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t. The Probabilisti
 Signature S
heme (PSS) designed by Bel-lare and Rogaway is a signature s
heme provably se
ure against 
ho-sen message atta
ks in the random ora
le model, whose se
urity 
an betightly related to the se
urity of RSA. We derive a new se
urity proof forPSS in whi
h a mu
h shorter random salt is used to a
hieve the same se-
urity level, namely we show that log2 qsig bits suÆ
e, where qsig is thenumber of signature queries made by the atta
ker. When PSS is usedwith message re
overy, a better bandwidth is obtained be
ause longermessages 
an now be re
overed. In this paper, we also introdu
e a newte
hnique for proving that the se
urity proof of a signature s
heme isoptimal. In parti
ular, we show that the size of the random salt that wehave obtained for PSS is optimal: if less than log2 qsig bits are used, thenPSS is still provably se
ure but it 
annot have a tight se
urity proof.Our te
hnique applies to other signature s
hemes su
h as the Full Do-main Hash s
heme and Gennaro-Halevi-Rabin's s
heme, whose se
urityproofs are shown to be optimal.Keywords. Probabilisti
 signature s
heme, provable se
urity.1 Introdu
tionSin
e the invention of publi
-key 
ryptography in the seminal DiÆe-Hellmanpaper [9℄, signi�
ant resear
h endeavors were devoted to the design of pra
ti
aland provably se
ure s
hemes. A proof of se
urity is usually a 
omputational re-du
tion from solving a well established problem to breaking the 
ryptosystem.Well established problems of 
ryptographi
 relevan
e in
lude fa
toring large in-tegers, 
omputing dis
rete logarithms in prime order groups, or extra
ting rootsmodulo a 
omposite integer.For digital signature s
hemes, the strongest se
urity notion was de�ned byGoldwasser, Mi
ali and Rivest in [13℄, as existential unforgeability under an



2 Jean-S�ebastien Coronadaptive 
hosen message atta
k. This notion 
aptures the property that an at-ta
ker 
annot produ
e a valid signature, even after obtaining the signature of(polynomially many) messages of his 
hoi
e.Goldwasser, Mi
ali and Rivest proposed in [13℄ a signature s
heme based onsignature trees that provably meets this de�nition. The eÆ
ien
y of the s
hemewas later improved by Dwork and Naor [10℄, and Cramer and Damg�ard [7℄. Asigni�
ant drawba
k of those signature s
hemes is that the signature of a messagedepends on previously signed messages: the signer must thus store informationrelative to the signatures he generates as time goes by. Gennaro, Halevi andRabin presented in [12℄ a new hash-and-sign s
heme provably se
ure againstadaptive 
hosen message atta
ks whi
h is both state-free and eÆ
ient. Its se
u-rity is based on the strong-RSA assumption. Cramer and Shoup presented in[8℄ a signature s
heme provably se
ure against adaptive 
hosen message atta
ks,whi
h is also state-free, eÆ
ient, and based on the strong-RSA assumption.The random ora
le model, introdu
ed by Bellare and Rogaway in [1℄, is atheoreti
al framework allowing to prove the se
urity of hash-and-sign signatures
hemes. In this model, the hash fun
tion is seen as an ora
le that outputsa random value for ea
h new query. Bellare and Rogaway de�ned in [2℄ theFull Domain Hash (FDH) signature s
heme, whi
h is provably se
ure in therandom ora
le model assuming that inverting RSA is hard. [2℄ also introdu
edthe Probabilisti
 Signature S
heme (PSS), whi
h o�ers better se
urity guaranteesthan FDH. Similarly, Point
heval and Stern [19℄ proved the se
urity of dis
rete-log based signature s
hemes in the random ora
le model (see also [16℄ for a
on
rete treatment). However, se
urity proofs in the random ora
le are not realproofs, sin
e the random ora
le is repla
ed by a well de�ned hash fun
tion inpra
ti
e; a
tually, Canetti, Goldrei
h and Halevi [4℄ showed that a se
urity proofin the random ora
le model does not ne
essarily imply that a s
heme is se
urein the real world.For pra
ti
al appli
ations of provably se
ure s
hemes, the tightness of these
urity redu
tion must be taken into a

ount. A se
urity redu
tion is tight whenbreaking the signature s
heme leads to solving the well established problem withprobability 
lose to one. In this 
ase, the signature s
heme is almost as se
ureas the well established problem. On the 
ontrary, if the above probability istoo small, the guarantee on the signature s
heme will be weak; in whi
h 
aselarger se
urity parameters must be used, thereby de
reasing the eÆ
ien
y of thes
heme.The se
urity redu
tion of [2℄ for Full Domain Hash bounds the probability" of breaking FDH in time t by (qhash + qsig) � "0 where "0 is the probability ofinverting RSA in time t0 
lose to t and where qhash and qsig are the numberof hash queries and signature queries performed by the forger. This was laterimproved in [5℄ to " ' qsig �"0, whi
h is a signi�
ant improvement sin
e in pra
ti
eqsig happens to be mu
h smaller than qhash. However, FDH's se
urity redu
tionis still not tight, and FDH is still not as se
ure as inverting RSA.



Optimal Se
urity Proofs for PSS and other Signature S
hemes 3On the 
ontrary, PSS is almost as se
ure as inverting RSA (" ' "0). Addi-tionally, for PSS to have a tight se
urity proof in [2℄, the random salt used togenerate the signature must be of length at least k0 ' 2 � log2 qhash + log2 1="0,where qhash is the number of hash queries requested by the atta
ker and "0 theprobability of inverting RSA within a given time bound. Taking qhash = 260and "0 = 2�60 as in [2℄, we obtain a random salt of size k0 = 180 bits. In thispaper, we show that PSS has a
tually a tight se
urity proof for a random saltas short as log2 qsig bits, where qsig is the number of signature queries madeby the atta
ker. For example, for an appli
ation in whi
h at most one billionsignatures will be generated, k0 = 30 bits of random salt are a
tually suÆ
ientto guarantee the same level of se
urity as RSA, and taking a longer salt does notin
rease the se
urity level. When PSS is used with message re
overy, we obtain abetter bandwidth be
ause a larger message 
an now be re
overed when verifyingthe signature.Moreover, we show that this size is optimal: if less than log2 qsig bits ofrandom salt are used, PSS is still provably se
ure, but PSS 
annot have exa
tlythe same se
urity level as RSA. First, using a new te
hnique, we derive an upperbound for the se
urity of FDH, whi
h shows that the se
urity proof in [5℄ with" ' qsig � "0 is optimal. In other words, it is not possible to further improve these
urity proof of FDH in order to obtain a se
urity level equivalent to RSA.This answers the open question raised by Bellare and Rogaway in [2℄, about theexisten
e of a better se
urity proof for FDH: as opposed to PSS, FDH 
annot beproven as se
ure as inverting RSA. The te
hnique also applies to other signatures
hemes su
h as Gennaro-Halevi-Rabin's s
heme [12℄ and Paillier's signatures
heme [17℄. To our knowledge, this is the �rst result 
on
erning optimal se
urityproofs. Then, using the upper bound for the se
urity of FDH, we show that oursize k0 for the random salt in PSS is optimal: if less than log2 qsig bits are used,no se
urity proof for PSS 
an be tight.2 De�nitionsIn this se
tion we brie
y present some notations and de�nitions used throughoutthe paper. We start by re
alling the de�nition of a signature s
heme.De�nition 1 (Signature s
heme). A signature s
heme (Gen; Sign; Verify)is de�ned as follows:- The key generation algorithm Gen is a probabilisti
 algorithm whi
h given1k, outputs a pair of mat
hing publi
 and private keys, (pk; sk).- The signing algorithm Sign takes the message M to be signed, the publi
key pk and the private key sk, and returns a signature x = Signpk;sk(M). Thesigning algorithm may be probabilisti
.- The veri�
ation algorithm Verify takes a message M , a 
andidate signa-ture x0 and pk. It returns a bit Verifypk(M;x0), equal to one if the signatureis a

epted, and zero otherwise. We require that if x  Signpk;sk(M), thenVerifypk(M;x) = 1.



4 Jean-S�ebastien CoronIn the previously introdu
ed existential unforgeability under an adaptive 
ho-sen message atta
k s
enario, the forger 
an dynami
ally obtain signatures ofmessages of his 
hoi
e and attempts to output a valid forgery. A valid forgeryis a message/signature pair (M;x) su
h that Verifypk(M;x) = 1 whereas thesignature of M was never requested by the forger.A signi�
ant line of resear
h for proving the se
urity of signature s
hemes isthe previously introdu
ed random ora
le model, where resistan
e against adap-tive 
hosen message atta
ks is de�ned as follows [1℄:De�nition 2. A forger F is said to (t; qhash; qsig ; ")-break the signature s
heme(Gen; Sign; Verify) if after at most qhash(k) queries to the hash ora
le, qsig(k)signatures queries and t(k) pro
essing time, it outputs a valid forgery with prob-ability at least "(k) for all k 2 N.and quite naturally:De�nition 3. A signature s
heme (Gen; Sign; Verify) is (t; qsig ; qhash, ")-se
ure if there is no forger who (t; qhash; qsig ; ")-breaks the s
heme.The RSA 
ryptosystem, invented by Rivest, Shamir and Adleman [20℄, is themost widely used 
ryptosystem today:De�nition 4 (The RSA 
ryptosystem). The RSA 
ryptosystem is a familyof trapdoor permutations, spe
i�ed by:- The RSA generator RSA, whi
h on input 1k, randomly sele
ts two distin
tk=2-bit primes p and q and 
omputes the modulus N = p � q. It randomly pi
ksan en
ryption exponent e 2 Z��(N) and 
omputes the 
orresponding de
ryptionexponent d su
h that e � d = 1 mod �(N). The generator returns (N; e; d).- The en
ryption fun
tion f : Z�N ! Z�N de�ned by f(x) = xe mod N .- The de
ryption fun
tion f�1 : Z�N ! Z�N de�ned by f�1(y) = yd mod N .FDH was the �rst pra
ti
al and provably se
ure signature s
heme based onRSA. It is de�ned as follows: the key generation algorithm, on input 1k, runsRSA(1k) to obtain (N; e; d). It outputs (pk; sk), where the publi
 key pk is (N; e)and the private key sk is (N; d). The signing and verifying algorithms use a hashfun
tion H : f0; 1g� ! Z�N whi
h maps bit strings of arbitrary length to the setof invertible integers modulo N .SignFDHN;d(M) VerifyFDHN;e(M;x)y  H(M) y  xe mod Nreturn yd mod N if y = H(M) then return 1 else return 0.FDH is provably se
ure in the random ora
le model, assuming that invertingRSA is hard. An inverting algorithm I for RSA gets as input (N; e; y) and tries to�nd yd mod N . Its su

ess probability is the probability to output yd mod Nwhen (N; e; d) are obtained by running RSA(1k) and y is set to xe mod N forsome x 
hosen at random in Z�N.



Optimal Se
urity Proofs for PSS and other Signature S
hemes 5De�nition 5. An inverting algorithm I is said to (t; ")-break RSA if after atmost t(k) pro
essing time its su

ess probability is at least "(k) for all k 2 N.De�nition 6. RSA is said to be (t; ")-se
ure if there is no inverter that (t; ")-breaks RSA.The following theorem [5℄ proves the se
urity of FDH in the random ora
lemodel.Theorem 1. Assuming that RSA is (tI ; "I)-se
ure, FDH is (tF ; qhash; qsig ;"F )-se
ure, with: tI = tF + (qhash + qsig + 1) � O(k3) (1)"I = "Fqsig ��1� 1qsig + 1�qsig+1 (2)The te
hnique des
ribed in [5℄ 
an be used to obtain an improved se
urityproof for Gennaro-Halevi-Rabin's signature s
heme [12℄ in the random ora
lemodel and for Paillier's signature s
heme [17℄. From a forger whi
h outputs aforgery with probability "F , the redu
tion su

eeds in solving the hard problemwith probability roughly "F =qsig , in approximately the same time bound.The se
urity redu
tion of FDH is not tight: the probability "F of breakingFDH is smaller than roughly qsig � "I where "I is the probability of invertingRSA, whereas the se
urity redu
tion of PSS is tight: the probability of breakingPSS is almost the same as the probability of inverting RSA ("F ' "I).3 New Se
urity Proof for PSSSeveral standards in
lude PSS [2℄, among these are IEEE P1363a [14℄, a revi-sion of ISO/IEC 9796-2, and the up
oming PKCS#1 v2.1 [18℄. The signatures
heme PSS is parameterized by the integers k, k0 and k1. The key generation isidenti
al to FDH. The signing and verifying algorithms use two hash fun
tionsH : f0; 1g� ! f0; 1gk1 and G : f0; 1gk1 ! f0; 1gk�k1�1. Let G1 be the fun
tionwhi
h on input ! 2 f0; 1gk1 returns the �rst k0 bits of G(!), whereas G2 is thefun
tion returning the remaining k � k0 � k1 � 1 bits of G(!). A random saltr of k0 bits is 
on
atenated to the message M before hashing it. The s
heme isillustrated in �gure 1. In this se
tion we obtain a better se
urity proof for PSS,in whi
h a shorter random salt is used to generate the signature.SignPSS(M) : VerifyPSS(M;x) :r R f0; 1gk0 y  xe mod N!  H(Mkr) Break up y as bk!kr�k
r�  G1(!)� r Let r  r� �G1(!)y  0k!kr�kG2(!) if H(Mkr) = ! and G2(!) = 
 and b = 1return yd mod N then return 1 else return 0
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Μ∗Fig. 1. PSS (left) and PSS-R (right)The following theorem [2℄ proves the se
urity of PSS in the random ora
lemodel:Theorem 2. Assuming that RSA is (t0; "0)-se
ure, the s
heme PSS[k0; k1℄ is (t;qsig , qhash; ")-se
ure, where:t = t0 � (qhash + qsig + 1) � k0 � O(k3) (3)" = "0 + 3 � (qsig + qhash)2 � �2�k0 + 2�k1� (4)Theorem 2 shows that for PSS to be as se
ure as RSA (i.e. "0 ' "), it mustbe the 
ase that (qsig + qhash)2 � �2�k0 + 2�k1� < "0, whi
h gives k0 � kmin andk1 � kmin, where: kmin = 2 � log2(qhash + qsig) + log2 1"0 (5)Taking qhash = 260, qsig = 230 and "0 = 2�60 as in [2℄, we obtain that k0 and k1must be greater than kmin = 180 bits.The following theorem shows that PSS 
an be proven as se
ure as RSA for amu
h shorter random salt, namely k0 = log2 qsig bits, whi
h for qsig = 230 givesk0 = 30 bits. The minimum value for k1 remains un
hanged.Theorem 3. Assuming that RSA is (t0; "0)-se
ure, the s
heme PSS[k0; k1℄ is (t;qsig , qhash; ")-se
ure, where:t = t0 � (qhash + qsig) � k1 � O(k3) (6)" = "0 � �1 + 6 � qsig � 2�k0�+ 2 � (qhash + qsig)2 � 2�k1 (7)In Appendix A, we give a se
urity proof for a variant of PSS, for whi
h theproof is simpler. The proof of Theorem 3 is very similar and 
an be found in thefull version of the paper [6℄. The di�eren
e with the se
urity proof of [2℄ is thefollowing: in [2℄, a new random salt r is randomly generated for ea
h signaturequery, and if r has appeared before, the inverter stops and has failed. Sin
eat most qhash + qsig random salts 
an appear during the redu
tion, the inverterstops after a given signature query with probability less than (qhash+qsig) �2�k0 .There are at most qsig signature queries, so this gives an error probability of:qsig � (qhash + qsig) � 2k0
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Fig. 2. Se
urity gap between PSS and RSA: log2 "0=" as a fun
tion of the salt size k0for qsig = 230 signature queries.whi
h a

ounts for the term (qhash+qsig)2 �2�k0 in equation (4). On the 
ontrary,in our new se
urity proof, we generate for ea
h new message Mi a list of qsigrandom salts. Those random salts are then used to answer the signature queriesfor Mi, so there is no error probability when answering the signature queries.3.1 Dis
ussionTheorem 3 shows that PSS is a
tually provably se
ure for any size k0 of therandom salt. In �gure 2 we plot log2 "0=" as a fun
tion of the size k0 of the salt,whi
h depi
ts the relative se
urity of PSS 
ompared to RSA, for qsig = 230 andk1 > kmin. For k0 = 0, we rea
h the se
urity level of FDH, where approximatelylog2 qsig bits of se
urity are lost 
ompared to RSA. For k0 
omprised betweenzero and log2 qsig , we gain one bit of se
urity when k0 in
reases by one bit.And for k0 greater than log2 qsig , the se
urity level of PSS is almost the sameas inverting RSA. This shows that PSS has a tight se
urity proof as soon asthe salt size rea
hes log2 qsig , and using larger salts does not further improvese
urity. For the signer, qsig represents the maximal number of signatures whi
h
an be generated for a given publi
-key. For example, for an appli
ation in whi
hat most one billion signatures will be generated, k0 = 30 bits of random salt area
tually suÆ
ient to guarantee the same level of se
urity as RSA, and taking alarger salt does not in
rease the se
urity level.PSS-R is a variant of PSS whi
h provides message re
overy; the s
heme isillustrated in �gure 1. The goal is to save on the bandwidth: instead of trans-mitting the message separately, the message is re
overed when verifying the



8 Jean-S�ebastien Coronsignature. The se
urity proof for PSS-R is almost identi
al to the se
urity proofof PSS, and PSS-R a
hieves the same se
urity level as PSS. Consequently, us-ing the same parameters as for PSS with a 1024-bits RSA modulus, 813 bits ofmessage 
an now be re
overed when verifying the signature (instead of 663 bitswith the previous se
urity proof).4 Optimal Se
urity Proof for FDHIn se
tion 2 we have seen that the se
urity proof of Theorem 1 for FDH is still nottight: the probability "F of breaking FDH is smaller than roughly qsig �"I where "Iis the probability of inverting RSA. In this se
tion we show that the se
urity proofof Theorem 1 for FDH is optimal, i.e. there is no better redu
tion from invertingRSA to breaking FDH, and one 
annot avoid loosing the qsig fa
tor in theprobability bound. We use a similar approa
h as Boneh and Venkatesan in [3℄ fordisproving the equivalen
e between inverting low-exponent RSA and fa
toring.They show that any eÆ
ient algebrai
 redu
tion from fa
toring to invertinglow-exponent RSA 
an be 
onverted into an eÆ
ient fa
toring algorithm. Su
hredu
tion is an algorithm A whi
h fa
tors N using an e-th root ora
le for N .They show how to 
onvert A into an algorithm B that fa
tors integers withoutusing the e-th root ora
le. Thus, unless fa
toring is easy, inverting low-exponentRSA 
annot be equivalent to fa
toring under algebrai
 redu
tions.Similarly, we show that any better redu
tion from inverting RSA to breakingFDH 
an be 
onverted into an eÆ
ient RSA inverting algorithm. Su
h redu
tionis an algorithm R whi
h uses a forger as an ora
le in order to invert RSA. Weshow how to 
onvert R into an algorithm I whi
h inverts RSA without usingthe ora
le forger. Consequently, if inverting RSA is hard, there is no su
h betterredu
tion for FDH, and the redu
tion of Theorem 1 must be optimal.Our te
hnique is the following. Re
all that resistan
e against adaptive 
ho-sen message atta
ks is 
onsidered, so the forger is allowed to make signaturequeries for messages of its 
hoi
e, whi
h must be answered by the redu
tion R.Eventually the forger outputs a forgery, and the redu
tion must invert RSA.Therefore we �rst ask the redu
tion to sign a message M and re
eive its sig-nature s, then we rewind the redu
tion to the state in whi
h it was before thesignature query, and we send s as a forgery for M . This is a true forgery forthe redu
tion, be
ause after the rewind there was no signature query for M , soeventually the redu
tion inverts RSA. Consequently, we have 
onstru
ted fromR an algorithm I whi
h inverts RSA without using any forger. A
tually, thiste
hnique allows to simulate a forger with respe
t to R, without being able tobreak FDH. However, the simulation is not perfe
t, be
ause it outputs a forgeryonly for messages whi
h 
an be signed by the redu
tion, whereas a real forgeroutputs the forgery of a message that the redu
tion may or may not be able tosign.We quantify the eÆ
ien
y of a redu
tion by giving the probability that theredu
tion inverts RSA using a forger that (tF ; qhash,qsig ,"F )-breaks the signatures
heme, within an additional running time of tR:
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hemes 9De�nition 7. We say that a redu
tion algorithm R (tR; qhash; qsig ; "F ; "R) -redu
es inverting RSA to breaking FDH if upon input (N; e; y) and after run-ning any forger that (tF , qhash, qsig,"F )-breaks FDH, the redu
tion outputs ydmod N with probability greater than "R, within an additional running time oftR. In the above de�nition, tR is the running time of the redu
tion algorithm onlyand does not in
lude the running time of the forger. Eventually, the time neededto invert RSA is tF +tR, where tF is the running time of the forger. For example,the redu
tion of Theorem 1 for FDH (tR; qhash; qsig ; "F ; "R)-redu
es invertingRSA to breaking FDH with tR(k) = (qhash+ qsig) �O(k3) and "R = "F =(4 � qsig).The following theorem, whose proof is given in appendix B, shows that fromany su
h redu
tion R we 
an invert RSA with probability greater than roughly"R � "F =qsig , in roughly the same time bound.Theorem 4. Let R be a redu
tion that (tR; qhash; qsig ; "R; "F )-redu
es invertingRSA to breaking FDH. R runs the forger only on
e. From R we 
an 
onstru
tan algorithm that (tI ; "I)-inverts RSA, with:tI = 2 � tR (8)"I = "R � "F � exp(�1)qsig � �1� qsigqhash��1 (9)Theorem 4 shows that from any redu
tion R that inverts RSA with probabil-ity "R when intera
ting with a forger that outputs a forgery with probability "F ,we 
an invert RSA with probability roughly "R � "F =qsig , in roughly the sametime bound, without using a forger. For simpli
ity, we omit here the fa
torsexp(�1) and (1�qsig=qhash) in equation (9). Moreover we 
onsider a forger thatmakes qsig signature queries, and with probability "F = 1 outputs a forgery1.Theorem 4 implies that from a polynomial time redu
tion R that su

eedswith probability "R when intera
ting with this forger, we obtain a polynomialtime RSA inverter I that su

eeds with probability "I = "R � 1=qsig , withoutusing the forger. If inverting RSA is hard, the su

ess probability "I of the poly-nomial time inverter must be negligible. Consequently, the su

ess probability"R of the redu
tion must be less than 1=qsig + negl. This shows that from aforger that outputs a forgery with probability one, a polynomial time redu
tion
annot su

eed with probability greater than 1=qsig + negl. On the 
ontrary, atight se
urity redu
tion would invert RSA with probability 
lose to one. Herewe 
annot avoid the qsig fa
tor in the se
urity proof: the se
urity level of FDH
annot be proven equivalent to RSA, and the se
urity proof of Theorem 1 forFDH is optimal.1 Su
h forger 
an be 
onstru
ted by �rst fa
toring the modulus N , then 
omputing aforgery using the fa
torisation of N .



10 Jean-S�ebastien Coron5 Extension to any Signature S
heme with UniqueSignatureWe have introdu
ed a new te
hnique that enables to simulate a forger withrespe
t to a redu
tion. It 
onsists in making a signature query for a messageM ,rewinding the redu
tion, then sending the signature of M as a forgery. A
tually,this te
hnique stret
hes beyond FDH and 
an be generalized and applied to anysignature s
heme in whi
h ea
h message has a unique signature. Moreover, thete
hnique 
an be generalized to redu
tions running a forger more than on
e. Thefollowing theorem shows that for a hash-and-sign signature s
heme with uniquesignature, a redu
tion allowed to run or rewind a forger at most r times 
annotsu

eed with probability greater than roughly r � "F=qsig . The de�nitions andthe proof of the theorem are given in the full version of the paper [6℄.Theorem 5. Let R be a redu
tion that (tR; qhash; qsig ; "F ; "R)-redu
es solving aproblem � to breaking a hash-and-sign signature s
heme with unique signature.R is allowed to run or rewind a forger at most r times. From R we 
an 
onstru
tan algorithm that (tA; "A)-solves �, with:tA = (r + 1) � tR (10)"A = "R � "F � exp(�1) � rqsig ��1� qsigqhash��1 (11)6 Se
urity Proofs for Signature S
hemes in the StandardModelThe same te
hnique 
an be applied to se
urity redu
tions in the standard model,and we obtain the same upper bound in 1=qsig for signature s
hemes with uniquesignature. The de�nitions and the proof of the following theorem are given inthe full version of the paper [6℄.Theorem 6. Let R be a redu
tion that (tR; qsig ; "F ; "R)-redu
es solving � tobreaking a signature s
heme with unique signature. R 
an run or rewind theforger at most r times. Assume that the size of the message spa
e is at least 2`.From R we 
an 
onstru
t an algorithm that (tA; "A)-solves �, with:tA = (r + 1) � tR (12)"A = "R � "F � exp(�1) � rqsig � �1� qsig2` ��1 (13)In [6℄ we give an example of a signature s
heme with unique signature, prov-ably se
ure in the standard model, and rea
hing the the above bound in 1=qsig .
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hemes 117 Optimal Se
urity Proof for PSSIn se
tion 3 we have seen that k0 = log2 qsig bits of random salt are suÆ
ientfor PSS to have a se
urity level equivalent to RSA, and taking a larger salt doesnot further improve the se
urity. In this se
tion, we show that that this lengthis optimal: if a shorter random salt is used, the se
urity level of PSS 
annot beproven equivalent to RSA. Our te
hnique des
ribed in se
tion 4 does not applydire
tly be
ause PSS is not a signature s
heme with unique signature. We extendour te
hnique to PSS using the following method.We 
onsider PSS in whi
h the random salt is �xed to 0k0 , and we denote thissignature s
heme PSS0[k0; k1℄. Consequently, PSS0[k0; k1℄ is a signature s
hemewith unique signature. First, we show how to 
onvert a forger for PSS0[k0; k1℄ intoa forger for PSS[k0; k1℄. A redu
tionR from inverting RSA to breaking PSS[k0; k1℄uses a forger for PSS[k0; k1℄ in order to invert RSA. Consequently, from a forgerfor PSS0[k0; k1℄, we 
an invert RSA using the redu
tion R. This means that fromR we 
an 
onstru
t a redu
tion R0 from inverting RSA to breaking PSS0[k0; k1℄.Sin
e PSS0[k0; k1℄ is a signature s
heme with unique signature, Theorem 5 givesan upper bound for the su

ess probability ofR0, from whi
h we derive an upperbound for the su

ess probability of R.Theorem 7. LetR a redu
tion that (t; qhash; qsig ,"F ; "R)-redu
es inverting RSAto breaking PSS[k0; k1℄, with qhash � 2 � qsig . The redu
tion 
an run or rewindthe forger at most r times. From R we 
an 
onstru
t an inverting algorithm forRSA that (tI ; "I)-inverts RSA, with:tI = (r + 1) � (tR + qsig � O(k)) (14)"I = "R � r � "F � 2k0+2qsig (15)Proof. The proof is given in the full version of the paper [6℄.Let 
onsider as in Se
tion 4 a forger for PSS[k0; k1℄ that makes qsig sig-nature queries and outputs a forgery with probability "F = 1=2. Then, froma polynomial time redu
tion R that su

eeds with probability "R when run-ning on
e this forger, we obtain a polynomial time inverter that su

eeds withprobability "I = "R � 2k0+1=qsig , without using the forger. If inverting RSA ishard, the su

ess probability "I of the polynomial time inverter must be neg-ligible, and therefore the su

ess probability "R of the redu
tion must be lessthan 2k0+1=qsig + negl. Consequently, in order to have a tight se
urity redu
-tion ("R ' "R), we must have k0 ' log2 qsig . The redu
tion of Theorem 3 is
onsequently optimal.8 Con
lusionWe have des
ribed a new te
hnique for analyzing the se
urity proofs of signatures
hemes. The te
hnique is both general and very simple and allows to derive



12 Jean-S�ebastien Coronupper bounds for se
urity redu
tions using a forger as a bla
k box, both in therandom ora
le model and in the standard model, for signature s
hemes withunique signature. We have also obtained a new 
riterion for a se
urity redu
tionto be optimal, whi
h may be of independent interest: we say that a se
urityredu
tion is optimal if from a better redu
tion one 
an solve a diÆ
ult problem,su
h as inverting RSA. Our te
hnique enables to show that the Full Domain Hashs
heme, Gennaro-Halevi-Rabin's s
heme and Paillier's signature s
heme have anoptimal se
urity redu
tion in that sense. In other words, we have a mat
hinglower and upper bound for the se
urity redu
tion of those signature s
hemes:one 
annot do better than losing a fa
tor of qsig in the se
urity redu
tion.Moreover, we have des
ribed a better se
urity proof for PSS, in whi
h amu
h shorter random salt is suÆ
ient to a
hieve the same se
urity level. Thisis of pra
ti
al interest, sin
e when PSS is used with message re
overy, a betterbandwidth is obtained be
ause larger messages 
an be embedded inside the sig-nature. Eventually, we have shown that this se
urity proof for PSS is optimal: ifa smaller random salt is used, PSS remains provably se
ure, but it 
annot havethe same level of se
urity as RSA.A
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all PFDH, for Probabilisti
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urity proof is simpler. The s
heme is similar to FullDomain Hash ex
ept that a random salt of k0 bits is 
on
atenated to the messageM before hashing it. The di�eren
e with PSS is that the random salt is notre
overed when verifying the signature; instead the random salt is transmittedseparately. As FDH, the s
heme uses a hash fun
tion H : f0; 1g� ! Z�N.SignPFDH(M) : VerifyPFDH(M; s; r) :r R f0; 1gk0 y  se mod Ny  H(Mkr) if y = H(Mkr) then return 1return (yd mod N; r) else return 0The following theorem proves the se
urity of PFDH in the random ora
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ure. Then the signature s
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14 Jean-S�ebastien CoronProof. Let F be a forger that (t; qsig ; qhash; ")-breaks PFDH. We 
onstru
t aninverter I that (t0; "0)-breaks RSA. The inverter re
eives as input (N; e; �) andmust output �d mod N . We assume that the forger never repeats a hash query.However, the forger may repeat a signature query, in order to obtain the signatureof M with distin
t integers r. The inverter I maintains a 
ounter i, initially setto zero.When a message M appears for the �rst time in a hash query or a signaturequery, the inverter in
rements the 
ounter i and setsMi  M . Then, the invertergenerates a list Li of qsig random integers in f0; 1gk0.When the forger makes a hash query for Mikr, we distinguish two 
ases. Ifr belongs to the list Li, the inverter generates a random x 2 Z�N and returnsH(Mikr) = xe mod N . Otherwise, the inverter generates a random x 2 Z�N andreturns ��xe mod N . Consequently, for ea
h messageMi, the list Li 
ontains theintegers r 2 f0; 1gk0 su
h that the inverter knows the signature x 
orrespondingto Mikr.When the forger makes a signature query for Mi, the inverter takes thenext random r in the list Li. Sin
e the list 
ontains initially qsig integers andthere are at most qsig signature queries, this is always possible. If there wasalready a hash query for Mikr, we have H(Mikr) = xe mod N and the inverterreturns the signature x. Otherwise the inverter generates a random x 2 Z�N, setsH(Mikr) = xe mod N and returns the signature x.When the forger outputs a forgery (M; s; r), we assume that it has alreadymade a hash query forM , soM =Mi for a given i. Otherwise, the inverter goesahead and makes the hash query for Mkr. Then if r does not belong to the listLi, we have H(Mikr) = � �xe mod N . From s = H(Mikr)d = �d �x mod N , weobtain �d = s=x mod N and the inverter su

eeds in outputting �d mod N .Sin
e the forger has not made any signature query for the messageMi in theforgery (Mi; s; r), the forger has no information about the qsig random integers inthe list Li. Therefore, the probability that r does not belong to Li is (1�2�k0)qsig .If the size k0 of the random salt is greater than log2 qsig , we obtain if qsig � 2:�1� 2�k0�qsig � �1� 1qsig�qsig � 14Sin
e the forger outputs a forgery with probability ", the su

ess probability"0 of the inverter is then at least "=4, whi
h shows that for k0 � log2 qsig theprobability of breaking PFDH is almost the same as the probability of invertingRSA.For the general 
ase, i.e. if we do not assume k0 � log2 qsig , we generatefewer than qsig random integers in the list Li, so that the salt r in the forgery(Mi; s; r) belongs to Li with lower probability. More pre
isely, starting from anempty list Li, the inverter generates with probability � a random r  f0; 1gk0 ,adds it to Li, and starts again until the list Li 
ontains qsig elements. Otherwise(so with probability 1 � �) the inverter stops adding integers to the list. Thenumber ai of integers in Li is then a random variable following a geometri
 lawof parameter �:
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hemes 15Pr[ai = j℄ = � (1� �) � �j if j < qsig�qsig if j = qsig (18)The inverter answers a signature query for Mi if the 
orresponding list Li
ontains one more integer, whi
h happens with probability � (otherwise theinverter must abort). Consequently, the inverter answers all the signature querieswith probability greater than �qsig . Note that if � = 1, the setting boils down tothe previous 
ase: all the lists Li 
ontain exa
tly qsig integers, and the inverteranswers all the signature queries with probability one.The probability that r in the forgery (Mi; s; r) does not belong to the list Liis then (1� 2�k0)j , when the length ai of Li is equal to j. The probability thatr does not belong to Li is then:f(�) = qsigXj=0Pr[ai = j℄ � �1� 2�k0�j (19)Sin
e the forger outputs a forgery with probability ", the su

ess probability ofthe inverter is at least " � �qsig � f(�). We sele
t a value of � whi
h maximizesthis su

ess probability; in [6℄, we show that for any (qsig ; k0), there exists �0su
h that: �qsig0 � f(�0) � 11 + 6 � qsig � 2�k0 (20)whi
h gives (17). The running time of I is the running time of F plus the timene
essary to 
ompute the integers xe mod N and to generate the lists Li, whi
hgives (16).B Proof of Theorem 4From R we build an algorithm I that inverts RSA, without using a forger forFDH. We re
eive as input (N; e; y) and our goal is to output yd mod N usingR. We sele
t qhash distin
t messages M1; : : : ;Mqhash and start running R with(N; e; y).First we ask R to hash the qhash messages M1; : : : ;Mqhash , and obtain thehash values h1; : : : ; hqhash . We sele
t a random integer � 2 [1; qhash℄ and arandom sequen
e � of qsig integers in [1; qhash℄ n f�g, whi
h we denote � =(�1; : : : ; �qsig ). We sele
t a random integer i 2 [1; qsig ℄ and de�ne the sequen
eof i integers �0 = (�1; : : : ; �i�1; �). Then we make the i signature queries 
orre-sponding to �0 to R and re
eive from R the 
orresponding signatures, the lastone being the signature s� of M�. For example, if �0 = (3; 2), this 
orrespondsto making a signature query for M3 �rst, and then for M2.Then we rewind R to the state it was after the hash queries, and this time,we make the qsig signature queries 
orresponding to �. If R has answered all



16 Jean-S�ebastien Coronthe signature queries, then with probability "F , we send (M� ; s�) as a forgeryto R. This is a true forgery for R be
ause after the rewind of R, there was nosignature query for M� . Eventually R inverts RSA and outputs yd mod N .We denote by Q the set of sequen
es of signature queries whi
h are 
orre
tlyanswered by R after the hash queries, in time less than tR. If a sequen
e ofsignature queries is 
orre
tly answered by R, then the same sequen
e withoutthe last signature query is also 
orre
tly answered, so for any (�1; : : : ; �j) 2 Q,we have (�1; : : : ; �j�1) 2 Q. Let us denote by ans the event � 2 Q, whi
h
orresponds to R answering all the signature queries after the rewind, and byans' the event �0 2 Q, whi
h 
orresponds to R answering all the signaturequeries before the rewind.Let us 
onsider a forger that makes the same hash queries, the same signaturequeries 
orresponding to �, and outputs a forgery for M� with probability "F .By de�nition, when intera
ting with su
h a forger, R would output yd mod Nwith probability at least "R. After the rewind,R sees exa
tly the same trans
riptas when intera
ting with this forger, ex
ept if event ans is true and ans' isfalse: in this 
ase, the forger outputs a forgery with probability "F , whereas oursimulation does not output a forgery. Consequently, when intera
ting with oursimulation of a forger, R outputs yd mod N with probability at least:"R � "F � Pr[ans ^ :ans'℄ (21)The proof of the following lemma is given in the full version of the paper [6℄.Lemma 1. Let Q be a set of sequen
es of at most n integers in [1; k℄, su
hthat for any sequen
e (�1; : : : ; �j) 2 Q, we have (�1; : : : ; �j�1) 2 Q. Then thefollowing holds:Pri [1;n℄(�1;::: ;�n;�) [1;k℄n+1 [(�1; : : : ; �n) 2 Q ^ (�1; : : : ; �i�1; �) =2 Q℄ � exp(�1)nUsing Lemma 1 with n = qsig and k = qhash, we obtain:Pr[ans ^ :ans'℄ � exp(�1)qsig �1� qsigqhash��1 (22)The term (1 � qsig=qhash) in equation (22) is due to the fa
t that we sele
t�1; : : : ; �qsig in [1; qhash℄ n f�g whereas in Lemma 1 the integers are sele
ted in[1; qhash℄. From equations (21) and (22) we obtain that I su

eeds with proba-bility greater than "I given by (9). Be
ause of the rewind, the running time ofI is at most twi
e the running time of R, whi
h gives (8) and terminates theproof.


