GENESI S support for ns and SSFNet

Anand Sastry
Department of Computer Science, RPI, Tory, NY 12180

February 8, 2003

Abstract

The complexity and dynamics of the Internet is driving the demand for
scalable and efficient network simulation. Yet, parallelizing network sim-
ulation at packet level does not work efficiently and therefore do not scale
to large number of processors because of tight synchronization between net-
work components. To overcome this problem we designed a method in which
a large network is decomposed into parts and each part is simulated indepen-
dently and concurrently with the others. These parts exchange information
periodically about the packet delays and losses along the paths within each
part. Each part iterates over the selected simulated time interval until the
exchanged information changes less than the prescribed tolerance.

Each decomposed part may represent a subnet or a subdomain of the
entire network, thereby mirroring the network structure in the simulation de-
sign. The proposed method is independent of the specific simulator technique
employed to run simulators of the parts of the decomposed network. Hence,
itis a general method for efficient parallelization of network simulation based
on convergence to the fixed point solution of inter-part traffic. The method
can be used in all applications in which the speed of the simulation is of
essence, such as: on-line network simulation, network management, ad-hoc
network design, emergency network planning, large network simulation or
network protocol verification under extreme conditions (large flows).

The paper describes this method we call Genesis(General Network Simu-
lation Integration System), its implementation based on ns and SSFNet sim-
ulator, and its performance for sample communication networks. We also
describe how Genesis has been ported to parallelize BGP (Border Gateway
Protocol), with a goal to provide a novel outbound load-balancing technique
using BGP LOCAL _PREF settings and aided by online simulation

1 Introduction

The major difficulty in simulating large networks at the packet level is the enor-
mous computational power needed to execute all events that packets undergo in
the network [12]. The usual approach to providing required vast computational
resources relies on parallelization of an application to take advantage of a large
number of processors running concurrently. Such parallelization does not work
efficiently for network simulations at packet level because of tight synchroniza-
tion between network components [11]. To overcome this difficulty, we designed a
method described in this paper, in which a large network is decomposed into parts
and each part is simulated independently and simultaneously with the others. Each
part represents a subnet or a subdomain of the entire network. These parts are con-
nected to each other through edges that represent communication links existing in
the simulated network. In addition, we partition the total simulation time into sep-
arate simulation time intervals selected in such a way that the traffic characteristics
change little during each time interval.

In the initial (zero) iteration of the simulation process, each part assumes on its ex-
ternal in-links either no traffic, if this the the first simulated interval (alternatively,
the initial external traffic may be defined by the real-time measurements of the sim-
ulated network), or the traffic defined by the packet delays and drop rate defined in
the previous simulation time interval for external domains. Then, each part simu-
lates its internal traffic, and computes the resulting outflow of packets through its
out-links.

Simulation | Simulation

[Time ! Time-

§ > Freeze- i Yes resumed

i Simulation P

i DI [. time stopped | P >

3 AN i

] Inter- /' No

S I S e ..._.p| domain [Check-point\y O >

data
Exchange
I " $oeeeeeee >
Simulation Simulation
frozen resumes
Legend:
. . . Domain (voker
* In this case, say domain 2 requires check-pointing

Figure 1. Progress of the Simulation Execution

In the subsequent & > 0 iteration, the inflow into each part from the other parts will
be generated based on the outflows measured by each part in the iteration & — 1.
Once the inflows to each part in iteration k are close enough to their counterparts
in the iteration k& — 1, the iteration stops and the simulation either progresses to the
next simulation time interval or completes execution and produces the final results
(see Figure 1).

More formally, consider a network I' = (NN, L), where N is a set of nodes and L
(a subset of Cartesian product N x N), is a set of unidirectional links connecting
them (bidirectional links are simply represented as a pair of unidirectional links).
Let (Ny,..., Ny) be a disjoint partitioning of the nodes, each partition modeled
by a simulator. For each subset IV;, we can define a set of external out-links as
O; = L&N; x (N — N;), in-links as I; = L& (N — N;) x N;, and local links as
Li = L&NZ X Ni-

The purpose of a simulator S;, that models partition N; of the network, is to char-
acterize traffic on the links in its partition in terms of a few parameters changing
slowly compared to the simulation time interval. In the implementation presented
in this paper, we characterize each traffic as an aggregation of the flows, and each
flow is represented by the activity of its source and the packet delays and losses
on the path from its source to the boundary of that part. Since the dynamics of
the source can be faithfully represented by the copy of the source replicated to the
boundary, the traffic is characterized by the packet delays and losses on the relevant
paths. Thanks to queuing at the routers and the aggregated effect of many flows on
the size of the queues, the path delays and packet drop rates change more slowly
than the traffic itself.

It should be noted that we are also experimenting with the direct method of rep-
resenting the traffic on the external links as a self-similar traffic defined by a few
parameters. These parameters can be used to generate the equivalent traffic us-
ing on-line traffic generator described in [17]. No matter which characterization is
chosen, based on such characterization, the simulator can find the overall charac-
terization of the traffic through the nodes of its subnet. Let & (M) be a vector of
traffic characterization of the links in set M in k-th iteration. Each simulator can
be thought of as defining a pair of functions:

£k(05) = fil€k—1(L)), &(Li) = gi(€k—1(1i))
(or, symmetrically, &x(1;), &x(L;) can be defined in terms of &_1(0;)).

Each simulator can then be run independently of others, using the measured or
predicted values of £(1;) to compute its traffic. However, when the simulators are

linked together, then of course U7_, &x(L:) = UL, & (05) = UL, fi(&k—1(L3)),
so the global traffic characterization and its flow is defined by the fixed point solu-
tion of the equation.

q

U & (L) = F(

i=1 i=1

C-

(&—1(LH)), 1)

where F(UZL;(éx—1(1;)) is defined as UL, fi(€x—1(;)). The solution can be
found iteratively starting with some initial vector £y(1;), which can be found by
measuring the current traffic in the network.

We believe that communication networks simulated that way will converge thanks
to monotonicity of the path delay and packet drop probabilities as the function of
the traffic intensity (congestion). For example, if in an iteration k a part N; of the
network receives more packets than the fixed point solution would deliver, then this
part will produce fewer packets than the fixed point solution would. These packets
will create inflows in the iteration £ + 1. Clearly then, the fixed point solution
will deliver the number of packets that is bounded from above and below by the
numbers of packets generated in two subsequent iterations Iy and Ix;. Hence,
in general, iterations will produce alternately too few and too many packets in the
inflows providing the bounds for the number of packets in the fixed point solution.
By selecting the middle of each bound, the number of steps needed to convergence
can be limited to the order of logarithm of the needed accuracy, so convergence is
expected to be fast. In the initial implementations of the method, the convergence
for UDP traffic and small networks was achieved in 2 to 3 iterations.

It should be noted that the similar method has been used for implementation of
the flow of imports-exports between countries in the project Link [14] led by the
economics Noble Laureate, Lawrence Klein. The implementation [15] included
distributed network of processors located in each simulated country and it used
global convergence criteria for termination [16].

One issue of great importance for efficiency of the described method is frequency
of synchronization between simulators of parts of the decompose network. Shorter
synchronization time limits parallelism but decreases also the number of iterations
necessary for convergence to the solution because changes to the path delays are
smaller. Variance of the path delay of each flow can be used to adaptively define
the time of the synchronization for the subsequent iteration or the simulation step.

The efficiency of our approach is based on the following property of network sim-

iv

ulation:

The simulation time of a network grows faster than linearly with the size of the
network.

Theoretical analysis indicates that for the network size of order O(n), the simu-
lation time contains terms which are of order O(n * log(n)), that correspond to
sorting event queue, of order O(n?), that result from packet routing, and even of
order O(n?), that are incurred while building routing tables. Some of our mea-
surements [13] indicate that the dominant term is of order O(n?) even for small
networks. Using the least squared method to fit the measurements of execution
time for the different network sizes, we got the following approximate formula for
star-interconnected networks:

T(n) = 3.49 + 0.8174 x n + 0.0046 x n?)

where T is the execution time of the simulation, and n is the number of nodes in
the simulation. From the above, we can see that the execution time of a network
simulation may hold a quadratic relationship with the network size. Therefore, it is
possible to speed up the network simulation more than linearly by splitting a large
simulation into smaller pieces and parallelizing the execution of these pieces.

As we demonstrate later in the measurement section, a network decomposed into
16 parts will require less than 1/16 of the time of the entire sequential network sim-
ulation (so also less computational power, because there are 16 parts each needing
less than 1/16 of the computational power of the sequential simulator), despite the
overhead introduced by external network traffic sources added to each part (as ex-
plained below) and synchronization and exchange of data between parts. Hence,
with modest number of iterations the total execution time can be cut an order of
magnitude or more.

Another advantage of the proposed method is that it is independent of the specific
simulator technique employed to run simulators of the parts of the decomposed
network. Rather, it is a scheme for efficient parallelization based on convergence
to the fixed point solution of inter-part traffic which is measured by a set of param-
eters necessary to characterize this traffic rather then flow of packets. Our primary
application is the use of the on-line simulation for network management [13] to
which the presented method fits very well and can be combined with the on-line
network monitoring. The simulations in this application predicts changes in the
network performance caused by tuning network parameters. Hence, the fixed point

solution found by our method is with high probability the point into which the real
network will evolve. However, this is a still an open issue under what conditions
we can guarantee that the fixed point solution is unique, and if it is not, when the
solution found by the method is the same as the point that the real network reaches.

The method can be used in all applications in which the speed of the simulation is
of essence, such as:

on-line network simulation,

ad-hoc network design,

emergency network planning,

large network simulation,

network protocol verification under extreme conditions (large flows).

2 Implementation

Our current simulation platform is the ns network simulator [3]. A simulations
is defined in ns by Tcl scripts which can also be used to interface the core of the
simulator. The kernel of the simulation system is written in C++. The ease of
adding extensions and rich suite of the network protocols made ns a popular and
common, albeit not too efficient, platform for research in networking. Hence, we
believe that implementing our method within ns will enable others to experiment
with our system.

Our extensions to ns enable collaboration among individual parts into which the
simulated network is divided. Since network domains are convenient granules for
such partitioning, we will refer to these parts as simulations domains or domains
in short. Each domain is simulated by a separate copy of ns running on a unique
processor. The implementation specifics are described in the sections below.

2.1 New Features Added to ns

To accomplish per processor based domain simulation the following extension
were added to ns.

Vi

Border router/source/destination

Domain 1 O

_ Internal router/source/destination
o

Packet delay/drop functionality

[

External out-link
- = »

External in-link

Local link

/ Skeleton of
Skeleton of Domain 2 Domain 3

Figure 2: Active Domain with Connections to Other Domains

e The ability to suspend the simulation to enable exchange of data on path
delays using message passing between processors simulating individual do-
mains. During the simulation freeze, each individual simulation domain ex-
changes information on packets generated and dropped along links leaving
the domain (cf. Figure 2).

The network in Figure 2 is split into three individual domains, named 1, 2
and 3. Each of the domain simulations runs concurrently with the others and
they exchange information about the path delays incurred by packets leaving
the domain. The interval for exchange of this information is user config-
urable (in the Tcl script). For example, each domain may run its individual
simulations for one second from n-th to n + 1-st second of the simulation
time, and pause thereafter, Then, information about delays of packets leav-
ing the domain during this time interval is passed onto the target domain to
which these packets are directed. If these delays differ significantly from
what was assumed in the target domain, the simulation of the time interval
(n,m + 1) is repeated. Otherwise, the simulation progresses to the time in-
terval (n + 1,n + 2). The threshold value of the difference between the
current delays and the previous ones under which the simulation is allowed
to progress in time it is set by the user. This threshold impacts the speed of
the simulation progress and defines the precision of the simulation results.

New event for the ns scheduler, Freeze is defined generically. It pauses the
simulation at intervals defined by the user. During the event execution, it ex-
ecutes functions provided by the user in Freeze definition. On return, Freeze

Vii

reactivates the simulation.

e The ability to record information about the delays and drop rate experienced
by the packets leaving the domain. Each delay measures the time expired
from the instance a packet leaves its source to the time it reaches the do-
main boundary. Packet drop rates are computed for each flow separately.
Also recorded is information about each packet source and its intended des-
tination. Having this information enables us to replicate the source from the
original domain to the boundary of the target domain (sources in skeletons of
domains 2 and 3 in Figure 2) and postpone an arrival of each packet produced
by the replicated source at the domain boundary by the delay measured in
the source (and transient, if necessary) domains. Also, with probability de-
fined by packet drop rates, packets are randomly dropped during the passage
to the boundary of the destination domain (D boxes in Figure 2).

e The ability to define domain members and identify individual sources within
the domain that generate packets intended for nodes external to the domain.
This feature enables us to directly connect a source to the destination domain
to which it sends packets. We refer to such replicated source as a fake source
and to the link that connects it to the domain internal nodes as a fake link,
as explained below. The domain is defined by the user using a Tcl level
command which takes as its parameters the nodes that the user marks as
belonging to the domain. Then, the simulation of this domain is created by
deactivating all domains external to the selected domain.

2.2 Details of modifications to ns

2.2.1 Domain definition: Domain is a Tcl-level scripting command that is used

to define the nodes which are part of the domain for the current simulation. In the
first iteration of the simulation the traffic sources outside the domain are inactive.
The traffic generated within the domain is recorded and the statistics calculated. In
the following iterations, the sources active within other domains with a link to the

domain in question are activated.

When a domain declaration is made in the Tcl script, the nodes defined as a pa-
rameter to this command are stored in the form of a list. Each time a new domain
is defined, the new node list is added to a domain list (a list of lists). The user
selected domain is made active. Any link with one end connected to a node in this
domain and the other end connected to a node in another domain is defined as a

viii

cut-link. All packets sent on these links are collected for their delay and drop rate
computation.

Source generators connected to sources outside the active domain are deactivated.
This is done by a new Tcl script statement that attaches an inactive status to nodes
outside the active domain (cf. 2.2.3. Traffic Generator description below).

2.2.2 Connector: The connector performs the function of receiving, processing
and then delivering the packets to the neighboring node or dropping the packets.
A modification has been made to this connector class which now has the added
functionality of filtering out packets destined for the nodes outside the domain and
storing them for statistical data calculation.

A connector object is generally associated with a link. When a link is set up, the
simulator checks if this link connects nodes in different domains. If this is the case,
this link is classified as a cross-link and the connector associated with this link is
modified to record packets flowing across it. Each such packet is either forwarded
to the neighboring node or is marked as leaving the domain based on its destination.

2.2.3 Traffic Generator: TrafficGenerator Class is used to generate traffic flows
according to a timer. This class is modified, so that for the domain simulation, the
traffic sources can be activated or deactivated. Initially, at the start of the simula-
tion, the traffic generator suppresses nodes outside the domain from generating any
traffic.

2.2.4 Fake Link: Fake links are used to connect the fake sources to a particular

cross-link on the border of the destination domain. When a fake traffic source is
connected to a domain by a fake link, the packets generated by this source are sent

into the domain via the fake link and not the regular links which are set up by the

user network configuration file. The fake link adds a delay and, with certain prob-
ability, drops the packet to simulate packet’s behavior during passage through the

regular route. With the fake traffic sources and fake links, the statistical data from
the simulation of another domain are collected, and the traffic to the destination
domain is regenerated.

When a fake link is built, the source connector and the destination connector must
be specified. A fake link shortens the route between the two connector objects.
Each connector is identified by the nodes on both ends of it. Link connectors are
managed in the border object as a link list. The flow id to build up a fake link is
specified, one fake link is used for one flow.

Fake link is used to simulate a particular flow, so when the features (packet de-
lay and drop rate) of this flow change, the fake link object needs to be updated.
After updating the parameters of the fake link object, the performance of the cor-
responding fake link changes immediately. Fake links themselves are managed in
the border object as a link list.

2.2.5 Connectors with Fake Targets: In the original version of ns, connectors are
defined as an NsObject with only a single neighbor. But our new ns simulation
required this definition to be changed to build fake links to shortcut the routes for
different packet flows. These fake links are set up according to the network traffic
flows and each flow from the fake sources will need a separate fake link. The flows
that go through one source connector may reach different cross-link connectors at
the destination border, so there will be fake links connecting this connector to some
different connectors. Different flows going into one connector are sent to different
fake links, which are defined as fake targets here. Thus, the connector could now
be defined as an NsObject with one neighbor and a list of fake targets. When the
fake connection is enabled in a connector, this connector would have a list of fake
links (fake targets), and would classify the incoming packets by flow id and send
them to the correct destinations.

The connector class will maintain a list of fake targets. Once a new fake link is set
up from this connector, it will be added to this connector’s fake target list (this is
done by the shortcut method defined in the Border class).

2.2.6 Border: Border is a new class added to the ns. It is the most important
class in the domain simulation. A border object represents the active domain in the
current simulation. The main functionality of the border class includes:

e Initializing the current domain: setting up the current domain id, assigning
nodes to different domains, setting up the date exchange etc.

e Collecting and maintaining information about the simulation objects, such
as a list of traffic source objects, a list of the connector objects and a list of
the fake link objects maintained by the border object.

e Implementing and controlling the fake traffic sources: setting up and updat-
ing fake links, etc.

The border object is set up first, and its reference its made available to all objects in
the simulation. A lot of other ns classes need to refer to the variables and methods

in the border object. The border class has an array which for each simulation object
stores the domain name to which this object belong. This information is collected
from domain description files that are created by the domain object implementa-
tion. The names are created for the files assigned to each domain to store some
persistent data needed for inter-domain data exchange and restoration of the state
from the checkpoint.

All traffic source objects created in the simulation are stored. These traffic sources
can be deactivated or activated using the flow id. All the connector objects created

in the simulation are stored. These connectors are identified by the two nodes to
which they are connected. The connector information is used to create fake links.

The traffic sources outside the current active domain are deactivated while setting
up the network and domains. When a fake link is set up for a flow, the traffic source
of this flow will be reactivated. The border class searches the traffic source list to
find the object, and calls the reactivate() method of the matching source object to
reactivate this flow.

When the border receives flow information from other domains, it will set up a fake
link for this flow, and initialize the parameter of the fake link using the received
statistical data. When setting up a fake link, it goes through the connector list to
find the source and the destination of the connector objects, and then shortcuts
the route between them by adding a fake target into the source connector. All the
created fake link objects are stored in the border as a linked list ready for further
update.

2.2.7 Checkpointing: This feature has been included in ns to enable the simulation
to easily rerun over the same simulation time interval. We use diskless checkpoint-
ing, in which each client process creates a child when it leaves a freeze point. The
child is suspended, but preserves a state of the parent at the freeze time. The parent
proceed to the next freeze point. Once there, the parent decides whether to return
to the previous state, in which case it unfreezes the child and then Kkills itself, or
to continue the simulation to the next time interval, in which case the suspended
child is killed. This method is efficient because the process memory is not dupli-
cated initially; later only pages that become different for the parent and child are
duplicated during execution of the parent. The only significant cost is the execution
of fork statement creating a child, which however is several orders of magnitude
smaller than saving state to disk. More details have been provided in a separate
section later.

2.2.8 Synchronizing Individual Domain Simulations: Individual domain simu-

Xi

Figure 3: 64-node configuration showing flows from a sample node to all other
nodes in a network

Xii

lations are distributed across multiple processors using a client-server architecture.
Multiple clients connect to a single server that handles the message passing be-
tween them. The server is defined as a single process to avoid the overhead of
dealing with multiple threads and/or processes. The server uses two maps (data
structures). One map keeps track of the number of clients that have already sup-
plied the delay data for the destination domain. The other map is toggled by clients
that need to perform checkpointing. All messages to the server are preceded by
Message ldentification Parameters which identify the state of the client. A deci-
sion whether to checkpoint the current state or to restore the saved state is made by
the client based on the comparison of packet delays and drop rates in two subse-
quent iterations.

A client indicates to the server whether it requires checkpointing in the contents
of the message itself. A client which has to checkpoint causes all other clients to
block until it has resent the data to the server and the server has delivered it to the
destination domain (in other words a domain on another machine). This is achieved
by exchanging the maps at the end of each iteration during the simulation freeze.

The steps of collaboration of simulators and the server are shown in Figure 1.

Figure 4. 27-node configuration and the flows from the sample node

Xiii

3 Performance

We use two sample network configurations, one with 64 and the other with 27
nodes to test the performance of our simulation method. Both of these networks
are divided into classes of domains. The rate at which sources generate traffic are
varied to generate temporal congestion in the network, especially at the nodes at
the borders of the domains. All sources produce Constant Bit Rate (CBR) traffic
with constant packet size of 64 bytes.

The 64-node network is designed with a great deal of symmetry. The smallest
domain size is four nodes; there is full connectivity between these nodes. Four
such domains together are considered as a larger domain in which there is full
connectivity between the four sub-domains. Finally, four large domains are fully
connected and form the entire network configuration (cf. Figure 3).

The 27-node network is a PINNI network [10] with a hierarchical structure. Its
smallest domain is composed of three nodes. Three such domains form a larger
domain and three large domains form the entire network (cf. Figure 4).

3.1 64-node network

Distributed Domain Simulation (Speedup) - 64 node
configuration

70
w
‘g 60 /
9 50 — Single Domain -
% / Single Processor
E 40 / ——4 Domain - 4
= 30 Processor
o
o / 16 Domain - 16
® 20 / Processor
3
E 10
@ /

0 T T T T
0 1000 2000 3000 4000 5000
Real Time(Seconds)

Figure 5: Simulation times for the 64-node network decomposed into domains of
different sizes

Each node in the network is identified by three digits z.y.z, where 0 < z,y, z < 3,
that identify domain, subdomain and node rank within the subdomain to which the
node belongs.

Xiv

Each node has nine flows originating from it. In addition, each node also acts as a
sink to nine flows. The flows from a node z.y.z go to nodes:

zy(z+1)%4 zy.(2+2)%4 zy.(z+3)%4

z.(y + 1)%4.2 z.(y + 2)%4.2 z.(y + 3)%4.2

(z+1)%4.y.2 (x +2)%4.y.z (z +3)%4.y.2

Thus, this configuration forms a hierarchical and symmetrical structure on which
the simulation is tested for scalability and speedup.

In a set of measurements, the sources at the borders of domains produce packets at
the rate of 20000 packets/sec for half of the simulation time. The bandwidth of the
link is 1.5Mbps. Thus, certain links are definitely congested and congestion may
spread to some other links as well. For the other half of the simulation time, these
sources produce 1000 packets per second. Since such flows require less bandwidth
than provided by the links connected to each source, congestion is not an issue. All
other sources produce packets at the rate of 100 packets/sec for the entire simula-
tion. For these measurements we defined sources that produced only CBR traffic
and the speedup was measured by comparing simulation times of domains to the
simulation time of the entire network (excluding synchronization time).

We measured speed up for this configuration over simulation of 60 seconds of traf-
fic. The simulation interval was set at 14.9999 seconds, resulting in five freezes.
The simulation speedup with 16 domains (each with size of four nodes) was ap-
proximately 18, as shown in Table 1 and Figure 5. The decomposed simulation
required at most two iterations to converge to the solution in each simulation time
interval. Despite repetitive simulations over some of the intervals, the decomposed
simulations achieved superlinear speedup. The differences in the total number of
packets in each flow, the number of dropped packets and the sizes of the queues at
the routers were well below 1% for all three different domain sizes.

3.2 27-node configuration

The network configuration shown in Figure 4, the PINNI network adopted from [10],
consists of 27 nodes arranged into 3 different levels of domains containing three,
nine and 27 nodes, respectively. Each node has six flows to other nodes in the
configuration and is receiving six flows from other nodes. The flows from a node
x.1.z can be expressed as:

z.y.(z +1)%3 z.y.(z + 2)%3

z.(y +1)%3.2 z.(y +2)%3.2

(z+1)%3.y.2 (z+2)%3.y.2

XV

Distributed Domain Simulation (Speedup) - 27 node
configuration

70
60 Si o
= / ——Single Domain-Single
2 50 / Processor
v
=2 40 J ——3 Domain-3
S 830 Processor
=Py / 9 Domain-9
E 04! fJ Processor
),
0 ot ;
0 5000 10000

Real Time in Seconds

Figure 6: Simulation times for 27-node network decomposed into domains of dif-
ferent sizes

size of domain 27-nodes | 64-nodes
large = 1 proc/domain 3885.5 1714.5
medium = 3(4) procs/domains 729.5 414.7
small = 9(16) procs/domains 341.9 95.1
speed up for small domain 11.4 18.0

Table 1: Measurements results on IBM Netfinities (times are in seconds)

In these set of measurements, as above, the sources at the borders of domains
produce packets at the rate of 20000 packets/sec for half of the simulation time.
The bandwidth of the link is 1.5Mbps. Thus, congestion is definitely produced on
certain links shown above and congestion may be produced on certain other links.
For the other half of the simulation, these sources produce 1000 packets which
is less than the total bandwidth of the links connected to each of them. All other
sources produce packets at the rate of 100 packets/sec for the entire simulation. We
measured the speed up for this configuration over 60 seconds of simulated traffic.
The simulation interval was set at 14.9999 seconds, resulting in five freezes.

The speedup of simulation with 9 domains was approximately 11 compared with
a single network (sequential) run. The graphs of the results are shown in Figure 6
and the numerical results are presented in Table 1. This configuration is less regular
then the 64-node configuration and as result, the number of iterations needed for
convergences varied from two to four. Despite that, the decomposed simulations
showed superlinear speedup. The differences in the total number of packets in each
flow, the number of dropped packets and the sizes of the queues at the routers were

XVi

well below 1% for all three different domain sizes.

4 Checkpointing - What and Why?

Checkpointing is a new feature which has been added to mitigate the effect of large
variance in Average Delay calculations for each of the Fake Sources pumping data
into each domain.

This checkpointing routine is called when on comparing the current statistical data
of average delays more than 10 percent variance is found. This means that the data
(delays and drop probabilities) used in the previous iteration was in error and this
data is updated by the delays obtained in the current iteration.

We wanted to introduce this feature with the least amount of code restructur-
ing as possible hence we are using the Unix Signal features which allows us to
stop(suspend) and restart a process as explained in the following pages.

4.1 Some History

The original idea was to use third part libraries one of them being the Dynamite
Checkpointing library since it was a transparent checkpointing library for Unix.

This library works by writing the address space of the process and its mapped
shared libraries to a file. This is done when a process receives a signal USR1 which
is a user signal. This is also called preserving the memory image of the process.

This checkpointing file is an ELF executable which first loads the text and data
segment into the memory followed by the heap and stack segments respectively.

Once the loading has occurred siglongjmp is made to jump back to the checkpoint
signal handler to restore the signal mask.

The state of the signal handlers are restored using the sigaction and the previously
open files are restored. When the signal handler returns, the operating system
restores all CPU registers and the application resumes execution.

XVii

4.2 Current Checkpointing Implementation

Some drawbacks that were found in using the third party library were:

e The implementation depended on the image of the process address and data
space being copied to an ELF executable which involves 10 operations and
utilizes a significant amount of disk space.

e Also this implementation of checkpointing depends on certain third party li-
braries which are currently not widely supported by many operating systems.
Hence an alternative algorithm is listed below:
At the instant of Freeze:
e The main process forks a child process. This child process is suspended until

the main process signals it to awaken.(This is currently implemented using
SIGSTOP and SIGCONT signals).

e The main process proceeds to the end of execution. At the point of the next
freeze if the process needs to go back (ie. iterate) it sends a wake up sig-
nal(SIGCONT) to the child process which originally in suspend (SIGSTOP)
mode. Now this child process becomes the main process.

e If instead the process realizes that it can go ahead, it awakens the child pro-
cess and kills it(SIGKILL).

Thus it can be observed that at any one point in execution time there is only one
process. These steps are repeated as per the number of freeze events required.

4.3 Advantages

The advantage of this technique is that we just keep a copy of the process in mem-
ory in the child process and there is no need to resort to any 10.

XVili

5 BGP Extensionsto SSFNet for Genesis support

5.1 Introduction

The Border Gateway Protocol (BGP)is the de facto standard inter-domain routing
protocol in today’s global Internet.BGP builds and maintains forwarding tables to
be used by a router when forwarding data packets around an inter-network, across
the Autonomous Systems (AS). The forwarding table are built up in a distributed
fashion: all routers running BGP in the entire inter-network share reachability in-
formation with each other. When faced with multiple routes to the same destina-
tion, a selection is made based on several factors, many of which can be config-
ured by the administrator. Most commonly, shortest autonomous system (AS) path
length is the primary factor.

Figure 7: BGP between AS’

5.2 Goals

BGP has been increasingly used for some forms of traffic engineering. Our goal is
to provide a novel outbound load-balancing technique using BGP LOCAL PREF
settings and aided by online simulation. Outbound means each AS has several
links and we want to distributing traffic to theses links such that a complex set of
objectives are met. These objective functions will represent more realistic needs of
large networks like those of ISPs and defence networks than what is done today.

To incorporate Genesis into the BGP implementation on SSFNet, one of the first

XixX

goals was to Domainize the flow of BGP messages ie. allow individual BGP routers
on different processors to behave as if they are communicating directly with one
another. What Genesis aims at achieving is to completely bypass direct commu-
nication between the routers. The final goal being to harness the power of each
individual processor while reducing the processing load per processor by disal-
lowing all domains to activate. largeThis selective activation is what enables each
domain simulation to converge faster.

BGP under Genesis To support simulation in which BGP changes impact back-
ground traffic while preserving speed and scalability we use Genesis approach. Our
goal was to port BGP to Genesis using SSFNET, and to measure the scalability and
speed of BGP simulation under Genesis.

Information Exchange Unlike TCP and UDP, the information exchanged between
BGP Speakers (Peers) on the border routers are Route Withdrawals or Additions.
So it is important to pass between Genesis domains information carried by these
messages. This required a modification to the Farmer-Worker architecture to sup-
port transfer of route information and not only the traffic characterization needed
for TCP and UDP flows.

Synchronization BGP Speakers involved in route exchanges have to be in the
mutually complimentary states of Send and Receive during the course of updating
their routing tables with new route information. Thus there is a need to maintain the
state of the simulation by recognizing when a BGP Speaker issues an update and
which destination has to be in the Receive state at the same time. This is an issue in
Genesis where each domain is simulated independently of the others and the only
means of maintaining the global state of any object is through the Farmer-Worker
architecture.

5.3 Modification to the SSFNet BGP implementation - Mini Freeze

The basic modification to the existing BGP implementation is to support synchro-
nized peer updates on route changes. By that it means that if a peer in domain 1
wishes to inform the peer in domain 2 it does so by creating a socket connection
with the peer in domain 2. The problem with this is that in order to synchronize
the transfer of route updates it is required that both the domain simulations are in
the same state. For example if at Simulation time 5seconds Router 1 in domain 1
sends an update to Router 2 in domain 2. It is necessary for domain 2 to receive
this update at time 5 of its simulation clock. For this we propose the following

XX

Identification B + BGP Speaker

F + Farmer

iﬁ
| Advertise Update Tie

| Here Bl, B2, B3 send Identification

Broadcast Update Time message to the Farmer followed by
| 1| their Update Times. Their updaie
times are broadcast to the other
BGP Speakers through the farmer.
This process enables the Send and
Receive Synchronization hetween
BGP Speakers.

All messages are between the Famer
and the BGP Speakers. No messages
are exchanged between the BGP
Speakers themselves.

Figure 8: Message Synchronization between BGP Peers

additions to the existing Genesis/BGP implementation:
Mini Freeze

Socket communication framework for transferring route update information across
routers in different domains to support the Mini Freeze event.

The Mini Freeze will be scheduled by the destination domain which contains the
router for which the update is the target. This is valid because parsing of the DML
file containing the network model gives information as to the scheduled route up-
date times.

So the source domain need not schedule a Mini Freeze since all it has to do is setup
the socket connection when router update is scheduled with an external peer entry.
This is done when the peer entry calls its SendMsg() function in the BGPSession
class for the peer entry.

The technique to implement the Mini Freeze would be to schedule the regular Mini
Freeze event ahead of time based on the parameters returned from parsing the DML
file. One of the issues to be discussed is that if the peer entry that schedules this
Mini Freeze event does not receive a route update during the Freeze.

XXi

5.4 Reusability of existing Genesis classes to support BGP peer de-
composition - Confirming simulation correctness

Once the update has been executed the thing that has to be taken care of is the de-
lays in packets that has been affected by this route change. Consider the following
scenario:

At time ¢; = 5sec in domain 1 Router 1 advertises a route withdrawal in domain 1.
Assume that the source in Domain 1 now uses route 2. As indicated in the figure.
In Genesis we allow this source operation in domain 2 by means of a source proxy.
We can get this route update to Domain 2 at time 5sec using the Mini Freeze event.
But for Genesis to maintain correct simulation state we will have to have the source
proxy indicate this delay for packets generated after 5 + t seconds.

Collector 1

Domain 1 Domain 2

Source

Destination

Copy Collector 1

— Original Route

______ > Changed Route

SP1 - Source Proxy 1

T - Simulation Time

Figure 9: Design Model

To do this one novel way without much modification to the Genesis infrastructure
would be to create a Collector copy for each flow. This collector copy would be

XXii

used by the source proxy when the route goes down. This collector contains delays
for packets following the modified route.

5.5 State Saving

State saving is a new feature added as an extension to support Genesis-based BGP.
Currently we support only route updates as of writing this report. But other BGP
messages have also been incorporated which is outside the scope of this document.

State saving as an extension to BGP involves writing the update messages to file.
Recording the following parameters:

e Freeze Time
e Message Contents (Update/Withdraw etc)

e AS Router ID

5.6 SSFNet Additions

BGPFreeze: This event allows for BGP synchronization points to be inserted into
the simulation. It is configurable through the DML file.

BGPFreezeTimer: This is a derivative of the inbuilt Timer class of SSFNet. It
counts down time to different BGP synchronization points.

ConnectServer: This handles all communications between each BGP Speaker and
the Farmer.

BGPServer: This is a multithreaded Farmer that schedules all BGP Update events
and synchronizes between various BGP Speakers.

BGPSession: Modified This class has been modified from the original SSFNet
version to account for the messaging subsystem that allows for the independent
operation of each domain.

Net: Modified The Net class has been modified to allow for the selective activation
and deactivation of the domains.

XXili

6 Modd verifi cation through Self-Similarity

There has been some interest in experimentally observed self-similar, or long rang
dependent, behavior in for instance local area network (LAN) traffic [1] and VBR
video traffic.

The cause of self-similarity in traffic statistics in real networks is an open question
at present. It is the belief that many traffic flow control protocols are intrinsically
capable of generating chaotic [2] behavior which are believed to be self-similar [?].

We in the last year have developed a distributed network simulation model GeN-
eSIS (General Network Simulation Integration System) which allows for scalable
multi-domain real-time modeling of the network. This model addresses scalability
at experiment design, network decomposition and network simulation levels [6].
One major goal after proving that this network did indeed achieve almost super-
linear speedup, was to validate this model.

Now we approached the problem of validation from two angles. One was exper-
imentation - using ns [3] trace files to measure delays and drop rates of selected
flows, arrival rates of acknowledgment packets, arrival times and distribution of
packets. The other was analytical - check simulated system behavior against known
system input/output behavior: for example confirm that a self similar nature of the
aggregation of the TCP flow is preserved.

7 Modesto verify self-similarity

The generally accepted argument for the “Poisson-like” nature of aggregated traf-

fic, namely, that aggregate traffic becomes smoother (less bursty) as the number of
of traffic sources increses, has very little to do with reality. None of the commonly
used traffic models is able to capture the fractal-like behavior of self-similar traffic

[1].

The general most accepted way to prove self-similarity is to measure the burstiness
of traffic. This is identified by the "Hurst Parameter’ [7]. In order to check for
the possible self-similarity of the traffic data, the following graphical tools can be
applied viz. variance time plots, pox plots of R/S, and periodogram plots. The
Hurst Parameter H, when calculated for the average packet arrival time or jitter is
close to unity. This in turn implies the maximum possible degree of self-similarity.

XXV

The rescaled adjusted range statistic - pox plots of R/S:

The rescale adjusted range statistic, R(n, k)/S(n, k), is calculated for a selection
of subsets of the arrival times for the packets T3, starting at n and of size k + 1
[8]. The adjusted range R(n, k) has the following physical interpretation. Suppose
that the times series 7; represents the amount of water per time unit flowing into
a reservoir. Furthermore, water flows out of the reservoir at a constant rate, this
rate being such that the reservoir contains the same amount of the water at the n +
k-th time unit as the n-th time unit. Then R(n, k) is the maximum capacity of the
reservoir such that it will not overflow in the period n to n + k inclusive.

The calculation of R(n, k) proceeds as follows. Given n and k, the mean

p(n, k) = g ST (1)

n

and standard deviation

S(n,k) = /ST — p(n, k)2)
are calculated. Then,

R(n, k) = mazoqi<k(Zj5T5 — (U + Dp(n, k) — ming<i<k(Zj5T5 — (1 +
pu(n, k)) (3)

Plot log19(R(n,k)/S(n,k)) against logio(k). Vary n, k....starting value of n is
chosen randomly in the range 1 to N - k where N could be the number of packets
recieved. Use linear regression to fit a straight line through the R/S plot. Slope of
this line being an estimate of H - the Hurst parameter.

Periodogram Analysis:
One of the characteristics of a self-similar time is that the logarithm of its spectral
density

logio f(w) ~ (1 —2H)logio|w| + C (4)

as w — 0, with C a constant. This is used as the basis for another method of
estimating H [4]. First the periodogram

N, ; . . i
I(z5) = gap-| Xy Amet™ | with z; = 572 (5)

XXV

is calculated, with j = 1...[(N, — 1)/2] and N, typically 10°. A multiple lin-
ear regression [9] is then performed to find the coefficients g....a3 in

logiof(z) = aplogio|l — €| + a1 + asz + azx? (6)
which best fit f(z;) to I(z;) for j = [(N, — 1)/2]. In 6, the logarithm term rep-

resents long range dependence and the remaining terms represent the short range
dependence in the time series. It is clear from 6 that

lim, 0 logio f(z) = aplogio|z| + a1 (7)

Standard deviation of aggregates:
A direct approach to calculate H, which is also described in [1] and [5]. First for a
give k, the k-aggregated series

An(k) = § Shet Am—)k+m With n = 1...[N/k] (8)

is calculated. The standard deviation of this series is then found from

An (k) = [y Shid™ (An (k) = 1)) (9)

where p = p(1,N) is the mean of the entire series A,,n = 1...N. As stated
in [1] and [5], the asymptotic slope of a plot of log19.S(k) against logigk is equal
to H - 1. The aggregation K is varied in exactly the same way as it was in the R/S
calculation.

Autocorrelation Function:
The autocorrelation function of the time series

C(k) = g T35 (45 — 1) (Aj1 — 1) (10)
has also been calculated, with 4 = (N, k) and with k ranging from 100 to N/10.

Although the calculation does not lead to an estimate for H, the autocorrelation
function displays behavior characteristic of self-similar processes, for large k.

XXVi

8 Test Network Confi guration

\TCPD
TCP Traffic

All'links are 1.544 Mbit T-1, queues are droptail.

Figure 10: Sample network configuration used to validate self-similarity

As shown in Figure reffigurel the network currently under consideration for mea-
surement of self-similarity consists of 2 routers rl and r2. There are 2 nodes con-
nected to each of the 2 routers viz. n1 and n2 to r1, n3 and n4 to r2. The domains
can be identified by the 2 dotted lines separating them . The domain on the left is
called Domain 1 and the domain on the right is called Domain 2. Domain 1 is the
source of all packets.

This configuration is implemented in ns. The configuration script is written in Tcl.
The system is then implemented on GeNeSIS to segreagated the domains onto 2

processors to verify similarity across the distributed model. The data collected

is written to trace files. Here the difference in arrival times of the packets are
recorded. Also recored with each arrival time is the difference in sequence numbers

to allow for dropped packets.

XXVii

Pox plot of R(n, k)/S(n, k) for a network, where k is the sample

4 T T T T T T T T T
f(x)
35 L output’ + g |
—_— 3 B T
=
£ 251 -
%
4
g 15 .
8
1 - —
0.5 —
O 1 1 1 1 1 1 1 1 1
0.5 0 0.5 1 15 2 25 3 35 4 4.5
log10(k)
Figure 11: Timing Graphs
9 Analysis

For the analysis we chose the rescaled adjusted range statistic - pox plots of R/S.
The data collected from the test setup is then fed to a program to calculate log1o(R(n, k)/S(n, k))
and lOglo(k).

A plot of logio(R(n, k)/S(n,k)) and logio(k) is made. A curve fitting algorithm
like the least sqaure method is applied and a line is fit through the pox plot. The
slope of this line gives an approximate value of H.

The plot in Figure10 shows the pox-plot for the test network described in the pre-
vious section. The slope of the line is approximately 0.699. A good indication of
the self-similarity evident in TCP networks.

10 Complex Networks

In addition to the analysis on the simple network shown in the previous section,

Genesis was validated against the network that inspired the seminal paper on self-

similarity [1]. This network consists of 2 internal networks which are then con-

nected to the external Internet through 2 routers. The traffic that has been defined
to be mostly TCP interactive traffic and some FTP sources.

XXViii

logLO[R(n, KY/S(n, K)]

Pox plot of R(n, k)/S(n, k) for a network, where k is the sample
4 T T T T T T

x)

‘output’ +

15 2
log10(k)

25 3

Figure 12: Single Domain Run on unmodified ns Slope of straight line gives H

log1O[R(n, K)/S(n, K)]

Pox plot of R(n, k)/S(n, k) for a network, where k is the sample
4 T T T T T T T

0
‘output’ +

2t

0 1 1 1 1 1 1 1 1 1
0.5 1 15 2 25 3 3.5 4
log10(k)

4.5

Figure 13: GeNeSIS run Slope of straight line gives H

XXIX

The network configuration is given in the figure below:

++--.. INTERNAL NETWORK 1

NODES
F1 - File Server
nl..n20 - Hosts
R1..R3 - Routers
LINKS

L1..L3 - 1.544Mbps p
11..120 - 10-100Mbps -

TRAFFIC TYPE

TCP — INTERACTIVE
UDP OR FTP TRAFFIC

COULD ADD REST OF NETWORK

@ / INTERNAL NETWORK 2

Figure 14: Bell-Core Network Sample Network Configuration

This network configuration was run through the regular unmodified ns and was also
simulated using Genesis. To validate our model the pox plots for rescaled adjusted
range statistic is compared. Both plots are shown below.

It can be observed from the plots that the Hurst parameter given by the slope of the
line through the pox plots are approximately of the same value which is 0.667. A
clear indication of self-similarity [1].

11 Conclusion

Genesis has been validated against many well known and sample networks. All
the results indicate that the selfsimilar nature of the traffic is maintained across the
model. The Hurst parameter values is apporximately 0.667 which is good indicator
of self-similarity.

References

[1] W.E. Leland, M.S. Taqqu, W. Willinger & D.V. Wilson, “On the self-similar
nature of Ethernet Traffic [extended version]”, IEEE Transactions on Net-
working, 2, 1, 1994, pp. 1-15

XXX

[2] E. Ott, “Chaos in dynamical systems”, Cambridge University Press, Cam-
bridge, 1993, ISBN 0-521-43799-7

[3] ns(network simulator). http://www-mash.cs.berkeley.edu/ns.

[4] J. Beran, “Fitting long-memory models by generalised linear regression”,
Biometrika, 80, 4, 1993, pp. 817-822

[5] M.W. Garrett & W. Willinger, “Analysis, modelling and generation of self-
similar VBR video traffic”, Proceedings ACM SIGCOMM 94, London, 1994,
pp. 269-280

[6] Szymanski, B., Y. Liu, A. Sastry, & K. Madnani, “A system for Large-scale
Parallel Network Simulation”, CS TR 01-14, Submitted to the PADS 2002
conference.

[7] H.E. Hurst, “Long-term storage capacity of reservoirs”, Transactions of the
American Society of Civil Engineers, 116, 1951, pp. 770-799 itWater Re-
sources Research,]

[8] B.B. Mandelbrot & J.R. Wallis, “Some long-run properties of geophysical
records”, 5, 2, 1969, pp/ 321-340

[9] W.H. Press, S.A. Teukolsky, W.T. Vetterling & B.P. Flannery, “Numerical
Recipes in C” (2nd edition, 1992), Cambridge University Press, ISBN 0-521-
43108-5

[10] Bhatt, S., R. Fujimoto, A. Ogielski, and K. Perumalla, “Parallel Simula-
tion Techniques for Large-Scale Networks” IEEE Communications Maga-
zine, 1998.

[11] Fujimoto, R.M., “Parallel Discrete Event Simulation,” Communications of
the ACM, vol. 33, pp. 31-53, Oct. 1990.

[12] Law, L. A., and M. G. McComas, “Simulation Software for Communication
Networks: the State of the Art,” IEEE Communication Magazine, vol. 32, pp.
44-50, 1994.

[13] Ye, T., D. Harrison, B. Mo, S. Kalyanaraman, B. Szymanski,K. Vastola, B.
Sikdar, and H. Kaur, “Traffic Management and Network Control Using Col-
laborative On-line Simulation,” Proc. International Conference on Commu-
nication, ICC2001, 2001.

XXXI

[14]

[15]

[16]

[17]

L.R. Klein, “Quantitative Studies of International Economic Relations,”
Chapter The LINK Model of World Trade with Application to 1972-72, North
Holland, Amsterdam, 1975.

Y. Shi, N. Prywes, B. Szymanski and A. Pnueli, “Very high level concur-
rent programming,” IEEE Trans. Software Engineering, SE-13:1038-1046,
September 1989.

B. Szymanski, Y. Shi and N. Prywes, “Synchronized distributed termination,”
IEEE Trans. Software Engineering, SE-11:1136-1140, September 1987.

M. Yuksel, B. Sikdar, K.S. Vastola and B. Szymanski, “Workload generation
for ns simulations of wide area networks and the internet,” Proc. Communi-
cations Networks and Distributed Systems Modeling and Simulation Confer-
ence, Pages 93-98, SCS Press, 2000.

XXXIi

