
Optimal Seurity Proofs for PSS and otherSignature Shemes[Published in L.R. Knudsen, Ed., Advanes in Cryptology {EUROCRYPT2002, vol. 2332 of Leture Notes in Computer Siene,pp. 272{287, Springer-Verlag, 2002.℄Jean-S�ebastien CoronGemplus Card International34 rue Guynemer, Issy-les-Moulineaux, F-92447, Franejean-sebastien.oron�gemplus.om, oron�ens.frAbstrat. The Probabilisti Signature Sheme (PSS) designed by Bel-lare and Rogaway is a signature sheme provably seure against ho-sen message attaks in the random orale model, whose seurity an betightly related to the seurity of RSA. We derive a new seurity proof forPSS in whih a muh shorter random salt is used to ahieve the same se-urity level, namely we show that log2 qsig bits suÆe, where qsig is thenumber of signature queries made by the attaker. When PSS is usedwith message reovery, a better bandwidth is obtained beause longermessages an now be reovered. In this paper, we also introdue a newtehnique for proving that the seurity proof of a signature sheme isoptimal. In partiular, we show that the size of the random salt that wehave obtained for PSS is optimal: if less than log2 qsig bits are used, thenPSS is still provably seure but it annot have a tight seurity proof.Our tehnique applies to other signature shemes suh as the Full Do-main Hash sheme and Gennaro-Halevi-Rabin's sheme, whose seurityproofs are shown to be optimal.Keywords. Probabilisti signature sheme, provable seurity.1 IntrodutionSine the invention of publi-key ryptography in the seminal DiÆe-Hellmanpaper [9℄, signi�ant researh endeavors were devoted to the design of pratialand provably seure shemes. A proof of seurity is usually a omputational re-dution from solving a well established problem to breaking the ryptosystem.Well established problems of ryptographi relevane inlude fatoring large in-tegers, omputing disrete logarithms in prime order groups, or extrating rootsmodulo a omposite integer.For digital signature shemes, the strongest seurity notion was de�ned byGoldwasser, Miali and Rivest in [13℄, as existential unforgeability under an



2 Jean-S�ebastien Coronadaptive hosen message attak. This notion aptures the property that an at-taker annot produe a valid signature, even after obtaining the signature of(polynomially many) messages of his hoie.Goldwasser, Miali and Rivest proposed in [13℄ a signature sheme based onsignature trees that provably meets this de�nition. The eÆieny of the shemewas later improved by Dwork and Naor [10℄, and Cramer and Damg�ard [7℄. Asigni�ant drawbak of those signature shemes is that the signature of a messagedepends on previously signed messages: the signer must thus store informationrelative to the signatures he generates as time goes by. Gennaro, Halevi andRabin presented in [12℄ a new hash-and-sign sheme provably seure againstadaptive hosen message attaks whih is both state-free and eÆient. Its seu-rity is based on the strong-RSA assumption. Cramer and Shoup presented in[8℄ a signature sheme provably seure against adaptive hosen message attaks,whih is also state-free, eÆient, and based on the strong-RSA assumption.The random orale model, introdued by Bellare and Rogaway in [1℄, is atheoretial framework allowing to prove the seurity of hash-and-sign signatureshemes. In this model, the hash funtion is seen as an orale that outputsa random value for eah new query. Bellare and Rogaway de�ned in [2℄ theFull Domain Hash (FDH) signature sheme, whih is provably seure in therandom orale model assuming that inverting RSA is hard. [2℄ also introduedthe Probabilisti Signature Sheme (PSS), whih o�ers better seurity guaranteesthan FDH. Similarly, Pointheval and Stern [19℄ proved the seurity of disrete-log based signature shemes in the random orale model (see also [16℄ for aonrete treatment). However, seurity proofs in the random orale are not realproofs, sine the random orale is replaed by a well de�ned hash funtion inpratie; atually, Canetti, Goldreih and Halevi [4℄ showed that a seurity proofin the random orale model does not neessarily imply that a sheme is seurein the real world.For pratial appliations of provably seure shemes, the tightness of theseurity redution must be taken into aount. A seurity redution is tight whenbreaking the signature sheme leads to solving the well established problem withprobability lose to one. In this ase, the signature sheme is almost as seureas the well established problem. On the ontrary, if the above probability istoo small, the guarantee on the signature sheme will be weak; in whih aselarger seurity parameters must be used, thereby dereasing the eÆieny of thesheme.The seurity redution of [2℄ for Full Domain Hash bounds the probability" of breaking FDH in time t by (qhash + qsig) � "0 where "0 is the probability ofinverting RSA in time t0 lose to t and where qhash and qsig are the numberof hash queries and signature queries performed by the forger. This was laterimproved in [5℄ to " ' qsig �"0, whih is a signi�ant improvement sine in pratieqsig happens to be muh smaller than qhash. However, FDH's seurity redutionis still not tight, and FDH is still not as seure as inverting RSA.



Optimal Seurity Proofs for PSS and other Signature Shemes 3On the ontrary, PSS is almost as seure as inverting RSA (" ' "0). Addi-tionally, for PSS to have a tight seurity proof in [2℄, the random salt used togenerate the signature must be of length at least k0 ' 2 � log2 qhash + log2 1="0,where qhash is the number of hash queries requested by the attaker and "0 theprobability of inverting RSA within a given time bound. Taking qhash = 260and "0 = 2�60 as in [2℄, we obtain a random salt of size k0 = 180 bits. In thispaper, we show that PSS has atually a tight seurity proof for a random saltas short as log2 qsig bits, where qsig is the number of signature queries madeby the attaker. For example, for an appliation in whih at most one billionsignatures will be generated, k0 = 30 bits of random salt are atually suÆientto guarantee the same level of seurity as RSA, and taking a longer salt does notinrease the seurity level. When PSS is used with message reovery, we obtain abetter bandwidth beause a larger message an now be reovered when verifyingthe signature.Moreover, we show that this size is optimal: if less than log2 qsig bits ofrandom salt are used, PSS is still provably seure, but PSS annot have exatlythe same seurity level as RSA. First, using a new tehnique, we derive an upperbound for the seurity of FDH, whih shows that the seurity proof in [5℄ with" ' qsig � "0 is optimal. In other words, it is not possible to further improve theseurity proof of FDH in order to obtain a seurity level equivalent to RSA.This answers the open question raised by Bellare and Rogaway in [2℄, about theexistene of a better seurity proof for FDH: as opposed to PSS, FDH annot beproven as seure as inverting RSA. The tehnique also applies to other signatureshemes suh as Gennaro-Halevi-Rabin's sheme [12℄ and Paillier's signaturesheme [17℄. To our knowledge, this is the �rst result onerning optimal seurityproofs. Then, using the upper bound for the seurity of FDH, we show that oursize k0 for the random salt in PSS is optimal: if less than log2 qsig bits are used,no seurity proof for PSS an be tight.2 De�nitionsIn this setion we briey present some notations and de�nitions used throughoutthe paper. We start by realling the de�nition of a signature sheme.De�nition 1 (Signature sheme). A signature sheme (Gen; Sign; Verify)is de�ned as follows:- The key generation algorithm Gen is a probabilisti algorithm whih given1k, outputs a pair of mathing publi and private keys, (pk; sk).- The signing algorithm Sign takes the message M to be signed, the publikey pk and the private key sk, and returns a signature x = Signpk;sk(M). Thesigning algorithm may be probabilisti.- The veri�ation algorithm Verify takes a message M , a andidate signa-ture x0 and pk. It returns a bit Verifypk(M;x0), equal to one if the signatureis aepted, and zero otherwise. We require that if x  Signpk;sk(M), thenVerifypk(M;x) = 1.



4 Jean-S�ebastien CoronIn the previously introdued existential unforgeability under an adaptive ho-sen message attak senario, the forger an dynamially obtain signatures ofmessages of his hoie and attempts to output a valid forgery. A valid forgeryis a message/signature pair (M;x) suh that Verifypk(M;x) = 1 whereas thesignature of M was never requested by the forger.A signi�ant line of researh for proving the seurity of signature shemes isthe previously introdued random orale model, where resistane against adap-tive hosen message attaks is de�ned as follows [1℄:De�nition 2. A forger F is said to (t; qhash; qsig ; ")-break the signature sheme(Gen; Sign; Verify) if after at most qhash(k) queries to the hash orale, qsig(k)signatures queries and t(k) proessing time, it outputs a valid forgery with prob-ability at least "(k) for all k 2 N.and quite naturally:De�nition 3. A signature sheme (Gen; Sign; Verify) is (t; qsig ; qhash, ")-seure if there is no forger who (t; qhash; qsig ; ")-breaks the sheme.The RSA ryptosystem, invented by Rivest, Shamir and Adleman [20℄, is themost widely used ryptosystem today:De�nition 4 (The RSA ryptosystem). The RSA ryptosystem is a familyof trapdoor permutations, spei�ed by:- The RSA generator RSA, whih on input 1k, randomly selets two distintk=2-bit primes p and q and omputes the modulus N = p � q. It randomly piksan enryption exponent e 2 Z��(N) and omputes the orresponding deryptionexponent d suh that e � d = 1 mod �(N). The generator returns (N; e; d).- The enryption funtion f : Z�N ! Z�N de�ned by f(x) = xe mod N .- The deryption funtion f�1 : Z�N ! Z�N de�ned by f�1(y) = yd mod N .FDH was the �rst pratial and provably seure signature sheme based onRSA. It is de�ned as follows: the key generation algorithm, on input 1k, runsRSA(1k) to obtain (N; e; d). It outputs (pk; sk), where the publi key pk is (N; e)and the private key sk is (N; d). The signing and verifying algorithms use a hashfuntion H : f0; 1g� ! Z�N whih maps bit strings of arbitrary length to the setof invertible integers modulo N .SignFDHN;d(M) VerifyFDHN;e(M;x)y  H(M) y  xe mod Nreturn yd mod N if y = H(M) then return 1 else return 0.FDH is provably seure in the random orale model, assuming that invertingRSA is hard. An inverting algorithm I for RSA gets as input (N; e; y) and tries to�nd yd mod N . Its suess probability is the probability to output yd mod Nwhen (N; e; d) are obtained by running RSA(1k) and y is set to xe mod N forsome x hosen at random in Z�N.



Optimal Seurity Proofs for PSS and other Signature Shemes 5De�nition 5. An inverting algorithm I is said to (t; ")-break RSA if after atmost t(k) proessing time its suess probability is at least "(k) for all k 2 N.De�nition 6. RSA is said to be (t; ")-seure if there is no inverter that (t; ")-breaks RSA.The following theorem [5℄ proves the seurity of FDH in the random oralemodel.Theorem 1. Assuming that RSA is (tI ; "I)-seure, FDH is (tF ; qhash; qsig ;"F )-seure, with: tI = tF + (qhash + qsig + 1) � O(k3) (1)"I = "Fqsig ��1� 1qsig + 1�qsig+1 (2)The tehnique desribed in [5℄ an be used to obtain an improved seurityproof for Gennaro-Halevi-Rabin's signature sheme [12℄ in the random oralemodel and for Paillier's signature sheme [17℄. From a forger whih outputs aforgery with probability "F , the redution sueeds in solving the hard problemwith probability roughly "F =qsig , in approximately the same time bound.The seurity redution of FDH is not tight: the probability "F of breakingFDH is smaller than roughly qsig � "I where "I is the probability of invertingRSA, whereas the seurity redution of PSS is tight: the probability of breakingPSS is almost the same as the probability of inverting RSA ("F ' "I).3 New Seurity Proof for PSSSeveral standards inlude PSS [2℄, among these are IEEE P1363a [14℄, a revi-sion of ISO/IEC 9796-2, and the upoming PKCS#1 v2.1 [18℄. The signaturesheme PSS is parameterized by the integers k, k0 and k1. The key generation isidential to FDH. The signing and verifying algorithms use two hash funtionsH : f0; 1g� ! f0; 1gk1 and G : f0; 1gk1 ! f0; 1gk�k1�1. Let G1 be the funtionwhih on input ! 2 f0; 1gk1 returns the �rst k0 bits of G(!), whereas G2 is thefuntion returning the remaining k � k0 � k1 � 1 bits of G(!). A random saltr of k0 bits is onatenated to the message M before hashing it. The sheme isillustrated in �gure 1. In this setion we obtain a better seurity proof for PSS,in whih a shorter random salt is used to generate the signature.SignPSS(M) : VerifyPSS(M;x) :r R f0; 1gk0 y  xe mod N!  H(Mkr) Break up y as bk!kr�kr�  G1(!)� r Let r  r� �G1(!)y  0k!kr�kG2(!) if H(Mkr) = ! and G2(!) =  and b = 1return yd mod N then return 1 else return 0
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Μ∗Fig. 1. PSS (left) and PSS-R (right)The following theorem [2℄ proves the seurity of PSS in the random oralemodel:Theorem 2. Assuming that RSA is (t0; "0)-seure, the sheme PSS[k0; k1℄ is (t;qsig , qhash; ")-seure, where:t = t0 � (qhash + qsig + 1) � k0 � O(k3) (3)" = "0 + 3 � (qsig + qhash)2 � �2�k0 + 2�k1� (4)Theorem 2 shows that for PSS to be as seure as RSA (i.e. "0 ' "), it mustbe the ase that (qsig + qhash)2 � �2�k0 + 2�k1� < "0, whih gives k0 � kmin andk1 � kmin, where: kmin = 2 � log2(qhash + qsig) + log2 1"0 (5)Taking qhash = 260, qsig = 230 and "0 = 2�60 as in [2℄, we obtain that k0 and k1must be greater than kmin = 180 bits.The following theorem shows that PSS an be proven as seure as RSA for amuh shorter random salt, namely k0 = log2 qsig bits, whih for qsig = 230 givesk0 = 30 bits. The minimum value for k1 remains unhanged.Theorem 3. Assuming that RSA is (t0; "0)-seure, the sheme PSS[k0; k1℄ is (t;qsig , qhash; ")-seure, where:t = t0 � (qhash + qsig) � k1 � O(k3) (6)" = "0 � �1 + 6 � qsig � 2�k0�+ 2 � (qhash + qsig)2 � 2�k1 (7)In Appendix A, we give a seurity proof for a variant of PSS, for whih theproof is simpler. The proof of Theorem 3 is very similar and an be found in thefull version of the paper [6℄. The di�erene with the seurity proof of [2℄ is thefollowing: in [2℄, a new random salt r is randomly generated for eah signaturequery, and if r has appeared before, the inverter stops and has failed. Sineat most qhash + qsig random salts an appear during the redution, the inverterstops after a given signature query with probability less than (qhash+qsig) �2�k0 .There are at most qsig signature queries, so this gives an error probability of:qsig � (qhash + qsig) � 2k0
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Fig. 2. Seurity gap between PSS and RSA: log2 "0=" as a funtion of the salt size k0for qsig = 230 signature queries.whih aounts for the term (qhash+qsig)2 �2�k0 in equation (4). On the ontrary,in our new seurity proof, we generate for eah new message Mi a list of qsigrandom salts. Those random salts are then used to answer the signature queriesfor Mi, so there is no error probability when answering the signature queries.3.1 DisussionTheorem 3 shows that PSS is atually provably seure for any size k0 of therandom salt. In �gure 2 we plot log2 "0=" as a funtion of the size k0 of the salt,whih depits the relative seurity of PSS ompared to RSA, for qsig = 230 andk1 > kmin. For k0 = 0, we reah the seurity level of FDH, where approximatelylog2 qsig bits of seurity are lost ompared to RSA. For k0 omprised betweenzero and log2 qsig , we gain one bit of seurity when k0 inreases by one bit.And for k0 greater than log2 qsig , the seurity level of PSS is almost the sameas inverting RSA. This shows that PSS has a tight seurity proof as soon asthe salt size reahes log2 qsig , and using larger salts does not further improveseurity. For the signer, qsig represents the maximal number of signatures whihan be generated for a given publi-key. For example, for an appliation in whihat most one billion signatures will be generated, k0 = 30 bits of random salt areatually suÆient to guarantee the same level of seurity as RSA, and taking alarger salt does not inrease the seurity level.PSS-R is a variant of PSS whih provides message reovery; the sheme isillustrated in �gure 1. The goal is to save on the bandwidth: instead of trans-mitting the message separately, the message is reovered when verifying the



8 Jean-S�ebastien Coronsignature. The seurity proof for PSS-R is almost idential to the seurity proofof PSS, and PSS-R ahieves the same seurity level as PSS. Consequently, us-ing the same parameters as for PSS with a 1024-bits RSA modulus, 813 bits ofmessage an now be reovered when verifying the signature (instead of 663 bitswith the previous seurity proof).4 Optimal Seurity Proof for FDHIn setion 2 we have seen that the seurity proof of Theorem 1 for FDH is still nottight: the probability "F of breaking FDH is smaller than roughly qsig �"I where "Iis the probability of inverting RSA. In this setion we show that the seurity proofof Theorem 1 for FDH is optimal, i.e. there is no better redution from invertingRSA to breaking FDH, and one annot avoid loosing the qsig fator in theprobability bound. We use a similar approah as Boneh and Venkatesan in [3℄ fordisproving the equivalene between inverting low-exponent RSA and fatoring.They show that any eÆient algebrai redution from fatoring to invertinglow-exponent RSA an be onverted into an eÆient fatoring algorithm. Suhredution is an algorithm A whih fators N using an e-th root orale for N .They show how to onvert A into an algorithm B that fators integers withoutusing the e-th root orale. Thus, unless fatoring is easy, inverting low-exponentRSA annot be equivalent to fatoring under algebrai redutions.Similarly, we show that any better redution from inverting RSA to breakingFDH an be onverted into an eÆient RSA inverting algorithm. Suh redutionis an algorithm R whih uses a forger as an orale in order to invert RSA. Weshow how to onvert R into an algorithm I whih inverts RSA without usingthe orale forger. Consequently, if inverting RSA is hard, there is no suh betterredution for FDH, and the redution of Theorem 1 must be optimal.Our tehnique is the following. Reall that resistane against adaptive ho-sen message attaks is onsidered, so the forger is allowed to make signaturequeries for messages of its hoie, whih must be answered by the redution R.Eventually the forger outputs a forgery, and the redution must invert RSA.Therefore we �rst ask the redution to sign a message M and reeive its sig-nature s, then we rewind the redution to the state in whih it was before thesignature query, and we send s as a forgery for M . This is a true forgery forthe redution, beause after the rewind there was no signature query for M , soeventually the redution inverts RSA. Consequently, we have onstruted fromR an algorithm I whih inverts RSA without using any forger. Atually, thistehnique allows to simulate a forger with respet to R, without being able tobreak FDH. However, the simulation is not perfet, beause it outputs a forgeryonly for messages whih an be signed by the redution, whereas a real forgeroutputs the forgery of a message that the redution may or may not be able tosign.We quantify the eÆieny of a redution by giving the probability that theredution inverts RSA using a forger that (tF ; qhash,qsig ,"F )-breaks the signaturesheme, within an additional running time of tR:



Optimal Seurity Proofs for PSS and other Signature Shemes 9De�nition 7. We say that a redution algorithm R (tR; qhash; qsig ; "F ; "R) -redues inverting RSA to breaking FDH if upon input (N; e; y) and after run-ning any forger that (tF , qhash, qsig,"F )-breaks FDH, the redution outputs ydmod N with probability greater than "R, within an additional running time oftR. In the above de�nition, tR is the running time of the redution algorithm onlyand does not inlude the running time of the forger. Eventually, the time neededto invert RSA is tF +tR, where tF is the running time of the forger. For example,the redution of Theorem 1 for FDH (tR; qhash; qsig ; "F ; "R)-redues invertingRSA to breaking FDH with tR(k) = (qhash+ qsig) �O(k3) and "R = "F =(4 � qsig).The following theorem, whose proof is given in appendix B, shows that fromany suh redution R we an invert RSA with probability greater than roughly"R � "F =qsig , in roughly the same time bound.Theorem 4. Let R be a redution that (tR; qhash; qsig ; "R; "F )-redues invertingRSA to breaking FDH. R runs the forger only one. From R we an onstrutan algorithm that (tI ; "I)-inverts RSA, with:tI = 2 � tR (8)"I = "R � "F � exp(�1)qsig � �1� qsigqhash��1 (9)Theorem 4 shows that from any redution R that inverts RSA with probabil-ity "R when interating with a forger that outputs a forgery with probability "F ,we an invert RSA with probability roughly "R � "F =qsig , in roughly the sametime bound, without using a forger. For simpliity, we omit here the fatorsexp(�1) and (1�qsig=qhash) in equation (9). Moreover we onsider a forger thatmakes qsig signature queries, and with probability "F = 1 outputs a forgery1.Theorem 4 implies that from a polynomial time redution R that sueedswith probability "R when interating with this forger, we obtain a polynomialtime RSA inverter I that sueeds with probability "I = "R � 1=qsig , withoutusing the forger. If inverting RSA is hard, the suess probability "I of the poly-nomial time inverter must be negligible. Consequently, the suess probability"R of the redution must be less than 1=qsig + negl. This shows that from aforger that outputs a forgery with probability one, a polynomial time redutionannot sueed with probability greater than 1=qsig + negl. On the ontrary, atight seurity redution would invert RSA with probability lose to one. Herewe annot avoid the qsig fator in the seurity proof: the seurity level of FDHannot be proven equivalent to RSA, and the seurity proof of Theorem 1 forFDH is optimal.1 Suh forger an be onstruted by �rst fatoring the modulus N , then omputing aforgery using the fatorisation of N .



10 Jean-S�ebastien Coron5 Extension to any Signature Sheme with UniqueSignatureWe have introdued a new tehnique that enables to simulate a forger withrespet to a redution. It onsists in making a signature query for a messageM ,rewinding the redution, then sending the signature of M as a forgery. Atually,this tehnique strethes beyond FDH and an be generalized and applied to anysignature sheme in whih eah message has a unique signature. Moreover, thetehnique an be generalized to redutions running a forger more than one. Thefollowing theorem shows that for a hash-and-sign signature sheme with uniquesignature, a redution allowed to run or rewind a forger at most r times annotsueed with probability greater than roughly r � "F=qsig . The de�nitions andthe proof of the theorem are given in the full version of the paper [6℄.Theorem 5. Let R be a redution that (tR; qhash; qsig ; "F ; "R)-redues solving aproblem � to breaking a hash-and-sign signature sheme with unique signature.R is allowed to run or rewind a forger at most r times. From R we an onstrutan algorithm that (tA; "A)-solves �, with:tA = (r + 1) � tR (10)"A = "R � "F � exp(�1) � rqsig ��1� qsigqhash��1 (11)6 Seurity Proofs for Signature Shemes in the StandardModelThe same tehnique an be applied to seurity redutions in the standard model,and we obtain the same upper bound in 1=qsig for signature shemes with uniquesignature. The de�nitions and the proof of the following theorem are given inthe full version of the paper [6℄.Theorem 6. Let R be a redution that (tR; qsig ; "F ; "R)-redues solving � tobreaking a signature sheme with unique signature. R an run or rewind theforger at most r times. Assume that the size of the message spae is at least 2`.From R we an onstrut an algorithm that (tA; "A)-solves �, with:tA = (r + 1) � tR (12)"A = "R � "F � exp(�1) � rqsig � �1� qsig2` ��1 (13)In [6℄ we give an example of a signature sheme with unique signature, prov-ably seure in the standard model, and reahing the the above bound in 1=qsig .



Optimal Seurity Proofs for PSS and other Signature Shemes 117 Optimal Seurity Proof for PSSIn setion 3 we have seen that k0 = log2 qsig bits of random salt are suÆientfor PSS to have a seurity level equivalent to RSA, and taking a larger salt doesnot further improve the seurity. In this setion, we show that that this lengthis optimal: if a shorter random salt is used, the seurity level of PSS annot beproven equivalent to RSA. Our tehnique desribed in setion 4 does not applydiretly beause PSS is not a signature sheme with unique signature. We extendour tehnique to PSS using the following method.We onsider PSS in whih the random salt is �xed to 0k0 , and we denote thissignature sheme PSS0[k0; k1℄. Consequently, PSS0[k0; k1℄ is a signature shemewith unique signature. First, we show how to onvert a forger for PSS0[k0; k1℄ intoa forger for PSS[k0; k1℄. A redutionR from inverting RSA to breaking PSS[k0; k1℄uses a forger for PSS[k0; k1℄ in order to invert RSA. Consequently, from a forgerfor PSS0[k0; k1℄, we an invert RSA using the redution R. This means that fromR we an onstrut a redution R0 from inverting RSA to breaking PSS0[k0; k1℄.Sine PSS0[k0; k1℄ is a signature sheme with unique signature, Theorem 5 givesan upper bound for the suess probability ofR0, from whih we derive an upperbound for the suess probability of R.Theorem 7. LetR a redution that (t; qhash; qsig ,"F ; "R)-redues inverting RSAto breaking PSS[k0; k1℄, with qhash � 2 � qsig . The redution an run or rewindthe forger at most r times. From R we an onstrut an inverting algorithm forRSA that (tI ; "I)-inverts RSA, with:tI = (r + 1) � (tR + qsig � O(k)) (14)"I = "R � r � "F � 2k0+2qsig (15)Proof. The proof is given in the full version of the paper [6℄.Let onsider as in Setion 4 a forger for PSS[k0; k1℄ that makes qsig sig-nature queries and outputs a forgery with probability "F = 1=2. Then, froma polynomial time redution R that sueeds with probability "R when run-ning one this forger, we obtain a polynomial time inverter that sueeds withprobability "I = "R � 2k0+1=qsig , without using the forger. If inverting RSA ishard, the suess probability "I of the polynomial time inverter must be neg-ligible, and therefore the suess probability "R of the redution must be lessthan 2k0+1=qsig + negl. Consequently, in order to have a tight seurity redu-tion ("R ' "R), we must have k0 ' log2 qsig . The redution of Theorem 3 isonsequently optimal.8 ConlusionWe have desribed a new tehnique for analyzing the seurity proofs of signatureshemes. The tehnique is both general and very simple and allows to derive
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14 Jean-S�ebastien CoronProof. Let F be a forger that (t; qsig ; qhash; ")-breaks PFDH. We onstrut aninverter I that (t0; "0)-breaks RSA. The inverter reeives as input (N; e; �) andmust output �d mod N . We assume that the forger never repeats a hash query.However, the forger may repeat a signature query, in order to obtain the signatureof M with distint integers r. The inverter I maintains a ounter i, initially setto zero.When a message M appears for the �rst time in a hash query or a signaturequery, the inverter inrements the ounter i and setsMi  M . Then, the invertergenerates a list Li of qsig random integers in f0; 1gk0.When the forger makes a hash query for Mikr, we distinguish two ases. Ifr belongs to the list Li, the inverter generates a random x 2 Z�N and returnsH(Mikr) = xe mod N . Otherwise, the inverter generates a random x 2 Z�N andreturns ��xe mod N . Consequently, for eah messageMi, the list Li ontains theintegers r 2 f0; 1gk0 suh that the inverter knows the signature x orrespondingto Mikr.When the forger makes a signature query for Mi, the inverter takes thenext random r in the list Li. Sine the list ontains initially qsig integers andthere are at most qsig signature queries, this is always possible. If there wasalready a hash query for Mikr, we have H(Mikr) = xe mod N and the inverterreturns the signature x. Otherwise the inverter generates a random x 2 Z�N, setsH(Mikr) = xe mod N and returns the signature x.When the forger outputs a forgery (M; s; r), we assume that it has alreadymade a hash query forM , soM =Mi for a given i. Otherwise, the inverter goesahead and makes the hash query for Mkr. Then if r does not belong to the listLi, we have H(Mikr) = � �xe mod N . From s = H(Mikr)d = �d �x mod N , weobtain �d = s=x mod N and the inverter sueeds in outputting �d mod N .Sine the forger has not made any signature query for the messageMi in theforgery (Mi; s; r), the forger has no information about the qsig random integers inthe list Li. Therefore, the probability that r does not belong to Li is (1�2�k0)qsig .If the size k0 of the random salt is greater than log2 qsig , we obtain if qsig � 2:�1� 2�k0�qsig � �1� 1qsig�qsig � 14Sine the forger outputs a forgery with probability ", the suess probability"0 of the inverter is then at least "=4, whih shows that for k0 � log2 qsig theprobability of breaking PFDH is almost the same as the probability of invertingRSA.For the general ase, i.e. if we do not assume k0 � log2 qsig , we generatefewer than qsig random integers in the list Li, so that the salt r in the forgery(Mi; s; r) belongs to Li with lower probability. More preisely, starting from anempty list Li, the inverter generates with probability � a random r  f0; 1gk0 ,adds it to Li, and starts again until the list Li ontains qsig elements. Otherwise(so with probability 1 � �) the inverter stops adding integers to the list. Thenumber ai of integers in Li is then a random variable following a geometri lawof parameter �:



Optimal Seurity Proofs for PSS and other Signature Shemes 15Pr[ai = j℄ = � (1� �) � �j if j < qsig�qsig if j = qsig (18)The inverter answers a signature query for Mi if the orresponding list Liontains one more integer, whih happens with probability � (otherwise theinverter must abort). Consequently, the inverter answers all the signature querieswith probability greater than �qsig . Note that if � = 1, the setting boils down tothe previous ase: all the lists Li ontain exatly qsig integers, and the inverteranswers all the signature queries with probability one.The probability that r in the forgery (Mi; s; r) does not belong to the list Liis then (1� 2�k0)j , when the length ai of Li is equal to j. The probability thatr does not belong to Li is then:f(�) = qsigXj=0Pr[ai = j℄ � �1� 2�k0�j (19)Sine the forger outputs a forgery with probability ", the suess probability ofthe inverter is at least " � �qsig � f(�). We selet a value of � whih maximizesthis suess probability; in [6℄, we show that for any (qsig ; k0), there exists �0suh that: �qsig0 � f(�0) � 11 + 6 � qsig � 2�k0 (20)whih gives (17). The running time of I is the running time of F plus the timeneessary to ompute the integers xe mod N and to generate the lists Li, whihgives (16).B Proof of Theorem 4From R we build an algorithm I that inverts RSA, without using a forger forFDH. We reeive as input (N; e; y) and our goal is to output yd mod N usingR. We selet qhash distint messages M1; : : : ;Mqhash and start running R with(N; e; y).First we ask R to hash the qhash messages M1; : : : ;Mqhash , and obtain thehash values h1; : : : ; hqhash . We selet a random integer � 2 [1; qhash℄ and arandom sequene � of qsig integers in [1; qhash℄ n f�g, whih we denote � =(�1; : : : ; �qsig ). We selet a random integer i 2 [1; qsig ℄ and de�ne the sequeneof i integers �0 = (�1; : : : ; �i�1; �). Then we make the i signature queries orre-sponding to �0 to R and reeive from R the orresponding signatures, the lastone being the signature s� of M�. For example, if �0 = (3; 2), this orrespondsto making a signature query for M3 �rst, and then for M2.Then we rewind R to the state it was after the hash queries, and this time,we make the qsig signature queries orresponding to �. If R has answered all



16 Jean-S�ebastien Coronthe signature queries, then with probability "F , we send (M� ; s�) as a forgeryto R. This is a true forgery for R beause after the rewind of R, there was nosignature query for M� . Eventually R inverts RSA and outputs yd mod N .We denote by Q the set of sequenes of signature queries whih are orretlyanswered by R after the hash queries, in time less than tR. If a sequene ofsignature queries is orretly answered by R, then the same sequene withoutthe last signature query is also orretly answered, so for any (�1; : : : ; �j) 2 Q,we have (�1; : : : ; �j�1) 2 Q. Let us denote by ans the event � 2 Q, whihorresponds to R answering all the signature queries after the rewind, and byans' the event �0 2 Q, whih orresponds to R answering all the signaturequeries before the rewind.Let us onsider a forger that makes the same hash queries, the same signaturequeries orresponding to �, and outputs a forgery for M� with probability "F .By de�nition, when interating with suh a forger, R would output yd mod Nwith probability at least "R. After the rewind,R sees exatly the same transriptas when interating with this forger, exept if event ans is true and ans' isfalse: in this ase, the forger outputs a forgery with probability "F , whereas oursimulation does not output a forgery. Consequently, when interating with oursimulation of a forger, R outputs yd mod N with probability at least:"R � "F � Pr[ans ^ :ans'℄ (21)The proof of the following lemma is given in the full version of the paper [6℄.Lemma 1. Let Q be a set of sequenes of at most n integers in [1; k℄, suhthat for any sequene (�1; : : : ; �j) 2 Q, we have (�1; : : : ; �j�1) 2 Q. Then thefollowing holds:Pri [1;n℄(�1;::: ;�n;�) [1;k℄n+1 [(�1; : : : ; �n) 2 Q ^ (�1; : : : ; �i�1; �) =2 Q℄ � exp(�1)nUsing Lemma 1 with n = qsig and k = qhash, we obtain:Pr[ans ^ :ans'℄ � exp(�1)qsig �1� qsigqhash��1 (22)The term (1 � qsig=qhash) in equation (22) is due to the fat that we selet�1; : : : ; �qsig in [1; qhash℄ n f�g whereas in Lemma 1 the integers are seleted in[1; qhash℄. From equations (21) and (22) we obtain that I sueeds with proba-bility greater than "I given by (9). Beause of the rewind, the running time ofI is at most twie the running time of R, whih gives (8) and terminates theproof.


