
Institut für Signal- und 
Informationsverarbeitung

Signal and Information 
Processing Laboratory

Summer Semester 2002 Prof. Dr. H.-A. Loeliger

ISI Internal Report

A Generalized

Blahut-Arimoto Algorithm

Pascal O. Vontobel

ISI-Number: INT/200203





Abstract

Kavčić proposed in [1] an algorithm that optimizes the parameters of a Markov source at the
input to a finite-state machine channel in order to maximize the mutual information rate.
Numerical results for several channels indicated that his algorithm gives capacity-achieving
input distributions. In this paper we prove that the stationary points of this algorithm indeed
correspond one-to-one to the critical points of the information rate curve.

Kavčić’s algorithm can be considered as a generalized Blahut-Arimoto algorithm, as it
includes as special cases the classical Blahut-Arimoto algorithm for discrete memoryless chan-
nels and the solution to finding the capacity-achieving input distribution for finite-state chan-
nels with no noise.
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Chapter 1

Introduction

Recently, Arnold and Loeliger [2, 3], Sharma and Singh [4], and Pfister et al. [5] proposed
independently a method for computing information rates of finite-state machine channels
whose input is a Markov source. (These methods boil down to taking advantage of the
ergodicity of the setup.) For some further historical backgroud we refer the reader to the
corresponding sections in the papers just mentioned.

Subsequently, Kavčić proposed in [1] an algorithm that apparently optimizes the param-
eters of Markov sources at the input to a finite-state machine channel. Numerical results for
several channels strongly suggested that his algorithm gives capacity-achieving Markov source
parameters. The main result of this report is Th. 38 which shows that stationary points of
Kavčić’s algorithm indeed correspond one-to-one to the critical points of the information rate
curve.

The goal of Ch. 2 is to review the classical Blahut-Arimoto algorithm for discrete memo-
ryless channels in a way which will make the connection to the generalized Blahut-Arimoto
for finite-state machine channels transparent. Ch. 3 is then devoted to Kavčić’s algorithm: we
show in what sense his algorithm is a generalization of the classical Blahut-Arimoto algorithm,
we show that applying the generalized Blahut-Arimoto algorithm to discrete memoryless chan-
nels indeed gives the classical Blahut-Arimoto algorithm (see also [1]), and we demonstrate
that applying the generalized Blahut-Arimoto algorithm to finite-state channels with no noise
gives the well-known solution (see also [1]). We would like to mention that Kavčić’s algorithm
was also used to optimize upper bounds on the capcity of finite-state machine channels [6].
We conclude in Ch. 4 with some open problems. All proofs can be found in the corresponding
appendices.

As can easily be seen from the subsequent treatment in Ch. 3, Lemma 25 is the key
component that will lead to Th. 38 (see also Remark 26), and is our main contribution to
the subject at hand. In our proofs we tried to be as explicit as possible, avoiding sentences
like “as follows from some straightforward calculations” or “as trivally follows”; we strongly
hope that this will simplify the reading. The main goal is to give a basis for discussion of
further work on this topic; we are aware of the fact that Sec. 3.1 could certainly be extended
to discuss all the details.
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10 Notation

1.1 Notation

In this report we only use natural logarithms. This simplifies the proofs as we will often
have to derive logarithms. Of course, all results can be formulated with respect to any other
logarithm basis; the corresponding exponentiations must then of course also be modified,
most notably when exponentiating T (x) and Tij .

We will always indicate the range of summation. The only exceptions to this rule are
sums over x, y, s, and y. They will be sums over x ∈ X , y ∈ Y, s over all allowed state
sequences, y over all possible output sequences, respectively.



Chapter 2

The Blahut-Arimoto Algorithm for

Discrete Memoryless Channels

X

Q(x)

Q(x)

X

W (y|x)

Forward channel

Backward channel

V (x|y)

Y

R(y)

Y

R(y)

Figure 2.1: DMC with input alphabet X and output alphabet Y. The “forward” channel law
is given by W (y|x). If the input has pmf Q(x), the output has pmf R(y) = (QW )(y). The
“backward” channel has the channel law V (x|y).

2.1 Introduction

Comment: Note that in this and the following chapters we changed the notation slightly
compared with our ISIT03-Submission: The iteration number r is in 〈·〉 brackets in the
exponent.

The aim of this chapter is to review the Blahut-Arimoto algorithm [7, 8] (see also the
tutorial [9]) for discrete memoryless channels (DMCs) in a way which will make the connection
to the generalized Blahut-Arimoto for finite-state machine channels (see Chap. 3) transparent.

2.2 Discrete Memoryless Channels

Assume that we have a DMC (see Fig. 2.1) with finite input alphabet X and finity output
alphabet Y.1 We assume the input to the channel to be a random variable X and Q(x) =

1The content of this chapter can easily be generalized to channels with output alphabet Y = R.

11



12 Mutual Information and Capacity

PX(x) let be the channel input pmf and let W (y|x) = PY |X(y|x) be the channel law, i.e., the
probability of receiving Y = y when sending X = x. The channel output Y is also a random
variable with pmf

PY (y) = R(y)
△
= (QW )(y)

△
=
∑

x

W (y|x)Q(x). (2.1)

The a-posteriori probability of X = x upon observing Y = y shall be denoted by

PX|Y (x|y) = V (x|y)
△
=

W (y|x)Q(x)

R(y)

△
=

W (y|x)Q(x)

(QW )(y)
=

W (y|x)Q(x)
∑

x′ Q(x′)W (y|x′)
(2.2)

Because Q(x) =
∑

y R(y)V (x|y), V (x|y) can be considered as a “backward” channel law (see
Fig. 2.1). The joint density of X and Y is therefore

PX,Y (x, y) = Q(x)W (y|x) = R(y)V (x|y). (2.3)

From this follows also the important relationship

V (x|y)

Q(x)
=

W (y|x)

R(y)
(2.4)

between Q(x), W (y|x), R(y), and V (x|y).
In the following, we will assume that the channel law W (y|x) is fixed, whereas the channel

input distribution Q(x) will be varied. But note that varying Q(x) will of course imply that
also R(y) and V (x|y) vary ! In other words, with a pmf R(y) and a conditional pmf V (x|y)
there is implicitely a pmf Q(x) behind them. Usually, we will try to make this clear by using
some decorations of R and V . So, if the input pmf of X is Q̃(x), then we denote the pmf of
Y by R̃(·) and the a-posteriori probability of X = x upon observing Y = y is called Ṽ (x|y).
We have the relations

R̃(y)
△
= (Q̃W )(y)

△
=
∑

x

Q̃(x)W (y|x), (2.5)

Ṽ (x|y)
△
=

W (y|x)Q̃(x)

R̃(y)
=

W (y|x)Q̃(x)

(Q̃W )(y)
=

W (y|x)Q̃(x)
∑

x′ Q̃(x′)W (y|x′)
, (2.6)

Q̃(x)W (y|x) = R̃(y)Ṽ (x|y). (2.7)

Note that always W̃ (y|x) = W (y|x), as the channel does not change (by definition), but
Ṽ (x|y) 6= V (x|y) in general.

Definition 1 (Set Q) We let Q be the set of all pmfs over X , i.e.,

Q
△
=
{
Q : X → R

∣
∣Q(x) ≥ 0 for all x ∈ X ,

∑

x∈X

Q(x) = 1
}
. (2.8)

2.3 Mutual Information and Capacity

Definition 2 (Mutual Information) Let X and Y have the joint pmf PXY (x, y) = Q(x)W (y|x).
The mutual information between X and Y is

I(Q,W )
△
= I(X;Y )

△
= H(Y )−H(Y |X) = H(X)−H(X|Y ) (2.9)

=
∑

x,y

Q(x)W (y|x) log

(
W (y|x)

(QW )(y)

)

=
∑

x,y

Q(x)W (y|x) log

(
V (x|y)

Q(x)

)

. (2.10)
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Definition 3 (Channel Capacity) Let the DMC with input X and output Y have the
channel law W (y|x). The channel capacity is then

C(W )
△
= max

Q∈Q
I(Q,W ). (2.11)

A pmf Q ∈ Q that maximizes I(Q,W ) is called a capacity-achieving input distributions.
There are DMCs where there is not a unique capacity-achieving input distribution.

Definition 4 (Various Help Functions) We define the functions

f1(Q)
△
= H(X) = −

∑

x

Q(x) log Q(x), (2.12)

f2(Q,W )
△
= H(Y ) = −

∑

y

(QW )(y) log
(
(QW )(y)

)
, (2.13)

f3(Q,W )
△
= H(Y |X) = −

∑

x

Q(x)
∑

y

W (y|x) log (W (y|x)) , (2.14)

f4(Q,W )
△
= H(X|Y ) = −

∑

x

Q(x)
∑

y

W (y|x) log

(
Q(x)W (y|x)

(QW )(y)

)

. (2.15)

With these definitions we have

I(Q,W ) = f1(Q)− f4(Q,W ) = f2(Q,W )− f3(Q,W ). (2.16)

Lemma 5 For a fixed channel law W (y|x) the functions f1(Q), f2(Q,W ), f3(Q,W ), f4(Q,W ),
I(Q,W ) are concave in Q(·). Because f3(Q,W ) is linear in Q(·), it is both concave and convex
in Q(·).

Proof: See Sec. A.1. �

As we will see, the classical Blahut-Arimoto algorithm strongly depends on the concavity
of I(X;Y ) and H(X|Y ) as functions of Q(·).

2.4 The Main Idea Behind the Blahut-Arimoto Algorithm

The classical Blahut-Arimoto algorithm [7, 8, 9] solves the problem of finding numerically
and in an efficent way a capacity-achieving input distribution of a DMC and therefore also
the capacity of the DMC.

Fig. 2.2 schematically depicts a possible I(Q,W ) in function of Q. As the alphabet
size X is usually at least two, the optimization problem is a multidimensional one. But for
illustrational purposes, a one-dimensional representation of Q will do. The problem of finding
a capacity-achieving input distribution is therefore to find where I(Q,W ) has a maximum.
The problem is simplified by the fact that I(Q,W ) is concave in Q (as shown in Lemma 5).

There are of course different ways to find such a maximum. One of them would be to set
the gradient of I(Q,W ) equal to zero; but this usually results in a highly non-linear equation
system (see more on this in Sec. 2.6). Gradient-based methods would also lead to our goal.
But a particularly elegant and efficient way to solve the problem at hand is the classical
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I(Q, W ) = f1(Q)− f4(Q, W )

Q〈r+1〉

Q∗Q〈r〉

Ψ(Q〈r〉, Q, W )

Q

Figure 2.2: Generic mutual information I(Q,W ) and approximating function Ψ(Q〈r〉, Q,W ).
Q∗ is a capacity-achieving input distribution.

H(X) = f1(Q)

Q
H(X|Y ) = f4(Q, W )

Q〈r〉

f ′
4(Q

〈r〉, Q, W )

Figure 2.3: Generic entropy H(X) and conditional entropy H(X|Y ). f ′4(Q
〈r〉, Q,W ) is a

linear approximation of H(X|Y ) at Q = Q〈r〉.
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Blahut-Arimoto algorithm. As it is a “nice” algorithm, there are many ways to describe
it; we will choose a describe that will ease the transition to the generalized Blahut-Arimoto
algorithm in Ch. 3.

The main idea of the classical Blahut-Arimoto algorithm is the following. It is an iterative
algorithm, so assume that at iteration r we found some input pmf Q〈r〉 with corresponding
information rate I(Q〈r〉,W ) (see Fig. 2.2). At iteration r + 1 we would like to find a “better”
Q(r+1), i.e., an input pmf for which I(Q(r+1),W ) ≥ I(Q〈r〉,W ) (see Fig. 2.2). To this end we
introduce a help function Ψ(Q〈r〉, Q,W ) which locally (i.e. around Q = Q〈r〉) approximates
I(Q,W ) (see Fig. 2.2). We require

• that the help function assumes the same value at Q = Q〈r〉 as I(Q,W ) does, i.e. Ψ(Q〈r〉, Q〈r〉,W ) =
I(Q〈r〉,W ), and

• that Ψ(Q〈r〉, Q,W ) is never above I(Q,W ).

If we find such a help function that can easily be maximized (let us call the pmf where the
maximum is achieved Q(r+1)), we get easily a new input pmf Q(r+1) with I(Q(r+1),W ) ≥
I(Q〈r〉,W ) (see Fig. 2.2).

The help function Ψ(Q〈r〉, Q,W ) that is used by the classical Blahut-Arimoto algorithm
is the following. We express I(Q,W ) as

I(Q,W ) = I(X,Y ) = H(X)−H(X|Y )
(∗)
= f1(Q)− f4(Q,W ), (2.17)

where in equality (∗) we used the functions defined in Def. 4. Choosing

Ψ(Q〈r〉, Q,W )
△
= f1(Q)− f ′4(Q

〈r〉, Q,W ), (2.18)

where

• f ′4(Q
〈r〉, Q,W ) assumes the same value at Q = Q〈r〉 as f4(Q,W ) does, i.e. f ′4(Q

〈r〉, Q〈r〉,W ) =
f4(Q

〈r〉,W ), and

• f ′4(Q
〈r〉, Q,W ) is never below f4(Q,W ), i.e. f ′4(Q

〈r〉, Q,W ) ≥ f4(Q,W ) for all Q,

leads to a function Ψ(Q〈r〉, Q,W ) fulfilling the desired requirements. By the concavity of
f4(Q,W ) (see Lemma 5), such a function f ′4(Q

〈r〉, Q,W ) can be chosen to be the linear
approximation of f4(Q,W ) at Q〈r〉, i.e. the function that goes through f4(Q,W ) at Q = Q〈r〉

and is tangential to f4(Q,W ) (see Fig. 2.3). This is the approach taken by the classical
Blahut-Arimoto algorithm.

Doing the above iterations repeatedly not only leads to input pmfs where the mutual
information gets potentially larger at each iteration, but for r → ∞ the input pmf Q〈r〉

converges to a capacity-achieving input distribution (see Theorem 11).

2.5 The Blahut-Arimoto Algorithm

After giving the main idea behind the Blahut-Arimoto for DMCs, we proceed to give the
exact algorithm and its convergence proof.
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Definition 6 (T (x) Values) We assume to have a DMC with a fixed channel law W (y|x).
If the input pmf is Q(x) we define

T (x)
△
=
∑

y

W (y|x) log(V (x|y)) =
∑

y

W (y|x) log

(
Q(x)W (y|x)

(QW )(y)

)

(for all x ∈ X ). (2.19)

If a different input pmf is used, we will decorate the symbol T . E.g. if Q̃(x) is the input pmf,
we will have

T̃ (x)
△
=
∑

y

W (y|x) log(Ṽ (x|y)) =
∑

y

W (y|x) log

(

Q̃(x)W (y|x)

(Q̃W )(y)

)

(for all x ∈ X ). (2.20)

Definition 7 (Function Ψ) We assume to have a DMC with a fixed channel law W (y|x).
Let Ṽ (x|y) for a given Q̃(x) be given as in (2.6). As discussed in Sec. 2.4, the help function
Ψ(Q̃,Q,W ) is defined as

Ψ(Q̃,Q,W )
△
= −

∑

x

Q(x) log(Q(x)) +
∑

x

Q(x)
∑

y

W (y|x) log(Ṽ (x|y)) (2.21)

=
∑

x

Q(x)
∑

y

W (y|x) log

(

Ṽ (x|y)

Q(x)

)

(2.22)

= −
∑

x

Q(x) log(Q(x)) +
∑

x

Q(x)T̃ (x), (2.23)

with

T̃ (x) =
∑

y

W (y|x) log(Ṽ (x|y)) (for all x ∈ X ). (2.24)

Lemma 8 (Properties of Ψ) For all Q, Q̃, and W we have

Ψ
(
Q,Q,W ) = I(Q,W ) (2.25)

and

Ψ
(
Q̃,Q,W ) ≤ Ψ

(
Q,Q,W ) = I(Q,W ). (2.26)

Given a W and some Q̃ there always exists a Q such that

I(Q̃,W ) ≤ Ψ
(
Q̃,Q,W ) ≤ I(Q,W ). (2.27)

Proof: See Sec. A.2 �

Remark 9 (Connection to the Outline Sec. 2.4) In the notation of Def. 7, the defini-
tions in Sec. 2.4 are

Q̃ = Q〈r〉, (2.28)

f1(Q) = −
∑

x

Q(x) log(Q(x)), (2.29)

f4(Q,W ) = −
∑

x

Q(x)
∑

y

W (y|x) log(V (x|y)), (2.30)

f ′4(Q̃,Q,W ) = −
∑

x

Q(x)
∑

y

W (y|x) log(Ṽ (x|y)) = −
∑

x

Q(x)T̃ (x). (2.31)
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Note that f ′4(Q̃,Q,W ) is linear2 in Q and moreover

f ′4(Q̃, Q̃,W ) = f4(Q̃,W ), (2.32)

∂

∂Q(x)
f ′4(Q,W )

∣
∣
∣
∣
Q=Q̃

=
∂

∂Q(x)
f4(Q,W )

∣
∣
∣
∣
Q=Q̃

= −T̃ (x) (for all x ∈ X ). (2.33)

Instead of verifying the required properties as given in Sec. 2.4 of f ′4(Q̃,Q,W ), we have in
Lemma 8 directly verified the requirements on Ψ(Q̃,Q,W ).

Proof: See Sec. A.3. �

Algorithm 10 (Blahut-Arimoto Algorithm for DMCs) We consider a DMC with in-
put X and output Y and channel law W (y|x). Let Q〈0〉 be some initial (freely chosen) input
distribution. For iterations r = 0, 1, 2, . . . perform alternatingly the following two steps.

• First Step: For each x calculate

T 〈r〉(x) =
∑

y

W (y|x) · log(V (r)(x|y)) (2.34)

=
∑

y

W (y|x) · log

(

Q〈r〉(x)W (y|x)

(Q〈r〉W )(y)

)

. (2.35)

• Second Step: The new Q(r+1)(x) is calculated according to

Q(r+1)(x) =
eT 〈r〉(x)

∑

x′ eT 〈r〉(x′)
. (2.36)

Theorem 11 (Properties of the Blahut-Arimoto Algorithm for Memoryless Channels)
For each r = 0, 1, 2, . . . the sequence of Q〈r〉 of input distributions produced by the Blahut-
Arimoto algorithm fulfills

I(Q(r+1),W ) ≥ I(Q〈r〉,W ). (2.37)

Furthermore, Q〈r〉 converges to a capacity-achieving input distribution for r →∞.

Proof: See Sec. A.4. See also Sec. 3.9, where the classical Blahut-Arimoto algorithm is
treated as a special case of the generalized Blahut-Arimot algorithm in Alg. 37. �

Lemma 12 Let C = C(W ) be the capacity for a given DMC with channel law W (y|x). For
any input pmf Q(·) we have

min
x

[
T (x)− log(Q(x))

]
≤ I(Q,W ) ≤ C ≤ max

x

[
T (x)− log(Q(x))

]
, (2.38)

2We could even allow an additive constant, the function would still be a linear (or, more precisely, an affine)
approximation.
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where T (x) is as defined in Def. 6.
Proof: See Sec. A.5. �

Remark 13 (Termination Condition for Blahut-Arimoto Algorithm) From Lemma 12
we see that we can take the quantity

max
x

[
T (x)− log(Q(x))

]
− I(Q,W ) (2.39)

as a measure how close we are to capacity. We can also take the quantity

max
x

[
T (x)− log(Q(x))

]
−min

x

[
T (x)− log(Q(x))

]
(2.40)

for this purpose. Note that already before the introduction of the classical Blahut-Arimoto
algorithm, Gallager (see Problem 4.17 on p. 524f in [10]) proposed these capacity-achieving
input distribution search termination criteria.

2.6 Intuitive Derivation of the Blahut-Arimoto Algorithm for

DMCs

The aim of this section is to give another intuitive derivation of the Blahut-Arimoto algorithm
as defined in Alg. 10. The idea is that one sets the gradient of I(Q,W ) with respect to Q
equal to zero and tries to solve the resulting equations iteratively.3

The mutual information between X and Y is

I(Q,W ) =
∑

x

Q(x)
∑

y

W (y|x) log

(
W (y|x)

(QW )(y)

)

(2.41)

=
∑

x

Q(x)D
(
W (·|x)||(QW )(·)

)
(2.42)

We would like to find the critical points of I(Q,W ) as a function of Q ∈ Q. Neglecting in a
first step the constraints Q(x) ≥ 0, the only constraint on Q(·) is

∑

x Q(x) = 1, and we have
to calculate the gradient of the Lagrangian I(Q,W ) + λ

∑

x Q(x), i.e.,

∂

∂Q(x)

(

I(Q,W ) + λ
∑

x

Q(x)

)

!
= 0. (2.43)

Using the ∂
∂Q(x)(−

∑

x Q(x′) log(Q(x′))) = − log(Q(x))− 1 and the results in Sec. A.3, we get

∑

y

W (y|x) log

(
V (y|x)

Q(x)

)

− 1 + λ
!
= 0 (2.44)

⇐⇒
∑

y

W (y|x) log

(
W (x|y)

(QW )(y)

)

− 1 + λ
!
= 0 (2.45)

⇐⇒ D
(
W (·|x)||(QW )(·)

)
− 1 + λ

!
= 0. (2.46)

3This interpretation was also mentioned in Blahut [7] (Corollary 1).
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From (2.42) it follows that for a capacity-achieving input distribution Q(·)

C
!
= I(X;Y ) =

∑

x

Q(x)D
(
W (·|x)||(QW )(·)

)
(2.47)

=
∑

x

Q(x)[−λ + 1] = −λ + 1, (2.48)

i.e., C = −λ + 1. Thus,

D
(
W (·|x)||(QW )(·)

)
= C (for all x ∈ X ). (2.49)

(Note that we have a convex optimization problem; possibly there are different capacity
achieving input distributions, but one can show that the “capacity-achieving output distribu-
tion” is unique, see also end of Sec. A.4) If we include the constraint Q(x) ≥ 0 for all x ∈ X
at the beginning we get the Kuhn-Tucker conditions

D
(
W (·|x)||(QW )(·)

)
≤ C (with equality if Q(x) > 0). (2.50)

Formulating out the relative entropy of the Kuhn-Tucker condition we obtain (with W (y|x)/(QW )(y) =
V (x|y)/Q(x), T (x) =

∑

y W (y|x) log V (x|y))

∑

y

W (y|x) log

(
W (y|x)

(QW )(y)

)

≤ C (2.51)

⇐⇒
∑

y

W (y|x) log

(
V (x|y)

Q(x)

)

≤ C (2.52)

⇐⇒

(
∑

y

W (y|x) log V (x|y)

)

− log Q(x) ≤ C (2.53)

⇐⇒ log Q(x) ≥ T (x)− C. (2.54)

(Always with equality if Q(x) > 0.) Note that if Q(x) = 0, then V (x|y) = 0 and T (x) = −∞.
From this formula we can derive the Blahut-Arimoto algorithm heuristically. If the current

Q〈r〉(·)–distribution does not fulfill the above equations, then one should update the density
according to (for some constant c〈r〉)

log Q(k+1)(x) = T 〈r〉(x)− c〈r〉 (2.55)

⇐⇒ Q(k+1)(x) ∝ eT 〈r〉(x) (2.56)

⇐⇒ Q(k+1)(x) =
eT 〈r〉(x)

∑

x′ eT 〈r〉(x′)
, (2.57)

where T 〈r〉 =
∑

y W (y|x) log V (r)(x|y) and V (r)(x|y) = Q〈r〉(x)W (y|x)/((Q〈r〉W )(y)). But
this is exactly the Blahut-Arimoto update rule as discussed in Alg. 10. As a side result we
have, that at a stationary point eC =

∑

x eT (x), where C is the capacity.
Fig. 3.5 shows a trellis with one state and parallel branches from one time instant to the

next bearing all the possible input letters. At each time step the question comes to with
what probability one should send a letter. Apparently Eq. (2.54) gives the condition to get
the best compromise between entropy and being able to decode at the receiver. T (x) kind of
measures the quality when one sends x: the higher the quality, the higher the probability of
the use of the symbol; T (x) also shows up in eC =

∑

x eT (x).
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Figure 2.4: Trellis of a discrete memoryless channel with five-ary input alphabet.



Chapter 3

The Blahut-Arimoto Algorithm for

Finite-State Channels

3.1 Introduction

Comment: Note that in and the following chapters we changed the notation slightly compared
with our ISIT03-Submission: The iteration number r is in 〈·〉 brackets in the exponent,
whereas the window length parameter N is in (·) brackets in the exponent.

Comment: For an introduction to the subject, see the paper by Kavčić [1].

We assume that the source (channel input) is a stationary discrete-time Markov random
process Xℓ whose realizatoin xℓ takes on values from a finite-size source alphabet X . It is
assumed that the channel input process has memory L ≥ 0, i.e. we have for any integer m ≥ 0,

P (xℓ|x
ℓ−1
ℓ−L−m) = P (xℓ|x

ℓ−1
ℓ−L). (3.1)

We consider an indecomposable time-independent finite-state machine channel (FSC) [10].
The channel state at time ℓ is denoted by the random variable Sℓ, whose realization is sℓ ∈
S = {1, . . . ,M}. We choose the state alphabet M to be the minimum integer M > 0, such
that sℓ forms a Markov process of memory 1, i.e. for any integer m ≥ 0,

P (sℓ|s
ℓ−1
ℓ−m) = P (sℓ|sℓ−1). (3.2)

For example, if the channel input Xℓ is a binary Markov process of memory 3 and the channel
is PR4 (i.e. 1−D2) of memory 2, then M = 2max(3,2) = 8 guarantees that the state sequence
is a Markov process of memory 1. In this report we assume that the channel is “controllable”
in the sense that after a bounded number of time units we can be in a desired state. Put
differently, there is (besides some bounded initial transient) a one-to-one relationship between

Markov source

X Y
Finite-state

channel

Figure 3.1: Markov source and finite-state machine channel.
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Figure 3.2: Trellis of Markov source combined with a finite-state machine channel.

input sequences x and state sequences s. Channels described by a Kronecker-delta impulse
response (like the PR4 channel mentioned above) are typical examples of this class.1

The channel output2 Yℓ ∈ Y is a hidden Markov sequence induced by the state sequence
Sℓ, i.e., for a discrete random variable Yℓ, the pmf of Yℓ satisfies

P (yℓ|s
+∞
−∞,yℓ−1

−∞,y+∞
ℓ+1 ) = P (yℓ|sℓ−1, sℓ). (3.3)

For indecomposable channels, the choice of initial state does not affect the mutual information
rate [10]. The following definition introduces the notation that will be used subsequently.

Definition 14 (Notation) We will use the following notation.

• The Markov process representing the FSC can be visualized by a trellis (Fig. 3.2 shows
an example with |S| = 4 states where |X | = 2).

• Let the set A contain all pairs (i, j) that constitute valid state transitions. Let
−→
Ai
△
=

{j | (i, j) ∈ A for some i} be the set of all valid follow-up states of state i, and let
←−
Ai
△
= {k | (k, i) ∈ A for some i} be the set of all valid preceding states of state i. (In the

example in Fig. 3.2 we have A = {(1, 1), (1, 2), (2, 3), (2, 4), (3, 1), (3, 2), (4, 3), (4, 4)},
−→
A1 = {1, 2},

←−
A1 = {1, 3}, etc.)

• If (i, j) ∈ A, the transition probability of going from state i to state j is denoted by pij .

• As mentioned in the introduction, we assume that all transition probabilities are time-
independent. Therefore it makes sense to talk about stationary state probabilities: we
let µi be the stationary state probability of being in state i ∈ S.

1The extension of the results of this report to more general channels where the state can only be controlled
partially or not at all (e.g. the Gilbert-Elliot channel [10]) is possible, but outside the scope of this report.
Moreover, here we will assume that the memory of the Markov source is at least as large as the memory of the
channel.

2We assume here Y to be finite. But the results of this chapter can easily be extended to the case where
Y = R.
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• Let Qij
△
= µi · pij be the stationary probability of using the branch going from state i

to branch j for (i, j) ∈ A.

If Qij = Qij(α) are functions of the single parameter α, we will often use the abbrevia-
tion

Qα
ij = Qα

ij(α)
△
=

d

dα
Qij(α). (3.4)

• We will use the definition N ′
△
= 2N and the index sets

IN
△
= [−N + 1,N ] = {−N + 1, . . . ,N}, (3.5)

I ′N
△
= [−N + 1,N − 1] = {−N + 1, . . . ,N − 1}. (3.6)

Note that |IN | = 2N = N ′ and that |I ′N | = 2N − 1 = N ′ − 1.

• We will consider a finite window of the state and output process. For a given N > 0,
we let the state sequence s be a vector with indices from −N to +N , and the output
sequence y be a vector with indices from −N + 1 to +N . Finally, we will nearly always
be interested in the limit N →∞.

• The probability of a state sequence, of an output sequence given an input sequence, of
an output sequence, of a state sequence given an output sequence are, respectively,

Q(s)
△
= µs−N

∏

ℓ∈IN

psℓ−1,sℓ
=

∏

ℓ∈IN
Qsℓ−1,sℓ

∏

ℓ∈I′
N

∑

j Qsℓ,j
, (3.7)

W (y|s)
△
=
∏

ℓ∈IN

W (yℓ|sℓ−1, sℓ), (3.8)

R(y)
△
= (QW )(y)

△
=
∑

s

Q(s)W (y|s), (3.9)

V (s|y)
△
=

Q(s)W (y|s)

R(y)
=

Q(s)W (y|s)

(QW )(y)
=

Q(s)W (y|s)
∑

x′ Q(x′)W (y|x′)
. (3.10)

• We will used the following conventions. Vℓ(i|y) will be equal to PXℓ|Y(i|Y) when one
has Q(·) at the input. Vℓ−1,ℓ(i, j|y) will be equal to PXℓ−1Xℓ|Y(i, j|y) when one has
Q(·) at the input. Furthermore, we use simplifications like Vℓ(sℓ|y) = V (sℓ|y) and
Vℓ−1,ℓ(sℓ|y) = V (sℓ−1, sℓ|y), when the subscript is (the subscripts are) clear from the
argument.

We will need a parametrization which is convenient for our purposes, i.e., over which
we can easily optimize. In the expressions to come, pij , µi, and Qij will appear. To select
the “base” parametrization, we define different manifolds and study their advantages and
disadvantages.

Definition 15 (Manifold P) We define the manifold P to be

P =

{

(pij)(i,j)∈A

∣
∣
∣
∣
∣

pij ≥ 0 (for all (i, j) ∈ A)
∑

j∈
−→
Ai

pij = 1 (for all i ∈ S)

}

(3.11)
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Definition 16 (Manifold P ′) We define the manifold P ′ to be

P ′ =







(
(pij)(i,j)∈A, (µi)i∈S

)

∣
∣
∣
∣
∣
∣

pij ≥ 0 (for all (i, j) ∈ A)
∑

j∈
−→
Ai

pij = 1 (for all i ∈ S)

µj =
∑

i∈S µipij (for all j ∈ S)






(3.12)

Definition 17 (Manifold Q) We define the manifold Q to be

Q =







(Qij)(i,j)∈A

∣
∣
∣
∣
∣
∣
∣

Qij ≥ 0 (for all (i, j) ∈ A)
∑

(i,j)∈AQij = 1
∑

k∈
←−
Ai

Qki −
∑

j∈
−→
Ai

Qij = 0 (for all i ∈ S)







(3.13)

These three manifolds have these advantages and disadvantages.

• The manifold P is a bounded convex subset of a hyperplane, but expressing µi and Qij

with the help of pij only is quite complicated.

• With the manifold P ′ we can express Qij easily, but the manifold itself is not a subset
of a hyperplane.

• The manifold Q is a bounded convex subset of a hyperplane and we can derive {µi}
and {pij} easily from {Qij}:

µi =
∑

j∈
−→
Ai

Qij =
∑

k∈
←−
Ai

Qki, pij =
Qij

µi
=

Qij
∑

j′ Qij′
. (3.14)

Because of these reasons we will choose the manifold Q, i.e., the set Qij as our “base”
parametrization. The other manifolds could also be used, but from our experience, Q turns
out to be the most suited. So, when we are using µi and pij, they will always be functions of
Qij, i.e.,

µi =
∑

j∈
−→
Ai

Qij, pij =
Qij

µi
=

Qij
∑

j′ Qij′
. (3.15)

When Qij = Qij(α) (for all (i, j) ∈ A) will be a function of a single parameter α, we will
implicitely also have the functions µ(α) and pij(α). Note that to simplify notation, we will
only write Qij instead of {Qij} in function arguments, so we write f4(Qij,W ) instead of
f4({Qij},W ), etc.

3.2 Mutual Information and Capacity

Because of the controllability assumption in Sec. 3.1, we have

lim
N→∞

1

N ′
I(X;Y) = lim

N→∞

1

N ′
I(S;Y), (3.16)

i.e. instead of considering 1
N ′ I(X;Y), we will only look at 1

N ′ I(S;Y), also for finite N .3

We will also need the following functions
3As already mentioned in Footnote 1, this report focuses on the case where we have controllability; with

some efforts, the results can be extended to the more general case.
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Definition 18 (Help Functions) For a fixed channel law W (y|x) the functions

f
(N)
1 (Qij)

△
=

1

N ′
H(S) = −

1

N ′

∑

s

Q(s) log(Q(s)), (3.17)

f
(N)
2 (Qij ,W )

△
=

1

N ′
H(Y) = −

1

N ′

∑

y

(QW )(y) log
(
(QW )(y)

)
, (3.18)

f
(N)
3 (Qij ,W )

△
=

1

N ′
H(Y|S) = −

1

N ′

∑

s

Q(s)
∑

y

W (y|s) log (W (y|s)) , (3.19)

f
(N)
4 (Qij ,W )

△
=

1

N ′
H(S|Y) = −

1

N ′

∑

s

Q(s)
∑

y

W (y|s) log

(
Q(s)W (y|s)

(QW )(y)

)

. (3.20)

(3.21)

In the limit N →∞, we define the functions f1(Qij), f2(Qij ,W ), f3(Qij,W ), f4(Qij ,W )

in the obvious way. If Qij = Qij(α) are functions of the single parameter α, we define f
(N)
1 (α),

f
(N)
2 (α,W ), f

(N)
3 (α,W ), f

(N)
4 (α,W ) and f1(α), f2(α,W ), f3(α,W ), f4(α,W ).

Definition 19 (Mutual Information Rate) The mutual information rate we are inter-
ested in is a function of {Qij}, and W .

I(N)(Qij ,W )
△
=

1

N ′
I(S;Y) (3.22)

= f
(N)
1 (Qij)− f

(N)
4 (Qij,W ) =

1

N ′

∑

s

Q(s)
∑

y

W (y|s) log

(
V (s|y)

Q(s)

)

(3.23)

= f
(N)
2 (Qij ,W )− f

(N)
3 (Qij ,W ) =

1

N ′

∑

s

Q(s)
∑

y

W (y|s) log

(
W (y|s)

R(y)

)

. (3.24)

In the limit N →∞, we define

I(Qij ,W )
△
= lim

N→∞
I(N)(Qij ,W ), (3.25)

such that

I(N)(Qij ,W ) = f
(N)
1 (Qij)− f

(N)
4 (Qij,W ) = f

(N)
2 (Qij ,W )− f

(N)
3 (Qij,W ), I(Qij ,W ) = f1(Qij)− f4(Qij ,W ) =

(3.26)

and hence (with the comments at the beginning of this section)

I(Qij ,W ) = lim
N→∞

1

N ′
I(S;Y) = lim

N→∞

1

N ′
I(X;Y). (3.27)

If Qij = Qij(α) are functions of the single parameter α, we define

I(N)(α,W )
△
= I(N)(Qij(α),W ), (3.28)

I(α,W )
△
= I(Qij(α),W ), (3.29)

such that

I(N)(α,W ) = f
(N)
1 (α) − f

(N)
4 (α,W ) = f

(N)
2 (α,W )− f

(N)
3 (α,W ), (3.30)

I(α,W ) = f1(α)− f4(α,W ) = f2(α,W ) − f3(α,W ). (3.31)
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{Q
〈r〉
ij }

Ψ({Q
〈r〉
ij }, {Q}, W )

I({Qij}, W ) = f1({Qij})− f4({Qij}, W )

{Q
〈r+1〉
ij }

{Q∗
ij}

{Qij}

Figure 3.3: Generic mutual information rate I(Qij ,W ) and approximating function

Ψ(Q
〈r〉
ij , Qij ,W ). Q∗ij is a capacity-achieving input branch probability distribution.

Definition 20 (Channel Capacity) With the above notation, for a given channel law W ,
the channel capacity for an FSC with a Markov source input is defined to be

C(W )
△
= max

Qij∈Q
I(Qij ,W ). (3.32)

Gallager [10] defines the capacity slightly differently: he allows at the input to a finite-
state channel any source, whereas here we assume to have a Markov source that has a certain
memory length.

3.3 The Main Idea Behind the Generalized Blahut-Arimoto

Algorithm for FSCs

Compared to the classical Blahut-Arimoto algorithm as shown in Ch. 2, the generalized
Blahut-Arimoto algorithm for FSCs works as follows.

Again, the algorithm is of an iterative nature. Assume therefore that at iteration r we

have found a set Q
〈r〉
ij of branch probabilities which lead to an information rate I(Q

〈r〉
ij ,W ) (see

Fig. 3.3). At iteration r + 1 we would like to find a better set Q
〈r+1〉
ij of branch probabilities,

that lead to an information rate with I(Q
〈r+1〉
ij ) ≥ I(Q

〈r〉
ij ) (see Fig. 3.3). Again, we introduce

a help function Ψ(Q
(r)
ij , Qij,W ), which locally (i.e. at Q = Q(r)) approximates (see Fig. 3.3)

I
(
Qij ,W

)
= f1

(
Qij

)
− f4

(
Qij,W

)
(3.33)

And again we get Ψ by

Ψ
(

Q
〈r〉
ij , Qij,W

)
△
= f1

(
Qij

)
− f ′4

(

Q
〈r〉
ij , Qij ,W

)

, (3.34)

where

f ′4

(

Q
〈r〉
ij , Qij ,W

)
△
= −

∑

(i,j)∈A

QijT
〈r〉
ij (3.35)
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H(X) = f1({Qij})

{Qij}

{Q
〈r〉
ij }

f ′
4({Q

〈r〉
ij }, {Q}, W )

H(X|Y ) = f4({Qij}, W )

Figure 3.4: Generic entropy H(X) and conditional entropy H(X|Y ). f ′4(Q
〈r〉
ij , Qij,W ) is a

linear approximation of H(X|Y ) at Qij = Q
〈r〉
ij .

is a linear (linear in Qij) approximation of f4(Qij ,W ) at {Qij} = {Q
(r)
ij } (see Fig. 3.4). With

this approach it follows that stationary points of the algorithm correspond to zero-gradient
points of the information rate curve. Moreover, zero-gradient points that are not maxima,
are not stable.

Unfortunately, in this case we were neither able to show the concavity of I(Qij ,W ), nor the
concavity of f4(Qij,W ) in Qij. Numerical results would suggest the truth of these hypotheses,
but until now we could not found a proof or a disproof (see also Lemma 40 and Conjecture 41).
The first concavity result would imply that all maxima would lie in a connected set, whereas
the second concavity result would imply that the algorithm gives at each iteration a new
set of branch probabilities whose associated information rate is at least as large as the old
information rate.

3.4 The Generalized Blahut-Arimoto Algorithm for FSCs

The next definition introduces the crucial parameters for the generalized Blahut-Arimoto
algorithm. They generalize the T (x) from Chap. 2.

Definition 21 (Tij values) The Tij(Qij ,W ) values4 will be the key parameters for the gen-
eralized Blahut-Arimoto algorithm. Remember N ′ = 2N .

Tij
△
= T ij − T i

△
= lim

N→∞
T

(N)
ij , T

(N)
ij

△
= T

(N)

ij − T
(N)
i , (3.36)







T ij
△
= limN→∞ T

(N)

ij ,

T i
△
= limN→∞ T

(N)
ij







T
(N)

ij
△
= 1

N ′

∑

ℓ∈IN
T

(N)

ij (ℓ)

T
(N)
i

△
= 1

N ′

∑

ℓ∈I′
N

T
(N)
i (ℓ),

(3.37)

4We will often not write the arguments of the Tij values; sometimes we will use decorations to indicate the
arguments.
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where






T
(N)

ij (ℓ)
△
=

∑

s

sℓ−1=i,sℓ=j

Q(sℓ−2
−N , sN

ℓ+1|sℓ−1, sℓ)
∑

y W (y|s) log (V (sℓ−1, sℓ|y)) (for ℓ ∈ IN),

T
(N)
i (ℓ)

△
=
∑

s

sℓ=i

Q(sℓ−1
−N , sN

ℓ+1|sℓ)
∑

y W (y|s) log (V (sℓ|y)) (for ℓ ∈ I ′N ).

(3.38)

Let us mention that Tij has a dimension in the sense that it depends on the choice of
logarithm, therefore expressions like eTij have to be modified accordingly.

Remark 39 discusses how the Tij values can be calculated efficiently.
Note that we always normalize by N ′, despite the fact that |I ′N | = N ′ − 1. (In the limit

N →∞ this is irrelevant.)

Lemma 22 (Property 1 of Help Functions f
(N)
1 and f1) The functions f

(N)
1 (Qij) and

f1(Qij) as given in Def. 18 can be rewritten as

f
(N)
1 ({Qij}) =

∑

(i,j)∈A

Qij ·

[

− log (pij)−
1

N ′
log (µi)

]

, (3.39)

f1(Qij) =
∑

(i,j)∈A

Qij ·
[
− log (pij)

]
. (3.40)

Proof: See Sec. B.2. �

Lemma 23 (Property 2 of Help Functions f
(N)
1 and f1) Let the functions f

(N)
1 (α) and

f1(α) be as given in Def. 18. Then,

d

dα
f

(N)
1 (α) =

∑

(i,j)∈A

Qα
ij ·

[

− log (pij)−
1

N ′
log(µi)

]

, (3.41)

d

dα
f1(α) =

∑

(i,j)∈A

Qα
ij ·
[
− log (pij)

]
. (3.42)

Proof: See Sec. B.3. �

Lemma 24 (Property 1 of the Help Functions f
(N)
4 and f4) The functions f

(N)
4 (Qij ,W )

and f4(Qij,W ) as given in Def. 18 can be rewritten as

f
(N)
4 (Qij ,W ) = −




∑

(i,j)∈A

QijT
(N)

ij −
∑

i∈S

µiT
(N)
i



 = −
∑

(i,j)∈A

Qij · T
(N)
ij , (3.43)

f4(Qij ,W ) = −




∑

(i,j)∈A

QijT ij −
∑

i∈S

µiT i



 = −
∑

(i,j)∈A

Qij · Tij, (3.44)

where T
(N)
ij = T

(N)
ij (Qij,W ) and Tij = Tij(Qij ,W ).
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Proof: See Sec. B.4. �

Lemma 25 (Property 2 of the Help Functions f
(N)
4 and f4) Let Qij = Qij(α) be func-

tions of a single parameter α for all (i, j) ∈ A, and let the functions f
(N)
4 (α,W ) and f4(α,W )

be as given in Def. 18. Then,

d

dα
f

(N)
4 (α,W ) = −

∑

(i,j)∈A

Qα
ij · T

(N)
ij , (3.45)

d

dα
f4(α,W ) = −

∑

(i,j)∈A

Qα
ij · Tij , (3.46)

where T
(N)
ij = T

(N)
ij (Qij(α),W ) and Tij = Tij(Qij(α),W ).

Proof: See Sec. B.5. See also Remark 26. �

Remark 26 (On Property 2 of the Help Functions f
(N)
4 and f4) This innocent look-

ing result in Lemma 24 is the main result of this report; the difficulty lies in the dependency

of T
(N)
ij and Tij on α. At the point of this writing, we are not aware of an essentially shorter

proof than the one shown in Sec. B.5

Definition 27 (Help Function F ′4) Let {Qij}, {Q̃ij} ∈ Q. We define the help functions

f ′4
(N)

(Q̃ij , Qij ,W )
△
= −

∑

(i,j)∈A

Qij · T̃
(N)
ij , (3.47)

f ′4(Q̃ij , Qij ,W )
△
= −

∑

(i,j)∈A

Qij · T̃ij, (3.48)

where T̃
(N)
ij = T

(N)
ij (Q̃ij ,W ) and T̃ij = Tij(Q̃ij ,W ).

If Qij = Qij(α) are functions of a single parameter α for all (i, j) ∈ A, then we define

f ′4
(N)

(α̃, α,W )
△
= f ′4

(N)
(Qij(α̃), Qij(α),W ), (3.49)

f ′4(α̃, α,W )
△
= f ′4(Qij(α̃), Qij(α),W ). (3.50)

Lemma 28 (Property 1 of the Help Functions f ′4
(N) and f ′4) Let the functions f ′4

(N)(α̃, α,W )
and f ′4(α̃, α,W ) be as given in Def. 27, and let α̃ be a fixed parameter. Then,

f ′4
(N)

(α̃, α̃,W ) = f
(N)
4 (α̃,W ), (3.51)

f ′4(α̃, α̃,W ) = f4(α̃,W ), (3.52)

Proof: See Sec. B.6. �
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Lemma 29 (Property 2 of the Help Functions f ′4
(N) and f ′4) Let the functions f ′4

(N)(α̃, α,W )
and f ′4(α̃, α,W ) be as given in Def. 27, and let α̃ be a fixed parameter. Then,

d

dα
f ′4

(N)
(α̃, α,W )

∣
∣
∣
∣
α=α̃

= f
(N)
4 (α,W )

∣
∣
∣
α=α̃

, (3.53)

d

dα
f ′4(α̃, α,W )

∣
∣
∣
∣
α=α̃

= f4(α,W )
∣
∣
α=α̃

. (3.54)

Proof: See Sec. B.7. �

Remark 30 (On the Properties of the Help Functions f ′4
(N) and f ′4) Lemmas 28 and

29 show that f ′4
(N)(α̃, α,W ) is a linear approximtion of f ′4

(N)(α,W ) at α = α̃, i.e., at this
point they have the same value and the same gradient. The same comment applies to the
functions f ′4(α̃, α,W ) and f ′4(α,W ).

Theorem 31 (Property 1 of the Mutual Information Rate) For any Qij ∈ Q we have

I(N) (Qij ,W ) =
∑

(i,j)∈A

Qij ·

[

− log (pij)−
1

N ′
log(µi) + T

(N)
ij

]

, (3.55)

I (Qij ,W ) =
∑

(i,j)∈A

Qij · [− log (pij) + Tij] , (3.56)

where T
(N)
ij = T

(N)
ij (Qij,W ) and Tij = Tij(Qij ,W ).

Proof: See Sec. B.8. �

Theorem 32 (Property 2 of the Mutual Information Rate) Let Qij
△
= Qij(α) for (i, j) ∈

A. The derivative of I(α,W ) with respect to α is

d

dα
I(N)(α,W ) =

∑

(i,j)∈A

Qα
ij ·
[

− log(pij) + T
(N)
ij

]

, (3.57)

d

dα
I(α,W ) =

∑

(i,j)∈A

Qα
ij · [− log(pij) + Tij ] , (3.58)

where T
(N)
ij = T

(N)
ij (Qij(α),W ) and Tij = Tij(Qij(α),W ).

Proof: See Sec. B.9. �

Definition 33 (Generalized Function Ψ) For the generalized Blahut-Arimoto algorithm
the following functions are very useful. Let

Ψ(N)(Q̃ij, Qij ,W )
△
= f

(N)
1 (Qij)− f ′4

(N)
(Q̃ij , Qij ,W ), (3.59)

Ψ(Q̃ij, Qij ,W )
△
= f1(Qij)− f ′4(Q̃ij, Qij ,W ), (3.60)
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which is equivalent to

Ψ(N)
(
Q̃ij, Qij ,W

) △
=

∑

(i,j)∈A

Qij ·

[

− log(pij)−
1

N ′
log(µi) + T̃

(N)
ij

]

, (3.61)

Ψ
(
Q̃ij, Qij ,W

) △
=

∑

(i,j)∈A

Qij ·
[

− log (pij) + T̃ij

]

(3.62)

Note that the T̃
(N)
ij ’s and T̃ij’s are calculated according to Q̃ij and W , i.e. T̃

(N)
ij = T̃

(N)
ij (Qij ,W )

and T̃ij = T̃ij(Qij ,W ). When Qij = Qij(α) (for all (i, j) ∈ A), then, as in other definitions,
we define the functions Ψ(N)

(
α̃, α,W

)
and Ψ

(
α̃, α,W

)
.

Proof: See Sec. B.10. �

Theorem 34 (Property 1 of the Generalized Function Ψ) For any Q̃ij we have

Ψ(N)
(

Q̃ij , Q̃ij ,W
)

= I(N)
(

Q̃ij,W
)

, (3.63)

Ψ
(

Q̃ij , Q̃ij ,W
)

= I
(

Q̃ij,W
)

. (3.64)

Proof: See Sec. B.11. �

Theorem 35 (Property 2 of the Generalized Function Ψ) Let Qij = Qij(α) for all
(i, j) ∈ A and fix some α̃. Then,

d

dα
Ψ(N) (α̃, α,W )

∣
∣
∣
∣
α=α̃

=
d

dα
I(N)(α,W )

∣
∣
∣
∣
α=α̃

, (3.65)

d

dα
Ψ (α̃, α,W )

∣
∣
∣
∣
α=α̃

=
d

dα
I(α,W )

∣
∣
∣
∣
α=α̃

. (3.66)

Proof: See Sec. B.12. �

Algorithm 36 (Algorithm to Opimize Ψ) Let {Q̃ij} and W be given.5 The {Q∗ij} de-
fined by

{Q∗ij}
△
= arg max

{Qij}
Ψ
(

{Q̃ij}, {Qij},W
)

, (3.67)

can be computed by the following steps.

• Let T̃ij = Tij(Q̃ij,W ).

• Let Ã be an |S × S|-matrix with entries ãij
△
= eT̃ij if (i, j) ∈ A, and ãij

△
= 0, otherwise.

• Let c be the left and let bT be the right eigenvector of Ã of the maximal (real) eigenvalue
ρ of Ã, respectively.

5Here we show explicitely the set braces around {Q̃ij}.
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• The desired solution is then

p∗ij
△
=

bj

bi
·
ãij

ρ
, (for all (i, j) ∈ A) (3.68)

µ∗i
△
= K · ci · bi, (for all i ∈ S) (3.69)

Q∗ij
△
= µ∗i · p

∗
ij , (for all (i, j) ∈ A) (3.70)

where K
△
= 1/

(∑

i∈S cibi

)
.

Moreover, the maximized value is

Ψ
(

{Q̃ij}, {Q
∗
ij},W

)

= log(ρ). (3.71)

Proof: See Sec. B.13. �

The next algorithm was proposed by Kavčić in [1].

Algorithm 37 (Generalized Blahut-Arimoto Algorithm for FSCs) We consider a finite-

state channel with state sequence S and output Y and channel law W (y|s). Let Q
〈0〉
ij be some

initial (freely chosen) Markov parameter set. For iterations r = 0, 1, 2, . . . perform alternat-
ingly the following two steps.

• First Step: For each (i, j) ∈ A in calculate T
〈r〉
ij = Tij({Q

〈r〉
ij },W ) according to Def. 21

with Markov parameter set {Q
(r)
ij } and channel law W . They can be approximated by

the procedure given in Remark 39.

• Second Step: The new Markov paramter set {Q
〈r+1〉
ij }, which maximizes Ψ(Q

〈r〉
ij , Q

〈r+1〉
ij ,W ),

is calculated according to Alg. 36 with inputs {Qij}
△
= {Q

〈r〉
ij } and W and output

{Q
〈r+1〉
ij }

△
= {Q∗ij}.

Theorem 38 (Properties of the Generalized Blahut-Arimoto Algorithm for FSCs)
The stationary points of Alg. 37 correspond to critical points of the information rate curve.
But only local maxima of the information rate curve correspond to stable stationary points of
Alg. 37.

Further properties can be shown if the conjectures in Conj. 41 hold (see also Sec. 3.4).
The concavity of I(Qij ,W ) would imply that all maxima would lie in a connected set, whereas
the concavity of f4(Qij ,W ) in Qij would imply that the algorithm gives at each iteration a
new set of branch probabilities whose associated information rate is at least as large as the old
information rate.

Proof: See Section B.14. �
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T21 − log(ρ) + log(b1) − log(b2)

T11 − log(ρ) + log(b1) − log(b1)

ℓ + 2ℓ + 1ℓℓ− 1ℓ− 2ℓ− 3

T12 − log(ρ) + log(b2) − log(b1)

2

1

T22 − log(ρ) + log(b2) − log(b2)

Figure 3.5: Trellis of a finite-state channel with two states. The values at the next to the
arrows indicate the “gain” that one has by choosing a certain direction.

3.5 Interpretation of Stationary Points of the Generalized Blahut-

Arimoto Algorithm

The update formula used in Alg 37 is

p∗ij =
bj

bi
·
eTij

ρ
. (for all (i, j) ∈ A), (3.72)

where we used the notation from Alg. 36.
Assume to be at a stationary point of the algorithm, i.e., pij = p∗ij (for all (i, j) ∈ A).

Logarithmically written,

log(pij) = Tij − log(ρ) + log(bj)− log(bi). (3.73)

We can give the following interpretation: Tij measures the “quality” of sending the symbol
when going from state i to state j. Additionally, there is potentially also an advantage to go
from state i to state j, as possibly one has there a slightly better information rate: this is
measured by the difference log(bj)− log(bi). (Of course, asymptotically one can transmit the
same normalized information, but unnormalized there is potentially a slight difference.)

Using the left eigenvector of the Ã matrix, we equivalently get (←−p ij is the backward
branching probability from state i to state j)

log(←−p ij) = Tji − log(ρ) + log(cj)− log(ci). (3.74)

We can give a similar interpretation, but now looking to the left (i.e. to the past).
For Qij we get

log(Qij) = Tij − log(ρ) + log(K) + log(ci) + log(bj), (3.75)

where K = 1/ (
∑

i cibi). Also here we can give some interpretation.
In (2.50) we gave the Kuhn-Tucker conditions for a capacity-achieving input pmf for a

DMC, where we also took care of the case where some inputs are not used, i.e. some Q(x)
are zero. They can be written as

− log(Q(x)) + T (x) ≤ C (with equality if Q(x) > 0). (3.76)

Similar conditions can be given for the setup in this chapter, namely one must have

− log(pij) + Tij + λj − λi ≤ C (with equality if Qij > 0), (3.77)

for some constants λi, i ∈ S.
Comment: Is it necessary to say more about the topic of Kuhn-Tucker conditions?
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3.6 How to Compute the Tij Values Efficiently

Remark 39 (Efficient Computation of Tij Values) Although the definition of the Tij

values is quite complicated, they can indeed be computed quite efficiently. One can use the
following steps to get the Tij values with probability one as N →∞.

• Choose a large N .

• Randomly generates an input sequence and therefore a state sequence š, and subse-
quently an output sequence y̌. (With probability 1 as N →∞ each of these sequences
are typical and together they are jointly typical.)

• For all (i, j) ∈ A, ℓ ∈ IN compute Vℓ−1,ℓ(i, j|y̌), and for all i ∈ S, ℓ ∈ I ′N compute
Vℓ(i|y̌) using the BCJR (or forward-backward) algorithm [11].

• (First possibility) Compute

Ť
(N)
ij (̌s, y̌) =

ˇ
T

(N)

ij (̌s, y̌)− Ť
(N)

i (̌s, y̌), (3.78)






ˇ
T

(N)

ij (̌s, y̌) = 1
N ′Qij

∑

ℓ∈IN
šℓ−1=i,šℓ=j

log (Vℓ−1,ℓ(i, j|y̌)) ,

Ť
(N)

i (̌s, y̌) = 1
N ′µi

∑

ℓ∈I′
N

šℓ=i

log (Vℓ(i|y̌)) .
(3.79)

• (Second possibility) Computationally better (i.e. better accuracy for smaller N for the
cases where some pij ’s are low, i.e., the corresponding branches are visited rarely) give
the computation rules (see also [1])

Ť
(N)
ij (y̌) =

ˇ
T

(N)

ij (y̌)− Ť
(N)

i (y̌), (3.80)






ˇ
T

(N)

ij (y̌) = 1
N ′

∑

ℓ∈IN

Vℓ−1,ℓ(i,j|y̌)
Qij

log (Vℓ−1,ℓ(i, j|y̌)) ,

Ť
(N)

i (y̌) = 1
N ′

∑

ℓ∈I′
N

Vℓ(i|y̌)
µi

log (Vℓ(i|y̌)) .
(3.81)

This second possibility is close in spirit to the approach taken in [12] to modify the
usual procedure to get estimates of bit-error rates.

• With probability 1 as N → ∞ the value Ť
(N)
ij (̌s, y̌) and Ť

(N)
ij (y̌) will be equal to the

desired Tij .

Proof: See Sec. B.15. �
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3.7 Symmetrization

The definition of Tij in Def. 21 is slightly asymmetric, but it is possible to symmetrize the

definition. Based on the same definitions of T ij and T i as in Def. 21, we first propose a more

general definition of Tij . Instead of Tij = T ij − T i we set (for any β ∈ R)

T
[β]
ij
△
= T ij −

(
βT i + (1− β)T j

)
. (3.82)

After noting that

∑

(i,j)∈A

QijT̃ i =
∑

i∈S

µiT̃ i =
∑

j∈S

µj T̃ j =
∑

(i,j)∈A

QijT̃ j, (3.83)

we see that

∑

(i,j)∈A

QijT̃ij =
∑

(i,j)∈A

Qij(
˜
T ij − T̃ i) (3.84)

=
∑

(i,j)∈A

Qij
˜
T ij − β

∑

(i,j)∈A

Qij T̃ i − (1− β)
∑

(i,j)∈A

QijT̃ i (3.85)

=
∑

(i,j)∈A

Qij
˜
T ij − β

∑

(i,j)∈A

Qij T̃ i − (1− β)
∑

(i,j)∈A

QijT̃ j (3.86)

=
∑

(i,j)∈A

Qij ·

[
˜
T ij −

(

βT̃ i + (1− β)T̃ j

)]

=
∑

(i,j)∈A

Qij T̃
[β]
ij . (3.87)

So, with this new definition, expressions like
∑

(i,j)∈AQijT̃ij can be replaced by
∑

(i,j)∈AQijT̃
[β]
ij .

Simlilarly, we can show that
∑

(i,j)∈AQα
ijT̃ij =

∑

(i,j)∈AQα
ijT̃

[β]
ij .

The choice made in Def. 21 corresponds to β = 1. But the choice β = 1/2 leads to the
more symmetric definition

T
[1/2]
ij

△
= T ij −

1

2

(
T i + T j

)
. (3.88)

If for some channel and some {Qij} we have T ij = T ji for all (i, j) ∈ A (this is a very special
channel), then Ã is symmetric, i.e. all eigenvalues are real and the corresponding left and the
right eigenvectors are equal.

3.8 Concavity of Various Functions

Lemma 40 The functions f
(N)
1 (Qij) and f1(Qij) defined in Def. 18 are concave in {Qij}.

Proof: See Sec. B.16. �

Conjecture 41 We conjecture that f2(Qij ,W ), f3(Qij ,W ), f4(Qij,W ), I(Qij ,W ) are con-
cave in {Qij}.
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3.9 The Classical Blahut-Arimoto Algorithm as a Special Case

of the Generalized Blahut-Arimoto Algorithm

A DMC can be brought into the form required to apply Alg. 37 by the following definitions.
Assume that there are n input symbols and let pj be the probability of sending symbol j. Let
S = {1, . . . , n}, and there is a transition from state i to state j with probability pij and one
sends input symbol j (so being in state j means that in the last transmission we sent symbol
j). In this setting, T̃ij clearly only depends on j, so we set T̃ij = Tj. We get the matrix

Ã =






eT̃11 · · · eT̃1n

...
...

eT̃n1 · · · eT̃nn




 =






eT̃1 · · · eT̃n

...
...

eT̃1 · · · eT̃n




 , (3.89)

whose largest (real) eigenvalue is ρ =
∑

j eT̃j with right eigenvector bT = 1T and left eigen-

vector c = (eT̃1 , . . . , eT̃n). Furthermore, K = 1/
∑

j eT̃j and µi = eT̃i/
∑

i′ e
T̃i′ . So the updated

transition probabilities are

p∗ij
△
=

bj

bi
·
eT̃ij

ρ
=

1

1
·

eT̃j

∑

j′ e
T̃j′

=
eT̃j

∑

j′ e
T̃j′

, (3.90)

which is independent of i; so we can set p∗j
△
= p∗ij. If a capacity-achieving input distribution

is achieved, the capacity is

C = log(ρ) = log




∑

j

eT̃j



 . (3.91)

3.10 Noiseless Channels with Memory as a Special Case of the

Generalized Blahut-Arimoto Algorithm

Shannon [13] studied the case of noiseless channels with memory. In our setup, the capacity
of such channels equals the normalized logarithm of the number of possible paths in the trellis
representing the channel.

In that case Tij = 1 if (i, j) ∈ A. So in Alg. 37, the matrix Ã has an entry ãij = 0 if
(i, j) ∈ A, and ãij = 0 otherwise; i.e., Ã is a matrix consisting only of ones and zeros. This
matrix is the adjacency matrix of the trellis. So, Ã in the general case can be considered as
a noisy adjacency matrix [1].

We remark that in the noiseless case a Markov source having the same memory length
as the channel is sufficient for achieving capacity (see also problem 13 of Chap. 4 in [14]).
Judging from numerical results, this seems not to be the case in the noisy case: here the
achievable information rates seem to increase as the Markov source memory length increases.



Chapter 4

Open Problems

4.1 Open Problems

The main open problems are the ones formulated in Conj. 41.
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Appendix A

Proofs to Chapter 2

A.1 Proof of Lemma 5

For ease of notation we set Qx
△
= Q(x). We will also need the general property

∑

x

Qα
x(α) =

∑

x

d

dα
Qx(α) =

d

dα

∑

x

Qx(α) =
d

dα
1 = 0. (A.1)

To prove concavity of the various functions, we express Qx
△
= Qx(α) as a linear function in

a single parameter α. If a function is concave in α for any such parametrization, then the
function is concave in Q(x). We have

Qα
x
△
= Qα

x(α) =
d

dα
Qx(α) are constants, (A.2)

Qαα
x
△
=

d2

d2α
Qx(α) =

d

dα
Qα

x(α) = 0. (A.3)

Subsequently, we will omit the argument α of Qx(α). We start with proving that H(X) is
concave.

f1(α)
△
= −

∑

x

Qx log Qx, (A.4)

d

dα
f1(α) = −

∑

x

Qα
x log Qx −

∑

x

Qx
1

Qx
Qα

x = −
∑

x

Qα
x log Qx, (A.5)

d2

d2α
f1(α) = −

∑

x

Qαα
x log Qx −

∑

x

Qα
x

1

Qx
Qα

x = −
∑

x

(Qα
x)2

Qx
≤ 0. (A.6)

We prove the concavity of H(Y ).

R(y) = (QW )(y) =
∑

x

Qx

∑

y

W (y|x), (A.7)

d

dα
R(y) =

∑

x

Qα
xW (y|x). (A.8)
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f2(α)
△
= −

∑

y

R(y) log(R(y)) (A.9)

d

dα
f2(α) = −

∑

y

(
∑

x

Qα
xW (y|x)

)

log(R(y))−
∑

y

R(y)
1

R(y)

(
∑

x

Qα
xW (y|x)

)

(A.10)

= −
∑

y

(
∑

x

Qα
xW (y|x)

)

log(R(y))−
∑

x

Qα
x

∑

y

W (y|x) (A.11)

= −
∑

y

(
∑

x

Qα
xW (y|x)

)

log(R(y)) (A.12)

d2

d2α
f2(α) = −

∑

y

(
∑

x

Qαα
x W (y|x)

)

log(R(y))−
∑

y

(
∑

x

Qα
xW (y|x)

)

1

R(y)

(
∑

x

Qα
xW (y|x)

)

(A.13)

= −
∑

y

[∑

x Qα
xW (y|x)

]2

R(y)
≥ 0. (A.14)

The concavity of the entropy of Y follows also from the concavity of X and the fact that R(y)
is linear function in Q(x). We now prove the concavity of H(Y |X).

f3(α)
△
= −

∑

x

Qx

∑

y

W (y|x) log(W (y|x)) (A.15)

d

dα
f3(α) = −

∑

x

Qα
x

∑

y

W (y|x) log(W (y|x)) (A.16)

d2

d2α
f3(α) = −

∑

x

Qαα
x

∑

y

W (y|x) log(W (y|x)) = 0. (A.17)

This result follows also from the fact that H(Y |X) is linear in Q(x). Therefore, H(Y |X) is
both concave and convex in Q(.). From H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ) we
get H(X|Y ) = H(X) + H(Y |X)−H(Y ) and so

f4(α)
△
= f1(α) + f3(α)− f2(α) (A.18)

d

dα
f4(α) =

d

dα
f1(α) +

d

dα
f3(α)−

d

dα
f2(α), (A.19)

d2

d2α
f4(α) =

d2

d2α
f1(α) +

d2

d2α
f3(α)−

d2

d2α
f2(α) (A.20)

= −
∑

x

(Qα
x)2

Qx
+ 0 +

∑

y

[∑

x Qα
xW (y|x)

]2

R(y)
. (A.21)

To proceed, we need the Cauchy-Schwarz inequality which says that

(
∑

x

axbx

)2

≤

(
∑

x

a2
x

)

·

(
∑

x

b2
x

)

, (A.22)
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where equality holds if and only if ax = bx for all x. With

ax = Qα
x

√

W (y|x)

Qx
, (A.23)

bx =
√

QxW (y|x) (A.24)

we get

[
∑

x

Qα
xW (y|x)

]2

≤

[
∑

x

(Qα
x)2

W (y|x)

Qx

]

·

[
∑

x

QxW (y|x)

]

(A.25)

=

[
∑

x

(Qα
x)2

W (y|x)

Qx

]

·R(y)) (A.26)

Using this side result we obtain

d2

d2α
f4(α) = −

∑

x

(Qα
x)2

Qx
+
∑

y

[∑

x Qα
xW (y|x)

]2

R(y)
(A.27)

≤ −
∑

x

(Qα
x)2

Qx
+
∑

y

[
∑

x(Qα
x)2 W (y|x)

Qx

]

· R(y)

R(y)
(A.28)

= −
∑

x

(Qα
x)2

Qx
+
∑

x

(Qα
x)2

Qx

∑

y

W (y|x) (A.29)

= −
∑

x

(Qα
x)2

Qx
+
∑

x

(Qα
x)2

Qx
= 0. (A.30)

From I(X;Y ) = H(Y )−H(Y |X) we have

f5(α)
△
= f2(α)− f3(α), (A.31)

d

dα
f5(α) =

d

dα
f2(α)−

d

dα
f3(α), (A.32)

d2

d2α
f5(α) =

d2

d2α
f2(α) −

d2

d2α
f3(α) (A.33)

= −
∑

y

[∑

x Qα
xW (y|x)

]2

R(y)
− 0 ≤ 0. (A.34)
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A.2 Proof of Lemma 8

The first statement is clear from Defs. 2 and 7. The second statement follows from

I(Q,W )−Ψ(Q̃,Q,W ) (A.35)

= Ψ(Q,Q,W )−Ψ(Q̃,Q,W ) (A.36)

=
∑

x,y

Q(x)W (y|x) log

(
V (x|y))

Q(x)

)

−
∑

x,y

Q(x)W (y|x) log

(

Ṽ (x|y)

Q(x)

)

(A.37)

=
∑

x,y

Q(x)W (y|x) log

(
V (x|y)

Ṽ (x|y)

)

=
∑

y

R(y)
∑

x

V (x|y) log

(
V (x|y)

Ṽ (x|y)

)

(A.38)

=
∑

y

R(y)D
(
V (·|y) || Ṽ (·|y)

)
≥
∑

y

R(y) · 0 = 0, (A.39)

where the inequality follows from the fact that relative entropies are non-negative. The first
inequality of the third statement in Lemma 8 follows from the the fact that we can choose
Q = Q̃, whereupon Ψ(Q̃,Q,W ) = Ψ(Q̃, Q̃,W ) = I(Q̃,W ) so that Ψ(Q̃,Q,W ) ≥ I(Q̃,W )
holds, whereas the second inequality of the third statement of Lemma 8 follows from the
second statement.

A.3 Proof of Remark 9

Deriving

f4(Q,W ) = −
∑

x

Q(x)
∑

y

W (y|x) log(V (x|y)) (A.40)

= −
∑

x

Q(x)
∑

y

W (y|x) log

(
Q(x)W (y|x)

∑

x′ Q(x′)W (y|x′)

)

(A.41)

with respect to Q(x) leads to

∂

∂Q(x)
f4(Q,W ) = −

∑

y

W (y|x) log(V (x|y)) −Q(x)
∑

y

W (y|x)
1

Q(x)
(A.42)

+
∑

x′′

Q(x′′)
∑

y

W (y|x′′)
1

∑

x′ Q(x′)W (y|x′)
W (y|x) (A.43)

= −
∑

y

W (y|x) log(V (x|y)) − 1 + 1 = −
∑

y

W (y|x) log(V (x|y)). (A.44)

Evaluated at Q = Q̃ this gives the desired result. We could have alternatively taken the
results from Sec. A.1.

A.4 Proof of Theorem 11

We first prove the first statement. Fix some non-negative integer r. From (2.25) we know that
Ψ
(
Q〈r〉, Q〈r〉,W ) = I(Q〈r〉,W ). Taking the Q∗ that maximizes Ψ

(
Q〈r〉, Q,W ) we must have
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Ψ
(
Q〈r〉, Q∗,W ) ≥ I(Q〈r〉,W ). But from (2.26) we know also that Ψ

(
Q〈r〉, Q∗,W ) ≤ I(Q∗,W ).

Combining these two results we have

I(Q〈r〉,W ) ≤ Ψ
(
Q〈r〉, Q∗,W ) ≤ I(Q∗,W ). (A.45)

By showing that Q(r+1) = Q∗ we finish the proof of the first statement. For maximizing
Ψ(Q〈r〉, Q,W ) over Q under the constraint

∑

x Q(x) = 1 we use Lagrange multipliers. Solving

0
!
=

∂

∂Q(x)

(

Ψ
(
Q〈r〉, Q,W ) + λ

∑

x′

Q(x′)

)∣
∣
∣
∣
∣
Q=Q∗

(A.46)

= − log(Q∗(x))−Q∗(x)/Q∗(x) + T 〈r〉(x) + λ (A.47)

we get for each x

Q∗(x) =
eT 〈r〉(x)

∑

x′ eT 〈r〉(x′)
. (A.48)

We now prove the second statement, namely that Q〈r〉 converges to a capacity-achieving
input distribution for r →∞. Let Q〈0〉(x) be some initial (freely chosen) input distribution.
We use the definitions

V 〈r〉(x|y)
△
=

W (y|x)Q〈r〉(x)

(QW )(y)
, (A.49)

T 〈r〉(x)
△
=
∑

y

W (y|x) log
(

V 〈r〉(x|y)
)

, (A.50)

Q(r+1)(x)
△
=

exp
(
T 〈r〉(x)

)

∑

x′ exp
(
T 〈r〉(x′)

) , (A.51)

C〈r,r〉
△
= I

(

Q〈r〉,W
)

= Ψ
(

Q〈r〉, Q〈r〉,W
)

=
∑

x

Q〈r〉(x)
∑

y

W (y|x) log

(

V 〈r〉(x|y)

Q〈r〉(x)

)

,

(A.52)

C〈r,r+1〉 △= Ψ
(

Q〈r〉, Q(r+1),W
)

=
∑

x

Q(r+1)(x)
∑

y

W (y|x) log

(

V 〈r〉(x|y)

Q(r+1)(x)

)

. (A.53)

From Lemma 8,

C〈0,0〉 ≤ C〈0,1〉 ≤ · · · ≤ C〈r,r〉 ≤ C〈r,r+1〉 ≤ C〈r+1,r+1〉 ≤ · · · ≤ C. (A.54)

Note that C〈r,r〉 is the information rate when the input has the distribution Q〈r〉(·). We
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observe that for any x

∑

y

W (y|x) log

(

V 〈r〉(x|y)

Q(r+1)(x)

)

(A.55)

=

(
∑

y

W (y|x) log
(

V 〈r〉(x|y)
)
)

− log
(

Q(r+1)(x)
)∑

y

W (y|x)

︸ ︷︷ ︸

=1

(A.56)

=

(
∑

y

W (y|x) log
(

V 〈r〉(x|y)
)
)

− T 〈r〉(x)

︸ ︷︷ ︸

=0

+ log

(
∑

x′

exp(T 〈r〉(x′))

)

(A.57)

= log

(
∑

x′

exp(T 〈r〉(x′))

)

, (A.58)

which is independent of x. So, using this result we get

C〈r,r+1〉 =
∑

x

Q(r+1)(x)
∑

y

W (y|x) log

(

V 〈r〉(x|y)

Q(r+1)(x)

)

(A.59)

= log

(
∑

x′

exp(T 〈r〉(x′))

)

. (A.60)

Moreover we have

exp
(

T 〈r〉(x)
)

= exp

(
∑

y

W (y|x) log

(

W (y|x)Q〈r〉(x)

(Q〈r〉W )(y)

))

(A.61)

= exp

(
∑

y

W (y|x) log

(
W (y|x)

(Q〈r〉W )(y)

)

+ log Q〈r〉(x)
∑

y

W (y|x)

)

(A.62)

= Q〈r〉(x) · exp

(
∑

y

W (y|x) log

(
W (y|x)

(Q〈r〉W )(y)

))

(A.63)

Combining (A.60) and (A.63), the update rule reads

Q(r+1)(x) =
exp

(
T 〈r〉(x)

)

∑

x′ exp
(
T 〈r〉(x′)

) (A.64)

=
Q〈r〉(x) · exp

(
∑

y W (y|x) log
(

W (y|x)

(Q〈r〉W )(y)

))

exp
(
C〈r,r+1〉

) (A.65)

Let C = C(W ) be the capacity and Q∗(·) be a capacity-achieving input distribution. Using
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Equation (A.65) we observe that

∑

x

Q∗(x) log

(

Q(r+1)(x)

Q〈r〉(x)

)

(A.66)

= −C〈r,r+1〉 +
∑

x

Q∗(x)
∑

y

W (y|x) log

(
W (y|x)

(Q〈r〉W )(y)

)

(A.67)

= −C〈r,r+1〉 +
∑

x

∑

y

Q∗(x)W (y|x) log

(
W (y|x)

(Q∗W )(y)
·

(Q∗W )(y)

(Q〈r〉W )(y)

)

(A.68)

= −C〈r,r+1〉 +
∑

x

∑

y

Q∗(x)W (y|x) log

(
W (y|x)

(Q∗W )(y)

)

(A.69)

+
∑

y

(Q∗W )(y) log

(
(Q∗W )(y)

(Q〈r〉W )(y)

)

(A.70)

= −C〈r,r+1〉 + C + D
(

(Q∗W )(y)
∣
∣
∣

∣
∣
∣(Q〈r〉W )(y)

)

(A.71)

≥ −C〈r,r+1〉 + C + 0 = C −C〈r,r+1〉. (A.72)

Therefore

C − C〈r,r+1〉 ≤
∑

x

Q∗(x) log

(

Q(r+1)(x)

Q〈r〉(x)

)

, (A.73)

and summing over r from 0 to some N

N∑

r=0

(
C − C〈r,r+1〉

)
≤

N∑

r=0

∑

x

Q∗(x) log

(

Q(r+1)(x)

Q〈r〉(x)

)

(A.74)

=
∑

x

Q∗(x) log

(

Q(N+1)(x)

Q〈0〉(x)

)

(A.75)

=
∑

x

Q∗(x) log

(

Q∗(x)

Q〈0〉(x)
·
Q(N+1)(x)

Q∗(x)

)

(A.76)

= D
(
Q∗(·)||Q〈0〉(·)

)
−D

(
Q∗(·)||Q(N+1)(·)

)
(A.77)

≤ D
(
Q∗(·)||Q〈0〉(·)

)
, (A.78)

where the right hand side is independent of N . A sufficient condition for D
(
Q∗(·)||Q〈0〉(·)

)
to

be finite is that Q〈0〉(x) is larger than zero for each x. As C −C〈r,r+1〉 is non-negative for all
r, we must have

C = lim
r→∞

C〈r,r+1〉 = lim
r→∞

C〈r,r〉. (A.79)

Note that we also have

lim
r→∞

D

(
∑

x

W (.|x)Q∗(x)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

x

W (.|x)Q〈r〉(x)

)

= 0, (A.80)
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i.e., the “capacity-achieving output distribution” is unique also when the capacity-achieving
input distribution is non-unique. But if there if an unique Q∗(·) that achieves capacity, then
Q〈r〉(·) converges to it.

This proof was essentially motivated by the ones given in the papers by Arimoto [8] and
by O’Sullivan [9]. The proof idea in the paper by Blahut [7] is essentially along the same
lines.

A.5 Proof of Remark 12

Let C be the capacity of the DMC with channel law W (y|x) and let Q(.) be any input pmf.
Then,

C −min
x

[
T (x)− log(Q(x))

]
(A.81)

= C −min
x

[
∑

y

W (y|x) log(V (x|y)) − log(Q(x))

]

(A.82)

= C −min
x

[
∑

y

W (y|x) log

(
V (x|y)

Q(x)

)]

(A.83)

= C −min
x

[
∑

y

W (y|x) log

(
W (y|x)

(QW )(y)

)]

(A.84)

(∗)

≥ C −
∑

x

Q(x)
∑

y

W (y|x) log

(
W (y|x)

(QW )(y)

)

(A.85)

= C − I(Q,W ) (A.86)

(∗∗)

≥ 0, (A.87)

where inequality (∗) follows from the fact that a weighted sum (where the non-negative weights
sum to one) is never smaller than its smallest term and inequality (∗∗) follows from the fact
that capacity is always at least as large as any information rate. This result gives the first
two inequalities in the Lemma.

Let Q∗(·) be a capacity-achieving input distribution and Q(·) any input distribution.
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Then,

max
x

[
T (x)− log(Q(x))

]
− C (A.88)

= max
x

[
∑

y

W (y|x) log(V (x|y))− log(Q(x))

]

− C (A.89)

= max
x

[
∑

y

W (y|x) log

(
V (x|y)

Q(x)

)]

− C (A.90)

= max
x

[
∑

y

W (y|x) log

(
W (y|x)

(QW )(y)

)]

− C (A.91)

(∗)

≥
∑

x

Q∗(x)
∑

y

W (y|x) log

(
W (y|x)

(QW )(y)

)

− C (A.92)

=
∑

x

Q∗(x)
∑

y

W (y|x) log

(
W (y|x)

(QW )(y)

)

−
∑

x

Q∗(x)
∑

y

W (y|x) log

(
W (y|x)

(Q∗W )(y)

)

(A.93)

=
∑

y

Q∗W (y) log

(
(Q∗W )(y)

(QW )(y)

)

(A.94)

(∗∗)

≥ 0, (A.95)

where inequality (∗) follows from the fact that a weighted sum (where the non-negative weights
sum to one) is never larger than its larges term and inequality (∗∗) follows from the fact that
relative entropy is always at least zero. This gives the last inequality in the lemma.
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Appendix B

Proofs to Chapter 3

B.1 Some Auxiliary Lemmas

Lemma 42 (Markov Property of A Posteriori PMFs) Using the hidden Markov model
structure of Q(s)W (y|s), we have for each ℓ ∈ {−N, . . . ,N}

V (sℓ|s
ℓ−1
−N ,y) = V (sℓ|sℓ−1,y) = V (sℓ|sℓ−1,y

N
ℓ ), (B.1)

V (sℓ|s
N
ℓ+1,y) = V (sℓ|sℓ+1,y) = V (sℓ|sℓ+1,y

ℓ+1
−N+1), (B.2)

i.e., given y, V (s|y) is a Markov probability distribution in s, i.e. Using these properties, we
can rewrite V (s|y) in two useful different ways as products, namely,

V (s|y) = V (sℓ−1, sℓ|y) · V (sN
ℓ+1|sℓ,y) · V (sℓ−2

−N |sℓ−1,y) (B.3)

= V (sℓ−1, sℓ|y) · V (sN
ℓ+1|sℓ,y

N
ℓ+1) · V (sℓ−2

−N |sℓ−1,y
ℓ−1
−N+1), (B.4)

V (s|y) = V (sℓ|y) · V (sN
ℓ+1|sℓ,y) · V (sℓ−1

−N |sℓ,y) (B.5)

= V (sℓ|y) · V (sN
ℓ+1|sℓ,y

N
ℓ+1) · V (sℓ−1

−N |sℓ,y
ℓ
−N+1). (B.6)

Proof: See Sec. B.17. �

Remark 43 (On the Markov Property of A Posteriori PMFs) Considering the cor-
responding (Forney-style) factor graph (normal graph) [15, 16] of the hidden Markov model
(see Fig. B.1), the statements in Lemma 42 are rather straightforward.

S3S2S1S0

Y3Y2Y1

S−1S−2

Y−1 Y0

Figure B.1: Forney-style factor graph (normal graph) representing a hidden Markov model.
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Lemma 44 (Some Derivatives) With the setup as in Def. 14 we have

d

dα
Q(s) =







∑

(i,j)∈A

Qα
ij

∑

ℓ∈IN
sℓ−1=i,sℓ=j

Q(s)

Qij






−







∑

(i,j)∈A

Qα
ij

∑

ℓ∈I′
N

sℓ=i

Q(s)

µi







, (B.7)

d

dα

∑

s

Q(s) log Q(s) =
∑

s

(
d

dα
Q(s)

)

log Q(s). (B.8)

Proof: See Sec. B.18. �

B.2 Proof of Lemma 22

Using the definition of Q(s) in (3.7) we obtain the first statement.

1

N ′

∑

s

Q(s) log Q(s) (B.9)

=
1

N ′

∑

s

Q(s) log



µs−N

∏

ℓ∈IN

psℓ−1,sℓ



 (B.10)

=
1

N ′

∑

s

Q(s) log
(
µs−N

)
+

1

N ′

∑

ℓ∈IN

∑

s

Q(s) log
(
psℓ−1,sℓ

)
(B.11)

=
1

N ′

∑

s−N

Q(s−N ) log
(
µs−N

)
+

1

N ′

∑

ℓ∈IN

∑

sℓ−1,sℓ∈A

Q(sℓ−1, sℓ) log
(
psℓ−1,sℓ

)
(B.12)

=
1

N ′

∑

i∈S

µi log (µi) +
1

N ′

∑

ℓ∈IN

∑

(i,j)∈A

Qij log (pij) (B.13)

=
1

N ′

∑

i∈S

µi log (µi) +
∑

(i,j)∈A

Qij log (pij) , (B.14)

=
1

N ′

∑

(i,j)∈A

Qij log (µi) +
∑

(i,j)∈A

Qij log (pij) . (B.15)

This essentially follows also from H(X−N , . . . ,XN ) = H(X−N )+
∑

ℓ∈IN
H(Xℓ|X−N , . . . ,Hℓ−1) =

H(X−N ) +
∑

ℓ∈IN
H(Xℓ|Hℓ−1).

B.3 Proof of Lemma 23

We want to derive

f
(N)
1 ({Qij}) = −

∑

(i,j)∈A

Qij log (pij)−
1

N ′

∑

(i,j)∈A

Qij log (µi) (B.16)
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with respect to α.

d

dα
f

(N)
1 (α) (B.17)

= −
∑

(i,j)∈A

Qα
ij log (pij)−

∑

(i,j)∈A

Qij
1

pij
pα

ij −
1

N ′

∑

(i,j)∈A

Qα
ij log(µi)−

1

N ′

∑

(i,j)∈A

Qij
1

µi
µα

i

(B.18)

= −
∑

(i,j)∈A

Qα
ij log (pij)−

∑

i∈S

µi

∑

j∈
−→
Ai

pα
ij −

1

N ′

∑

(i,j)∈A

Qα
ij log(µi)−

1

N ′

∑

i∈S

µα
i

∑

j∈
−→
Ai

pij

︸ ︷︷ ︸

=1

(B.19)

= −
∑

(i,j)∈A

Qα
ij log (pij)−

∑

i∈S

µi
d

dα

∑

j∈
−→
Ai

pij

︸ ︷︷ ︸

=1

−
1

N ′

∑

(i,j)∈A

Qα
ij log(µi)−

1

N ′
d

dα

∑

i∈S

µi (B.20)

= −
∑

(i,j)∈A

Qα
ij log (pij)−

1

N ′

∑

(i,j)∈A

Qα
ij log(µi). (B.21)

B.4 Proof of Lemma 24

We would like to rewrite the function f
(N)
4 (Qij ,W ) given in Def. 18, i.e.,1

−f
(N)
4 (Qij ,W ) =

1

N ′

∑

s

Q(s)
∑

y

W (y|s) log (V (s|y)) , (B.22)

using the Tij ’s as given in Def. 21.

V (s|y) = V (s−N |y) ·
∏

ℓ∈IN

V (sℓ|s
ℓ−1
−N ,y) (B.23)

(∗)
= V (s−N |y) ·

∏

ℓ∈IN

V (sℓ|sℓ−1,y) (B.24)

= V (s−N |y) ·
∏

ℓ∈IN

V (sℓ−1, sℓ|y)

V (sℓ−1|y)
=




∏

ℓ∈IN

V (sℓ−1, sℓ|y)



 ·




∏

ℓ∈I′
N

V (sℓ−1|y)





−1

,

(B.25)

1For convenience reasons, we consider −f
(N)
4 (Qij , W ) instead of f

(N)
4 (Qij , W ).
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where equality (∗) follows from Lemma 42, and so

− f
(N)
4 (Qij ,W ) (B.26)

=
1

N ′

∑

ℓ∈IN

∑

s

Q(s)
∑

y

W (y|s) log (V (sℓ−1, sℓ|y)) (B.27)

−
1

N ′

∑

ℓ∈I′
N

∑

s

Q(s)
∑

y

W (y|s) log (V (sℓ|y)) (B.28)

=
1

N ′

∑

ℓ∈IN

∑

(i,j)∈A

Qij

∑

s

sℓ−1=i,sℓ=j

Q(sℓ−2
−N , sN

ℓ+1|sℓ−1, sℓ)
∑

y

W (y|s) log (V (sℓ−1, sℓ|y)) (B.29)

−
1

N ′

∑

ℓ∈I′
N

∑

i∈S

µi

∑

s

sℓ=i

Q(sℓ−1
−N , sN

ℓ+1|sℓ)
∑

y

W (y|s) log (V (sℓ|y)) (B.30)

=
∑

(i,j)∈A

Qij
1

N ′

∑

ℓ∈IN

∑

s

sℓ−1=i,sℓ=j

Q(sℓ−2
−N , sN

ℓ+1|sℓ−1, sℓ)
∑

y

W (y|s) log (V (sℓ−1, sℓ|y)) (B.31)

−
∑

i∈S

µi
1

N ′

∑

ℓ∈I′
N

∑

s

sℓ=i

Q(sℓ−1
−N , sN

ℓ+1|sℓ)
∑

y

W (y|s) log (V (sℓ|y)) (B.32)

=
∑

(i,j)∈A

QijT
(N)

ij −
∑

i∈S

µiT
(N)
i . (B.33)

Using
∑

i∈S µi =
∑

(i,j)∈AQij this can be cast the into the form

−f
(N)
4 (Qij,W ) =

∑

(i,j)∈A

QijT
(N)

ij −
∑

(i,j)∈A

QijT
(N)
i =

∑

(i,j)∈A

Qij · T
(N)
ij . (B.34)

B.5 Proof of Lemma 25

If the reader has not yet looked at Lemmas 42 and 44, we recommend to to so, because their
results will be used here.

One must be very careful when deriving V (s|y) with respect to α, as V (s|y) depends on
Q(s), which depends on Qij , which depend on α, see also (3.7)-(3.10).

Deriving

−f
(N)
4 (α,W ) =

1

N ′

∑

s

Q(s)
∑

y

W (y|s) log (V (s|y)) (B.35)

=
1

N ′

∑

s

Q(s)
∑

y

W (y|s) log

(
Q(s)W (y|s)

R(y)

)

(B.36)
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with respect to α yields (in the following, we will use the abbreviation J
△
= − d

dαf
(N)
4 (α,W ))

J =
1

N ′

∑

s

(
d

dα
Q(s)

)
∑

y

W (y|s) log

(
Q(s)W (y|s)

R(y)

)

(B.37)

+
1

N ′

∑

s

Q(s)
∑

y

W (y|s)
1

Q(s)

(
d

dα
Q(s)

)

(B.38)

−
1

N ′

∑

s

Q(s)
∑

y

W (y|s)
1

R(y)

(
d

dα
R(y)

)

(B.39)

=
1

N ′

∑

s

(
d

dα
Q(s)

)
∑

y

W (y|s) log (V (s|y)) (B.40)

+
1

N ′

∑

s

(
d

dα
Q(s)

)
∑

y

W (y|s)

︸ ︷︷ ︸

=1

−
1

N ′

∑

y

R(y)

R(y)

(
d

dα
R(y)

)

(B.41)

=
1

N ′

∑

s

(
d

dα
Q(s)

)
∑

y

W (y|s) log (V (s|y)) (B.42)

+
1

N ′
d

dα

∑

s

Q(s)

︸ ︷︷ ︸

=1

−
1

N ′
d

dα

∑

y

R(y)

︸ ︷︷ ︸

=1

(B.43)

=
1

N ′

∑

s

(
d

dα
Q(s)

)
∑

y

W (y|s) log (V (s|y)) (B.44)

(∗)
=

1

N ′

∑

s













∑

(i,j)∈A

Qα
ij

∑

ℓ∈IN
sℓ−1=i,sℓ=j

Q(s)

Qij






−







∑

(i,j)∈A

Qα
ij

∑

ℓ∈I′
N

sℓ=i

Q(s)

µi













(B.45)

×
∑

y

W (y|s) log (V (s|y)) (B.46)
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where equality (∗) follows from (B.7). We continue to evaluated J ,

J
(∗)
=

1

N ′

∑

s

∑

(i,j)∈A

Qα
ij

∑

ℓ∈IN
sℓ−1=i,sℓ=j

Q(s)

Qij

∑

y

W (y|s) log (V (sℓ−1, sℓ|y)) (B.47)

+
1

N ′

∑

s

∑

(i,j)∈A

Qα
ij

∑

ℓ∈IN
sℓ−1=i,sℓ=j

Q(s)

Qij

∑

y

W (y|s) log
(
V (sN

ℓ+1|sℓ,y
N
ℓ+1)

)
(B.48)

+
1

N ′

∑

s

∑

(i,j)∈A

Qα
ij

∑

ℓ∈IN
sℓ−1=i,sℓ=j

Q(s)

Qij

∑

y

W (y|s) log
(

V (sℓ−2
−N |sℓ−1,y

ℓ−1
−N+1)

)

(B.49)

−
1

N ′

∑

s

∑

(i,j)∈A

Qα
ij

∑

ℓ∈I′
N

sℓ=i

Q(s)

µi

∑

y

W (y|s) log (V (sℓ|y)) (B.50)

−
1

N ′

∑

s

∑

(i,j)∈A

Qα
ij

∑

ℓ∈I′
N

sℓ=i

Q(s)

µi

∑

y

W (y|s) log
(
V (sN

ℓ+1|sℓ,y
N
ℓ+1)

)
(B.51)

−
1

N ′

∑

s

∑

(i,j)∈A

Qα
ij

∑

ℓ∈I′
N

sℓ=i

Q(s)

µi

∑

y

W (y|s) log
(

V (sℓ−1
−N |sℓ,y

ℓ
−N+1)

)

, (B.52)

and equality (∗) follows from Lemma 42. But this is equal to

J =
1

N ′

∑

(i,j)∈A

Qα
ij

∑

ℓ∈IN

∑

s

sℓ−1=i,sℓ=j

Q(sℓ−2
−N , sN

ℓ+1|sℓ−1, sℓ)
∑

y

W (y|s) log (V (sℓ−1, sℓ|y)) (B.53)

+
1

N ′

∑

(i,j)∈A

Qα
ij

∑

ℓ∈IN

∑

s
N
ℓ

sℓ=j

Q(sN
ℓ+1|sℓ)

∑

yN
ℓ+1

W (yN
ℓ+1|s

N
ℓ ) log

(
V (sN

ℓ+1|sℓ,y
N
ℓ+1)

)
(B.54)

+
1

N ′

∑

(i,j)∈A

Qα
ij

∑

ℓ∈IN

∑

s
ℓ−1
−N

sℓ−1=i

Q(sℓ−2
−N |sℓ−1)

∑

y
ℓ−1
−N+1

W (yℓ−1
−N+1|s

ℓ−1
−N ) log

(

V (sℓ−2
−N |sℓ−1,y

ℓ−1
−N+1)

)

(B.55)

−
1

N ′

∑

(i,j)∈A

Qα
ij

∑

ℓ∈I′
N

∑

s

sℓ=i

Q(sℓ−1
−N , sN

ℓ+1|sℓ)
∑

y

W (y|s) log (V (sℓ|y)) (B.56)

−
1

N ′

∑

(i,j)∈A

Qα
ij

∑

ℓ∈I′
N

∑

s
N
ℓ

sℓ=i

Q(sN
ℓ+1|sℓ)

∑

yN
ℓ+1

W (yN
ℓ+1|s

N
ℓ ) log

(
V (sN

ℓ+1|sℓ,y
N
ℓ+1)

)
(B.57)

−
1

N ′

∑

(i,j)∈A

Qα
ij

∑

ℓ∈I′
N

∑

s
ℓ
−N

sℓ=i

Q(sℓ−1
−N |sℓ)

∑

yℓ
−N+1

W (yℓ
−N+1|s

ℓ
−N ) log

(

V (sℓ−1
−N |sℓ,y

ℓ
−N+1)

)

.

(B.58)

In the following, we use T
(N)

ij , T
(N)
i , T

(N)

ij (ℓ), and T
(N)
i (ℓ) from (??), (3.37), (3.38) and (3.38),
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which we repeat here for the convience of the reader,2

T
(N)
ij

△
= T

(N)

ij − T
(N)
i , (B.59)







T
(N)

ij
△
= 1

N ′

∑

ℓ∈IN
T

(N)

ij (ℓ)

T
(N)
i

△
= 1

N ′

∑

ℓ∈I′
N

T
(N)
i (ℓ)

(B.60)







T
(N)

ij (ℓ)
△
=

∑

s

sℓ−1=i,sℓ=j

Q(sℓ−2
−N , sN

ℓ+1|sℓ−1, sℓ)
∑

y W (y|s) log (V (sℓ−1, sℓ|y)) (for ℓ ∈ IN )

T
(N)
i (ℓ)

△
=
∑

s

sℓ=i

Q(sℓ−1
−N , sN

ℓ+1|sℓ)
∑

y W (y|s) log (V (sℓ|y)) (for ℓ ∈ I ′N )

(B.61)

and we define additionally

−→χ i(ℓ)
△
=

1

N ′

∑

s
N
ℓ

sℓ=i

Q(sN
ℓ+1|sℓ)

∑

yN
ℓ+1

W (yN
ℓ+1|s

N
ℓ ) log

(
V (sN

ℓ+1|sℓ,y
N
ℓ+1)

)
, (B.62)

←−χ i(ℓ)
△
=

1

N ′

∑

s
ℓ
−N

sℓ=i

Q(sℓ−1
−N |sℓ)

∑

yℓ
−N+1

W (yℓ
−N+1|s

ℓ
−N ) log

(

V (sℓ−1
−N |sℓ,y

ℓ
−N+1)

)

, (B.63)

−→χ i
△
=
∑

ℓ∈I′
N

−→χ i(ℓ) (for all i). (B.64)

These expressions help us to analyze the above sum representing J .

• The first term is equal to (1/N ′)
∑

(i,j)∈AQα
ij

∑

ℓ∈IN
T

(N)

ij (ℓ) =
∑

(i,j)∈AQα
ijT

(N)

ij ,

• the second term is equal to
∑

(i,j)∈AQα
ij

∑

ℓ∈IN

−→χ j(ℓ),

• the third term is equal to
∑

(i,j)∈AQα
ij

∑

ℓ∈IN

←−χ i(ℓ− 1),

• the fourth term is equal to −(1/N ′)
∑

(i,j)∈AQα
ij

∑

ℓ∈I′
N

T i(ℓ) = −
∑

(i,j)∈AQα
ijT

(N)
i ,

• the fifth term is equal to −
∑

(i,j)∈AQα
ij

∑

ℓ∈I′
N

−→χ i(ℓ),

• the sixth term is equal to −
∑

(i,j)∈AQα
ij

∑

ℓ∈I′
N

←−χ i(ℓ).

2Note that in T
(N)
ij = T

(N)

ij − T
(N)
i , every state sℓ for ℓ ∈ [−N, N ] is “estimated” (i.e. appearing in V (.|y)

before the bar) once (when counting with “multiplicities”).
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Therefore, we can rewrite J as

J =
∑

(i,j)∈A

Qα
ij



T
(N)

ij − T
(N)
i +

∑

ℓ∈IN

−→χ j(ℓ) +
∑

ℓ∈IN

←−χ i(ℓ− 1)−
∑

ℓ∈I′
N

−→χ i(ℓ)−
∑

ℓ∈I′
N

←−χ i(ℓ)





(B.65)

=
∑

(i,j)∈A

Qα
ij

[

T
(N)
ij +

N∑

ℓ=−N+1

−→χ j(ℓ) +

N−1∑

ℓ=−N

←−χ i(ℓ)−

N−1∑

ℓ=−N+1

−→χ i(ℓ)−

N−1∑

ℓ=−N+1

←−χ i(ℓ)

]

(B.66)

(∗)
=

∑

(i,j)∈A

Qα
ij

[

T
(N)
ij +

N−1∑

ℓ=−N+1

−→χ j(ℓ)−

N−1∑

ℓ=−N+1

−→χ i(ℓ)

]

(B.67)

(∗∗)
=

∑

(i,j)∈A

Qα
ij

[

T
(N)
ij +−→χ j −

−→χ i

]

, (B.68)

where equality (∗) follows from −→χ i(N) = 0 and ←−χ i(−N) = 0, and equality (∗∗) follows from
(B.64). The side result

∑

(i,j)∈A

(−→χ j −
−→χ i) ·Q

α
ij =




∑

(i,j)∈A

−→χ j ·Q
α
ij



−




∑

i∈S

−→χ i ·
∑

j∈
−→
Ai

Qα
ij



 (B.69)

(∗)
=




∑

(i,j)∈A

−→χ j ·Q
α
ij



−




∑

i∈S

−→χ i ·
∑

k∈
←−
Ai

Qα
ki



 (B.70)

=




∑

(i,j)∈A

−→χ j ·Q
α
ij



−




∑

(k,i)∈A

−→χ iQ
α
ki



 (B.71)

(∗∗)
=




∑

(i,j)∈A

−→χ j ·Q
α
ij



−




∑

(i′,j′)∈A

−→χ j′ ·Q
α
i′j′



 = 0, (B.72)

where equality in (∗) follows from
∑

j∈
−→
Ai

Qα
ij =

∑

k∈
←−
Ai

Qα
ki (for all i ∈ S), and at equality in

(∗∗) we have made the substitutions j′
△
= i and i′

△
= k, helps us to simplify (B.68) even more

to

J =
∑

(i,j)∈A

Qα
ij · T

(N)
ij . (B.73)

Remembering that we set J
△
= − d

dαf
(N)
4 (α,W ), we have the desired result.

B.6 Proof of Lemma 28

This follows easily from Def. 27 and Lemma 24.
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B.7 Proof of Lemma 29

From Def. 27 we have for some fixed α̃

f ′4
(N)

(α̃, α,W ) = −
∑

(i,j)∈A

Qij(α) · T
(N)
ij (α̃). (B.74)

Because the T
(N)
ij (α̃)’s are independent of α, we easily get

d

dα
f ′4

(N)
(α̃, α̃,W )

∣
∣
∣
∣
α=α̃

= −
d

dα

∑

(i,j)∈A

Qij(α) · T
(N)
ij (α̃)

∣
∣
∣
∣
∣
∣
α=α̃

= −
∑

(i,j)∈A

Qα
ij(α) · T

(N)
ij (α̃)

∣
∣
∣
∣
∣
∣
α=α̃

(B.75)

= −
∑

(i,j)∈A

Qα
ij(α̃) · T

(N)
ij (α̃). (B.76)

This expression is equivalent to d
dαf

(N)
4 (α,W ) (as given in Lemma 25) evaluated at α = α̃.

B.8 Proof of Theorem 31

From Def. 19 we have

I(N)(Qij ,W ) = f
(N)
1 (Qij)− f

(N)
4 (Qij,W ). (B.77)

Using Lemmas 22 and 24 this turns into

I(N)(Qij,W ) = −
∑

(i,j)∈A

Qij log (pij)−
1

N ′

∑

i∈S

µi log (µi) +
∑

(i,j)∈A

Qij · T
(N)
ij (B.78)

(∗)
=

∑

(i,j)∈A

Qij ·

[

− log (pij)−
1

N ′
µi + T

(N)
ij

]

, (B.79)

where at equality (∗) we used that
∑

i∈S µi =
∑

(i,j)∈AQij.

B.9 Proof of Theorem 32

From Def. 19 we have

I(N)(Qij ,W ) = f
(N)
1 (Qij)− f

(N)
4 (Qij,W ), (B.80)

therefore

d

dα
I(N)(Qij ,W ) =

d

dα
f

(N)
1 (Qij)−

d

dα
f

(N)
4 (Qij ,W ) (B.81)

(∗)
=

∑

(i,j)∈A

Qα
ij ·

[

− log(pij)−
1

N ′
log(µi)

]

+
∑

(i,j)∈A

Qα
ij(α) · T

(N)
ij (B.82)

=
∑

(i,j)∈A

Qα
ij ·

[

− log(pij)−
1

N ′
log(µi) + T

(N)
ij

]

, (B.83)

where equality (∗) follows from Lemmas 23 and 25.
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B.10 Proof of Definition 33

We calculate

Ψ(N)(Q̃ij, Qij ,W )
△
= f

(N)
1 (Qij)− f ′4

(N)
(Q̃ij , Qij ,W ) (B.84)

(∗)
=

∑

(i,j)∈A

Qij ·

[

− log(pij)−
1

N ′
log(µi)

]

+
∑

(i,j)∈A

Qij · T̃
(N)
ij (B.85)

=
∑

(i,j)∈A

Qij ·

[

− log(pij)−
1

N ′
log(µi) + T̃

(N)
ij

]

, (B.86)

where equality in (∗) follows from Lemma 22 and Def. 27.

B.11 Proof of Theorem 34

In Def. 33 we defined

Ψ(N)(Q̃ij, Qij ,W )
△
= f

(N)
1 (Qij)− f ′4

(N)
(Q̃ij , Qij ,W ), (B.87)

whereas in Def. 19 we had

I(Qij ,W ) = f
(N)
1 (Qij)− f

(N)
4 (Qij,W ). (B.88)

Using the relation f ′4
(N)(Q̃ij , Q̃ij,W ) = f

(N)
4 (Q̃ij ,W ), which was shown to hold in Lemma 28,

we get the desired result.

B.12 Proof of Theorem 35

Let Qij = Qij(α), fix some α̃, and let T̃
(N)
ij = T

(N)
ij (Qij(α),W ). We have to derive

Ψ(N)
(
α̃, α,W

) △
=

∑

(i,j)∈A

Qij(α)
[

− log (pij(α)) + T̃
(N)
ij

]

, (B.89)

with respect to α. This is not too difficult, because here the T̃
(N)
ij ’s are constants.

d

dα
Ψ(N)

(
Qij(α̃), Qij(α),W

)
(B.90)

=
∑

(i,j)∈A

Qα
ij(α)

[

− log (pij(α)) + T̃
(N)
ij

]

+
∑

(i,j)∈A

Qij(α)
1

pij(α)
pα

ij(α) (B.91)

=
∑

(i,j)∈A

Qα
ij(α)

[

− log (pij(α)) + T̃
(N)
ij

]

+
∑

i∈S

µi(α)
d

dα

∑

j∈
−→
Ai

pij(α) (B.92)

(∗)
=

∑

(i,j)∈A

Qα
ij(α)

[

− log (pij(α)) + T̃
(N)
ij

]

, (B.93)

where equality (∗) follows from
∑

j∈
−→
Ai

pij(α) = 1 for any α. Evaluating (B.93) for α = α̃ and

using Th. 31 gives the desired result.
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B.13 Proof of Theorem 36

We have to maximize

Ψ
(

{Q̃ij}, {Qij},W
)

=
∑

(i,j)∈A

Qij

(

log

(∑

j′∈
−→
Ai

Qij′

Qij

)

+ T̃ij

)

(B.94)

over {Qij} under the constraints3

∑

(i,j)∈A

Qij = 1, (B.95)

∑

k∈
←−
Ai

Qki =
∑

j∈
−→
Ai

Qij (for all i ∈ S). (B.96)

This is equivalent to setting the gradient of the Lagrangian

L = −
∑

(i,j)∈A

Qij

(

log

(∑

j′∈
−→
Ai

Qij′

Qij

)

+ T̃ij

)

(B.97)

+ λ




∑

(i,j)∈A

Qij − 1



 +
∑

i∈S

λi




∑

k∈
←−
Ai

Qki −
∑

j∈
−→
Ai

Qij



 (B.98)

= −
∑

(i,j)∈A

Qij

(

log

(∑

j′∈
−→
Ai

Qij′

Qij

)

+ T̃ij

)

(B.99)

+ λ




∑

(i,j)∈A

Qij − 1



 +




∑

(i,j)∈A

λjQij



−




∑

(i,j)∈A

λiQij



 (B.100)

equal to zero:






∂L
∂Qij

!
= 0 (for all (i, j) ∈ A),

∂L
∂λ

!
= 0,

∂L
∂λi

!
= 0 (for all i ∈ S).

(B.101)

Solving these equations we get

0
!
=

∂L

∂Qij
=

(

log

(∑

j′∈
−→
Ai

Qij′

Qij

)

+ T̃ij

)

+
∑

j∈
−→
Ai

Qij
1

∑

j′∈
−→
Ai

Qij′

︸ ︷︷ ︸

=1

−Qij
1

Qij
+ λ + λj − λi

(B.102)

= − log pij + T̃ij + λ + λj − λi (for all (i, j) ∈ A), (B.103)

0
!
=

∂L

∂λ
=

∑

(i,j)∈A

Qij − 1, (B.104)

0
!
=

∂L

∂λi
=
∑

k∈
←−
Ai

Qki −
∑

j∈
−→
Ai

Qij (for all i ∈ S). (B.105)

3For the moment, we neglect the constraints Qij ≥ 0 for all (i, j) ∈ A.
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So

pij = eλj−λi+λ+T̃ij (for all (i, j) ∈ A). (B.106)

By the definition of the pij ’s we must have

∑

j∈
−→
Ai

pij = 1 (for all i ∈ S), (B.107)

therefore we get

∑

j∈
−→
Ai

eT̃ijeλj = e−λeλi (for all i ∈ S). (B.108)

Let Ã be the matrix with entries

ãij
△
=

{

eT̃ij (if (i, j) ∈ A)

0 (otherwise)
, (B.109)

and let b be the (row) vector with entries bi = eλi , and ρ = e−λ, then

ÃbT = ρ · bT , (B.110)

i.e., bT must be a right eigenvector of Ã with a positive (and therefore also real) eigenvalue
ρ. Moreover, all entries of bT must be positive (see also the comment on page 61). Inserting
these results into (B.106) we get

pij =
bj

bi
·
ãij

ρ
(for all (i, j) ∈ A), (B.111)

From
∑

i∈S µipij = µj (for all j ∈ S) follows

∑

i∈S

µi
bj ãij

biρ
= µj (for all j ∈ S), (B.112)

and by letting the (row) vector c have entries ci = µi/(Kbi) (where K will be determined
later) we obtain

∑

i∈S

ciãij = ρ · cj (for all j ∈ S), or, equivalently, cÃ = ρ · c, (B.113)

i.e. c is a left eigenvector of Ã with eigenvalue ρ, whose entries must be non-negative. Con-
sequently, to fulfill

∑

i∈S µi = 1, we must have

µi = K · ci · bi, (for all i ∈ S), with K =
1

∑

i∈S cibi
. (B.114)

Finally, we set µ∗i
△
= µi, p∗ij

△
= pij , and Q∗ij

△
= µ∗i p

∗
ij. We still have to determine what eigenvalue

of Ã we have to take.
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We would now like to show that Ψ
(

Q̃ij , Q
∗
ij ,W

)

= log(ρ). This indeedfollows from

Ψ
(

{Q̃ij}, {Q
∗
ij},W

)

(B.115)

=
∑

(i,j)∈A

µ∗i p
∗
ij

(

log

(

1

p∗ij

)

+ T̃ij

)

(B.116)

(∗)
=

∑

(i,j)∈A

µ∗i pij

(

log

(

1

p∗ij

)

+ log(ãij)

)

(B.117)

=
∑

(i,j)∈A

kcibi
bj ãij

biρ

(

log

(
biρ

bj ãij

)

+ log(ãij)

)

(B.118)

=
1

ρ

∑

(i,j)∈A

kciãijbj

(
log(bi) + log(ρ)− log(bj)

)
(B.119)

=
1

ρ

(
∑

i∈S

kci

(
log(bi) + log(ρ)

)∑

j∈S

ãijbj

︸ ︷︷ ︸

=ρbi

)

−
1

ρ

(
∑

j∈S

kbj log(bj)
∑

i∈
←−
Aj

ciãij

︸ ︷︷ ︸

=ρcj

)

(B.120)

=
∑

i∈S

µi

(
log(bi) + log(ρ)

)
−
∑

j∈S

µj log(bj) (B.121)

= log(ρ), (B.122)

where at step (∗) we used T̃ij = log(aij) for (i, j) ∈ A.

log(ρ) would clearly be maximized by taking ρ to be the largest real eigenvalue of Ã.
But, as we have seen before, the right eigenvector corresponding to the eigenvalue ρ must
have positive entries and the left eigenvector must have non-negative entries. The question is
whether this can be fulfilled at all.

For an irreducible and non-negative matrix Ã one can indeed show that these conditions
can be met [17], p. 508. One can show that such matrices have a real eigenvalue whose
modulus is the largest of all eigenvalues. Moreover, it is an algebraically and geometrically
single eigenvalue. (There may be other complex vector having the same modulus, though.)
Such an eigenvalue, which is called the Perron eigenvalue, has a left and a right eigenvector
whose entries are all positive, respectively. When their entries sum to one, respectively, one
calls these eigenvectors the right and the left Perron eigenvector, respectively.

We come now shortly back to the comment in Footnote 3: from the above comments we

must have Q
(∗)
ij ≥ 0 automatically, i.e. neglecting these constraints at the first place was legal.

We now confirm that log(ρ) is indeed the largest possible value for Ψ({Q̃ij}, {Qij},W )
for given {Q̃ij} and W and varying Qij . Let {p∗ij} be the solution given in (B.111). For any
{pij} with corresponding stationary probabilities {µi} we have
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Ψ
(

{Q̃ij}, {Q
∗
ij},W

)

−Ψ
(

{Q̃ij}, {Qij},W
)

(B.123)

= log(ρ)−
∑

(i,j)∈A

µipij

(

log

(
1

pij

)

+ T̃ij

)

(B.124)

=
∑

(i,j)∈A

µipij log

(

pij

eT̃ij /ρ

)

(B.125)

(∗)
=
∑

i∈S

µi

∑

j∈
−→
Ai

pij log

(

pij

p∗ij

)

︸ ︷︷ ︸

≥0 (∗∗)

+
∑

(i,j)∈A

µipij log(bj)−
∑

(i,j)∈A

µipij log(bi) (B.126)

≥
∑

j∈S

log(bj)
∑

i∈
←−
Aj

µipij

︸ ︷︷ ︸

=µj

−
∑

i∈S

µi log(bi)
∑

j∈
−→
Ai

pij

︸ ︷︷ ︸

=1

(B.127)

=
∑

j∈S

µj log(bj)−
∑

i∈S

µi log(bi) = 0, (B.128)

where at step (∗) we used the fact that for aij = 1 we have eT̃ij/ρ = p∗ij · bi/bj and (∗∗) follows
from the fact that relative entropies are non-negative.

We note that once given the correct solution, (B.123) - (B.128) are sufficient to show that
this is also the optimal solution.

B.14 Proof of Theorem 38

Assume that at itertion r we found {Q
〈r〉
ij } and that this is a stationary point of Alg. 37. For

any parametrization Qij = Qij(α) with a single parameter α where Q
〈r〉
ij = Qij(α̃) (for all

(i, j) ∈ A) for some α̃, we must have

d

dα
Ψ (α̃, α,W )

∣
∣
∣
∣
α=α̃

= 0. (B.129)

But by Th. 35 we have

d

dα
Ψ (α̃, α,W )

∣
∣
∣
∣
α=α̃

=
d

dα
I(α,W )

∣
∣
∣
∣
α=α̃

, (B.130)

therefore

d

dα
I(α,W )

∣
∣
∣
∣
α=α̃

= 0. (B.131)

We can also show the reverse dirction, from which we conclude that the stationary points of
Alg. 37 correspond one-to-one to critical points of the information rate curve.

But critical points of the information rate curve that are not maxima are not stable
stationary points of Alg. 37. This is because for estimating the Tij ’s we take only finite-
length state and output sequences, therefore at each iteration the estimates vary slightly. At
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a local minima, as soon as the algorithm gives a {Qij} that does not correspond to the critical
point, the algorithm will with probability 1 (as N → ∞) not return to the minimum point
at subsequent iterations. At terrace points the algorithm will with non-vanishing probability
give a new {Qij} whose information rate is larger; in subsequent iterations the algorithm will
with probability 1 (as N →∞) not return to the terrace point.

B.15 Proof of Remark 39

We consider the first proposed possibility to compute Tij. From Def. 21,

T
(N)

ij =
1

N ′

∑

ℓ∈IN

∑

s

sℓ−1=i,sℓ=j

Q(sℓ−2
−N , sN

ℓ+1|sℓ−1, sℓ)
∑

y

W (y|s) log (V (sℓ−1, sℓ|y)) (B.132)

=
1

N ′

∑

ℓ∈IN

∑

s

sℓ−1=i,sℓ=j

Q(s)

Qij

∑

y

W (y|s) log (V (sℓ−1, sℓ|y)) (B.133)

=
∑

s

∑

y

Q(s)W (y|s)







1

N ′Qij

∑

ℓ∈IN
sℓ−1=i,sℓ=j

log (V (sℓ−1, sℓ|y))







(B.134)

Let š be a (typical) state sequence and y̌ be a (typical) output sequence. Then we have the
approximation

ˇ
T

(N)

ij ≈
1

N ′Qij

∑

ℓ∈IN
šℓ−1=i,šℓ=j

log (Vℓ−1,ℓ(i, j|y̌)) , (B.135)

(B.136)

for finite N , and we have equality with probability 1 for N →∞. Similarly,

T
(N)

ij =
1

N ′

∑

ℓ∈I′
N

∑

s

sℓ=i

Q(sℓ−1
−N , sN

ℓ+1|sℓ)
∑

y

W (y|s) log (V (sℓ|y)) (B.137)

=
1

N ′

∑

ℓ∈I′
N

∑

s

sℓ=i

Q(s)

µi

∑

y

W (y|s) log (V (sℓ|y)) (B.138)

=
∑

s

∑

y

Q(s)W (y|s)







1

N ′µi

∑

ℓ∈I′
N

sℓ=i

log (V (sℓ|y))







(B.139)

Let š be a (typical) state sequence and y̌ be a (typical) output sequence. Then we have the
approximation

Ť
(N)

i ≈
1

N ′µi

∑

ℓ∈I′
N

šℓ=i

log (Vℓ(i|y̌)) (B.140)
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for finite N , and we have equality with probability 1 for N →∞. Similarly,
We now consider the second proposed possibility to compute Tij . We transform the

expression of T
(N)

ij .

T
(N)

ij =
1

N ′

∑

ℓ∈IN

∑

s

sℓ−1=i,sℓ=j

Q(sℓ−2
−N , sN

ℓ+1|sℓ−1, sℓ)
∑

y

W (y|s) log (V (sℓ−1, sℓ|y)) (B.141)

=
∑

y

R(y)
1

N ′

∑

ℓ∈IN

∑

s

sℓ−1=i,sℓ=j

Q(sℓ−2
−N , sN

ℓ+1|sℓ−1, sℓ)W (y|s)

R(y)
log (V (sℓ−1, sℓ|y)) (B.142)

=
∑

y

R(y)
1

N ′

∑

ℓ∈IN

∑

s

sℓ−1=i,sℓ=j

Q(s)W (y|s)

QijR(y)
log (V (sℓ−1, sℓ|y)) (B.143)

=
∑

y

R(y)
1

N ′

∑

ℓ∈IN

∑

s

sℓ−1=i,sℓ=j

V (s|y)

Qij
log (V (sℓ−1, sℓ|y)) (B.144)

=
∑

y

R(y)




1

N ′

∑

ℓ∈IN

Vℓ−1,ℓ(i, j|y)

Qij
log (Vℓ−1,ℓ(i, j|y))



 , (B.145)

Let y̌ be a (typical) output sequence. Then we have the approximation

ˇ
T

(N)

ij ≈
1

N ′

∑

ℓ∈IN

Vℓ−1,ℓ(i, j|y̌)

Qij
log (Vℓ−1,ℓ(i, j|y̌)) (B.146)

for finite N , and we have equality with probability 1 for N →∞. Similarly,

T
(N)
i =

1

N ′

∑

ℓ∈I′
N

∑

s

sℓ=i

Q(sℓ−1
−N , sN

ℓ+1|sℓ)
∑

y

W (y|s) log (V (sℓ|y)) (B.147)

=
∑

y

R(y)
1

N ′

∑

ℓ∈I′
N

∑

s

sℓ=i

Q(sℓ−1
−N , sN

ℓ+1|sℓ)W (y|s)

R(y)
log (V (sℓ|y)) (B.148)

=
∑

y

R(y)
1

N ′

∑

ℓ∈I′
N

∑

s

sℓ=i

Q(s)W (y|s)

µiR(y)
log (V (sℓ|y)) (B.149)

=
∑

y

R(y)
1

N ′

∑

ℓ∈I′
N

∑

s

sℓ=i

V (s|y)

µi
log (V (sℓ|y)) (B.150)

=
∑

y

R(y)




1

N ′

∑

ℓ∈I′
N

Vℓ(i|y)

µi
log (Vℓ(i|y))



 . (B.151)

Let y̌ be an (typical) output sequence. Then we have the approximation

Ť
(N)

ij ≈
1

N ′

∑

ℓ∈I′
N

Vℓ(i|y̌)

Qij
log (Vℓ(i|y̌)) (B.152)

for finite N , and we have equality with probability 1 for N →∞.
Remark: We are aware of the fact, that this section needs more comments concerning the

required ergodicity to otain these results.
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B.16 Proof of Lemma 40

To prove concavity, we express Qij
△
= Qij(α) as a linear function in a single parameter α. If a

function is concave in α for any such parametrization, then the function is concave in {Qij}.
Therefore we assume

Qα
ij
△
=

d

dα
Qij are constants, (B.153)

Qαα
ij
△
=

d2

d2α
Qij = 0. (B.154)

Again, we have

0 =
d

dα

∑

(i,j)∈A

Qij =
∑

(i,j)∈A

Qα
ij . (B.155)

Note that

0 =
d

dα

∑

s

Q(s) =
∑

s

d

dα
Q(s). (B.156)

From Lemma 23 we already have the derivative of f
(N)
1 (α) with respect to α.

d

dα
f

(N)
1 (α) = −

∑

(i,j)∈A

Qα
ij log(pij)−

1

N ′

∑

(i,j)∈A

Qα
ij log(µi) (B.157)

△
= J11 + J12, (B.158)

where we defined the first term (with sign) to be J11 and the second term (with sign) to be
J12. Continuing, we get

d

dα
J11 = −

∑

(i,j)∈A

(
Qαα

ij

)
log

(

Qij
∑

j′∈
−→
Ai

Qij′

)

(B.159)

−
∑

(i,j)∈A

Qα
ij

1

Qij
Qα

ij +
∑

(i,j)∈A

Qα
ij

1
∑

j′∈
−→
Ai

Qij′

∑

j′′

Qα
ij′′ (B.160)

= −
∑

(i,j)∈A

(Qα
ij)

2

Qij
+
∑

i∈S

(
∑

j∈
−→
Ai

Qα
ij

)2

∑

j′∈
−→
Ai

Qij′
(B.161)

To proceed, we need the Cauchy-Schwarz inequality which says that




∑

j

ajbj





2

≤




∑

j

a2
j



 ·




∑

j

b2
j



 , (B.162)

where equality holds if and only if aj = bj for all j. With

aj =
Qα

ij
√

Qij

, (B.163)

bj =
√

Qij, (B.164)
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we get




∑

j∈
−→
Ai

Qα
ij





2

≤




∑

j∈
−→
Ai

(Qα
ij)

2

Qij








∑

j∈
−→
Ai

Qij



 . (B.165)

Using this side result we obtain

d

dα
J11 = −

∑

(i,j)∈A

(Qα
ij)

2

Qij
+
∑

i∈S

(
∑

j∈
−→
Ai

Qα
ij

)2

∑

j′∈
−→
Ai

Qij′
(B.166)

≤ −
∑

(i,j)∈A

(Qα
ij)

2

Qij
+
∑

i∈S

(
∑

j∈
−→
Ai

(Qα
ij)

2

Qij

)(
∑

j∈
−→
Ai

Qij

)

∑

j′∈
−→
Ai

Qij′
(B.167)

= −
∑

(i,j)∈A

(Qα
ij)

2

Qij
+
∑

(i,j)∈A

(Qα
ij)

2

Qij
= 0. (B.168)

On the other hand,

d

dα
J12 = −

1

N ′

∑

(i,j)∈A

Qαα
ij log(µi)−

1

N ′

∑

(i,j)∈A

Qα
ij

1

µi
µα

i (B.169)

(∗)
= −

1

N ′

∑

(i,j)∈A

µα
i pij

1

µi
µα

i −
1

N ′

∑

(i,j)∈A

µip
α
ij

1

µi
µα

i (B.170)

= −
1

N ′

∑

i∈S

(µα
i )2

µi

∑

j∈
−→
Ai

pij −
1

N ′

∑

i∈S

µα
i

∑

j∈
−→
Ai

pα
ij (B.171)

(∗∗)
= −

1

N ′

∑

i∈S

(µα
i )2

µi
≤ 0, (B.172)

where equality (∗) follows from Qαα
ij = 0 and Qα

ij = µα
i pij + µip

α
ij and equality (∗∗) from

∑

j∈
−→
Ai

pij = 1 for all i ∈ S and
∑

j∈
−→
Ai

pα
ij = d

dα

∑

j∈
−→
Ai

pij = 0. Combining, we get

d2

d2α
f

(N)
1 (α) =

d

dα
J11 +

d

dα
J12 ≤ 0. (B.173)

Alternatively, one can use the log-sum inequality (see e.g. p.29 of [14]) to derive this
concavity result (we checked that only for the concavity of f1(α).

B.17 Proof of Lemma 42

The joint pmf of S and Y is given by P (s,y) = Q(s) ·W (y|s). From the Markovianity of
Q(.) we have for any ℓ ∈ IN

Q(sℓ|s
ℓ−1
−N ) = Q(sℓ|sℓ−1), (B.174)

Q(s) = Q(sℓ−1, sℓ) ·Q(sℓ−2
−N |sℓ−1, sℓ) ·Q(sN

ℓ+1|sℓ−1, sℓ), (B.175)
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and from the hidden Markov property that

P (y|sℓ−1
−N ) = P (yℓ−1

−N+1|s
ℓ−1
−N ) · P (yN

ℓ |sℓ−1), (B.176)

P (y|sℓ
−N ) = P (yℓ−1

−N+1|s
ℓ−1
−N ) · P (yN

ℓ |sℓ, sℓ−1), (B.177)

therefore

V (sℓ|s
ℓ−1
−N ,y) =

P (sℓ
−N ,y)

P (sℓ−1
−N ,y)

(B.178)

=
Q(sℓ

−N ) · P (y|sℓ
−N )

Q(sℓ−1
−N ) · P (y|sℓ−1

−N )
(B.179)

=
Q(sℓ−1

−N ) ·Q(sℓ|sℓ−1) · P (yℓ−1
−N+1|s

ℓ−1
−N ) · P (yN

ℓ |sℓ, sℓ−1)

Q(sℓ−1
−N ) · P (yℓ−1

−N+1|s
ℓ−1
−N ) · P (yN

ℓ |sℓ−1)
(B.180)

=
Q(sℓ|sℓ−1) · P (yN

ℓ |sℓ, sℓ−1)

P (yN
ℓ |sℓ−1)

(B.181)

=
Q(sℓ−1, sℓ) · P (yN

ℓ |sℓ, sℓ−1)

Q(sℓ−1) · P (yN
ℓ |sℓ−1)

(B.182)

=
P (sℓ−1, sℓ,y

N
ℓ )

P (sℓ−1,y
N
ℓ )

(B.183)

= V (sℓ|sℓ−1,y
N
ℓ ) (B.184)

Continuing from (B.182), we also have (using the equivalence W (yℓ−1
−N+1|sℓ, sℓ−1) = W (yℓ−1

−N+1|sℓ−1))

V (sℓ|s
ℓ−1
−N ,y) =

Q(sℓ−1, sℓ) ·W (yN
ℓ |sℓ, sℓ−1)

Q(sℓ−1) ·W (yN
ℓ |sℓ−1)

(B.185)

=
Q(sℓ−1, sℓ) ·W (yN

ℓ |sℓ, sℓ−1) ·W (yℓ−1
−N+1|sℓ, sℓ−1)

Q(sℓ−1) ·W (yN
ℓ |sℓ−1) ·W (yℓ−1

−N+1|sℓ−1)
(B.186)

=
P (sℓ−1, sℓ,y)

P (sℓ−1,y)
(B.187)

= V (sℓ|sℓ−1,y). (B.188)

This proves (B.1); proving (B.2) is along the same lines. With this, we can show (B.3)-(B.6)

V (s|y) = V (sℓ−1, sℓ|y) · V (sℓ−2
−N |sℓ−1, sℓ,y) · V (sN

ℓ+1|s
ℓ
−N ,y) (B.189)

= V (sℓ−1, sℓ|y) · V (sℓ−2
−N |sℓ−1,y) · V (sN

ℓ+1|sℓ,y) (B.190)

= V (sℓ−1, sℓ|y) · V (sℓ−2
−N |sℓ−1,y

ℓ−1
−N+1) · V (sN

ℓ+1|sℓ,y
N
ℓ+1) (B.191)

(B.192)

and

V (s|y) = V (sℓ|y) · V (sℓ−1
−N |sℓ,y) · V (sN

ℓ+1|s
ℓ
−N ,y) (B.193)

= V (sℓ|y) · V (sℓ−1
−N |sℓ,y) · V (sN

ℓ+1|sℓ,y) (B.194)

= V (sℓ|y) · V (sℓ−1
−N |sℓ,y

ℓ
−N+1) · V (sN

ℓ+1|sℓ,y
N
ℓ+1). (B.195)
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B.18 Proof of Lemma 44

Remark: although the following derivation might look quite lengthy, the idea behind it is

quite simple. To give it, we look at a simplified example. So, let g(α)
△
= g1(α) · g2(α)/g3(α).

Then

d

dα
g(α) =

g2(α)

g3(α)

(
d

dα
g1(α)

)

+
g1(α)

g3(α)

(
d

dα
g2(α)

)

−
g1(α)g2(α)

g2
3(α)

(
d

dα
g3(α)

)

(B.196)

=
g(α)

g1(α)

(
d

dα
g1(α)

)

+
g(α)

g2(α)

(
d

dα
g2(α)

)

−
g(α)

g3(α)

(
d

dα
g3(α)

)

. (B.197)

For proving the first part of the Lemma we start with Q(s) as given in (3.7), i.e.,

Q(s) =

∏

ℓ∈IN
Qsℓ−1,sℓ

∏

ℓ∈I′
N

µsℓ

, (B.198)

or logarithmically,

log(Q(s)) =




∑

ℓ∈IN

log
(
Qsℓ−1,sℓ

)



−




∑

ℓ∈I′
N

log (µsℓ
)



 (B.199)

=







∑

(i,j)∈A

∑

ℓ∈IN
sℓ−1=i,sℓ=j

log
(
Qsℓ−1,sℓ

)






−







∑

i∈S

∑

ℓ∈I′
N

sℓ=i

log (µsℓ
)







(B.200)

=







∑

(i,j)∈A

∑

ℓ∈IN
sℓ−1=i,sℓ=j

log (Qij)





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−







∑

i∈S

∑

ℓ∈I′
N

sℓ=i

log (µi)







. (B.201)

We have

d

dα
log(Q(s)) =







∑

(i,j)∈A

∑

ℓ∈IN
sℓ−1=i,sℓ=j

1

Qij
Qα

ij






−







∑

i∈S

∑
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N
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1

µi
µα
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





(B.202)

=
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

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ij
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1

Qij
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
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




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µα
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N
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1
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
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. (B.203)

But from d
dα log(Q(s)) = ( d

dαQ(s))/Q(s) it follows that

d

dα
Q(s) = Q(s) ·

d

dα
log(Q(s)) =







∑

(i,j)∈A

Qα
ij

∑

ℓ∈IN
sℓ−1=i,sℓ=j

Q(s)

Qij
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

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N
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Q(s)
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





.

(B.204)
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From
∑

i∈S µi =
∑

(i,j)∈AQij and therefore
∑

i∈S µα
i =

∑

(i,j)∈AQα
ij it finally follows that

d
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



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Qα
ij
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ℓ∈IN
sℓ−1=i,sℓ=j

Q(s)

Qij
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

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
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Qα
ij
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Q(s)

µi







. (B.205)

The second result follows from

d

dα

∑

s

Q(s) log Q(s) =
∑

s

(
d

dα
Q(s)

)

log Q(s) +
∑

s

Q(s)
1

Q(s)

(
d

dα
Q(s)

)

(B.206)

=
∑

s

(
d

dα
Q(s)
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log Q(s) +
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∑

s

d

dα
Q(s)
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(B.207)

=
∑

s
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Q(s)
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log Q(s) +


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
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

d

dα

∑

s

Q(s)

︸ ︷︷ ︸

=1








(B.208)

=
∑

s

(
d

dα
Q(s)

)

log Q(s). (B.209)
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