
RoamHBA: Maintaining Group Connectivity In Sensor Networks

Qing Fang∗ Jie Liu† Leonidas Guibas‡ Feng Zhao§

ABSTRACT
This paper presents a new group communication scheme,
roamingcast, for collaborative information processing in wire-
less sensor networks. Roamingcast enables efficient commu-
nication among a subset of mobile terminals in a collab-
oration group. Unicast and multicast communication can
be considered as special cases of roamingcast in which the
subset contains one and all group members, respectively.
We propose a Roaming Hub Based Architecture (RoamHBA,
pronounced as ’rumba’) as one solution to support roaming-
cast. We present the distributed construction and dynamic
update of a multicast tree, referred as the roaming hub. This
roaming hub has the property that an average pair of termi-
nals communicate using the hub with only constant degrada-
tion in path length compared to the best possible path. We
have developed network layer protocols implementing this
mechanism and evaluated their performance in comparison
with roaming restricted flooding. We simulated our design
using NS-2.

Categories and Subject Descriptors
H.1 [Information Systems]: [models and principles]; H.4
[Information Systems]: [information systems application]

General Terms
Algorithms, Design

Keywords
Sensor networks, Network architecture, Network protocols,

∗Department of Electrical Engineering, Stanford University,
Stanford, CA 94305. Email: jqfang@stanford.edu
†Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto, CA 94304, U.S.A. E-mail: jliu@parc.com
‡Department of Computer Science, Stanford University,
Stanford, CA 94305. Email: guibas@cs.stanford.edu.
§Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto, CA 94304, U.S.A. E-mail:zhao@parc.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’04,April 26–27, 2004, Berkeley, California, USA.
Copyright 2004 ACM 1-58113-846-6/04/0004 ...$5.00.

Applications of sensor networks

1. INTRODUCTION
The collaboration group is a useful abstraction to sup-

port collaborative information processing in sensor networks
[1]. Maintaining connectivity among a group of roaming
agents arises in applications such as collaborative explo-
ration, pursuer-evader games [2], and identity management
in multi-target tracking [3]. Maintaining connectivity among
a group of mobile agents requires multicast routing support
at the network layer.

In this paper, we study an efficient mechanism that sup-
ports symmetric multicast routing in a fixed, densely de-
ployed wireless sensor network. In this scenario, a subnet-
work is used to connect a group of processes that reside in
sensor nodes. While physical node locations are fixed, the
processes may migrate from one node to another following
physical events being tracked. Therefore, end points of the
subnetwork may hop, from time to time, to other nodes
in their neighborhood. Thus mobility is implemented by
adding or deleting new nodes at end points of the subnet-
work. This differs from common mobile ad hoc networks
where all physical nodes are mobile and differs from Inter-
net routing, where network processes are mostly fixed. Al-
though it shares common goals with routing in both mobile
ad hoc networks and the Internet, routing in wireless sen-
sor networks has its own unique qualities and deserves to
be studied. For example, relatively stable sensor neighbor-
hoods form an important characteristic to be exploited in
algorithm design.

2. RELATED WORK
There have been significant amount of research on mul-

ticast routing in mobile ad hoc networks [4, 5, 6] in recent
years. The majority of prior works in ad hoc network multi-
cast have concentrated on building source specific forward-
ing trees, mesh based multicast forwarding paths or shared
multicast trees in mobile ad hoc environments. We are inter-
ested in routing algorithms and techniques for building an
efficient, shared, many-to-many communication network.

The optimal many-to-many multicast routing structure
we consider is a tree in the network connectivity graph that
satisfies the graph theoretic properties of a Steiner tree.
Given a graph G = (V, E) and a set of terminals K, the Min-
imum Steiner Tree (MStT) is the subtree of G connecting the
K terminals that has the least total weight. Vertices u in V
but not in K are also permitted in the subtree. Computing
MStTs in general is known to be NP-complete [7]. On-line

algorithms proposed for multicast routing in the Internet
have all focused on polynomial-time approximations [8, 9,
10]. However, all the MStT polynomial-time approximation
algorithms require O(n) global routing tables at each node,
where n is the number of nodes in the network. Although re-
cent work [11] has shown that O(log n) routing table entries
at each node can give a bounded approximation to pairwise
distances among n nodes, maintaining this information in a
distributed manner is still an unsolved problem.

Backbone-based routing in multihop ad hoc wireless net-
works has been proposed in recent years [12, 13, 14, 15, 16].
All backbone nodes form a dominating set within the net-
work connectivity graph. Prior works have used the back-
bone mostly for disseminating control information. The
dominating set approach may not be well-suited for appli-
cations with event locality in a large scale sensor networks.
For example, if the sensed activities are confined in a small
region within the network, a backbone consisting of nodes
that form a dominating set of the whole network is unneces-
sary. Even within this small region, not all nodes are actu-
ally participating in the group communication. Therefore,
there is no need to ensure these nodes can be reached within
one hop from the backbone, which is what the dominating
set method provides. The dominating set approach makes
sense in ad hoc networking environment since the assump-
tion there is that all nodes may potentially participate in
network communication activities. In sensor networks, net-
working events are typically caused by events in the physical
world. Thus they tend to be spatially localized and tempo-
rally correlated. Usually only a small subset of nodes out
of a vast network participate in supporting a given task.
This subset of nodes may change gradually, as it continu-
ously tracks the physical phenomenon of interest. Therefore,
from computational point of view, a dominating set solution
is overly expensive. Power efficiency is a critical factor that
has to be taken into consideration in designing algorithms
for sensor network applications. Unnecessary involvement of
sensor nodes for communication purpose should be avoided
as energy consumption for inter node communication is high.

Connectivity among roaming agents has been studied in
the literature. Luo el al. proposed a two-tier data dissemina-
tion mechanism in large-scale wireless sensor networks [17].
Their work addresses connectivity issues between a moving
source and sinks in a sensor network. Our work differs from
this in two aspects: first, our communication end-points are
symmetric as opposed to statically designated as sources or
sinks; second, their work focuses on solving data dissemina-
tion problems, where providing information to sinks that can
be at any node in the network is of major concern. Our work
focuses on supporting applications that coordinate groups of
sensors in the vicinity of multiple external physical events
of interest, such as identity differentiation in tracking, col-
laborative exploration, etc. In such applications, although
group memberships change overtime, there are limitations
on the range of space where a new member can possibly ap-
pear. For example, for identity management in multi-target
tracking, while new group members may join in at any time,
they will not appear at arbitrary nodes in the network be-
cause identity differentiation is only needed when a new tar-
get is near another that has already been tracked. Because
of this, there is no need to build a system-wide infrastruc-
ture for connectivity purposes. Instead, we choose to build
a routing tree that as small as possible to support commu-

nication needs within the group. Recent work by Blum el
al. also studied connection services for sensor networks [18].
Their work presented a middleware architecture for coordi-
nation services in sensor networks that facilitates interaction
between groups of sensors. Our work differs from theirs in
that our work addresses routing algorithms at the network
layer, while their work is at the transport layer, assuming
support from underlying routing infrastructure. Similar to
their work, we define and maintain abstract entities to facil-
itate communication between moving events in the network.

The basic idea for backbone-based routing is to overlay a
virtual infrastructure on an ad hoc network to help dissem-
inate control information. From the protocol standpoint,
existing ad hoc routing protocols can be classified into three
categories: proactive, reactive and the combination of the
two. Proactive routing protocols have each host maintain
global topology information so that a route can be provided
immediately when requested. Protocols in this category suf-
fer from lower scalability and high protocol overhead. Re-
active routing protocols produce routes on-demand. Each
host computes a route for a specific destination only when
necessary. Topology changes that do not influence active
routes do not trigger route maintenance functions, thus re-
ducing communication overhead. The third category main-
tains partial topology information in some hosts. However,
all these protocols rely on some form of flooding. Proactive
protocols rely on flooding for the dissemination of topol-
ogy update packets. Reactive protocols rely on flooding for
route discovery. Flooding suffers from the notorious broad-
cast storm problem [19] that result in excessive redundancy,
contention, and collision. These cause high protocol over-
head and interference to ongoing traffic. For backbone-based
routing, routing protocols are operated over the backbone
infrastructure, replacing flooding mechanisms with broad-
cast over the backbone.

3. ROAMINGCAST
Let us consider the example of multi-target tracking in

sensor networks. In order to facilitate in-network process-
ing, a leader-based scheme assigns, for each target in the
sensor field, a sensor node as the home for an agent track-
ing that target [20]. As the targets move, the corresponding
agents hop from node to node, following the estimates of
the target locations. However, when multiple targets come
to close proximity, their signal signatures may mix, which
causes the identities of tracks to mix. Since it may be im-
possible to resolve immediately the target identities, we have
to tolerate the identity confusion until they can be resolved
later, either because the individual signal to noise ratio be-
comes high enough, or because other sensing modalities are
available. When the confused targets move away from each
other and additional information becomes available, a vir-
tual communication route needs to be maintained between
them to share the new information in a timely manner. Af-
ter some time, the identities of multiple targets may become
mixed and all the relevant agents need to stay in commu-
nication and share new sensing information as it becomes
available.

We use the term roamingcast for the communication pat-
terns necessary to support such collaborating agents. For-
mally, given a group of mobile agents G in a sensor net-
work, roamingcast is a group communication scheme that
enables communication among any subset S of group mem-

bers G. Roamingcast is different from multicast, as in mul-
ticast S = G. Furthermore, since S is not known a priori
and can change from one request to another, a multicast tree
cannot provide routes without incurring excessive overhead
in order to build different trees for each data distribution.
Within the multicast framework, additional information is
needed to differentiate each member in the group. This
means that some type of location lookup service or route
registration is necessary and calls for stateful implementa-
tions.

Lead Node

Backbone

Terminal
Node

Rib

Lead Node

Backbone

Terminal
Node

Rib

Figure 1. A roaming hub consists of two backbones. The
backbone is shown as the darker horizontal and vertical
lines. Eight terminal nodes (shaded) are connected to a
horizontal active backbone.

We assume that sensors are densely deployed in large scale
in an ad hoc fashion. Our work focuses on distributed con-
struction and dynamic updates of a many-to-many commu-
nication tree, the roaming hub. An average pair of termi-
nals communicate using the roaming hub with only constant
degradation in path length as compared to the best possible
path. In addition, we want the structure to have reason-
able maintenance overhead. Figure 1 shows an example of
a roaming hub structure in a sensor network.

We begin with introduction of the Roaming Hub Based
Architecture (RoamHBA) outlining the major architectural
and functional components in our design. We propose a net-
work layer solution that provides routing services for roam-
ingcast. Network end-to-end control and reliability is han-
dled at the transport layer and is beyond the scope of this
paper.

4. ROAMING HUB BASED ARCHITECTURE
(ROAMHBA)

Geographic routing [21, 22, 23] has emerged as an effective
routing technique in sensor networks. For geographic rout-
ing to work, a location service is needed to provide destina-
tion locations. In roamingcast, destination locations change
from time to time without acknowledging the senders. This
leads to our introduction of RoamHBA. We first introduce
definitions of some of the architectural and functional enti-
ties that will be used in RoamHBA.

Definition 4.1. An agent is a process that acts on behalf
of some application entity, a process that performs some
functional duty in support of another agent, or a process
that realizes protocol semantics.

A mobile agent, is an agent that tracks the moving physi-
cal phenomenon of interest that the sensor network is mon-

itoring. It processes and stores application states related to
the sensing task at hand. For our work, we want to take
out application specific attributes and only keep the ones
that are relevant to network layer functionalities, the mobil-
ity aspect. The node that a mobile agent resides in is the
terminal node.

A junction node, is the node at which a terminal node con-
nects to the backbone, possibly through a multi-hop path.
A junction agent, is an agent representing a mobile agent on
the backbone. A junction agent always resides in a junction
node, and the two have a 1-to-1 mapping.

A rib, is the path consisting of a set of nodes (rib nodes)
between a mobile agent and its junction node. It is estab-
lished by a mobile agent connecting to the backbone via
geographic forwarding.

Roaming Hub is the rendezvous entity that all mobile
agents communicate with. The backbone together with the
ribs connecting to it forms the roaming hub. Figure 2 (i)
illustrates the components of RoamHBA. Figure 2 (ii) illus-
trates the logical and physical relations between agents and
nodes.

Mobile AgentJunction AgentRoaming
Hub

Terminal nodeJunction NodeBackbone

Include Represent

Include Connect to

Resides in Resides inResides in

Mobile AgentMobile AgentJunction AgentJunction AgentRoaming
Hub

Terminal nodeTerminal nodeJunction NodeBackboneBackbone

Include Represent

Include Connect to

Resides in Resides inResides in

(i)

(junction agent)

(mobile agent)
terminal node

(backbone agent)
lead node

junction node

(ii)

Figure 2. (i) Roaming Hub Base Architecture
(RoamHBA); (ii) illustration of the relations between log-
ical agents and physical nodes that agents reside in. The
line in bold is the backbone. Logical entities residing in the
physical nodes are shown in parentheses next to their cor-
responding physical nodes. Lead node and backbone agent
will be defined in section 5.2.

On the one hand, the Roaming Hub performs dynamic
mapping of mobile agents to nodes. It provides group mem-
ber location service by mapping routes to the agents, and
by storing location information on the backbone. In case
of unicast, a mobile agent can obtain location information
of the other mobile agents from the hub, hence point-to-
point geographic routing is possible. On the other hand,
the roaming hub serves as the multicast routing tree and
actually participates in routing and data dissemination.

5. ROAMING HUB FORMATION
We assume wireless sensor nodes are deployed in the plane,

each with a constant communication range. Each node can
get its location information either by GPS or other loca-

tion services [24, 25, 26, 27]. Node density of the network
is high enough so that greedy forwarding can always make
progress. In case this assumption does not hold due to node
power outage or adverse channel conditions, hole bypassing
techniques [28] can be used to build ‘detours’ to overcome
the local minimum problem.

5.1 Greedy forwarding in horizontal/vertical
direction

Let R be the transmission radius. To greedily construct a
horizontal/vertial path passing node L(x0, y0), node L picks
two of its neighbors that are closest to the points (x0+R, y0)
and (x0−R, y0), say, node A(x1, y1) and B(x2, y2). Node A
then picks one of its neighbors that is closest to point (x1 +
R, y0), while node B picks one of its neighbors that is closest
to point (x2−R, y0), and so on. The value of y0 is recorded
in the packet to be overlaid by the nodes to regulate the
choice of next hop on the backbone branch, so that the path
will not drift up or down in the y direction. Exchanging x-
coordinates with y-coordinates, we can construct a vertical
path accordingly.

5.2 The backbone

Definition 5.1. A bounding box, is a virtual rectangle de-
fined by dual pairs of x coordinates (xmin, xmax) and y co-
ordinates (ymin, ymax), such that xmin=min(x1, x2, ...xk),
xmax=max(x1, x2, ...xk), ymin=min(y1, y2, ...yk), ymax =
max(y1, y2, ...yk). k is the number of mobile agents. The
bounding box state, includes these dual pairs and the agent
ID associated with each of them.

Intuitively, the bounding box is the smallest rectangle that
‘covers’ all the mobile terminals in the group. The bound-
ing box state is used to decide on the location and span
of the backbone, as well as to decide which backbone (the
horizontal or the vertical) mobile agents should connect to.
The bounding box state is propagated along the backbone.
Every backbone node stores a copy.

Backbones can have different shapes. The principles we
have used in deciding the shape of backbone are: a) maximal
sharing of common paths among the mobile agents, b) easy
maintenance, and c) easy inter-agent connections through
greedy forwarding. We chose to use a backbone that is cross-
shaped consisting of a horizontal part and a vertical part.
We refer to these as the horizontal backbone and the vertical
backbone. The two backbones are connected, each consisting
of a set of sensor nodes (backbone nodes) connected via a
multi-hop path.

The active backbone The backbone oriented in the di-
rection of the longer side of the bounding box is the ac-
tive backbone. To provide hysteresis and avoid instabilities,
switching the backbone only occurs after the current active
backbone is oriented in the direction of the shorter side of
the bounding box and the ratio of the longer side to the
shorter side is larger than c(c > 1). In Figure 1, the hori-
zontal backbone is active.

Backbone location Both the horizontal and vertical back-
bones are located such that there are approximately equal
numbers of mobile agents on both sides of the backbone.

Property 5.1. Given a set of n nodes vi, i = 1, 2, · · · , n,
all connecting to a horizontal line l via vertical lines, the op-
timal y location for line l is the median of the y-coordinates

of all vi such that the total vertical line length is shortest.
The claim also holds if we exchange horizontal with vertical.
Proof of this property is in appendix 13.1.

From this point on we confine our discussion to the hori-
zontal backbone. The vertical case is completely analogous.

Each backbone is associated with a backbone agent. A
backbone agent resides in the lead node, which is also a
backbone node. The lead node is chosen during the previous
backbone migration so that the lead node is a terminal node
with its y-coordinate chosen to be close to the median of
all the terminal nodes’ y-coordinates. A backbone agent is
responsible for establishing the backbone at the beginning
of a backbone migration. After the migration, the backbone
agent decides when a migration is needed. Before a new
migration takes place, the backbone agent chooses the next
lead node and migrates to that lead node, repeating the
above process. Section 6.3 describes this in detail.

Backbone span The horizontal/vertical backbone spans
the full length of the bounding box in the horizontal/vertical
direction plus a parameter xc/yc. Determination of xc and
yc will be discussed in section 6.1.

5.3 Mobile agents connecting to the backbone
When a packet is forwarded towards/away from the back-

bone, it is referred to as travelling upstream/downstream.
Mobile terminals connect to the active backbone in the

vertical or horizontal direction depending on which back-
bone is active (vertical for horizontal backbones and vice
versa), which in turn depends on the aspect ratio of the
bounding box. A path to the backbone is constructed by
an agent sending a path finding packet upstream towards
the backbone. The packet is forwarded at each hop using
geographic greedy forwarding described in section 5.1. Such
a packet carries agent state including its ID and location.
When the packet reaches the backbone, a junction agent is
created at the junction node and agent state is stored there.
A question that arises is if it is possible for two paths to
cross each other without the crossing being detected.

Property 5.2. When an expanding path crosses an exist-
ing path, there will always be at least one node on the ex-
isting path that is within the radio range of a node on the
expanding path. Hence, crossing event can always be de-
tected. Proof is in appendix 13.2.

Multicast path length

Property 5.3. The sum of all pairwise terminal distances
using the roaming hub is at most: 2

√
2×(the sum of all

pairwise unicast distances). In other words, an average pair
of terminals communicating using the roaming hub has only
constant degradation in path length as compared to the best
possible path.Proof for this property is in appendix 13.3.

6. ROAMING HUB UPDATES
In the previous section we discuss the formation of the

roaming hub structure. Ultimately, due to agent mobility,
routes provided by the roaming hub degenerate over time.
Therefore, it is necessary to update the roaming hub so that
property 5.3 still holds. The way to perform such updates in
a distributed fashion is one of the major contributions of this
paper. We organize our description of dynamic updates by
logic network entities that are responsible for these updates.

6.1 Mobile agent
Maintaining agent connectivity to the backbone

Figure 1 shows a snapshot of the multicast path tree when
each mobile agent had just connected to the backbone. When
a mobile agent moves after some time, its path to the back-
bone can be extended by adding the new terminal node to
its path. These are strictly incremental changes occurring
locally. It is possible that a mobile agent crosses its own
path as it moves about. Our protocols handles this by re-
moving loops from an existing route. Figure 3 illustrates
this idea.

Invalidation

New path
Old path

Invalidation

New path
Old pathOld path

Figure 3. An example of erasing route loops due to agent
mobility. When a route crossing is detected, an invalidation
packet is sent out to invalidate the downstream route start-
ing from where the detection is made until the invalidation
packet returns to the same node .

Route updates using distance based rule When an
agent’s new location has significant displacement away from
its prior location where the last direct connection to the
backbone was made, another direct connection to the back-
bone is needed. There are different ways to measure the
‘significance’ of displacements. Referring to Figure 4, let
node s be the node that the agent resides when the previous
connection to the backbone was made. Let node t be the
node that the agent currently resides. Let r be the distance
from node s to node t. Let d be the distance of node s from
the backbone. We used the ratio r/d to measure the relative
extent of agent displacement and referred to it as the free
ratio. When this ratio reaches a constant ρ(ρ < 1), the mo-
bile agent should initiate a new connection to the backbone.
We call this rule the distance-based rule. The region inside
the circle of radius ρ× d is referred as the free region.

t

d

r

l

s

l

r

d

xc = r xc = r

(i) (ii)

Figure 4. Line l represents the backbone. black nodes rep-
resent terminal nodes. (i) illustrates free regions as circles;
(ii) illustration of the relation between the bounding box
and the backbone span .

With this scheme, for given mobility, the farther away an

agent is from the backbone, the less frequently it updates
its path to the backbone. There are three reasons for this.
First, to maintain property 5.3, the ideal location for the
horizontal/vertial backbone is at the median y or x location.
When agents are far away from a backbone, we can care less
about if they have crossed the backbone or not. Second,
the farther away an agent is, the higher cost it will incur
to reconnect to the backbone. Third, the farther away the
agent, the more detour it can tolerate before its path to the
the backbone degrades significantly.

Determining and adjusting the backbone span We
focus on the horizontal backbone. In section 5.2, we stated
that the length of a horizontal backbone is approximately
the length of the bounding box in x direction plus an ad-
ditional length xc. The extra length of xc is necessary be-
cause the backbone must be long enough so that when a
mobile agent makes a new connection to the backbone via
geographic forwarding, the connecting path will be guaran-
teed to cross the backbone. This is illustrated in Figure 4
(ii). As every backbone node stores a copy of bounding box
state, the largest y offset from the backbone y-coordinate
among all the mobile agents, d in Figure 4, can be com-
puted locally. If xc = d × ρ, a direct connection from any
of the mobile agents to the backbone will be guaranteed to
cross the backbone.

When a new bounding box update is propagated on the
backbone, a backbone node decides if it should remain on
the backbone based on its calculations of the backbone end
points according to the rule introduced above. If the deci-
sion is ‘no’, this node first, continues propagating bounding
box update to its next neighbor on the backbone if it has
one; second, clears its state as a backbone node. If the de-
cision is ‘yes’, it updates its local copy of the bounding box
state and passes on the update packet to its next neighbor
on the backbone. If this backbone node is at the end of the
backbone, it is responsible for extending the backbone un-
til it extends beyond the end point of the backbone based
on the calculation. Extending backbone is accomplished by
geographic forwarding discussed in section 5.1.

6.2 Junction agents
When a mobile agent’s new connection reaches the back-

bone, a new junction agent is created at the new junction
node. The new junction agent does the following: First,
it sends out a packet along the backbone to invalidate the
old junction agent that belongs to the same mobile agent.
Before the old junction agent expires, it sends out an in-
validation packet to invalidate the old rib associated with
itself. Figure 5 illustrates the invalidation process. Second,
the new junction agent decides if the existing bounding box
state needs an update.
Updating the bounding box To minimize network traf-
fic, we want to localize control information processing as
much as possible. This is the main reason for summarizing
agent locations using bounding box state and replicating the
state along the backbone. Whenever an agent announces a
new location by making a new connection to the backbone,
the junction node needs to decide if the bounding box state
needs an update. The criterion is whether or not the exist-
ing bounding box is still the smallest rectangle that covers
all the terminal nodes. If ‘yes’, no update is needed. Oth-
erwise, the junction node computes the new bounding box
state and broadcasts it over the backbone. There is no need

1 2 3

New HubOld Hub

invalidation

4

A

A’
New path

Old path
Backbone

1 2 3

New HubOld Hub

invalidation

4

A

A’
New pathNew path

Old path
Backbone

Figure 5. The agent was at node A when the previous
connection to the backbone was made. After some time, the
agent hops to node A’. The agent updates its registration
on backbone by making a new connection to the backbone.
The new junction node informs the old junction node. The
old junction node invalidates the old path.

to enforce global ordering in these distributed updates be-
cause all conflicts can be resolved locally by attaching each
update with agent ID and update sequence number for that
agent.

6.3 Backbone agent
A backbone agent resides in the lead node of the backbone.

Ideally, we would have equal numbers of mobile agents on
each side of a backbone. However, frequent backbone mi-
grations, although yielding smaller total path length, incur
significant control packet overhead and disruption to ongo-
ing data traffic. In our simulation, the rule for backbone
migration is that when the number of agents on one side is
a fraction, γ, of the total number of agents, the backbone
will be migrated. The choice of the value of γ reflects the
tradeoff point between path length and roaming hub update
overhead.

After the initial construction of the backbone, the back-
bone agent is responsible for monitoring the number of mo-
bile agents on each side and deciding when a backbone mi-
gration is needed. Whenever a mobile agent crosses the
backbone, the crossing event can be detected by backbone
nodes. Backbone nodes report such events to the backbone
agent so that the backbone agent can update its count of
agents on each side. When the backbone agent decides that
a migration is necessary, it polls all the junction agents to
get their mobile agents’ locations. It identifies the new lead
node and creates a new backbone agent at the lead node.
The new backbone agent initiates a new backbone construc-
tion, and notifies all backbone nodes on the old backbone of
the migration. A death timer is set at each backbone node
on the old backbone. All junction nodes request their ter-
minal nodes to connect to the new backbone. All nodes on
the old backbone will time out after the death timers expire.
When junction nodes time out, they also invalidate their old
ribs of their terminal nodes.

7. ROUTING OVER THE ROAMING HUB
Roamingcast routing over the hub is very simple. All mo-

bile agents send packets upstream towards the backbone.
Packets are broadcast on the backbone. Whenever a packet
encounters the junction node of one of its destined mobile
agents, the packet is copied and forwarded downstream fol-
lowing that rib route to the mobile agent.

For unicast, the sender can request the current location

of the destined mobile agent by querying the junction agent
of that agent on the backbone, and then use geographic
forwarding to reach the destination.

Due to the broadcast nature of the wireless medium, the
route mapped out by a rib may not be the best route to
distribute data packet. Figure 6 shows one example.

backbone

t2

t3

t6
t7

t4

t5

t1

Figure 6. Data packets use shortcuts whenever possible.
The dotted circle shows node’s radio range. The solid circle
shows the free region. Node t1 can directly reach node t7.
Hence, a data packet can be delivered directly between them
instead of following the route.

8. PERFORMANCE CONSIDERATIONS
Backbone-based approaches for ad hoc network routing

fall, in general, within the category of proactive routing.
The introduction of a virtual bounding box enables us to
make backbone construction and updates reactive to mobile
agents’ geometric configurations. When a mobile agent is
involved in some data exchange, the data packet can piggy-
back the agent’s location information to its junction agent.
When no data exchange takes place for a mobile agent, the
agent only makes its location known to its junction agent
when it establishes a new route to the backbone via geo-
graphic forwarding following the distance based rule. At the
junction node, bounding box parameters may be changed
based on the new location reported to the junction agent. If
such changes take place, it will in turn affect backbone lo-
cation and/or backbone length. Roaming hub updates are
necessary only because we want to provide good routes for
mobile agents, but at a price of taxing on network resources
for such route updates. The tradeoff between good routes
and low update cost depends on application requirements.
For example, if an application requires low latency commu-
nications, good routes have to be maintained even with high
maintenance overhead. We will discuss issues relating to en-
ergy efficiency.

8.1 Amortizing roaming hub updates over data
communications

Short routes for packet deliveries reduce total internode
communication cost. The more frequently data communica-
tions occur, the more advantageous good routes will be. If
data exchange happens frequently enough, the maintenance
cost may well be justified by savings on routing cost and
route length. For a mobile agent not communicating fre-
quently, its location changes may not be of much concern
to the rest of the group. Hence data exchange frequency
needs to be factored into the decision process along with
distance based rule in determining when the mobile agent
should reestablish a new route to the backbone. This leads
to route updates using a communication based rule. The
communication based rule is the following: an agent does not

initiate an update on its path to the backbone without up-
stream/downstream traffic from/to the agent for some time
interval τ . The interval τ is a constant that is twice as large
as the average data communication interval.

8.2 Mobility pattern
Mobility patterns have a big impact on the performance

of roaming hub based routing. The amount of maintenance
overhead is largely determined by agents’ moving speed as
well as mobility patterns. The roaming hub based routing
is well equipped to handle a scenario where mobile agents’
movement has some locality, such as a random walk with
or without a drift. The maintenance overhead of roaming
hub comes mainly from backbone and rib migrations. The
roaming hub provides a mobile agent with a ‘mapping ser-
vice’ about the other mobile agents. The higher the reso-
lution of the map, the more costly it is. We introduced a
distance based rule and a communication based rule to ‘ob-
scure’ the view presented to the junction agent. We further
obscure the view presented to the other junction agents by
only presenting them the virtual bounding box. The hierar-
chical filtering of information is intended to encapsulate and
localize structural updates as much as possible. With some
level of locality in agents’ movement pattern, this hierarchi-
cal filtering mechanism becomes very effective.

9. SIMULATIONS
We assume all sensor nodes have the same computation,

communication and storage capabilities. Each node main-
tains a neighbor list storing coordinates of its neighbors.
Soft states:

1. Rib nodes maintain a dynamic array of ports. A port is
created for one agent that has its rib through the node.
One port is associated with one agent’s connection to
the backbone at the node. At each port, upstream
and downstream neighbors are recorded. These are
used for forwarding purpose. There are no routing
information kept in the node. Introduction of port
is necessary because multiple agents may cross each
other’s path therefore different network ‘flows’ need to
be maintained at a rib node. Ports are also needed
for invalidating old paths. A port takes 3 integers of
memory.

2. Backbone nodes store bounding box parameters (4 dou-
bles).

3. Mobile agents store backbone locations (2 doubles).

4. Junction agents store their mobile agent’s location (2
doubles).

5. Backbone agents store numbers of agents on each side
(2 integers)

Agents as logical entities move from node to node. It is
possible that one node has multiple agents at the same time.

9.1 Simulation setup
RoamHBA is implemented at the network layer using NS-

2. Geographic forwarding as described in section 5.1 is used
in constructing the roaming hub. In our simulations, each
node learns its one-hop neighborhood and store this infor-
mation locally. A control packet header includes the direc-
tion the packet travels. Based on this information, a node

n, can decide the next hop for this packet, and append this
information to the packet header. All neighbors receive this
packet but only the designated neighbor processes and pos-
sibly overlays the packet based on its local state and infor-
mation encoded in the packet.

802.11b within NS-2 was used for MAC support. We mod-
ified the channel grid keeper to speed up the simulations so
that networks with more than 300 nodes can be simulated
in reasonable amount of time.

9.2 Evaluation
The topology of the scenario used is as follows: 1800 sen-

sors placed on a perturbed grid in a 250m by 250m 2-D
space. Each sensor node has transmission radius of 15 me-
ters. There are seven mobile agents scattered across an area
of about one sixth of the 2-D space. We use the total number
of transmissions to approximate the total energy consump-
tion.

9.2.1 Tradeoffs between the data packet rate and the
frequency of roaming hub updates

We are first interested in knowing, for a fixed data rate,
how the free ratio ρ (defined in section 6.1) affects the to-
tal data packet transmissions and the control packet trans-
missions. Figure 7 shows that the more frequent the route
updates (the smaller the ρ) are, the less transmissions are
necessary to deliver data to destinations, but at a price of
more control packets. There is an optimal range for ρ that
minimizes the total number of transmissions.

of packet transmissions vs. ρρρρ

50

150

250

350

0 0.2 0.4 0.6 0.8 1
ρρρρ

data data and control

Figure 7. Number of packet transmissions vs. ρ

We next study, for a fixed data rate, how the criteria (γ
value defined in section 6.3) for migrating backbone affect
total data packet transmissions and control packet trans-
missions. Figure 8 shows that frequent backbone location
adjustments help shortening total data path but drastically
increase control overhead. Allowing some extent of ‘imper-
fections’ in the backbone location can reduce overall energy
consumptions. For the simulated scenario, γ = 2/7 is opti-
mal.

Figure 9 replicates the total number of packet transmis-
sions curve from Figure 8. In addition, we vary the data
packet rate and plot the numbers of total packet transmis-
sions side by side in this figure. As data rate increases,
the benefits of maintaining good routes dominate backbone
migration overhead. It is evident from the figure that the
curves are ‘rolling’ slowly counterclockwise. This means that
more responsive backbone adjustments benefit high data
rate network in terms of overall energy efficiency.

of packet transmissions vs. γγγγ

0

100

200

300

400

0 1/7 2/7 3/7
γγγγ

data data and control

Figure 8. Number of packet transmissions vs. γ

of control packet vs. agent
mobility

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Agent mobility

zero mean random walk

random walk with drift

Figure 9. Number of control packet vs. agent mobility

9.2.2 Comparison with roaming restricted flooding
roaming restricted flooding can be another possible scheme

to support group communications in sensor networks. It is
used to be compared with our scheme. The basic idea is to
let all mobile agents share the bounding box state through
flooding. All agents also communicate with one another by
flooding inside the bounding box. When updates on the
bounding box are necessary, a mobile agent notifies other
agents by flooding the restricted region. Therefore, roaming
restricted flooding is essentially a restricted flooding with
the restricted region adapting to agents locations and mo-
bility.

Roaming restricted flooding is an appropriate scheme for
comparison because it adapts its flooding area to be as small
as enough to cover all the mobile terminals. This is impor-
tant for the type of applications we consider, namely, col-
laborative group communication in a large network. Any
scheme that does not adapt the scale of its communication
subnetwork to mobile terminal locations will potentially per-
form poorly when mobile terminals do not spread out across
the whole network.

We ignore the cost of maintaining the shared bounding
box state across the mobile agents, assuming it is insignif-
icant compared with data dissemination cost. Therefore,
cost in restricted flooding only comes from data dissem-
inations. If S is the area of the bounding box, flooding
within this region has O(S) cost for networks with constant
node density. Cost for roaming hub based solutions comes
from both data disseminations and roaming hub mainte-
nance overhead. However, data dissemination cost is only
O(
√

S). Obviously, the more frequently data exchange hap-
pens the more advantage the roaming hub based solution

has.
We simulate the two schemes using the same topology

scenario. Assume a single data source with constant packet
rate. Take ρ = 0.6, γ = 2/7, and probability of each mobile
agent to leave the current terminal node to be 0.5. Total
number of packet transmissions are counted over 5 simula-
tion runs, each with 1900 iterations. The average number of
control packet transmissions per iteration for using roaming
hub is 15.5. The average number of data packet transmis-
sions is 25.3. For roaming restricted flooding, the average
number of data packet transmissions is 594.2. Thus, if there
is data exchange in 1/15 of the time, roaming hub is a better
solution than roaming restricted flooding. This conclusion
is drawn based on exclusion of control cost for maintaining
the bounding box for restricted flooding.

To summarize, RoamHBA is a more scalable solution than
restricted flooding. When mobile agents span a large area,
even restricted flooding is too expensive. Therefore, a more
sophisticated routing service is necessary.

10. CONCLUSIONS
This paper studies a new way of networking, the Roaming-

cast, which arises from collaborative information processing
in wireless sensor networks. We proposed RoamHBA as one
of the solutions to support group connectivity. We demon-
strated that for dense network where mobile agent’s mobility
has some locality, RoamHBA is both effective and practical.

11. ACKNOWLEDGEMENTS
The authors would like to acknowledge support by a grant

from the DARPA Software for Distributed Robotics pro-
gram under a subcontract from SRI, the DARPA Sensor
Information Technology Program under contract F30602-00-
C-0139, NSF grant CCR-0204486, ONR MURI grant N00014-
02-1-0720, and a grant from the Stanford Networking Re-
search Center.

12. REFERENCES
[1] Liu, J., Chu, M., Liu, J., Reich, J.E., Zhao, F.:

State-centric programming for sensor and actuator
network systems. IEEE Pervasive Computing
Magazine (2003) to appear.

[2] Demirbas, M., Arora, A., Gouda, M.: A
pursuer-evader game for sensor networks. In: Sixth
Symposium on Self-Stabilizing Systems (SSS’03), San
Francisco, CA, LNCS 2704, Springer (2003) 1–16

[3] J.Shin, L.Guibas, F.Zhao: Distributed group
management for track initiation and maintenance in
target localization applications. In: IPSN. (2003)

[4] J.G.Jetcheva, D.B.Johnson: Adaptive demand-driven
multicast routing in mult-hop wireless ad hoc
networks. In: Proc. of the ACM Symposium on Mobile
Ad Hoc Networking and Computing(MobiHoc). (2001)

[5] L.Ji, M.S.Corson: Differential destination multicast-a
manet multicast routing protocol for small groups. In:
IEEE INFOCOM. (2001)

[6] Boivie, R., N.Feldman, Y.Imai, W.LIvens, D.Ooms,
O.Paridaens: Explicit multicast (xcast) basic
specification. internet draft (work i progress). In:
draft-ooms-xcast-basic-spec-04.txt, Internet
Engineering Task Force. (2003)

[7] Hwang, R., Richards, D., Winter, P.: The steiner tree
problem. Annals of Discrete Mathematics (1992)

[8] Bauer, F., Varma, A.: Aries: A rearrangeable
inexpensive edge-based on-line steiner algorithm.
IEEE Journal of Selected Areas in Communications
(1995)

[9] F.Bauer, A.Varma: Distributed algorithms for
multicast path setup in data networks. In: IEEE
GLOBECOM. (1995)

[10] Kadirire, J., Knight, G.: Comparison of dynamic
multicast routing algorithms for wide-area
packet-switched (atm) networks. In: IEEE
INFOCOM. (1995)

[11] J.Gao, L.Zhang: Well-separated pair decompositionfor
the unit-disk graph metric and its applications. In:
35th annual ACM symposium on theory of computing.
(2003)

[12] A.Amis, R.Prakash: Load-balancing clusters in
wireless ad hoc networks. In: Proc. 3rd IEEE
Symposium on Application-Specific Systems and
Software Engineering Technology. (2000)

[13] P.Sinha, R.Sivakumar, V.Bharghavan: Enhancing ad
hoc routing with dynamic virtual infrastucutes. In:
IEEE INFOCOM. (2001)

[14] J.Wu, H.Li: On calculating connected dominating set
for efficient routing in ad hoc wireless networks. In:
the 3rd International Workshop on Discrete
Algorithms and Methods for Mobile Computing and
Comunications. (1999)

[15] B.Das, V.Bharghavan: Routing in ad hoc networks
using minimum connected dominating sets. In:
ICC’97. (1997)

[16] J.Gao, L.Guibas, J.Hershberger, L.Zhang, A.Zhu:
Geometric spanner for routing in mobile networks. In:
MobiHoc. (2001)

[17] Luo, H., Ye, F., Cheng, J., Lu, S., Zhang, L.: TTDD:
Two-tier Data Dissemination in Large-scale Wireless
Sensor Networks. ACM/Kluwer Mobile Networks and
Applications (MONET), Special Issue on ACM
MOBICOM (2003)

[18] Blum, B., Nagaraddi, P., Wood, A., Abdelzaher, T.,
Son, S., Stankovic, J.: An entity maintenance and
connection service for sensor networks. In: The First
International Conference on Mobile Systems,
Applications, and Services (MOBISYS ‘03),
California. (2003)

[19] s. Ni, Tseng, Y., Y.Chen, Sheu, J.: The broadcast
storm problem in a mobile ad hoc network. In:
MOBICOM. (1999)

[20] Zhao, F., Shin, J., Reich, J.: Information-driven
dynamic sensor collaboration. IEEE Signal Processing
Magazine 19 (2002) 61–72

[21] Karp, B., Kung, H.: Gpsr:greedy perimeter stateless
routing for wireless networks. In: MobiCom. (2000)

[22] Yu, Y., Govindan, R., Estrin, D.: Geographical and
energy aware routing: A recursive data dissemination
protocol for wireless sensor networks. Technical
report, UCLA/CSD-TR-01-0023 (2001)

[23] M.Mauve, J.Widmer, H.Hartenstein: A survey on
position-based routing in mobile ad hoc networks.
IEEE Network Magazine 15 (2001) 30–39

[24] Hightower, J., Borriello, G.: location systems for
ubiquitous computing. IEEE Computer 34 (2001)
57–667

[25] Savvides, A., Han, C.C., Strivastava, M.B.: Dynamic
fine-grained localization in ad-hoc networks of sensors.
In: Proc. MobiCom. (2001) 166–179

[26] Savvides, A., Strivastava, M.B.: Distributed
fine-grained localization in ad-hoc networks. IEEE
Transactions of Mobile Computing (2003)

[27] A.Ward, A.Jones, A.Hopper: A new location
technique for the active office. IEEE Personnel
Communications 4 (1997) 42–47

[28] Q.Fang, J.Gao, L.Guibas: Locating and bypassing
routing holes in sensor networks. In: IEEE
INFOCOM. (2004)

13. APPENDIX

13.1 Proof for property 5.1
Given a set of n nodes vi, i = 1, 2, ...n. They all connect

to a horizontal line l via vertical lines. See Figure 10 (i). We
prove that the optimal y location for line l is the median of
the y-coordinates of vi so that the total length the vertical
connecting lines is minimized.

Suppose that the i-th node vi is at location (xi, yi). If y
is the location of the horizontal line l, then the total length
of vertical lines is:

n∑
i=1

|y − yi|

We can assume that y1 ≤ y2 ≤ ... ≤ yn. if yk ≤ y ≤ yk+1,
then the total length of vertical lines is

k∑
i=1

(y − yi) +

n∑

i=k+1

(yi − y)

This is a piecewise-linear function. Taking derivative, we
get:

k − (n− k) = 2k − n
This means that y is optimal when there are n/2 nodes

below or on the line, and n/2 nodes above or on the line.
Therefore, the total length is minimized by locating l at the
median of the y-coordinates. The same argument holds for
a vertical partition line.

l

v2

v4

v5

v3

v1

z

vu

y

x

(i) (ii)

Figure 10. (i) The dotted line depicts the optimal location
for horizontal line l; (ii) At least one of node u and node v
is within distance 1 from at least one of node y and node z.
All circles are unit disks.

13.2 Proof for property 5.2
We prove that when an expanding path crosses an existing

path, there is at least one node on the existing path that is
within the radio range of one of the node on the expanding
path. Therefore, crossing event can always be detected.

We prove by contradiction. Referring to Figure 10 (ii),
assume node u,v are on an existing path and edge uv is the
edge to be crossed. Node x initiates a new path northbound
using the greedy forwarding method as discussed in 5.1. It
finds the next hop node y. Similarly node y picks the next
hop to be node z. Assume neither node u nor v is within
radio range of node y, or node z. This means that both node
y and z must lie outside of the two dotted circles. However,
if edge yz are to cross edge uv, the only possible scenario is
that edge |yz| ≥ √

3. This contradicts with the fact that z
is within the radio range of node y. Therefore, the distance
between them is at most 1. Hence, the path finding process
always terminates.

13.3 Proof for property 5.3
We prove that the sum of all pairwise terminal distances

using the roaming hub is at most: 2
√

2×(the sum of all
pairwise unicast distances).

The
√

2 factor comes from replacing the Euclidean (L2)
distance with rectilinear (L1) distance. Assume that the
backbone is horizontal. The backbone paths and the optimal
paths have horizontal portions of the same exact length, so
the only difference comes from the use of the ribs in the
backbone connections. For simplicity, let us assume that we
have k terminals above the backbone with rib lengths ai,
i = 1, 2, · · · , k, and k terminals below the backbone with rib
lengths bi, i = 1, 2, · · · , k.

Then clearly, the vertical portion of the sum over all pair-
wise backbone paths is

(2k − 1)(

k∑
i=1

ai +

k∑
i=1

bi),

as every node connects to 2k− 1 others and each node’s rib
length is used this many times.

For terminal pairs that are across the backbone, the back-
bone and the true shortest path have identical contributions
vertically. Since every terminal can be paired with at least
k nodes on the other side, the true L1 length sum over all
pairs includes

k(

k∑
i=1

ai +

k∑
i=1

bi).

Thus the total backbone connection path length over all
pairs is at most twice the L1 sum of distances between all
pairs.

