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Macroscopic Quantum
Interference from Atomic

Tunnel Arrays
B. P. Anderson and M. A. Kasevich

Interference of atomic de Broglie waves tunneling from a vertical array of
macroscopically populated traps has been observed. The traps were located in
the antinodes of an optical standing wave and were loaded from a Bose-Einstein
condensate. Tunneling was induced by acceleration due to gravity, and inter-
ference was observed as a train of falling pulses of atoms. In the limit of weak
atomic interactions, the pulse frequency is determined by the gravitational po-
tential energy difference between adjacent potential wells. The effect is closely
related to the ac Josephson effect observed in superconducting electronic systems.

Josephson-effect interference experiments have
become paradigms for understanding the phys-
ical manifestations of the phases of macroscop-
ic quantum systems (1, 2). Bose-Einstein con-
densation in dilute alkali vapors (3) and recent
interference studies with Bose-Einstein con-
densed atoms (4) raise the possibility of observ-
ing similar phase-dependent dynamics with di-
lute neutral-atom systems (5).

In the ac Josephson effect, application of a
dc voltage, V, across a tunnel junction be-
tween two superconducting reservoirs leads
to an alternating current through the junction
with a frequency proportional to the applied
voltage (6). The physical origin of the effect
is the temporal interference of two macro-
scopic quantum states u1& and u2& of differing
chemical potentials m1 and m2, respectively.
The voltage-induced chemical potential dif-
ference between the states, m1 2 m2 5 2eV,
leads to a linear evolution of their relative
quantum mechanical phase at a rate (m1 2
m2)/\ (\ is Planck’s constant, h, divided by
2p). This temporal phase slip results in an
alternating current of frequency 2eV/\.

In our experiment, interference occurs be-
tween macroscopic quantum states comprising

Bose-Einstein condensed atoms confined in an
array of optical traps in a gravitational field.
Neglecting atomic interactions, the chemical
potential difference between adjacent traps is
determined by the gravitational potential UG 5
mgz, which is analogous to the applied voltage
in the ac Josephson effect (m is the atomic
mass, g the acceleration due to gravity, and z is
the vertical coordinate). The traps are formed at
the antinodes of a vertically oriented optical
standing wave, which are separated by Dz 5
l/2 (l is the wavelength of light used to confine
the atoms), and the chemical potential differ-
ence is mgl/2. Coherent tunneling from these
traps leads to a time-dependent atom current
that is modulated at the frequency vJ 5 mgl/
2\. This frequency depends only on fundamen-
tal constants, g, and the wavelength of the
confining light.

A combined optical-plus-gravitational trap-
ping potential similar to those used in this study
is illustrated in Fig. 1. The quantum transport
properties of periodic sloping potentials for sin-
gle particles have been studied as models for
electron motion under the influence of a static
electric field in a crystal lattice (7). For weak
external potential gradients, the external field
can be treated as a perturbation to the band
structure associated with the lattice. In this lim-
it, wave packets remain confined in a single

band and the external field drives coherent os-
cillations at the Bloch frequency (8). At higher
field strengths, the field drives interband tran-
sitions to higher lying states, as first calculated
by Zener in the context of dielectric breakdown
in solids (9).

Our experimental parameters are in the re-
gime where the bare lattice potential (neglect-
ing the gravitational slope) supports only one
band below its energy maximum. The width of
this band is comparable to the gravitationally
induced offset between adjacent wells of the
combined potential. A single-particle eigenstate
localizes over a small cluster of adjacent lattice
sites (10). Particles that tunnel out of these
states rapidly progress to a continuum state in
which the lattice potential is a negligible per-
turbation on the gravitationally accelerated
wave packet trajectories. The lattice states are
populated in such a way that the wave function
associated with the qth lattice position can be
accurately described by the macroscopic state
Cq 5 nq

1/2 eifq(t). In the noninteracting limit,
where effects due to interatomic collisions are
negligible, the atom density nq is determined by
the single-particle wave function and the num-
ber of atoms, and the macroscopic phase fq(t)
depends only on the initial phase at time t 5 0
and the gravitational energy.

For appropriate experimental parameters,
each lattice state can have a potentially sig-
nificant tunneling probability into the (un-
bound) continuum and can be modeled as a
point emitter of de Broglie waves with an
emission rate proportional to the tunneling
probability. The output from an array of such
emitters localized at positions zq

0 is obtained
by summing over the coherent emission from
each well. For an array of N traps the emis-
sion is

C~ z,t! 5

O
q 5 1

N

Aq~t!expF iE~kqdz 2 vqdt 1 fq
0!G

(1)

where \kq 5 m=2gz 2 zq
0  and \vq 5
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mgzq
0 are the momentum and total energy

associated with the gravitationally accelerat-
ed de Broglie wave, respectively (11). The
coefficient Aq parameterizes both the tunnel-
ing time (emission rate) from the bound state
to the continuum and the trap population
(which changes slowly with time as the trap
is depleted), and fq

0 is the initial relative
phase between traps at time t 5 0. The model
assumes that the lattice has a negligible in-
fluence on the atoms once they are in the
continuum.

Because the frequencies vq are equally
spaced by an increment vJ 5 mgl/2\, we
expect the detection probability uCu2 to be
periodic with that frequency. The relative
phases of the interfering components deter-
mine the detailed structure of the periodic
atomic current. If the wells are initially pop-
ulated with identical relative phases, as is the
case in our experiment, the resulting proba-
bility distribution is a train of pulses (Fig.
2A). If the phases are randomly distributed
(Fig. 2B), pulses no longer form. We con-
firmed the validity of the model in the non-
interacting limit by comparing it with numer-
ical solutions of the time-dependent Schröd-
inger equation, as shown in Fig. 2, C and D.

Pulse formation can be viewed equiva-
lently as Zener tunneling at the turning point
of a Bloch oscillation (9). Atoms confined in
the lowest band oscillate at the Bloch fre-
quency mgl/2\, identical to the Josephson
frequency vJ identified above. At the diffrac-
tion point in the Bloch cycle, the external
field induces an interband transition to the
continuum band, and a pulse is formed (12).
The tunneling probability per oscillation, first
calculated by Zener, is

P 5 expS2 le2

8\2gD (2)

where e is the energy gap between the
groundstate band and continuum states. Out-
put pulses, then, are also signatures of an
alternating atom current flowing between

macroscopically populated lattice sites.
In our experimental approach, laser-

cooled and trapped atoms were loaded into a
magnetic trap and evaporatively cooled to
temperatures below the Bose-Einstein con-
densation threshold. After condensing, atoms
were transferred into the optical lattice and
the magnetic trap was turned off. By adjust-
ing the depth of the optical wells, we could
control the tunneling rate from the wells so
that it was fast enough to observe atoms
leaving the traps, but slow enough to allow
for direct observation of many periods of the
temporally modulated signal described above
before the traps were depleted.

The experimental apparatus (Fig. 3) has
been described in detail elsewhere (13).
Briefly, atoms were loaded into a magneto-
optic trap (14) from a dilute 87Rb vapor by
established laser-cooling and trapping tech-
niques (15). After a ;200-s loading interval,
atoms were transferred into a magnetic time-
averaged orbiting potential (TOP) trap (16)
and were subsequently evaporatively cooled
(17) by slowly reducing the trap depth and
increasing the trap spring constants. A final
radio frequency–induced evaporation stage
was used to cool the atoms to condensation.
We typically created condensates of ;104

atoms after ;30 s of evaporative cooling.
After the phase transition, the magnetic trap
spring constants were adiabatically reduced
by a factor of 400 to 1000, enabling us to vary
both the size and density of the condensate.
The atoms were imaged with standard (de-
structive) absorptive imaging techniques: The
shadow cast by a weak resonant probe laser
beam, aligned to pass through the trapping
region, was magnified and imaged onto a
cooled slow-scan charge-coupled device
(CCD) camera (Fig. 3). An image of a nearly

pure Bose-Einstein condensate is shown in
Fig. 4A.

The optical lattice traps were created by a
standing wave of light whose wavelength l
5 2p/k 5 850 nm was far detuned from the
780-nm Rb-cooling and trapping transitions
(18). The effective potential from this laser
field was UL . UL(x,y)sin2(kz), where
UL(x,y) was determined by the transverse
intensity profile of the (nearly Gaussian) laser
beams (19). The 1/e2 radius of the transverse
profile was ;80 mm, an order of magnitude
larger than the transverse radius of the con-
densate. The well depths, which scale linearly
with the intensity of the beam, could be con-
trolled electronically with an acousto-optic
modulator. At full intensity (;80 W/cm2),
the trap depths at the center of the beam were
2.1ER, where ER is the recoil energy.

Atoms were transferred into the optical
lattice from the magnetic trap by ramping up
the intensity of the laser field (over 20 ms)
while holding atoms in a weak magnetic trap.
After this ramp, the magnetic quadrupole
field was suddenly turned off. (The rotating
magnetic field was left on to maintain the
spin polarization of the sample.) The number
of traps loaded (and the number of atoms in
each trap) depended on the initial spatial
extent of the condensate. For our parameters,
about 30 wells were loaded. In recent related
work, Stamper-Kurn et al. demonstrated con-
finement of Bose-Einstein condensed Na at-
oms in a far-detuned optical trap formed by a
single, tightly focused, traveling-wave laser
beam (20).

We measured the lifetime of the atoms
confined in the lattice potential by recording
images after various holding times. For a
2.1ER-deep lattice, the observed lifetime was
;50 ms. This loss is consistent with tunnel-

Fig. 1. The effective optical-plus-gravitational
potential U/ER for parameters used in our ex-
periment (ER [ \2k2/2m is the photon recoil
energy with k 5 2p/l). The horizontal oscillat-
ing curves illustrate de Broglie waves from the
tunnel output of each well. In region A, the
relative phases of the waves interfere construc-
tively to form a pulse. Heavy lines illustrate the
energies of the lowest bound states of harmon-
ic oscillator potentials that match the shapes of
the actual potentials near each local energy
minimum.

Fig. 2. (A) Model given by Eq.
1 for uniform initial phases,
evaluated at t 5 10 ms. The
parameters Aq(t) were taken
to be independent of time
(weak tunneling limit) and to
have a Gaussian dependence
on q (with a 1/e half-width of
15 wells). (B) Model given by
Eq. 1 for random initial phas-
es. (C) Numerical solution to
the time-dependent Schröd-
inger equation showing the
formation of pulses for the
Hamiltonian H 5 p2/2m 1
UL 1 UG ( p is the momen-
tum operator). The initial
state (t 5 0) was approxi-
mated by a set of Gaussian
wave packets. Each wave
packet was initially localized
at a lattice site, with a width determined by a harmonic approximation of the local potential
minimum. The overall wave function amplitudes were scaled by a Gaussian envelope, and the initial
phases for the wave functions were chosen to be identical. (D) Numerical solution for random
initial phases. In (C) and (D), the large amplitude distribution near z 5 0 shows the relative
population confined in the lattice. This trapped distribution is not shown in (A) and (B).
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ing loss calculated from Eq. 2 (for e ; ER)
and also with numerical solutions to the time-
dependent Schrödinger equation. The ob-
served loss rate is much faster than the ex-
pected loss from off-resonant scattering of
lattice photons or three-body collisions (21).

Faster tunneling rates were obtained by
operating at a reduced optical intensity. Al-
though these higher rates led to rapid deple-
tion of the traps, they allowed for direct
observation of the tunnel array output, as

predicted in Eq. 1. This output is shown in
Fig. 4, B to E, for a well depth of 1.4ER. We
observed a train of pulses similar to the array
output illustrated in Fig. 2, A and C. The
pulse period obtained from the measured spa-
tial separation of the pulses was 1.10 6 0.05
ms, in good agreement with the expected
value of 1.09 ms for g 5 9.8 m/s2. The
measurement uncertainty arises in the spatial
calibration of the imaging system. In our
analysis, we assumed that the influence of the

lattice potential on wave packet trajectories
could be neglected after atoms had tunneled
from the optical traps (verified numerically).
Each pulse contained ;103 atoms. This cor-
responds to phase space densities per pulse
that are well above the condition for quantum
degeneracy (22). The tunneling rate could be
increased by lowering the well depths, pro-
ducing fewer pulses with more atoms per
pulse. For example, well depths of 1.0ER

produced a train of about four pulses before
the initially trapped population was depleted.

For high densities, we expect mean field
interactions (23) to contribute to the chemical
potential differences between adjacent lattice
sites and potentially dephase the tunnel array
output. The magnitude of this effect is estimat-
ed by calculating the interaction energies for the
estimated particle densities in the lattice traps.
At a peak density of n0 5 1013/cm3, the mean
field energy UMF 5 4p\2an0/m (a 5 5.5 nm is
the s-wave scattering length) is kB z 4 nK (kB is
the Boltzmann constant) per particle at the max-
imally populated well. For comparison, the ki-
netic energy per particle is ; ER 5 kB z 157 nK
(24). The corresponding groundstate frequency
shift due to the mean-field interaction is 80 Hz,
whereas the maximum differential shift be-
tween adjacent wells is 4 Hz. Inclusion of shifts
of these magnitudes in Eq. 1 shows that they are
not large enough to dephase the pulse output
during our observation time (10 ms). The ef-
fects of the mean-field interaction were con-
trolled by changing the density of atoms in the
trap. When we transferred at densities greater
than 1013/cm3, we reached a regime where we
observed a degradation in the interference.

The ac Josephson effect has played a key
role in the determination of 2e/h and the volt
by means of the Josephson voltage-frequency
relation (25). High accuracy is obtained by
converting voltage measurements into fre-
quency measurements. One might expect
similar gains in accuracy to be possible with
atoms in, for example, the measurement of
the strengths of weak forces. In our experi-
ment, careful measurement of the pulse tim-
ing leads to precise determination of g. A
nonlinear fit to the pulse train of Fig. 4E
yields a value of g 5 9.6 6 0.4 m/s2, where
the error is dominated by the systematic un-
certainty in the imaging magnification. Use
of a localized probe beam to detect individual
pulses directly in the time domain would
eliminate this uncertainty. The statistical er-
ror from the fit produces a resolution of dg ;
1024g after a 10-ms measurement time, or
;1025g/Hz1/2. Higher sensitivities could be
achieved by increasing vJ, which might be
accomplished with a superlattice potential
created from the interference of laser beams
of differing frequencies to increase the spac-
ing between adjacent wells (26).

Atomic analogs of Josephson effects
could also be used in measurements of other

Fig. 3. Illustration of the appara-
tus. The ultrahigh vacuum cham-
ber was designed to allow f/2.5
optical access through high-
quality optical viewports at-
tached to the chamber with in-
dium metal seals. The quadru-
pole field coils for the magnetic
trap are shown above and below
the vacuum chamber. Not shown
are the coils used to form the
rotating field for the TOP trap
and the laser beams used to ini-
tially laser cool and trap the at-
oms. A Bose-Einstein condensate was created at the center of the vacuum chamber and then
loaded into the optical lattice. The spatial distribution of the atoms was imaged with a resonant,
collimated, circularly polarized laser beam that was pulsed on through a window in the chamber
and was incident on the atoms. The atoms absorbed light from the probe laser, leaving a shadow
in the resulting probe beam intensity profile. This shadow was imaged onto a CCD camera with the
illustrated optics. The absorption profile of the image was used to infer the atomic density profile.
The probe beam was pulsed on when the rotating bias field was parallel with the propagation axis
of the light. The measured resolution of the imaging system was 4.5 mm.
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Fig. 4. (A) Absorption image of a Bose-Einstein condensate in a TOP trap. (B to E) Absorption
images after fixed holding times in the optical lattice showing the time development of the pulse
train; 3 ms (B), 5 ms (C), 7 ms (D), and 10 ms (E). Because the imaging process was destructive, a
new condensate was created for each of these images. Pulses at the lower portion of the image
were emitted at earlier times. The false-color scale is identical for (B) to (E) but was adjusted for
(A) to avoid saturation. In images (B) to (E) the uppermost spot is an image of the lattice array,
which overlaps with the last emitted pulse. The imaging resolution was not sufficient to resolve
individual lattice sites. (F) The integrated absorption profile for (E), obtained by summing over the
horizontal cross-sections. The solid black curve shows a nonlinear least squares fit to a series of
Gaussian pulses constrained to be separated by a fixed time interval. The time between successive
pulses can be inferred from their observed spatial separation. The measured intervals are (from the
bottom to the top pulse) 1.13, 1.11, 1.09, 1.10, 1.05, 1.14, and 1.09 ms.
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weak forces. For example, van der Waals–
Casimir forces might be measured by inter-
ferometrically observing changes in the tun-
neling characteristics as the microtraps are
brought near a surface. However, possible
systematic shifts arising from mean-field in-
teractions would need to be characterized.

Study of transport in a regime with strong
nonlinearities induced by the mean-field in-
teractions is an interesting problem in its own
right, with ties to the problem of phase-lock-
ing in Josephson arrays (27) and the Bose-
Hubbard model (28). These nonlinearities
might be exploited to generate and study
squeezed states of the atom field. We expect
that relatively straightforward modifications
of our experimental parameters should enable
quantitative studies in this regime.

The tunnel array output can also be viewed
as an atom laser (29) whose coherence length
(.500 mm) greatly exceeds the dimensions of
the resonator. The time-domain pulses are di-
rectly analogous to the output of a mode-locked
laser source (30), in which interference occurs
between many properly phased continuous-
wave output beams. The nearly constant time
interval between successive pulses directly im-
plies that the relative phase associated with
each pulse envelope is well defined.
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Viscoelastic Flow in the Lower
Crust after the 1992 Landers,

California, Earthquake
Jishu Deng,* Michael Gurnis, Hiroo Kanamori, Egill Hauksson

Space geodesy showed that broad-scale postseismic deformation occurred after
the 1992 Landers earthquake. Three-dimensional modeling shows that afterslip
can only explain one horizontal component of the postseismic deformation,
whereas viscoelastic flow can explain the horizontal and near-vertical displace-
ments. The viscosity of a weak, about 10-km-thick layer, in the lower crust
beneath the rupture zone that controls the rebound is about 1018 pascal
seconds. The viscoelastic behavior of the lower crust may help to explain the
extensional structures observed in the Basin and Range province and it may be
used for the analysis of earthquake hazard.

The Landers Mw 7.3 earthquake is dominated
by right-lateral strike-slip shear along four
major multibranched fault segments (1) (Fig.
1A). Previous observations showed that post-
seismic deformation occurred in the local
pull-apart basins or compressive jogs where
two or more branches intersect on the surface
(2). The local deformation within these fault
structures can be explained by a time-depen-
dent change in fluid pore pressure (2, 3).

In addition to the fault-localized postseis-
mic effects, broad-scale (for example about
one to several fault lengths) postseismic de-
formation following the Landers earthquake

has been observed by the global positioning
system (GPS) and interferometric synthetic
aperture radar (InSAR) measurements (4–8).
The northern part of the earthquake rupture
along the Emerson fault, moved in the hori-
zontal direction perpendicular to the fault
trace (fault-normal direction) for tens of mil-
limeters (4) to the southwest. The GPS mea-
surements (4) and InSAR images (5) also
constrain postseismic rebound in the horizon-
tal fault-parallel and near-vertical satellite
line-of-sight (LOS) directions. Whether this
broad-scale time-dependent rebound is driven
by continuous afterslip below seismogenic
depth on the fault plane (4, 8, 9) or by
viscoelastic flow in the lower crust in re-
sponse to the coseismic stress concentration
(10–13) is not well understood. Savage (14)
demonstrated the difficulty of distinguishing
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