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Abstract

While ATM bandwidth-reservation techniques are able to o�er the guarantees necessary for
the delivery of real-time streams in many applications (e.g. live audio and video), they su�er
from many disadvantages that make them inattractive (or impractical) for many others. These
limitations coupled with the exibility and popularity of TCP/IP as a best-e�ort transport
protocol have prompted the network research community to propose and implement a number
of techniques that adapt TCP/IP to the Available Bit Rate (ABR) and Unspeci�ed Bit Rate
(UBR) services in ATM network environments. This allows these environments to smoothly
integrate (and make use of) currently available TCP-based applications and services without
much (if any) modi�cations. However, recent studies have shown that TCP/IP, when imple-
mented over ATM networks, is susceptible to serious performance limitations. In a recently
completed study, we have unveiled a new transport protocol, TCP Boston, that turns ATM's
53-byte cell-oriented switching architecture into an advantage for TCP/IP. In this paper, we
demonstrate the real-time features of TCP Boston that allow communication bandwidth to be
traded o� for timeliness. We start with an overview of the protocol. Next, we analytically char-
acterize the dynamic redundancy control features of TCP Boston. Next, We present detailed
simulation results that show the superiority of our protocol when compared to other adaptations
of TCP/IP over ATMs. In particular, we show that TCP Boston improves TCP/IP's perfor-
mance over ATMs for both network-centric metrics (e.g., e�ective throughput and percent of
missed deadlines) and real-time application-centric metrics (e.g., response time and jitter).

Keywords: ATM networks; TCP/IP; Adaptive Information Dispersal Algorithm; real-time
communication; congestion control; performance evaluation.
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1 Introduction

The increasing reliance on the Transmission Control Protocol (TCP) [28]|a reliable transport

protocol that uses a window-based ow and error control algorithm on top of the Internet Protocol

(IP) layer|as the transport protocol of choice for many Internet/Intranet applications that require

real-time (or near real-time) performance is evident. One reason for this is the mushrooming use

of the TCP/IP-based World Wide Web as an infrastructure for large-scale distributed information

systems, the access of which may be essential for applications that are subject to soft or �rm

timing constraints. The proliferation of TCP/IP is clearly manifest in the vast array of services

and applications that rely on TCP's robust functionality and its hiding of the underlying details

of networks of various scales and technologies, from Local Area Networks (LANs) to Wide Area

Networks (WANs), and from Ethernets to Satellite networks.

Recently, the premise of high-speed communication using Asynchronous Transfer Mode (ATM)

technology has raised the hopes for a better support of real-time (or near real-time) applications.

However, the inability of this technology to e�ectively support TCP/IP has dampened such hopes.

The ATM technology is a connection oriented, 53-byte cell-based transport technology, which of-

fers high-speed switching for both LANs and WANs. ATM is designed to support a variety of

applications with diverse requirements using both bandwidth-reservation and best-e�ort techniques.

Motivation: While bandwidth-reservation techniques are able to o�er the guarantees necessary

for the delivery of real-time streams in many applications (e.g. live audio and video), they su�er

from many disadvantages that make them inattractive (or impractical) for many others.

First, the self-similarity (large and unpredictable variability) of real-time tra�c (e.g. MPEG

video streams [22, 21]) makes bandwidth reservation techniques inherently ine�cient in their use

of bandwidth, especially in applications that require the concurrent transmission of real-time data

(i.e. subject to absolute and relative temporal constraints [30]) from/to a large number (potentially

thousands) of sources/destinations. Setting up virtual circuits with guaranteed bandwidth for such

connections is simply impractical, particularly given that the nature of data transmission (e.g.

rates and sources) may vary wildly. Example applications include real-time network monitoring

and visualization, large-scale group simulations, and etc.

Second, the setting up and tearing down of virtual circuits with guaranteed-bandwidth are ex-

pensive operations that may not be justi�ed for short-lived connections. Such connections, involving

short �le transfers (e.g. using HTTP or FTP) are likely to constitute the majority of inter/intranet

tra�c in the future [17, 18, 1]. Example applications requiring such short-lived connections include

�nancial trading through the use of agent technology, interactive bidding, Internet chat rooms, and

etc.
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These limitations coupled with the exibility and popularity of TCP/IP as a best-e�ort trans-

port protocol have prompted the network research community to propose and implement a number

of techniques that adapt TCP/IP to the Available Bit Rate (ABR) and Unspeci�ed Bit Rate (UBR)

services in ATM network environments. This allows these environments to smoothly integrate (and

make use of) currently available TCP-based applications and services without much (if any) mod-

i�cations [16]. However, recent studies [11, 24, 31] have shown that TCP/IP, when implemented

over ATM networks, is susceptible to serious performance limitations.

Adapting TCP/IP to ATM: The poor performance of TCP over ATMs is mainly due to packet

fragmentation. Fragmentation occurs when an IP packet ows into an ATM virtual circuit through

the AAL5 (ATM Adaptation Layer 5), which is the emerging, most common AAL for TCP/IP [2]

over ATMs. AAL5 acts as an interface between the IP and ATM layers. It is responsible for the

task of dividing TCP/IP's large data units (i.e., the TCP/IP packets) into sets of 48-byte data

units called cells. Since the typical size of a TCP/IP packet is much larger than that of a cell,1

fragmentation at the AAL is inevitable. In order for a TCP/IP packet to successfully traverse

an ATM switching network (or subnetwork), all the cells belonging to that packet must traverse

the network intact. The loss even of a single cell in any of the network's ATM switches results in

the corruption of the entire packet to which that cell belongs. Notice however that when a cell is

dropped at a switch, the rest of the cells that belong to the same packet still proceed through the

virtual circuit, despite the fact that they are destined to be discarded by the destination's AAL at

the time of packet-reassembly, thus resulting in low e�ective throughput.

There have been a number of attempts to remedy this problem by introducing additional switch-

level functionalities to preserve throughput when TCP/IP is employed over ATM. Examples include

the Selective Cell Discard (SCD)2 [3] and the Early Packet Discard (EPD) [31]. In SCD, once a

cell c is dropped at a switch, all subsequent cells from the packet to which c belongs are dropped

by the switch. In EPD, a more aggressive policy is used, whereby all cells from the packet to which

c belongs are dropped, including those still in the switch bu�er (i.e. preceding cells that were in

the switch bu�er at the time it was decided to drop c). Notice that both SCD and EPD require

modi�cations to switch-level software. Moreover, these modi�cations require the switch-level to be

aware of IP packet boundaries|a violation of the layering principle that was deemed unavoidable

for performance purposes in [31].

The simulation results described in [31] show that both SCD and EPD improve the e�ective

throughput of TCP/IP over ATMs. In particular, it was shown that the e�ective throughput

1This is mainly due to TCP/IP's headers (the minimum number of bytes required for commonly used TCP/IP

header �elds is 40).
2Also called Partial Packet Discard (PPD) in [31].
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achievable through the use of EPD approaches that of TCP/IP in the absence of fragmentation.

It is important to note that these results were obtained for a network consisting of a single ATM

switch. For realistic, multi-hop ATM networks the cumulative wasted bandwidth (as a result

of cells discarded through SCD or EPD) may be large, and the impact of the ensuing packet

losses on the performance of TCP is likely to be severe. To understand these limitations, it is

important to realize that while dropping cells belonging to a packet at a congested switch preserves

the bandwidth of that switch, it does not preserve the ABR/UBR bandwidth at all the switches

preceding that (congested) switch along the virtual circuit for the TCP connection. Moreover, any

cells belonging to a corrupted packet which would have made it out of the congested switch will

continue to waste the bandwidth at all the switches following that (congested) switch. Obviously,

the more hops separating the TCP/IP source from the TCP/IP destination, the more wasted

ABR/UBR bandwidth one would expect even if SCD or EPD techniques are used. This wasted

bandwidth translates to low e�ective throughput, which in turn results in more duplicate data

packets transmitted from the source, in e�ect increasing the response time for the applications.

To summarize, techniques for improving TCP/IP's performance over ATMs based on link-level

enhancements do not take advantage of ATM's unique, small-sized cell switching environment; they

cope with it, and in doing so, these techniques result in a performance that is not appropriate for

real-time applications.

Our Research: In a recent study [9], we have unveiled a new transport protocol, TCP Boston,

that turns ATM's packet fragmentation problem into an advantage for TCP/IP, thus enhancing

the performance of TCP in general and its performance in ATM environments in particular. The

rationale that motivates the design of TCP Boston lies in our answer to the following simple

question: Could a partial delivery of a packet be useful? Our answer is yes. In other words, the

en route loss of one fragment (or more) from a packet does not render the rest of the fragments

belonging to that packet useless. TCP Boston manages to make use of such partial information,

thus preserving network bandwidth. At the core of TCP Boston is the Adaptive Information

Dispersal Algorithm (AIDA), an e�cient encoding technique that allows for dynamic redundancy

control. AIDA makes TCP/IP's performance less sensitive to cell losses, thus ensuring a graceful

degradation of TCP/IP's performance when faced with congested resources. The details of TCP

Boston, along with analytical and simulation results that show its superior performance, have been

presented in [10].

In this paper, we unveil the real-time capabilities of TCP Boston that allow it to trade o�

network bandwidth for timeliness through the use of AIDA's Forward Error Correction (FEC)

features. We start in section 2 with an overview of TCP Boston. In section 3, we present our
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simulation model and experimental setup, and proceed with the presentation of our simulation

results, contrasting the performance of TCP Boston to those of TCPReno and Vegas, and to those of

TCP Reno and Vegas with the EPD switch-level enhancements. These simulations demonstrate the

superiority of our protocol|measured using both network-centric metrics (e.g., e�ective throughput

and percentage of missed deadlines) and application-centric metrics (e.g., response time and jitter).

We conclude in section 4 with a summary and a discussion of our on-going work.

2 TCP Boston: Principles, Protocol, and Implementation

We start this section with an introduction to AIDA. Next, we show how to incorporate AIDA into

the TCP/IP stack, and we discuss the various implementation aspects that are incorporated in the

current version of TCP Boston (hereinafter interchangeably referred to by \Boston") that is used

in our simulations.

2.1 An Introduction to AIDA

AIDA is a novel technique for dynamic bandwidth allocation, which makes use of minimal, con-

trolled redundancy to guarantee timeliness and fault-tolerance up to any degree of con�dence.

AIDA is an elaboration on the Information Dispersal Algorithm of Michael O. Rabin [29], which

has been previously shown to be a sound mechanism that considerably improves the performance

of I/O systems, parallel/distributed storage devices [5], and real-time broadcast disks [8]. The use

of IDA for e�cient routing in parallel architectures has also been exploited in [25].

To understand how IDA works, consider a segment S of a data object to be transmitted. Let

S consist of m fragments (hereinafter called cells). Using IDA's dispersal operation, S could be

processed to obtain N distinct pieces in such a way that recombining any m of these pieces, m � N ,

using IDA's reconstruction operation, is su�cient to retrieve S. Both the dispersal and reconstruc-

tion operations (which can be performed in real-time [6]) are simple linear transformations using

irreducible polynomial arithmetic.3

Several redundancy-injecting protocols (similar to IDA) have been suggested in the literature.

In most of these protocols, redundancy is injected in the form of parity, which is only used for

error detection and/or correction purposes [23]. The IDA approach is radically di�erent in that

redundancy is added uniformly; there is simply no distinction between data and parity. It is this

feature that makes it possible to scale the amount of redundancy used in IDA. Indeed, this is the

basis for Adaptive IDA (AIDA) [7]. Using AIDA, a bandwidth allocation operation is inserted after

the dispersal operation but prior to transmission as shown in �gure 1. This bandwidth allocation

3For more details, we refer the reader to [29, 8].
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step allows the system to scale the amount of redundancy used in the transmission. In particular,

the number of cells to be transmitted, namely n, is allowed to vary from m (i.e., no redundancy)

to N (i.e., maximum redundancy).

A1

A2

Am

A’1

A’2

A’N

A’1

A’2

A’n

A’1

A’2

A’r

A1

A2

Am

Dispersal Bandwidth
 Allocation Transmission Reconstruction

(only if  r >= m)

Figure 1: AIDA dispersal and reconstruction

In order to appreciate the advantages that AIDA brings to TCP Boston, we must understand

the main di�culty posed by fragmentation. When a cell is lost en route, it becomes impossible for

the receiver to reconstruct the packet to which that cell belonged unless: (1) there is enough extra

(redundant) cells from the packet in question to allow for the recovery of the missing information

(e.g., through parity), or (2) the cell is retransmitted. These two alternatives are described next.

Spatial Redundancy: The �rst solution above suggests the use of spatial redundancy to mask

erasures (cell losses). While feasible, such a technique may be quite wasteful of bandwidth (since

the redundant information will have to be communicated whether or not erasures occur), and is not

likely to help when cell losses exceed the forward erasure capacity of the encoding scheme, which

is almost certainly the case since cells are typically dropped in \batches" when switches run out of

bu�er space. An example of the use of this approach is the study in [12], which suggests the use of

Forward Error Correction (FEC) for real-time, unreliable video communication over ATM. In that

study, FEC was shown to allow the trading of bandwidth for timeliness. FEC's performance was

shown to depend on many parameters including the network load, the level of redundancy injected

into FEC tra�c, and the percentage of connections (tra�c) using FEC. FEC was shown to be most

e�ective when corruption is restricted to few cell erasures per data block (e.g., video frame).

Similar to FEC, AIDA supports the use of spatial redundancy to mask erasures. Furthermore,

when incorporated with TCP, AIDA allows this support to be fully integrated within the ow

control mechanism of TCP, thus making it possible to perform forward error correction without

necessarily overloading the network resources. For example, if network congestion is detected, one

could increase AIDA's level of spatial redundancy (thus protecting against likely cell drops), while

decreasing TCP's congestion window size (thus protecting against bu�er overow by reducing the

number of bytes \on the wire"). This integration of redundancy control and ow control in a
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reliable transport protocol4 could be quite valuable for real-time communication as reported in [7].

Temporal Redundancy: The second solution above suggests the use of temporal redundancy

to recover from erasures. Two possibilities exist|each representing an extreme in terms of the

functionality required at the sender and receiver ends. The �rst extreme would be for the receiver

to do nothing, and simply wait for the sender to automatically retransmit all cells from the packet

in question as would be dictated by TCP's packet acknowledgment protocol. This is exactly what

current adaptations of TCP over ATMs do (including the SCD and EPD techniques). As we

explained before, such an approach is not e�ective in terms of its use of available bandwidth,

especially in multi-hop networks. Moreover, these passive techniques are not appropriate for real-

time applications as it results in larger jitter and thus more uncertainty about communication time.

Of course this technique has the advantage of being quite simple to implement since it requires

no additional functionality at the sender and receiver ends. The other extreme would be for the

receiver to keep track of which cells are missing and then to request retransmission of only those

cells. This technique, has the advantage of being e�ective in terms of its use of available bandwidth,

but may result in considerable overhead, especially when the level of fragmentation (i.e. number

of cells per packet) is high.

The use of AIDA within TCP/IP allows us to reap the advantages of both of the above extremes,

while largely avoiding their disadvantages. To explain how this could be done, consider the following

scenario. The sender disperses an outgoing m-cell segment (packet) into N cells, but sends a packet

of only m of these cells to the receiver, where N >> m. Now, assume that the receiver gets r of

these cells. If r = m, then the receiver could reconstruct the original segment, and acknowledge

that it has completely received it by informing the sender that it needs no more cells from that

segment. If r < m, then the receiver could acknowledge that it has partially received the packet

by informing the sender that it needs (m � r) more cells from the original segment. To such an

acknowledgment, the sender would respond by sending a packet of (m� r) fresh cells (i.e. not sent

the �rst time around) from the original N dispersed cells. The process continues until the receiver

receives enough cells (namely m or more) to be able to reconstruct the original segment.

Two important points must be noted. First, using AIDA, no additional bandwidth is wasted

as a result of cell losses; every cell that makes it through the network is used. Moreover, this cell-

preservation behavior is achieved without requiring individual cell acknowledgment. Second, using

AIDA, no modi�cation to the switch-level protocols is necessary. This stands in sharp contrast

to the SCD and EPD techniques, which necessitate such a change. The incorporation of AIDA

into TCP/IP over ATMs requires only additional functionality at the interface between the IP and

4FEC is not a reliable transport mechanism.
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ATM layers (i.e., the AAL), which we discuss later in the paper.

Adjusting Spatial and Temporal Redundancy for Timeliness: The incorporation of AIDA

in TCP allows us to optimize the use of communication bandwidth by dynamically balancing the

use of spatial redundancy (through FEC) and temporal redundancy (through retransmission) to

achieve the level of timeliness desired by the application software.

Figure 2 shows the transmission window managed by AIDA in TCP Boston. As explained

before, prior to a packet transmission, AIDA encodes the originalm-cell packet into N cells (N >>

m). Based on network congestion conditions, it dynamically adjusts n the transmission window

size, which represents the size of the packet to be actually transmitted.

N

n

m
c

Figure 2: Transmission Window managed by AIDA

The transmission window in TCP Boston can be custom-tuned to meet the spatial redundancy

requirements of particular applications or services. For example, time-critical applications may

require that the level of spatial redundancy be increased to mask cell erasures (up to a certain

level), and thus to avoid retransmission delays should such erasures occur. By avoiding such

delays, the likelihood that tight timing constraints will be met is increased (at the expense of

wasted bandwidth). In the remainder of this section, we analytically characterize the relationship

between spatial redundancy (wasted bandwidth) and temporal redundancy (wasted time). In the

next section, we experimentally characterize this relationship.

Relationship Between Spatial Redundancy and Timeliness As we explained before, the

loss of a single ATM cell from a TCP packet implies that the delivery of that packet to the IP layer

will be delayed by at least one round-trip (until the retransmitted packet is received). This delay

could be minimized if Boston's spatial redundancy feature is used. In this section, we quantify

the relationship between timeliness and spatial redundancy|i.e., the relationship between wasted

bandwidth and response time.

In our analysis, we assume that the network has a single congested switch, whereby (1�p) is the

probability that a cell will be dropped at that switch. We assume a memory-less switch behavior,

which means that the dropping of a cell at a switch is an event independent of the feat of previous
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cells transmitted through that switch. To simplify the following derivations, we will assume that a

constant number of redundant cells is always added to a packet,5 independent of the packet size.

Let � denote the number of extra cells added by TCP Boston per packet. Thus for every m-cell

packet, Boston sends � redundant cells for a total of m + � cells. For example, if m = 10 and

� = 1, then for every 10-cell packet, TCP Boston sends 11 cells, of which any 10 cells are su�cient

to reconstruct the original packet.

Under these assumptions, packet retransmission would be necessary only when more than �

cells are lost en route. Thus, the probability of a retransmission is equal to the probability that in

a sequence of m+� Bernoulli trials (to send cells through the congested switch), more than � cells

are lost. Let W denote that probability.

W =
m+�X
i=�+1

 
m+ �

i

!
(1� p)i � pm+��i

= 1�
�X
i=0

 
m+ �

i

!
(1� p)i � p(m+�)�i (1)

To simplify the following derivations, we assume that the probability of further retransmissions (i.e.

beyond the �rst retransmission) is also W . Notice that this is a fairly conservative assumption for

TCP Boston since a retransmission will involve much less than the original m + � cells, and the

probability of losing � of these fewer number of cells will be considerably smaller.

Let U denote the average number of \round trips" necessary to deliver a packet. From equation

1, the probability of needing one round trip would be (1�W ) (i.e. succeeding in the �rst round);

the probability of needing two round trips would be W (1 �W ) (i.e. failing the �rst round and

succeeding in the second round); : : : etc. In general, the probability of needing j round trips to

deliver a packet would be W j�1(1�W ), which leads to the following expression for U .

U = (1�W ) �
1X
j=1

j �W j�1

= (1�W ) �
1

(1�W )2

=
1

(1�W )

(2)

5A more realistic scenario would assume that the number of extra redundant cells is a percentage of the total

number of cells per packet.
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Substituting from equation 1, we get

U =
1

�X
i=0

 
m+ �

i

!
(1� p)ipm+��i

(3)

Obviously, U is a measure of response time (in terms of the number of round trips), (1 � p) is

a measure of switch congestion (i.e. p is a measure of transmission reliability), and S = �
m

is a

measure of spatial redundancy.

The above relationships could be used to set the desired level of spatial redundancy in TCP

Boston. For example, if the network Maximum Transfer Unit (MTU) (i.e. packet size) is 1:5 kB,

thus resulting in a fragmentation at the ATM switch of m = 30, then �gure 3 shows the relationship

between the timeliness (on the Y axis) and spatial redundancy (on the X axis) as predicted using

equation 3 for various cell loss rates. Using �gure 3, and in order to ensure that on the average

packet transmissions will be completed within 3 round trip times in an environment where the

worst-case cell loss rates are known6 to be less than 10%, the appropriate number of extra cells (�)

to be used should be 3, making the necessary percentage of bandwidth to trade o� for timeliness

equal to 10%. If the worst-case cell loss rates are known to be less than 5%, then the appropriate

value for � would be 1, making the necessary percentage of bandwidth to trade o� for timeliness

equal to 3%.
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Figure 3: Response time Prediction: The average number of round trips is plotted on the y-axis

(log scale) as a function of �, the number of cells to be added to a 30-cell (i.e., 1.5-kB) packet, for

cell loss rates of 1, 5, 10, 15, and 20 percent.

6This is possible if such a rate is advertised for a particular class of service, or if the cell loss rates for a connection

could be measured dynamically.
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2.2 Overview of TCP Boston

In this section we explain the essential aspects of our implementation of TCP Boston, with a special

emphasis on those elements that are uncommon in other TCP implementations.

The purpose of this protocol is to provide a reliable transfer of data for end-to-end applications.

The protocol, when properly tuned, can be implemented over both ATM and packet-switched

networks. But, since it is designed in such a way that it takes advantage of ATM's relatively small-

sized cell (i.e., 53 bytes) environment, it can achieve a high performance gain when it is deployed

over ATM networks.

The main functions included in the protocol are: session management, segment management,

and ow control and transmission. We give a summary of these functions below:
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Figure 4: TCP Boston: Outline of Protocol Implementation

Session Management: The protocol manages a TCP session in three phases: a connection es-

tablishment phase, a data transfer phase, and a termination phase. The purpose of these phases,

as well as the functions performed therein, generally follow those of current TCP implementations,

except that information speci�c to IDA which are required by the receiver for reconstruction pur-
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poses (such as the value of m for example), are piggy-backed onto the protocol packets during the

three-way handshaking at the connection establishment phase.7

Segment Management: Processes for (1) segment encoding (at the source) and (2) segment

reconstruction (at the sink) are unique to TCP Boston. These processes are described below.

� Segment encoding: Given a data block (segment) of size b bytes, the protocol divides the data

block into m cells of size c, where m = b=c bytes. Next, the m cells are processed using IDA

to yield N cells for some N >> m. For example, if b = 1,000 bytes and c = 50, then m = 20,

and N could be set to 40. For each cell, one byte of heading is required for identi�cation

purposes. This would be needed during reconstruction at the receiver end. Once this encoding

is done, the �rst m cells from the segment are transmitted as a single packet and the unused

N �m cells are kept in a bu�er area for use when (if) more cells from that segment must be

transmitted to compensate for lost cells (see below).

� Segment reconstruction: When a packet of cells is received, the protocol �rst checks if it has

accumulated m (or more) di�erent cells from the segment that corresponds to that packet.

If it did, it reconstructs the original segment using the proper IDA reconstruction matrix

transformation and signals the ow control component to send an acknowledgment (here-

inafter referred to as an ACK) indicating that reconstruction was successful. If not, it keeps

the received cells for later reconstruction, and signals the ow control component to send

an ACK, piggy-backed with the number of cells that have been accumulated so far from the

segment. Such an ACK would inform the sender that reconstruction is not possible, and that

the pending number of cells from that segment need to be transmitted at the time of next

packet retransmission.

Flow Control and Transmission: Flow control determines the dynamics of packet ow in the

network, which in turn a�ects the end-to-end performance of the system. Any feedback-based TCP

ow control algorithm (e.g., Tahoe, Reno, and Vegas) can be used with TCP Boston with a minor

modi�cation to handle the revised feedback mechanism of TCP Boston. When an ACK arrives, the

sender checks a ag to determine if that ACK signals the successful reconstruction (at the receiver)

of a segment. If it does, the sender calls the standard ACK procedure. If it doesn't, the sender

extracts from the ACK the number of cells r received so far (see above) and then prepares m � r

additional cells from the desired segment in a single new packet that will be transmitted at the next

retransmission time. This process continues until the receipt of an ACK from the receiver indicating

7For e�ciency, such information could be permanently \coded" into TCP Boston.
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that the segment has been successfully reconstructed, in which case any remaining cells from that

segment are discarded from the sender's bu�er.

Notice that the partial delivery of a packet does not result in updating the received-segment

number for the receiver's TCP window manager.8 Also, an ACK signaling a partial packet delivery

does not cause an increase in the sender's congestion window. Rather, it acts as a hint to the sender

to update the number of cells included in the next packet retransmission.

In our current implementation, the protocol is composed of three main modules: a Session

Management Module, a Segment Management Module, and a Flow Control Module. Each of these

modules executes the corresponding function described in the previous section. Figure 4 depicts

the con�guration and interaction of the three modules for both the sender and the receiver. Due to

space limitations, we have omitted the details of these modules. The interested reader is referred

to [9].

3 Performance Evaluation

In this section we analyze the performance of TCP Boston, based on two di�erent strategies. The

�rst strategy is bandwidth preserving, and thus does not employ any redundancy (i.e. no FEC).

The second strategy trades bandwidth for timeliness by allowing the use of FEC speculatively.

We start with a description of our simulation environment. We follow that with an evaluation of

the performance of TCP Boston under both bandwidth preserving and FEC environments (using

Vegas-style ow control), and compare it with that of TCP Vegas. In particular, we concentrate

on real-time performance metrics|namely response time, the percentage of missed deadlines and

the variability of packet communication time (as a measure of jitter).

In the remainder of this paper, we use \Boston-BP" (or simply \Boston") to refer to the

Bandwidth Preserving TCP Boston protocol, and we use \Boston-FEC" to refer to the TCP Boston

with FEC protocol.

3.1 Simulation Environment

We measure the performance characteristics TCP Boston and TCP Reno (or Vegas) under UBR

service in ATM networks. Figure 5 illustrates the network topology used in the simulation.

The simulated network consists of 16 source nodes and 1 sink node, where all the nodes are

connected to a single switch. Each link bandwidth is set to 1.5 Mbps with propagation delay of 10

msec. The link bandwidth does not represent any particular technology; it was chosen to simulate

a relatively low bandwidth-delay product (approximately 74 cells) network, without adjusting the

8This enables the receiver to send duplicate ACKs to signal a packet drop to the sender.
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Figure 5: Con�guration of simulated network.

TCP performance parameters that are sensitive to link delays. This con�guration simulates a WAN

environment with a radius of 3,000 km and a bottleneck link bandwidth of 1.5 Mbps.

Our simulations use a total of 16 TCP connections, each is established for one of the con�gu-

ration's source-sink pairs. Each source generates an in�nite stream of data bytes. Each simulation

runs for 700 simulated seconds to transfer a total of 120 MB of data.

ATM Switching Model: The ATM switch is a simple, 16-port output-bu�ered single-stage

switch [15]. When the output port is busy, a cell at the input port is queued into the output bu�er

of the simulated switch. When the output-bu�er is full, an incoming cell destined to the output

port is dropped. The output bu�er is managed using FIFO scheduling, and cells in input ports are

served in a round-robin fashion to ensure fairness.

In our simulations, the ATM Adaptation Layer (AAL) implements the basic functions found in

AAL5, namely fragmentation and reconstruction of IP packets [2, 20]. AAL divides IP packets into

48-byte units for transmission as ATM cells, and appends 0 to 47 bytes of padding to the end of

data. To support TCP Boston the destination AAL reconstructs a packet out of the received cells

even when the resulting packet is incomplete. Incomplete packets are discarded by the destination

AAL for Reno and Vegas implementation.

Baseline Parameters: The parameters used in the simulation include the TCP packet size, the

TCP window size, and the switch bu�er size. Three di�erent packet sizes were selected to reect

maximum transfer unit (MTU) of popular standards: 576 bytes for IP packets, 1,500 bytes for

Ethernet, 4,470 bytes for FDDI link standards [26], and 9,180 bytes which is the recommended

packet size for IP over ATM [4]. The values for the TCP window size are 8 kB, 16 kB, 32 kB, and

64 kB. Bu�er sizes used for the ATM switch are 64, 256, 512, 1,000, 2,000, and 4,000 cells.

To measure the e�ectiveness of Boston-FEC's dynamic redundancy features, we used a TCP

Vegas module as the base ow control mechanism. Unlike its counterparts (i.e., Tahoe and Reno),
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Vegas employes a proactive ow control mechanism, which provides better congestion forecast by

detecting the incipient stages of congestion before losses start to accrue (rather than using the loss

of segments as a signal of congestion)[13]. It provides measured and predicted network bandwidth

usage for a TCP connection, and measured round trip time (RTT) of a packet, along with some

threshold values that are used to manage the ow control e�ectively. To minimize the spatial

overhead, Boston's redundancy control mechanism requires accurate congestion forecast, so that

it can dynamically adjust the rate of spatial redundancy according to the current network load,

and in this regard, Vegas can provide useful information for the e�ective management of Boston's

dynamic redundancy control scheme.

In our experiments for Boston-FEC we �xed the amount of redundancy injected into the data

as follows: for normal (initial) data transmissions, a �xed 3.3 percent of redundancy is injected,

and for retransmitted data packets, 10 percent of redundancy is added to its original segment

size. In addition, segments that belong to current transmission window are multiplexed, so that

the cells that belong to a packet are interleaved in the transmission line. This multiplexing is

bene�cial since cell (or packet) drops are likely to occur in \bundles" [12], and multiplexing indeed

improves the performance in FEC method by spreading the cell erasures rather evenly over multiple

packets, resulting in an increased success rate in fewer rounds of retransmissions for each packet.

In our simulation experiments, multiplexing provided up to 3.6 percent decrease in response time,

depending on the packet size and other parameters, such as switch bu�er and congestion window

size.

Simulation Engine: The LBNL Network Simulator (ns) [19] was used for both packet-switched

and ATM network simulations. To simulate TCP Boston, we modi�ed ns extensively to imple-

ment the three main modules (i.e., the Session Management, Segment Management, and Flow

Control modules) described in the previous section. Since ns is originally designed to support

packet-switched network environments, major modi�cations were necessary to allow it to support

ATM-like network environments. In particular, the essential functions of AAL5 were added to sim-

ulate the handling of IP packets (i.e., fragmentation and reassembly of IP packets) [2, 20]. Also,

the link layer of ns has been modi�ed to include basic functions of ATM switches and virtual circuit

management. To enable us to exploit Boston's FEC features, we have also added a TCP Vegas

module to complement the existing Reno module of ns. In addition to the above necessary modi�-

cations, the ns package has also been enhanced to allow for the gathering of additional performance

statistics, such as e�ective throughput (hereinafter interchangeably termed goodput), cell loss rate,

e�ective packet loss rate, response time, missed deadlines, and jitter.
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3.2 Performance Characteristics of TCP Boston

For a baseline performance characterization of Boston-FEC, Boston-BP, and Vegas we rely on

three metrics: e�ective throughput, response time, and packet loss rate. The results obtained

for these metrics are similar to those presented in [10], where the performance of a Reno-based

implementation of TCP Boston (as opposed to the Vegas-based implementation presented here)

was characterized.
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Figure 6: Comparison of the goodput of Vegas, Boston-BP, and Boston-FEC over ATM, for 1,500-

byte packets (left) and 9,180-byte packets (right) and a 64 kB window size, as a function of switch

bu�er size

E�ective Throughput Characteristics: The e�ective throughput (or goodput) refers to the

throughput where only the bytes that are useful at the application layer are considered. Figure 6

gives a comparison of the goodput achieved by: Vegas, Boston-BP, and Boston-FEC, under 64

kB window size for packet size of 1,500 bytes (left) and 9,180 bytes (right), where the e�ective

throughput of the three di�erent methods is plotted as a function of switch bu�er size. Our results

show that Boston-BP outperforms both Boston-FEC and Vegas throughout the range of switch

bu�er sizes, for both small (1,500-byte) and large (9,180-byte) packets. Boston-FEC outperforms

Vegas for small and medium bu�er sizes. This advantage vanishes as the bu�er size increases, and

eventually (for the largest bu�er size measurement of 212 kB) Vegas edges ahead of Boston-FEC.

For both packet sizes, the e�ective throughput of Boston-BP is greater than that of Boston-FEC

over the entire range of switch bu�er sizes, with the performance gap getting larger as the bu�er

size gets smaller.

The e�ective throughput is closely related to the amount of redundant data transmitted over the

network. Such redundancy may be the result of retransmissions due to cell losses and/or the result

of spatial redundancy used by the transport protocol for FEC, such as the redundancy injection
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found in Boston-FEC. Compared to Boston-BP, the decreased e�ective throughput of Vegas stems

mainly from retransmissions, whereas the decreased e�ective throughput of Boston-FEC stems

mainly from its use of spatial redundancy for FEC.

Response Time Characteristics: We de�ne the packet response time as the elapsed time from

the transmission of the �rst byte until the receipt of the last byte (including all the necessary

dispersal and retrieval processing). Also, we de�ne the average packet response time (or simply

response time) to be average response time for all packets in a single TCP connection:

Response Time =

PN
i=1 [Recv Time(i)� Send Time(i)]

N

where,

Recv Time(i) = the time the last byte for packet i is received by a receiver

Send Time(i) = the time the �rst byte for packet i is transmitted by a sender

N = total number of data packets received during a TCP connection

Figure 7 shows the response time of the three methods for the packet size of 1,500 bytes (left)

and 9,180 bytes (right) under 64 kB TCP window size, where the average response time of the

three di�erent methods is plotted as a function of switch bu�er size. Figure 8 is the same as

Figure 7, except that its range for the x and y axes have been reduced to enlarge the region where

data points are closely clustered. In general, as the switch bu�er size becomes larger, the response

time increases accordingly, due to the fact that the average number of cells queued at each switch

increases as the switch bu�er size becomes large. This phenomenon is well depicted in the two

response time plots (and has been documented in other studies [27] as well). The plots also imply

that the queuing delay increases linearly as the bu�er size increases.

Boston-FEC outperforms Boston-BP (not to mention Vegas) in response time characteristics

over the entire bu�er range. Moreover, the relative gap (i.e., ratio) between Boston-FEC's perfor-

mance and that of Boston-BP increases as the bu�er size shrinks. In the plot, though the gap of

response times for the three methods seems to increase as the bu�er size increases, the actual ratio

of response times|which is a more accurate measure for comparison purposes|increases as the

bu�er size becomes smaller. For instance, our measurements show that the ratio of response times

for the three methods using a small bu�er size (3.4 kB) is, Vegas:Boston-BP:Boston-FEC = 1 :

0.96 : 0.90, whereas the ratio using a large bu�er size (212 kB) is 1 : 0.97 : 0.96. This means that,

when network resources|such as switch bu�ers|become scarce, the cell loss rate at the switch

tends to increase. As the cell loss rate increases, the advantage of Boston-FEC's redundant data
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Figure 7: Comparison of response times for Vegas, Boston-BP, and Boston-FEC over ATM, for

1,500-byte packets (left) and 9,180-byte packets (right) and a 64 kB window size, as a function of

switch bu�er size
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Figure 8: Partial (enlarged) view of response times for Vegas, Boston-BP, and Boston-FEC over

ATM, for 1,500-byte packets (left) and 9,180-byte packets (right) and a 64 kB window size, as a

function of switch bu�er size
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transmission materializes, by increasing the probability that clients complete packet reception in a

lesser number of retransmissions.

Packet Loss Rates: The packet loss rate (or simply loss rate) refers to the percentage of packets

lost due to cell drops at the ATM switch. Figure 9 compares the loss rates of the three protocols

for packet sizes equal to 1,500 bytes (left) and 9,180 bytes (right), where the loss rate is plotted as

a function of switch bu�er size. Both Boston-FEC and Boston-BP show a big performance edge

over Vegas. The loss rates of Boston-FEC and Boston-BP are almost identical, with Boston-BP's

loss rate consistently less than that of Boston-FEC. The average di�erence is a mere 1 percent for

1,500-byte packets, and 2 percent for 9,180-byte packets. The slight increase in loss rate for Boston-

FEC over Boston-BP is mainly due to the non-bandwidth-preserving nature of Boston-FEC, which

results in an increased amount of tra�c due to the injection of redundancy.
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Figure 9: Comparison of packet loss rates for Vegas, Boston-BP, and Boston-FEC over ATM, for

1,500-byte packets (left) and 9,180-byte packets (right) and a 64 kB window size, as a function of

switch bu�er size

E�ect of Window Size: So far, the results we have presented for Boston-BP, Boston-FEC, and

Vegas were under a TCP window size equal to 64 kB. The results for the three protocols under

window sizes of 32 kB, 16 kB, and 8 kB show a gradual convergence in performance as the window

size decreases. These results are not shown here for space limitations.

E�ect of TCP Boston on Flow Control: Boston's ability to accept incomplete packets (as

opposed to counting such packets as lost ones) is likely to impact the ow control behavior by making

it less sensitive to network congestion, and thus more aggressive in its use of network bandwidth. To

understand how this could happen, it su�ces to note that using Boston, retransmitted packets are

smaller (containing only the pending number of cells) and thus more likely to be delivered intact.
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Therefore, the likelihood that a sender utilizing TCP Boston will detect a packet loss (as a result

of repeated acknowledgments received for the same packet) is reduced, which in turn, increases the

probability that the sender will not decrease the congestion window (not to mention the possibility

that it may even increase it). The result of this phenomenon is a minute increase in Boston's cell

loss rate, compared to the actual cell loss rate of Reno (or Vegas). In our experiments presented in

[9], Boston exhibited a maximum of 2% higher cell loss rate than the actual cell loss rate of Reno

(or Vegas). This percentage becomes smaller as the cell loss rate increases.

Despite Boston's aggressive use of bandwidth, it conserves the basic dynamics of the underlying

TCP ow control, without causing adverse e�ects on the tra�c ow in the network. Instead,

it brings an increased e�ective throughput, which in turn results in an overall increase in other

performance categories, such as response time, retransmission rate, and cell loss rate [9].

3.3 Real-time Features of TCP Boston

In this section we establish the suitability of TCP Boston for real-time applications by showing the

e�ect of Boston's FEC on the percentage of missed deadlines and on jitter (variability in response

time between successive packets).

Percentage of Missed Deadlines: When retransmissions occur due to cell losses, a client (i.e.,

receiver) may require longer wait-time to receive a packet. When network resources become limited,

this phenomenon tend to be severe, and as a result, a client may have to wait for multiple RTTs

to receive a single packet. For applications that require timely reception of data, packets received

after a preset delay become useless. Such a preset delay could be considered as a �rm deadline on

packet communication time.

We measured the percent of packets that miss such a deadline, and compared the results for the

three protocols. We �xed the dealine for packet delivery at 700 msec for 1,500-byte packets and at

1,400 msec for 9,180-byte packets.9 The results of these experiments are shown in �gure 10, where

the percentage of packets that miss their \�rm" deadline is plotted on the y-axis as a function of

bu�er size. Figure 11 is an enlarged view of �gure 10, emphasizing the medium-sized bu�er range.

For 1,500-byte packets, Boston-BP showed an average of 18.9 percent improvement over Vegas,

and an overwhelming average of 41 percent for 9,180-byte packets. Boston-FEC showed an average

of 19.2 percent improvement over Vegas for 1,500-byte packets, and a 42 percent for 9,180-byte

packets. Boston-FEC showed only a mild improvement over Boston-BP, with an average of about

1.5 percent for 1,500-byte packets and 2.2 percent for 9,180-byte packets.

9The two deadline values (i.e., 700 and 1,400 msec) have been selected to acquire reasonable rates of deadline-

missing packets throughout the entire bu�er ranges for both packets sizes presented in the plot.
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Figure 10: Percent of missed deadlines for Vegas, Boston-BP, and Boston-FEC over ATM, for a

packet size of 1,500 byte (left) and 9,180 byte (right) and 64 kB window size, as a function of switch

bu�er size
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Figure 11: Partial (enlarged) view of percent of missed deadlines for Vegas, Boston-BP, and Boston-

FEC over ATM, for a packet size of 1,500 byte (left) and 9,180 byte (right) and 64 kB window size,
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Figure 12: Histogram of packet response time for Vegas, Boston-BP, and Boston-FEC under 64 kB

TCP window, 13.6 kB switch bu�er, and 1,500 byte packet size. Response times are grouped in 100-

msec intervals. The `0-100', `100-200', and `over 1,000' msec intervals are omitted. Measurements

are shown as points and trends are shown as lines.

Response Time Variability: For many real-time applications, the variability in the response

time for successive transmissions (or jitter) must be bounded to ensure that allocated bu�ers will

be able to \smooth out" the jitter in the real-time data stream. Figure 12 depicts the distribution

(shown as a histogram) of response times observed in a typical simulation. It shows that the

distribution of the response times for Vegas exhibits a larger variation than that of Boston-BP,

which in turn exhibits a larger variation than that of Boston-FEC. One way of measuring such

variability is by computing the standard deviation of the response time distribution. For real-time

applications, a small standard deviation is desirable as it would indicate a more \predictable"

communication network.

Figure 13 shows the standard deviation of the response time as a function of switch bu�er size,

under 64 kB TCP window size, for packet sizes of 1,500 bytes (left) and 9,180 bytes (right). In both

cases, Boston-BP and Boston-FEC show smaller standard deviations|and thus reduced variability

in response time|compared to Vegas.

The standard deviation in response time increases for extremely small bu�er sizes. This is due

to the increased cell loss rates (more so for Vegas than for Boston-BP and Boston-FEC) as shown

in �gure 9. The higher cell loss rate means that the probability of repeated packet retransmissions

becomes high, resulting in an increased likelihood of very long response times, which in turn results

in a higher standard deviation as shown for smaller bu�er sizes in �gure 13. Obviously, the impact

of cell losses on Vegas are more pronounced due to its intolerance to fragmentation relative to

Boston-BP and Boston-FEC. The variability in response time increases as well for extremely large

bu�er sizes. This is due to the longer response times that are possible due to queuing at the switch
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Figure 13: Standard deviation of response time for Vegas, Boston-BP, and Boston-FEC over ATM,

for the packet size of 1,500 byte (left) and 9,180 byte (right) and 64 kB window size, as a function

of switch bu�er size

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

ra
tio

 - 
st

an
da

rd
 d

ev
ia

tio
n

switch buffer size (kB)

Boston-BP
Boston-FEC

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

ra
tio

 - 
st

an
da

rd
 d

ev
ia

tio
n

switch buffer size (kB)

Boston-BP
Boston-FEC

Figure 14: Ratio of the standard deviation for Boston-BP (Boston-FEC) relative to that of Vegas

as a function of switch bu�er size, for a packet size of 1,500 byte (left) and 9,180 byte (right) and

a 64 kB window size
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bu�ers as explained for the results illustrated in �gure 7.

Figure 14 shows the ratio between the standard deviation of Boston-BP and that of Vegas,

as well as the ratio between the standard deviation of Boston-FEC and that of Vegas for various

switch bu�er sizes.

In our experiments, Boston-BP showed an average of 32 percent lower standard deviation than

that of Vegas under large packet size. Under small packet size, the average standard deviation for

Boston-BP showed an improvement of 21 percent over Vegas. For both small and large packet sizes,

Boston-FEC showed an additional improvement over Boston-BP. The improvement is more pro-

nounced for small and medium-size bu�ers, which demonstrates the bene�ts (in terms of reducing

jitter) of using Boston-FEC for a real-time application when network resources are scarce.

Since the response time (and thus the standard deviation of the response time) varies widely for

various switch bu�er sizes, a more consistent measure of variability|and thus (un)predictability{

would be one that normalizes the standard deviation of the response time relative to its mean

(using the Z-score theory [14]). Figures 15 and 16 show the behavior of such a variability index.

It indicates that Boston-BP's variability index is 25 percent lower than that of Vegas for large

packets, and 13 percent lower for small packets.
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Figure 15: Variability index of response time for Vegas, Boston-BP, and Boston-FEC over ATM,

for the packet size of 1,500 bytes (left) and 9,180 bytes (right) and 64 kB window size, as a function

of switch bu�er size

Summary of Performance Evaluation: Both Boston-FEC and Boston-BP greatly outperform

Vegas in all measured performance categories, except under very large switch bu�er sizes, where

Vegas slightly surpasses Boston-FEC with respect to e�ective throughput. In this section, Boston-

FEC and Boston-BP have been used as representatives for two strategies: Boston-FEC's strategy is

to e�ciently trade o� network bandwidth to improve timeliness|a strategy suitable for applications
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Figure 16: Variability index (on a log scale) of response time for Vegas, Boston-BP, and Boston-

FEC over ATM, for the packet size of 1,500 byte (left) and 9,180 byte (right) and 64 kB window

size, as a function of switch bu�er size

with real-time constraints on transmission delays. Boston-BP's strategy is to preserve network

bandwidth|a strategy suitable for non-real-time applications. Both strategies are integrated in a

single protocol|TCP Boston|making it possible to seamlessly support applications with various

timeliness requirements.

4 Conclusion

In this paper we exposed the characteristics of TCP Boston that makes it especially suited for

real-time applications. TCP Boston integrates a standard TCP/IP protocol (such as Reno or

Vegas) with a powerful encoding mechanism based on AIDA (an adaptive version of Rabin's IDA

dispersal and reconstruction algorithms [29]). In that respect, we have shown the performance

superiority of TCP Boston when compared to plain TCP techniques that are more vulnerable

to fragmentation, namely TCP Reno (or Vegas) and TCP Reno (or Vegas) with EPD switch-

level enhancements. Our characterization of TCP Boston was two-pronged, using both analysis

and simulation. First, we derived the relationship between spatial and temporal redundancy and

showed how such a relationship could be used to select the appropriate level of communication

bandwidth to be sacri�ce in order to meet the timeliness requirements of a real-time (or near

real-time) application. Second, we provided results from our simulation experiments, in which

the simplifying assumptions necessary for our analytical results were lifted. Our simulation results

con�rm the ability of TCP Boston in reducing response time through a minute increase in bandwidth

requirements. This is valuable for real-time applications, especially when the increase in bandwidth

requirements can be tolerated.

24



Future Work:

Our implementation of TCP Boston (and simulations thereof) does not fully exploit the protocol's

dynamic redundancy control features. In particular, in all our experiments, the level of spatial

redundancy (used to mask the e�ect of individual cell losses at a congested switch) was kept static.

By adjusting the amount of redundancy employed in TCP Boston to various parameters (e.g.

deadline slack factor, level of congestion, advertised worst-case cell loss rates for a particular class

of service, etc. we anticipate that TCP Boston's performance would improve even more than what

we have presented in this paper. We are currently studying the premise of implementing such

improvements.

Our work in progress involves the implementation of a version of TCP Boston that does not

require our current (minor) modi�cation of the AAL5 layer. Also, we are trying to �nd a way of

improving our implementation of the IDA dispersal and retrieval algorithms to reduce (or eliminate)

the bu�er space requirement at the sender and receiver ends. This is particularly important in high

bandwidth-delay product network environments. Finally, we plan on deploying TCP Boston in an

experimental ATM switching environment, which is currently being installed in our department.
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