
tions and order statistics to compute result distributions di-
rectly. These techniques allow us to perform exact derivation
of result distributions without using integration or using it to
the minimum extent. Furthermore, our work applies approx-
imation whenever possible to simplify computation. Such
approximation techniques have the promise of achieving a
balance between speed and accuracy in a more effective way
than sampling-based methods.

Below, we illustrate our ideas using aggregation operators
(but leave the detailed techniques for aggregation and other
operators to our future work). We also discuss issues related
to composed operators at the end of the section.

5.1 Aggregation Operators
An aggregation operator takes N tuples, modeled as N

random variables, and performs an operation, such as sum
or max, on these variables. The correlation structure among
these variables determines appropriate techniques. Domain
knowledge can be used to infer the correlation structure.
In the RFID example, object locations can be considered in-
dependent if domain knowledge reveals that objects move
in space independently. In the radar system, however, the
data items for the 2000 pulses in each second form a corre-
lated time series, due to frequent sampling. Given a realized
sequence of N random variables, model testing and identifica-
tion tools ([5], Chapter 9) can be used to test the randomness
and determine the order of correlation if it does exist.

Independent variables. We take sum as an example in
the following discussion. To sum N independent variables,
the exact result distribution can be obtained through inver-
sion of the characteristic function (CF) of the sum, which is
the product of the characteristic functions of the individual
summands. For variables with common distributions, the
characteristic functions usually have closed form representa-
tions, which greatly reduces the computation cost. This way,
the inversion expresses the exact result distribution using a
single integral, in contrast to N-1 integrals in [9]. If the single
integral is still time-consuming to evaluate, we can further ap-
proximate the result distribution using Gaussian or mixture
of Gaussian distributions. The parameters of these distribu-
tions can be identified by fitting the characteristic functions
of the Gaussian or mixture of Gaussian distributions to the
closed form characteristic function of the sum.

To investigate these ideas, we performed an initial experi-
ment that compares the performances of the histogram-based
sampling algorithm [25], the inversion of the characteristic
function, and the approximation of the characteristic function.
The input distributions are different for different tuples, and
are generated from mixture Gaussian distributions to simu-

late arbitrary real-world distributions. We use the exact result
distribution calculated from the inversion of the characteristic
function as a criterion to calibrate the accuracy. We compute
the variance distance to capture the distance between the
exact distribution and the output of each of the other two
algorithms, based on the formula in [25]. Table 2 summa-
rizes the results of performing sum over non-overlapping
windows of N=100 tuples.

Table 2: Algorithm comparison for performing sum over a
tuple stream. A tumbling window of size of 100 tuples is
used for aggregation.

Algorithm Throughput Variance Distance∈ [0,1]
Histogram 3382 0.083
CF (inversion) 466 0
CF (approx.) 10593 0.012

These results show that for the given workload, the ap-
proximation of the characteristic function performs the best
in terms of both speed and accuracy. The inversion-based
method gives the exact result distribution, but is too slow
for stream processing as the result of using a single integral.
(Hence we conclude that the algorithm using N-1 integrals in
[9] is infeasible for stream processing). The histogram-based
sampling method does not achieve a good balance between
speed and accuracy.

Additional approximation techniques are available. For
instance, approximation to the result distribution can be
obtained through the Central Limit Theorem for sum of
independent variables, when the number of the effective
summands is fairly large ([54], Chapter 1.9). When certain
conditions are met, the Central Limit Theorem states that the
distribution of the sum converges to a normal distribution,
regardless of the distributions of the summands. When this
can be applied, the compution cost for the result distribution
is almost zero.

Correlated variables. If the input tuples are correlated,
e.g., forming a time series, exact derivation of the result dis-
tribution of sum can be difficult, although not impossible. For
the given joint distribution of the summands, the distribution
of the sum can be obtained through multivariate integrations.
Numerical methods such as adaptive quadrature or Monte
Carlo integration can be used [42].

Approximation techniques also depend on specific correla-
tion structures. One technique that pertains to our hazardous
weather monitoring is the Central Limit Theorem for time
series [6]. As stated in section 4.4, in the observed velocity
series, we can use the autocorrelation function to identify
sub-series length to aggregate upon so that the subseries can
be modeled as an MA model. For a series that is from an
MA model, the Central Limit Theorem states that the average
velocity has an asymptotic normal distribution, of which the
mean and variance can be estimated based on the sample
mean and sample autocorrelation function.

5.2 Composed Operators
If a query involves multiple operators, the intermediate

results can be correlated even if the input tuples to the first
operator(s) are independent. We need to carefully exam-
ine when such correlation occurs. In the radar system, for
instance, the raw data first undergoes temporal averaging
across consecutive pulses and then a merge (join) between

streams from different radar nodes. The first average, how-
ever, does not create correlated results because it is applied
to non-overlapping segments of the raw data stream—such
aggregation is very common in scientific applications (also
reported in [29]). On the other hand, if a join is followed by
an aggregation, the join may produce correlated results by
matching a tuple from one input with multiple tuples from
the other. Then characterizing result distributions of aggrega-
tion with correlated inputs requires the full joint distribution
of input tuples and is hard to compute.

A general solution to computing result distributions from
correlated intermediate tuples is to use sampling and den-
sity estimation to obtain the result distribution. However,
this can be slow for high-volume streams. Given our focus
on selection, join, and aggregation and their uses in real-
world applications, we aim to identify common patterns of
correlation and explore several types of optimization and
approximation to obtain the result distributions.

Complex functions. A simpler solution is possible if we
can treat several composed operators as a single complex
function. Then we only need to deal with independent in-
puts. Such complex functions are possible for a series of
mathematical computations (e.g., aggregation). Even with
join and aggregation combined, in some cases it is possible
to write the combined operation using a single continuous
function. Take Q2 from section 2.1 as the join example. One
way to do the join is to first smooth the temperature trace
and express the temperature as a function h over the inferred
location of an object. Now if we were to aggregate tem-
perature over a set of objects, the aggregation result can be
expressed using a complex function over a set of temperature
functions, one for each object. If the complex function is
differentiable, we can apply the transformation theory for
continuous random variables to obtain the exact result distri-
bution, or the multivariate Delta method to approximate the
result distribution for efficiency.

Lineage. Another useful technique is to exploit lineage [3,
62] about how correlated tuples are produced. Such lineage
helps determine the correlation structure among tuples and
eliminates the need of computing full joint distributions for
intermediate tuples. Given the correlation structure, the last
query operator has the flexibility to optimize its computa-
tion. For instance, the last operator can use fast techniques
for the subset of independent tuples and more sophisticated
techniques for the subset of correlated tuples. When this op-
erator computes result distributions for a set of tuples with
overlapping lineage structures, it can apply optimizations to
compute for all these tuples in a shared manner (similar to
[52]). Furthermore, it may also be possible to find approx-
imate lineage [50] that gives a good approximation of the
result distributions and allows more efficient computation.

In our immediate future research, we will explore a num-
ber of issues related to applying lineage to uncertain data
streams where tuples are modeled using continuous random
variables. Given our focus on selection, join, and aggrega-
tion, we will study how to compute result distributions using
lineage for this set of operators. In particular, aggregation
significantly complicates the computation and hence remains
unaddressed by existing work on modeling uncertain data
using continuous variables [57]. We will also address the effi-
ciency of computation and optimizations mentioned above,
which have been mostly studied for probabilistic databases,
in the new context of stream systems. We will further con-

sider compact representations of lineage to reduce the vol-
ume of intermediate streams passed between operators.

6. RELATED WORK
Sensor data management has been an area of intensive

recent research [43, 64, 44, 18, 10, 16, 19, 63, 55, 56, 65].
The sensor data considered in these studies contains incom-
plete and noisy measurements of environmental phenomena
such as temperature and light. Regarding modeling, the
work most relevant to ours [18, 17, 16] builds statistical mod-
els to capture correlations among attributes and attribute
value changes, enabling reduced sensing rates while meeting
a query-specified confidence. FunctionDB [58] transforms
discrete sensor observations into continuous functions and
supports querying over these functions.

Our work differs in three aspects. First, we consider differ-
ent types of sensor data, i.e., RFID data from mobile readers
and meteorological data from radar networks. Our sensing
processes are different and more complex, hence requiring
more sophisticated modeling techniques. Second, our work
also quantifies uncertainty of query results as noisy data goes
through various processing stages, which has been under-
addressed in existing sensor data research. Third, our work
captures data uncertainty over high-volume streams and
hence employs many optimizations for efficiency and scala-
bility in such stream processing.

Sensor data stream cleaning aims to build an abstraction
of device data appropriate for query processing [21, 32, 61],
which is similar to our work on capturing uncertainty of raw
sensor data. SMURF [33] considers RFID readings generated
by static readers and mitigates the effect of missed readings
by applying temporal and spatial smoothing. SMURF and
other recent studies on RFID stream cleaning [61, 49] offer
coarse-grained location information, e.g., whether an object
is in the large read range of the reader or in an office, which
may not be precise enough for object tracking in our target
application. In addition, these studies consider at most one
hundred objects. Probabilistic inference techniques such
as Kalman filters have also been used to filter and smooth
noisy GPS readings [35]. In comparison, our work employs
different modeling techniques to handle mobile RFID data
and radar data, and explores optimizations to do so on high-
volume streams. Our work also captures the quality of query
processing results from such data.

Probabilistic databases have been an area of intensive re-
cent research[1, 3, 4, 9, 12, 38, 36, 53, 60, 62]. In a probabilistic
database, each tuple exists with a certain probability [2, 8,
12, 41]; such tuple existence is essentially characterized by
a Bernoulli distribution. Each tuple may further contain a
distribution over a set of values [51]. Given such tuple mod-
els in a discrete and finite domain, a probabilistic database is
a probability distribution over all database instances called
possible worlds [12]. Query evaluation applies a query to each
possible world, and adds the probabilities of all possible
worlds that return the same answer, yeilding a distribution of
possible query answers. Dalvi and Suciu [12, 13] have iden-
tified cases when one can compute the result distribution
directly from the probababilities of base tuples and when
one has to consider all possible worlds. For efficiency, sev-
eral studies attempt to avoid the computation of the result
distribution by simply returning a ranked list of results [48]
or using lineage to decouple and postpone the computation
of result probabilities [3, 46, 52, 62].

There have been a few recent studies that model uncer-
tain data using continuous random variables [9, 25, 30, 57].
Among them, Cheng et al. [9] support SUM and COUNT
over n uncertain tuples by integrating two variables at a time,
resulting in a total of (n− 1) integrals. Since integrals are
very expensive to compute and the number of tuples for a
single aggregation can be large, this algorithm is infeasible
for stream processing. Other work [25, 30] generates samples
over the distribution of n random variables, runs query pro-
cessing using these samples, and collects the results of these
samples into a result distribution. A concern with these algo-
rithms is the need of a large number of samples to achieve
accuracy for arbitrary real-world distributions, hence slow
for high-volume streams.

Our work differs from probabilistic databases in several
important aspects. First, we capture certainty of both raw
data and results of processing such data, whereas probabilis-
tic databases assume that probabilities of tuples already exist.
Second, due to the continuous nature of sensor data, our
work employs techniques that are natural and suitable for
continuous random variables and are fundamentally differ-
ent from those for discrete variables based on the possible
world semantics. Finally, we capture data and query result
uncertainty over streams, in contrast to doing so within a
database, and thus focus on time and space efficiency of our
techniques.

Probabilistic stream processing has gained research at-
tention very recently. Issues in such processing over sensor
data streams are discussed in [23]. Existing work [11, 31]
adopts the finite and discrete tuple model used in probabilis-
tic databases. As stated above, many of the techniques for
discrete variables cannot be applied for problems involving
continuous variables. Furthermore, the existing work pro-
duces mean, variance, and higher moments to describe the
result distributions, which cannot be easily used to compute
the distribution of subsequent operators.

Approximate query processing [15, 24, 26, 27, 28, 14, 45,
47, 10] addresses a fundamentally different problem: While
the uncertainty of raw data and query results computed from
such data is inherent in our problem, approximate query
processing trades off exact query processing for approximate
answers to improve query performance, to adapt to resource
constraints, or to save energy consumption.

7. SUMMARY
As of December 2008, we have implemented a prototype

system that includes a data capture and transformation (T)
operator for mobile RFID data streams, and an initial simple
T operator for radar data streams. We are currently building
a library of techniques for efficiently deriving result distribu-
tions for selection, join, and aggregation. We have collected
traces from both of our target applications. We are evaluating
individual techniques using these traces and plan to integrate
them into a full stream system using an existing data stream
implementation such as [29]. We hope to eventually evaluate
our techniques in the operational CASA radar system.

8. ACKNOWLEDGMENTS
This work has been supported in part by the National

Science Foundation under the grants IIS-0746939 and IIS-
0812347, and EEC-0313747. We would like to thank Prashant
Shenoy, Richard Cocci, and Yanming Nie for their contribu-

tions to the RFID case study. We also thank Ming Li, David
Pepyne, and Eric Lyons for their valuable help with the CASA
case study.

9. REFERENCES
[1] L. Antova, C. Koch, and D. Olteanu. From complete to

incomplete information and back. In SIGMOD, pages 713–724,
2007.

[2] D. Barbará, H. Garcia-Molina, and D. Porter. The management
of probabilistic data. IEEE Trans. Knowl. Data Eng., 4(5):487–502,
1992.

[3] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. Uldbs:
Databases with uncertainty and lineage. In VLDB, pages
953–964, 2006.

[4] H. C. Bravo and R. Ramakrishnan. Optimizing mpf queries:
decision support and probabilistic inference. In SIGMOD,
pages 701–712, 2007.

[5] P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods.
Springer Series in Statistics, 1998.

[6] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams: a new class of data management
applications. In VLDB, pages 215–226, 2002.

[7] http://www.casa.umass.edu/. Engineering Research Center
for Collaborative Adaptive Sensing of the Atmosphere (CASA).

[8] R. Cavallo and M. Pittarelli. The theory of probabilistic
databases. In VLDB, pages 71–81, 1987.

[9] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD, pages
551–562, 2003.

[10] J. Considine, F. Li, G. Kollios, and J. W. Byers. Approximate
aggregation techniques for sensor databases. In ICDE, pages
449–460, 2004.

[11] G. Cormode and M. Garofalakis. Sketching probabilistic data
streams. In SIGMOD, pages 281–292, 2007.

[12] N. N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, pages 864–875, 2004.

[13] N. N. Dalvi and D. Suciu. Management of probabilistic data:
foundations and challenges. In PODS, pages 1–12, 2007.

[14] A. Das, J. Gehrke, and M. Riedewald. Approximate join
processing over data streams. In SIGMOD, pages 40–51, 2003.

[15] A. Deshpande, M. N. Garofalakis, and R. Rastogi.
Independence is good: Dependency-based histogram synopses
for high-dimensional data. In SIGMOD, pages 199–210, 2001.

[16] A. Deshpande, C. Guestrin, W. Hong, and S. Madden.
Exploiting correlated attributes in acquisitional query
processing. In ICDE, pages 143–154, 2005.

[17] A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic
models for data management in acquisitional environments. In
CIDR, pages 317–328, 2005.

[18] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks. In
VLDB, pages 588–599, 2004.

[19] A. Deshpande and S. Madden. MauveDB: supporting
model-based user views in database systems. In SIGMOD,
pages 73–84, 2006.

[20] I. Ehrenberg, C. Floerkemeier, and S. Sarma. Inventory
management with an RFID-equipped mobile robot. In IEEE
Conference on Automation Science and Engineering (CASE), pages
1020–1026, 2007.

[21] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi,
E. W. 0002, O. Cooper, A. Edakkunni, and W. Hong. Design
considerations for high fan-in systems: The HiFi approach. In
CIDR, pages 290–304, 2005.

[22] S. Garfinkel and B. Rosenberg, editors. RFID: Applications,
Security, and Privacy. Addison-Wesley, 2005.

[23] M. N. Garofalakis, K. P. Brown, M. J. Franklin, J. M. Hellerstein,
D. Z. Wang, E. Michelakis, L. Tancau, E. W. 0002, S. R. Jeffery,
and R. Aipperspach. Probabilistic data management for
pervasive computing: The data furnace project. IEEE Data Eng.
Bull., 29(1):57–63, 2006.

[24] M. N. Garofalakis and P. B. Gibbons. Approximate query
processing: Taming the terabytes. In VLDB, 2001.

[25] T. Ge and S. B. Zdonik. Handling uncertain data in array
database systems. In ICDE, pages 1140–1149, 2008.

[26] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using
probabilistic models. In SIGMOD, pages 461–472, 2001.

[27] P. B. Gibbons. Distinct sampling for highly-accurate answers to
distinct values queries and event reports. In VLDB, pages
541–550, 2001.

[28] P. B. Gibbons and Y. Matias. New sampling-based summary
statistics for improving approximate query answers. In
SIGMOD, pages 331–342, 1998.

[29] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan,
H. Balakrishnan, and S. Madden. Xstream: a signal-oriented
data stream management system. In ICDE, pages 1180–1189,
2008.

[30] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J.
Haas. Mcdb: a monte carlo approach to managing uncertain
data. In SIGMOD, pages 687–700, 2008.

[31] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee.
Estimating statistical aggregates on probabilistic data streams.
In PODS, pages 243–252, 2007.

[32] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom.
Declarative support for sensor data cleaning. In Pervasive,
pages 83–100, 2006.

[33] S. R. Jeffery, M. J. Franklin, and M. N. Garofalakis. An adaptive
RFID middleware for supporting metaphysical data
independence. VLDB Journal, 17(2):265-289, 2007.

[34] M. I. Jordan, editor. Learning in graphical models. MIT Press,
Cambridge, MA, USA, 1999.

[35] B. Kanagal and A. Deshpande. Online filtering, smoothing and
probabilistic modeling of streaming data. In ICDE, pages
1160–1169, 2008.

[36] B. Kanagal and A. Deshpande. Efficient query evaluation over
temporally correlated probabilistic streams. In ICDE, 2009. To
appear.

[37] Kiva. http://www.kiva.edu/.
[38] C. Koch and D. Olteanu. Conditioning probabilistic databases.

In VLDB, 2008.
[39] P. Kulkarni, P. J. Shenoy, and D. Ganesan. Approximate

initialization of camera sensor networks. In EWSN, pages
67–82, 2007.

[40] J. F. Kurose, E. Lyons, D. McLaughlin, D. Pepyne, B. Philips,
D. Westbrook, and M. Zink. An end-user-responsive sensor
network architecture for hazardous weather detection,
prediction and response. In AINTEC, pages 1–15, 2006.

[41] L. V. S. Lakshmanan, N. Leone, R. B. Ross, and V. S.
Subrahmanian. Probview: A flexible probabilistic database
system. ACM Trans. Database Syst., 22(3):419–469, 1997.

[42] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer,
October 2002.

[43] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a tiny aggregation service for ad-hoc sensor networks. In
Proceedings of the 5th symposium on Operating systems design and
implementation (OSDI), pages 131–146, 2002.

[44] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor networks.
In SIGMOD, pages 491–502, 2003.

[45] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. S. Manku, C. Olston, J. Rosenstein, and R. Varma. Query
processing, approximation, and resource management in a data
stream management system. In CIDR, 2003.

[46] M. Mutsuzaki, M. Theobald, A. de Keijzer, J. Widom,
P. Agrawal, O. Benjelloun, A. D. Sarma, R. Murthy, and
T. Sugihara. Trio-One: Layering uncertainty and lineage on a
conventional dbms (demo). In CIDR, pages 269–274, 2007.

[47] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis
diffusion for robust aggregation in sensor networks. In SenSys,
pages 250–262, 2004.

[48] C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query
evaluation on probabilistic data. In ICDE, pages 886–895, 2007.

[49] C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event queries
on correlated probabilistic streams. In SIGMOD, pages 715–728,
2008.

[50] C. Ré and D. Suciu. Approximate lineage for probabilistic
databases. In VLDB, 2008.

[51] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom.
Working models for uncertain data. In ICDE, page 7, 2006.

[52] A. D. Sarma, M. Theobald, and J. Widom. Exploiting lineage
for confidence computation in uncertain and probabilistic
databases. In ICDE, pages 1023–1032, 2008.

[53] P. Sen, A. Deshpande, and L. Getoor. Exploiting shared
correlations in probabilistic databases. In VLDB, 2008.

[54] R. J. Serfling. Approximation Theorems of Mathematical Statistics
(Wiley Series in Probability and Statistics). Wiley-Interscience,
February 1981.

[55] A. Silberstein, R. Braynard, and J. Yang. Constraint chaining:
on energy-efficient continuous monitoring in sensor networks.
In SIGMOD, pages 157–168, 2006.

[56] A. Silberstein, K. Munagala, and J. Yang. Energy-efficient
monitoring of extreme values in sensor networks. In SIGMOD,
pages 169–180, 2006.

[57] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. E. Hambrusch,
J. Neville, and R. Cheng. Database support for probabilistic
attributes and tuples. In ICDE, pages 1053–1061, 2008.

[58] A. Thiagarajan and S. Madden. Querying continuous functions
in a database system. In SIGMOD, pages 791–804, 2008.

[59] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy.
Probabilistic inference over rfid streams in mobile
environments. In ICDE, 2009. To appear.

[60] D. Z. Wang, E. Michelakis, M. Garofalakis, and J. Hellerstein.
Bayesstore: Managing large, uncertain data repositories with
probabilistic graphical models. In VLDB, 2008.

[61] E. Welbourne, N. Khoussainova, J. Letchner, Y. Li,
M. Balazinska, G. Borriello, and D. Suciu. Cascadia: a system
for specifying, detecting, and managing rfid events. In MobiSys,
pages 281–294, 2008.

[62] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In CIDR, pages 262–276, 2005.

[63] W. Xue, Q. Luo, L. Chen, and Y. Liu. Contour map matching
for event detection in sensor networks. In SIGMOD, pages
145–156, 2006.

[64] Y. Yao and J. Gehrke. Query processing in sensor networks. In
CIDR, 2003.

[65] Y. Zhuang, L. Chen, X. S. Wang, and J. Lian. A weighted
moving average-based approach for cleaning sensor data. In
Proceedings of the 27th International Conference on Distributed
Computing Systems (ICDCS), 2007.

	University of Massachusetts - Amherst
	From the SelectedWorks of Anna Liu
	2009

	Capturing Data Uncertainty in High-Volume Stream Processing
	tmpK4jwm_.pdf

