
The Training Log

David Jacobsson and Ola Lundmark

June 9, 2004

Abstract

The Training Log is a tool that can be used by everyone from serious athletes
to normally trained persons. It gives the user help to keep the training activities on
the right track and to get the result he/she wants.

Outcome of the project shows that PostgreSQL and PHP is a very suitable
combination for this type of web application. Together they give fast development
time, however due to its loose style and limited integrated error handling it doesn’t
enforce good design for the inexperienced developer.

Furthermore JpGraph has shown to be an easy to use tool but in the long run
there might be performance problems.

1 Introduction

Lots of people today take their training seriously. Common for many people in this
group is the need to track and plan their training sessions. This is to ensure that progress
is achieved in a controllable way. This project aims at giving people an easy to use
web-application and can be divided into three parts.

� Planning - Give the user possibility to overview upcoming training sessions.
Should have monthly and weekly overviews in an intuitive user interface.

� Logging - Easy to use forms where the user can track the results of the performed
training. This will be intertwined with the planning part.

� Statistics - Here the user should be able to watch several different statistic sum-
maries on performed training. Preferably the user should be able to somehow
specify his/hers own queries in an easy to use way.

As a separate module to the parts mentioned above a community framework will
be developed. This is done so users can share results and thoughts about their training
with each other.

2 Approach

Because of our limited experience with PHP and developing web applications in gen-
eral much time in the initial phase was spent on learning how to use these tools [2].
As a database back-end PostgreSQL was chosen, mostly because our prior experience
with it and also because of it’s good integration with PHP [3].

A quick overview of similar solutions have also been made. This was mainly to get
a feel for the HCI aspects of the development and which data that would be interesting
to track. One noteworthy example is running-log.com. That one is however only usable
for running and lacks both a planning part and good statistics[4]. The solution for this
project needed to be more general though.



2.1 Community

The community part of the web application could be solved in several different ways.
In the end the choice fell on an easy to understand friend based system. This means that
you can send messages to all users but private data such as training statistics can only
be viewed by users that you have authorized by adding them as friends. Furthermore
friends will appear in on the right of the web page for easy access (see figure 1).

2.2 Session handling

Session handling is provided by PHP with session ids in form of client side cookies or
propagation through HTML GET. All data regarding the session is then saved on the
server side and identified with the session id from the client. The initial authentication
is performed through a database lookup with matching of user name and a md5 hashed
password. No real effort has been put into making the application completely safe, but
in its current state it should at least be moderately safe.

2.3 Data modeling

From the beginning the plan was to make the training log able to handle different
training types dynamically. This meant that users would be able to log any type of
training sessions and add new ones as needed. This approach produced two rather
significant problems. First a data model that would handle this dynamic data would
need to be designed. Secondly statistics would have to be generated from this dynamic
data in an easy-to-use fashion.

One of the proposed solutions for the first problem that were in the end rejected
was to use XML documents. XML has the advantage that new data can be added to a
schema without making new documents incompatible with earlier schemas.

The second problem is that the queries on the training data would have to be gener-
ated dynamically to suit the appropriate data. To do this without making it to complex
for the user is really hard and users of the system should not need any knowledge of
SQL, XQuery or anything similar.

In the end it was found that there wasn’t really enough drastically different types
of training or meta data to be logged that would justify implementing this dynamic
model, which would have taken a lot of time, instead of just implementing support for
it statically. So instead of making the system dynamic by user perspective we tried to
make the system as modular as possible and more dynamic from a developers point of
view.

The increased modularity was designed by using inheritance where a training ses-
sion is represented by a session class. Each different training type is then sub-classed
from session. In the prototype only one subclass was implemented. That one was de-
signed to handle all kinds of distance based training such as running, skiing or cycling.
Adding new types to the database is relatively easy and only requires that a new sub-
class of session is created and this breaks no earlier code. The GUI will of course need
to be updated to handle the new type and new queries must be created to generate statis-
tics that is unique for this type. Unfortunately user input in PHP is rather inconvenient
and which makes this process a bit more cumbersome.

2.4 Maps and paths

A problem that often occurs is that you don’t always know how far you’ve run. There-
fore an addition was made to the initial proposal: the path definition tool. Here the user
has the possibility to upload maps to the web site and then point and click to define
paths on them for distance calculation.



The path definition was implemented as a Java applet because this would give the
user the best interactive feedback because no communication with the server would
be necessary. At first the idea was to let the Java applet communicate directly to the
database through JDBC. After some tests this solution was discarded because of the
limited access rights for Java applets. In particular, applets can only access the server
from which they where loaded. This restriction is bad if, as often is the case, the
database server doesn’t reside on the same host as the web server. The approach finally
chosen was to let the HTML page ”talk” with the Java applet by using Javascript. The
technique is to use a script to pull the defined path out of the applet and submit it to a
web page.

2.5 Statistics visualization

In the current state of the application two different types of charts have been produced:
Pie charts that shows the distribution of training types and bar charts that shows, for
example, distance run per week or month.

Effort have been put into trying to generate the two different kinds of charts in a
flexible way. For example, it is pretty straightforward to generate the number of hours
run instead of distance run in the bar chart. This have been done by doing a basic SQL
query that gets data in a, for PHP, easy to read format. And making such changes does
not require any modification of the PHP code.

The summation and grouping in weeks/months have been done with help of Post-
greSQL’s extract function. This have proven to be really useful because it really enables
SQL’s full potential instead of letting PHP do the job.

All charts in the prototype can also be restricted to an interval of time to allow the
user to get information about a specific training period.

To get a user friendly view of the statistics generated on the web site a visualization
tool was needed. JpGraph was found and because of its ease-of-use and professional
look-and-feel it was chosen (see figure 1 for an example pie chart)[1].

The JpGraph tools generates a picture that is returned by a PHP script for display
on the web site. This is convenient because no handling of temporary image files has
to be done.

3 Results

The main result achieved in is the prototype shown in figure 1.
Since the result hasn’t been the main focus of this project, but rather learning how

to develop a functioning database application, this section will be kept as short as this.

4 Discussion

PHP gives you much power to write systems like the training log. Writeability is high
and it’s easy to get started. The problem is that if you don’t know what you’re doing the
structure of the application can easily get out of control. This is somewhat like C++,
you can do really much in many different ways, but if you don’t design you application
for real from scratch, you will eventually shoot yourself in the foot.

The problem with PHP and HTML, or at least the problem that we had, was that the
structure of the web site and it’s contents was tightly coupled. With greater experience
in web design it might have been possible to avoid this. One solution we considered
was to have all the content in XML format and use XSLT transformations to generate
the HTML code. But since we lacked experience in this, and furthermore since it
wasn’t really the scope of this class, we did it the easier but more structurally awkward
way.



Figure 1: Statistics part of application

PHP has very good support for using a PostgreSQL database back-end. We tried
to isolate all PostgreSQL specific function calls to a single script so that it would make
it easy to change to, for example, MySQL or some other back end. But still far too
much of the database related parts of the system was mixed together with static content
and the structural parts of the web site. As mentioned before better knowledge of PHP
prior to this project would certainly have helped the design of the system.

One thing that we had designed for but never got enough time to get around to im-
plementing fully was a more ROLAP style statistics model. We designed the database
schema so that training sessions could be grouped into different categories much like
roll-ups in ROLAP. To group by time and date the SQL extract function could be used
and no special dimension table was needed for that. Grouping by simple intervals is
also easy to do in SQL and requires no additional tables. However including these fea-
tures in the GUI in a usable manner was somewhat trickier and required a lot of form
design which is quite a hassle in PHP.

All in all this feels pretty much as a first iteration in a project and with a second one
most of these PHP related problems would certainly have been solved.

Performance results on how the web site would scale under a load of many users
haven’t been performed and no conclusion can be drawn. One can notice that building
the monthly view in the planning section already takes some time in this application
and therefore performance measurements probably should be done.

JpGraph was perfect as a tool for this small prototype. One could fear though that
performance could be bad for a larger web site with more users. Caching of images



is also not an alternative when all users most of the time will be looking at different
diagrams. On the other hand the charts created are good looking and generating them
is really easy when the data has been gathered from the database.

5 Conclusions

The PHP and PostgreSQL combo certainly does the job of giving the developer the
tools needed to create advanced web applications.

PostgreSQL’s extract function has shown to be very useful for aggregation of statis-
tics over time. This together with dimension tables for other types gives some func-
tionality similar to ROLAP.

JpGraph is very useful for small applications for fast and easy chart generation.
The results are also visually pleasing.

5.1 Future work

For us the aim of this part of the project has been to create a working prototype of
the system and of course learn some valuable knowledge about developing database
enabled applications. But the end of this course only means that a new part of the
project has begun. Since we hope that this system will be useful, not only to us but
also to other people who might benefit from this kind of system, development of it will
continue for some time to come.

There are still several aspects which we wish to improve and learn more about. The
statistics model we have created now, while it works very good, can be extended to
support many more interesting statistics. To enable this further even more data will
have to logged and the schema must be extended to handle this.

The ROLAP type dimensions is something we wish to develop further since now
the only dimension which supports several layers of aggregation is time, which can be
grouped either by week or by month.

Finally the community part of the system is open for an infinity of enhancements.
Foremost we wish to enable users to be able to share and compare results and statistics
with each other and the possibility to to co-plan their activities.

References

[1] JPGRAPH. Jpgraph – an oo graph library for php4. Webpage visited, 08 June 2004.
http://www.aditus.nu/jpgraph/.

[2] PHP. Php: Hypertext preprocessor. Webpage visited, 08 June 2004.
http://www.php.net/.

[3] POSTGRESQL. Postgresql. Webpage visited, 08 June 2004.
http://www.postgresql.org/.

[4] RUNNING-LOG.COM. Running-log.com – your online solution for training logs.
Webpage visited, 08 June 2004. http://www.running-log.com/.


