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Appropriate Choice of Aggregation Operators in
Fuzzy Decision Support Systems

Gleb Beliakov and Jim Warren

Abstract—Fuzzy logic provides a mathematical formalism for
a unified treatment of vagueness and imprecision that are ever
present in decision support and expert systems in many areas. The
choice of aggregation operators is crucial to the behavior of the
system that is intended to mimic human decision making. This
paper discusses how aggregation operators can be selected and ad-
justed to fit empirical data—a series of test cases. Both parametric
and nonparametric regression are considered and compared. A
practical application of the proposed methods to electronic imple-
mentation of clinical guidelines is presented.

Index Terms—Aggregation operators, clinical guidelines, mono-
tone splines, restricted least squares.

I. INTRODUCTION

E XPERT and decision support systems are common in the
areas where the alternatives are selected based on com-

bined support of a number of factors, none of which could de-
termine the alternative by itself. An example of such an area is
medicine, where diagnosis or management are almost never de-
cided based on individual criterion. A weighted combination of
many criteria is used instead, each criterion may support var-
ious alternatives, and the alternative with the strongest support
is selected as the decision.

This is a typical problem of multicriteria decision making
(MCDM), various approaches to which have been discussed in
[16], [30], [37], [38], [44], [70]. One important class of methods
in MCDM is based on constructing a utility or value function

, which represents the overall strength of support in favor
of the alternative . This approach is known as multiattribute
utility theory (MAUT).

In MAUT, one can represent the preference relationon a
set of alternatives with a single-valued function on ,
called utility, such that for any

. Maximization of over provides the solution to the
problem of selecting .

Essentially, there are two conditions that guarantee the ex-
istence of the utility function. One is that the relationis a
complete preorder, that is, all alternatives inare comparable
and can be either preferred one to another or be indif-
ferent , both and are transitive, is asymmetric,
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and is symmetric and reflexive. The second condition guar-
antees that there are sufficiently many real numbers to represent
the preference relation. Formally, it states that there must exist
a countable subset , such that for any two alternatives

, there exists . An example
when the utility function does not exist is when two or more cri-
teria are ordered lexicographically [27], [37]

or

The utility function is defined up to an increasing monotone
transform, which preserves the ordering of the alternatives. A
positive linear transform , preserves
not only the ordering but also the order of preference differ-
ences. Consequently, the utility function can always be scaled
to a suitable interval (the unit interval for convenience)
with a simple change of variables. In this paper, without loss of
generality, the range of the utility functions will be presumed to
be .

In fuzzy set theory (FST), membership functions of fuzzy
sets play the role similar to the utility functions—the role of de-
grees of preference [10]. Many authors, including Zadeh him-
self, refer to membership functions as “a kind of utility func-
tions” [13], [23]–[25], [42], [58], [68], [70]. The equivalence
of utility and membership functions extends from semantical to
syntactical level [8], [9]. Although, this is not the only possible
interpretation of membership functions [7], [24], it allows one
to formulate and solve problems of MCDM using the formalism
of FST.

The vector maximization problem of MAUT

Maximize over

where are the utility functions of the corresponding at-
tributes , takes the form

Maximize

where is some function of real variables which aggregates
the individual utility values into the overall utility of the alter-
native . An essential assumption is that the individual utility
functions exist, in other words, the attributes are utility
independent of the other attributes.

In FST this problem takes the form

Maximize

where stands for an appropriate aggregation operator. It
combines the membership values in the sets , into
the membership value of the set, formed by some operation
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on the sets , such as intersection, union, or their
combination. For example could be , or

, or , etc.
In MAUT, the combining function is usually additive or

multiplicative

or

although, other functions are not explicitly prohibited. Addi-
tive aggregation, as well as max, min and product operators, are
traditionally used in neuro-fuzzy systems [15], [40], [41], but
again, more general forms of aggregation are allowed.

In FST the aggregation operators take a large variety of forms,
e.g., , Yager, Dubois & Prade, Schweizer & Sklar,
Hamacher, Frank, Dombi families, averaging operators, ordered
weight aggregation (OWA), compensatory operators, operators
based on Choquet and Sugeno integrals, etc. [22], [23], [31],
[32], [42], [52]–[55], [70]. Aggregation operators have been ex-
tensively studied and their application to MAUT problems pro-
vides a good theoretical setting.

The choice of aggregation operators in FST is not simple. Ini-
tially, only and operators were used to model fuzzy set
intersection and union, primarily because of their strong alge-
braic properties: these are the only operators that preserve mu-
tual distributivity. With the development of the theory other op-
erators have emerged. They provided compensatory properties
and better fit to empirical data and, therefore, seemed to model
human decision making better. Nowadays, there are some 90
different families of aggregation operators used in various appli-
cations. Theoretically, they are all equivalent and can be mapped
to a class of metrics in which the similarity to the Ideal alterna-
tive is measured [8], [9]. Therefore, other criteria have to be used
to select the appropriate aggregation operator [70]. Among these
criteria we will emphasize the empirical fit, adaptability and se-
mantical clarity.

This paper will discuss various methods of selecting and ad-
justing aggregation operators based on empirical data and expert
opinion. We consider the situations where noa priori knowledge
about the properties of operators is available, and therefore they
have to be built using exclusively empirical data, as well as the
situations where the expert opinion dictates the form of the op-
erator and the available free parameters are adjusted to fit the
data. We illustrate this process on model problems, and then on
a real application of a medical decision support system that in-
corporates clinical guidelines.

II. CLINICAL GUIDELINES IN MEDICAL DECISION SUPPORT

SYSTEM

Almost any medical computer application can be classified
as a medical decision support system—a computer program de-
signed to help health professionals make clinical decisions [6].
In this paper we are considering only those applications that
provide clinicians with some form of active customized advice,
based on symptoms and signs from the electronic patient record.

This, of course, does not exclude other forms of advice, such
as consultation by the clinician of general information about
diseases, treatments, protocols, guidelines, etc. But our primary
goal is to develop mechanisms of customising the advice to the
specific problems of a given patient.

This problem has two faces: 1) generation of the advice and
(2) its delivery. We have discussed the problem of the delivery
of the advice, including fuzzy advice, elsewhere [10], [64], [65].
This paper addresses generation of the advice based on the elec-
tronic patient record (EPR). Also, we do not discuss the problem
of diagnosis and the associated problem of representing general
medical knowledge. We limit the scope of this paper to a spe-
cific niche of generating advice on treatment and patient man-
agement options, based on clinical practice guidelines.

Clinical practice guidelines (hereafter,clinical guidelinesor
simply guidelines) are standardized specifications for care de-
veloped by a formal process that incorporates the best scien-
tific evidence of effectiveness with opinions of experts in the
fields [47]. In general, they have been developed in an effort to
reduce escalating health care costs without sacrificing quality
and have been shown to improve health care outcomes when
followed [34]. To be effective, guidelines need to be integrated
into the physician’s decision-making process in daily practice
[45]. It has been recognized that the guideline statements should
be linked to the actual patient data, and therefore be integrated
with the EPR. The most predictable impact is achieved when
“the guideline is made accessible through computer-based, pa-
tient-specific reminders that are integrated into the clinician’s
workflow” [45], [69]. That is, ideally one provides guidance
“just in time” in a clinical workstation environment—for ex-
ample, as with a drug interaction alert at the time a doctor writes
a prescription.

Most current guidelines are not represented in the form of al-
gorithms. Instead, they are implemented in the form of text nar-
ratives, describing possible medical conditions and signs with
the appropriate recommendations. This fact creates a significant
obstacle for computerising clinical guidelines, their electronic
exchange and assessment. Despite recent progress in developing
formal syntax for guideline representation [45], [47]–[50], [57],
[62], [69], in the computerised form the guidelines are mostly
translations of text-based narratives [69].

It is the task of knowledge engineers to extract knowledge
from health professionals and to represent guidelines in
more suitable (for computers) form, such as the collection of
If then rules. It turns out, however, that even if formulated
as If then rules, clinical guidelines are still not suitable
for computer implementation. There are different sources of
uncertainty present, among which are: lack of information,
nonspecificity, probabilistic nature of data and outcomes,
vagueness of recommendations, strife and fuzziness in deter-
mination and interpretation of clinical signs [1], [7], [36], [43],
[49], [65].

In this paper we only deal with the problem of fuzziness and
vagueness, regardless of their source. Suppose that the guideline
has been formulated as

is is
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Here is a linguistic variable, and are fuzzy sets and is
the rule consequent. For example, one such guideline could be

is obese is smoker

check blood pressure every visit

Both setsobeseandsmokerare fuzzy, and the numerical vari-
ables body mass index (BMI), defined as the ratio of weight and
the square of height of the patient, and the number of cigarettes
per day determine the membership values ofin these sets. To
calculate the strength of the recommendation, the membership
values of both antecedents must be combined using an aggrega-
tion operator, and then the result is used as the argument of the
implication operator.

This process seems straightforward, and generally ,
product, or other simple operators are used for aggregation
in such simplified examples. When it comes to practical
implementation of the system, however, it turns out that
its behavior is quite different from that of the experts who
provided the rules. Firstly, despite having identical form of
the antecedent, like AND AND , different rules seem
to require different aggregation operators. Secondly, the rule
antecedents are usually more complicated. Combination of
conjunction and disjunction, like ( OR OR ) AND (
OR ), are common. Thirdly, the meaning of the connectives
“and” and ”or” is not fixed. In some places they correspond
to disjunction and conjunction, in other places the meaning is
reversed (consider the statement “the drawer contains forks
AND knives” [36]), and in some cases they do not correspond
to either. This is the case when various criteria support each
other and trigger the rule collectively (what Kasabov calls
synergism ([41], p. 357), or when the criteria display conjunc-
tive and disjunctive behavior simultaneously (compensatory
operators [70]), or when aggregation depends on their values
(i.e., conjunctive behavior for small values and disjunctive
behavior for big values [54]). Consequently, it does not look
feasible to predefine the form of the aggregation operators and
use them throughout the rule base, one for “and”, the other for
“or.” Instead, each rule should be examined separately and the
appropriate operator for it should be found based on the feeling
of the experts and on their actual decision pattern over the set of
typical examples. The following sections describe this process
in detail.

III. A GGREGATIONOPERATORS

When the rules in the decision support system contain more
than one antecedent, the degrees of strength of the antecedents
need to be combined to determine the overall strength of the
rule consequent. In the language of fuzzy sets, the membership
values of the linguistic variables in the rule antecedents have to
be combined using an aggregation operator. Formally, a general
aggregation operator is a real function , non-
decreasing in all arguments, with the properties and

(a number in bold denotes an-vector) [42], [55],
[70]. This is the most general mathematical representation of
aggregation, because the monotonicity requirement is essential
for order preservation (if one criterion increases the support of

the alternative, the overall support cannot decrease), and the nor-
malization conditions guarantee consistency with classical logic
in the limiting case.

General aggregation operators display the whole range of be-
havior: disjunctive, conjunctive, averaging, mixed, commuta-
tive, mutually reinforcing or otherwise, and correspond to vague
and loosely defined “and” and “or” connectives, or synergism
[41].

All aggregation operators are equivalent to the distance to
the ideal or anti-ideal in the relevant metric [8], [9], and
therefore are equivalent among themselves. Particular families
of aggregation operators have been identified by enforcing some
other properties, such as commutativity and associativity. Tri-
angular norms and conorms and averaging operators are well
known examples [23], [42], [55], [70]. However, many other
operators have emerged: compensatory operators, uninorm op-
erators, ordered weighted aggregation, operators based on Cho-
quet and Sugeno fuzzy integrals, piecewise continuous opera-
tors, etc. [31], [32], [52]–[54]. Families of aggregation opera-
tors overlap, some include other families, some form equiva-
lence classes [31].

Because different classes of aggregation operators display
substantially different behavior, it is not logical to use any par-
ticular class to provide generic representation of aggregation.
Therefore, we will use general aggregation operators to model
aggregation of rule antecedents in decision support systems.
They will provide the highest degree of adaptability and excel-
lent empirical fit. However, if there are strong reasons to restrict
the selection to a particular family of operators, we will impose
the relevant constraints.

Consider general aggregation operator . The function
can have a simple algebraic form, such as

or

or

or

can also be a combination of simple operators, like

The degrees of importance of rule antecedents (vector a) can
be easily incorporated into aggregation operators in a variety of
ways [8], [67], [68]. For example

or

can incorporate permutations of the antecedents (OWA) or can
be expressed as Choquet or Sugeno integrals [32], [42], [43].
Finally, might not have a meaningful algebraic representation.
In this case we think of it as a function , which depends
on parameters , that could be adjusted to fit empirical data.
In all cases, needs to be nondecreasing in all arguments, and
to satisfy and .
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Our task is to select one or another operator for a given de-
cision rule based on observed decision pattern of the experts.
We assume that empirical data of the form , where

are the vectors of membership values of the antecedents and
are the strengths of response of the expert, is available. In

addition, the expert’s opinion about the algebraic form of the
operator or its properties, and the initial guess about the degrees
of importance of the criteria might also be available.

Essentially, we have two established techniques we can use
(1) parametric and (2) nonparametric regression. In parametric
regression, we fix the algebraic form of the operator, and fit
the available free parameters to the data. The main advantage
of this approach is its clarity: the parameters have semantical
meaning, properties of the operator are known, its behavior is
predictable, and, if necessary, calculations can be performed
with pen and paper. Moreover, if the algebraic form of the oper-
ator has meaning in the specialist’s domain (as discussed in the
next section), then not only the end result but also intermediary
steps of aggregation are clear.

In contrast, in nonparametric regression parameters are mean-
ingless,1 and aggregation operator behaves like a black box.
However, the nonparametric representation is much more adapt-
able and versatile (in modeling functions of different shapes),
it provides much better fit to empirical data and does not rely
on the correctly selected class of aggregation operators. More-
over, the technique of splines we present in a later section allows
one to balance the generality of representation with the need to
specify particular classes (e.g., commutative operators or trian-
gular norms).

Let us formulate the problem formally.

A. Problem

Given empirical data , and possibly experts’
opinion about the aggregation operator, find such representation
of the aggregation operator that

1) provides good approximation to empirical data;
2) is flexible to model various classes of aggregation opera-

tors;
3) is able to confine to a particular class of operators, or a

particular property;
4) is semantically clear.

IV. FITTING TO DATA AND EXPERT OPINION: SEMANTICAL

CLARITY

In this section, we consider the situation where the experts
have a clear idea about the form of the aggregation operator, but
are not sure about certain parameters, such as the relative impor-
tance of rule antecedents. These parameters can be adjusted to
fit the empirical data by using nonlinear regression tech-
niques.

A typical example in medical decision making is aggrega-
tion of risk factors or indicators. For instance, consider the sit-

1The adjective “nonparametric” is misleading. Nonparametric methods (also
called distribution-free in statistical literature) actually do involve parameters,
either fixeda priori or estimated from the data. Unlike in parametric approach,
these parameters are not meaningful in relation to the original problem. A com-
prehensive discussion of the method of splines in nonparametric regression is
given in [28].

TABLE I
INDICATORS FORBONE DENSITY STUDIES (BDS)

uation where bone density studies (BDS) has indicators as per
Table I. Some indicators are considered strong indicators (e.g.,
postmenopause), whereas other indicators are mild. None of the
indicators is sufficient by itself. If the total score is greater than
five, BDS is recommended.

Such a system of scores is modeled by the (weighted)
bounded sum operator (member of Yager family of triangular
conorms [42])

The importance factors are simply the indicators’ scores di-
vided by 5. Therefore, the algebraic form of the aggregation
operator is given. However, the importance factors might not
be correct: given values reflect the guess of the experts about
their relative importance. “Guess” may seem a slightly unfair
term; this is to say that it is the expert opinion based on con-
sideration of a variety facts possibly external to their experience
(e.g., through reading research literature) as well as from their
personal observation, however, lacking an explicit derivation of
the weighting factors from the evidence. For example, in the
case of the BDS guideline, a literature review [63] reveals that
some risk factors have been clearly established as having a sig-
nificant, independent contribution to loss of bone mass by ran-
domized controlled trials (RCTs) in clinical contexts very sim-
ilar to the area of intended application for this guideline—these
are given a weight of 2. Other factors are less well established
by relevant RCTs but have some empirical evidence or analyt-
ical feasibility—these receive a weight of 1. Empirical findings
are not available to firmly establish the strength of all correla-
tions among the factors or to provide direct evidence for a par-
ticular aggregation method. The concept of a simple threshold
for BDS based on the weighted sum is as much a concession to
having a computationally simple and easily-expressed criterion
as a firmly-held belief of the experts.

One way of determining the importance factors is to use the
analytical hierarchy process (AHP) by Saaty [61]. However, the
ratios of relative importance may not be available from the ex-
perts, besides, the weights of importance need to be somehow
normalized. The normalization criteria ,
or [67] do not always make sense (e.g., in the
bounded sum operator). Of course, the problem of normaliza-
tion can be somehow resolved, but the fact that AHP requires
knowledge elicitation procedure makes it unusable when ex-
perts’ knowledge is not readily accessible. In contrast, the em-
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pirical data—expert responses to given situations, can be rou-
tinely (and automatically) collected.

The alternative way of adjusting importance factors is to ob-
serve experts’ decision pattern on a set of model situations and to
find the values via nonlinear regression. Nonlinear least squares
algorithms, such as Levenberg–Marquardt method [46], are ex-
tensively used for this purpose and could be found in commer-
cial software (e.g., [19]). As the initial approximation, the ex-
perts’ guess about the importance factors can be taken.

In our model problems we used the Levenberg–Marquardt
method implemented in DataFit software by Oakdale Engi-
neering, Inc., Oakdale, PA. [19]. As the operator we wanted to
reconstruct on the basis of empirical data, we have chosen the
bounded sum operator with 6 antecedents and the importance
factors (this was the experts’
consensus in the BDS example—see last section). As the initial
guess the vector was taken.
It represents experts’ initial opinion about the aggregation
operator (Table I). To test the method, we randomly generated
20 cases (vectors) and modeled the experts’ solutions to them
using the selected aggregation operator, with added random
noise, uniformly distributed in (values ). This
model of the empirical data was used to reconstruct the
aggregation operator. We replicated this numerical experiment
20 times and obtained a very good fit (mean error in coefficients

) in all cases, despite the noise in the data.
Confident in the robustness of this method, we applied it to

the real data: 20 actual cases obtained during the development
of care plan on-line (CPOL) system described in the last section.

V. FITTING TO DATA: ADAPTABILITY AND EMPIRICAL FIT

In many cases it is hard to identify the appropriate form of the
aggregation operator before adjusting it to the data. Besides, an
expert’s “feeling” about it sometimes could be misleading. It is
usually based on the simplicity argument, which may result in
oversimplifying. For instance, the scores system for indicators
or risk factors is designed for calculations by medical practi-
tioners with pen and paper, and therefore semantical and numer-
ical simplicity are the most important. For computer implemen-
tation of a decision support system these criteria, specifically the
numerical simplicity, are of secondary importance. The quality
of fit becomes the dominating factor. This section describes the
use of nonparametric methods to approximate aggregation op-
erators.

Let us represent the aggregation operator as the linear com-
bination

where is a collection of basis functions and are co-
efficients. As our basis functions we choose products of uni-
variate -spline functions. The aggregation operator becomes
a tensor-product polynomial spline whose coefficients can be
found using the least squares method.

The advantages of -splines for approximating functions are
widely documented [14], [15], [20], [28]. These functions are
easy to calculate, they provide enormous flexibility, excellent

Fig. 1. Second orderB-splines.

fit and good smoothness. Linear and quadratic splines are fre-
quently used to represent membership functions of fuzzy sets,
including neuro-fuzzy systems [2], [15], [41]. In fact, tensor-
product spline approximation can be seen as a neural network
system (lattice-based-spline network [15, Ch. 3], [8], which is
equivalent to the adaptive neuro-fuzzy system ANFIS [40, Ch.
12]. However, we prefer to use traditional spline approximation
terminology in this paper.

We will use second-order -splines on a uni-
form mesh because of their simplicity and mild smoothness
constraints on the aggregation operator (we require only
continuity). Graphically splines are shown in Fig. 1.
We split the interval into three regions, and therefore
we have 4 (appropriately scaled)-splines which are not 0
on . These splines form the basis for each variable. For
an aggregation operator taking arguments, the basis
functions are given as tensor products of univariate-splines

. The coefficients
can be numbered in the similar way, that is and the

formula for becomes

The vector of coefficients can be determined from scattered
data using least squares method [20], [46], and the spline is re-
ferred to as the least squares spline.

When used to approximate aggregation operators, however,
this technique does not give satisfactory results: it fails to take
into account the monotonicity of and boundary conditions

and . The boundary conditions can be dealt
with easily: the coefficients and must be set to 0
and 1, respectively. The monotonicity, which is essential from
semantical point of view, requires a more careful consideration
[59], [60].

Even though the data to which the spline is adjusted is mono-
tone, the splines themselves are not necessarily monotone.
This is illustrated in Fig. 2 in the univariate case. For splines
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Fig. 2. Least squares spline does not preserve monotonicity of the data.

whose nodes coincide with data points, the solution is to use
constrained splines [2], [3], [5], [20], [26], [28], [33], [39].
For multivariate case this would require data to be given on a
rectangular mesh, which is not the case in most problems—the
data is scattered. One approach to monotone approximation
of scattered data is Powell–Sabin splines [66]. This approach
is numerically expensive, and is used mostly for surface
approximation. Thin-plate splines [20] with the appropriate
restrictions can also be used, but again, this approach is rather
complicated [59].

In this section, we will present an approach based on re-
stricted least squares splines. It is semantically and numerically
simple: tensor products of univariate splines are used as the basis
functions and general restricted least squares problem has been
thoroughly studied [4], [18], [35], [46], [51], [59], [60].

Consider first the univariate case. The monotonic function
is represented as

(1)

It is well known that -splines form a partition of unity, that is

In the case of second-order splines , only 2 neighboring
splines are not 0 at any point. The partition of unity property
implies that the derivative , and there-
fore . The derivative of the spline

Since is increasing and is decreasing, the con-
dition that translates into . In other words,
the coefficients of the monotonically nondecreasing spline
form a nondecreasing sequence. To comply with and

, the sequence must start with 0 and terminate with 1.
Let us represent the coefficients slightly differently. Let
, and . (1) becomes

(2)

The matrix of the system of normal equations is given
by

whereas the components of the right-hand side are

where is the total number of data points and is the
number of basis functions. The components of the vectormust
be nonnegative.

The naïve approach outlined above can be generalized into
the following.

Proposition: The necessary and sufficient condition for
monotonicity of linear and quadratic splines ( and )

with

is . For higher-order splines, this is only
a sufficient condition [11], [12].

Here the functions (trapezoidal, or -splines) are
linear combinations of the usual-splines and they are chosen
as an alternative basis to -splines, because they express
monotonicity restriction in a very simple form, as nonnegativity
of the coefficients. Simple relation between- and -splines
allows one to calculate the new basis immediately. Calculation
of spline coefficients is performed by solving the system of
normal equations.

Thus, we arrived to the classical problem of restricted least
squares [46]. The solution is guaranteed to exist either inside
the admissible domain (positive components of) or on the
boundary (some components are 0). Various methods of solution
are known. The method of Lagrange multipliers is one of them
[46], [51]. Alternatively, branch-and-bound algorithms can be
employed [4]. One such method takes advantage of the special
form of the constraints and permits the reduction of the search
space (the size is is the length of ) significantly [17],
[18]. The nonnegative least squares algorithms NNLS and LSEI
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Fig. 3. Constrained least squares spline.

are described in [35], [46] and are available from NETLIB [21],
[56]. Fig. 3 shows the monotonic least squares spline calculated
using LSEI.

Let us now turn to multivariate case, important for approxi-
mating aggregation operators. The function has to be non-
decreasing in all arguments. Since

it can be shown that the monotonicity condition translates into a
set of linear restrictions on . To avoid algebraic difficul-
ties, we will use -spline basis again; this will give the system
of normal equations almost immediately.

As earlier, let

where

All new basis functions are linearly independent and nonde-
creasing on the interval , therefore, their positive linear
combination is also nondecreasing. They are related to inte-
grated -splines from [59], but are defined slightly differently.
The tensor product of nondecreasing basis functions is also non-
decreasing in all arguments in every point of . Therefore
we express as

If all the coefficients satisfy

the function is nondecreasing in all arguments. The sums
are taken over all combinations of upper index limits .
Altogether, there are at most inequalities (some are
redundant). They can be easily represented in matrix form, and
the matrix consists of 0s and 1s arranged in a fashion consistent
with the indexing system.

For example, in two-dimensional (2-D) case we have

for every and and

for every and

The next step is to build the system of normal equations and
to solve the problem using any restricted least squares algo-
rithm, such as LSEI [21], [35], [56] or BVLS [17], [21], [46],
[56]. Consider LSEI method. It consists in solving the following
system

Solve given that and

where the first system of equations describes approximation
conditions, the system of inequalities ensures monotonicity and
the last system describes additional interpolation conditions (it
could be empty).

The ability to incorporate interpolation conditions (besides
fitting the data) turns out to be very useful when approximating
aggregation operators. Recall that aggregation operators require

and . Rather than imposing complicated re-
strictions on the coefficients, one can simply add two inter-
polation conditions into the system and the required
boundary conditions will be satisfied.

This technique can be extended further to impose other
restrictions on the aggregation operators. For instance,
triangular conorms satisfy and

for any at any position, (triangular
norms have a similar property). These restrictions can be
enforced by adding the relevant interpolation conditions to
the system (namely at . The
same method is employed when the idempotency property

is needed. Commutativity of the aggregation
operator is enforced by making the matrixsymmetric, as
discussed in [11], [12]. Finally, the associativity property is
enforced by approximating the additive generators [11], [12].

Fig. 4 shows the result of approximating a triangular conorm
with monotone tensor product least squares spline. The (noisy)
data are given in the form of 20 randomly scattered points,
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(a)

(b)

Fig. 4. (a) Hamacher sum operatorf(x; y) = (x + y � 2xy)=(1 � xy)
approximated with monotone least squares spline. The 20 data points are
randomly generated and are marked with circles. The data contains random
noise uniformly distributed in[�0:1; 0:1]. (b) True versus predicted values
(straight line corresponds to perfect fit).

marked with circles. Restrictions and
are imposed. Figs. 5 and 6 illustrate the

use of monotone splines in empirical studies of aggregation op-
erators. The data is taken from [70] and represent the empirically
determined membership values of 20 objects in the fuzzy sets
“metallic object”, “container” and “metallic container”. The ag-
gregation operator that models intersection of the first two sets
was constructed based on the data and the boundary conditions

and . It is shown on Fig. 5. Fig. 6 shows
the relationships between empirical and predicted grades of

Fig. 5. Empirical data used to approximate fuzzy set intersection in “metallic
container” example [59]. Monotone spline aggregation operator.

membership (the straight line indicates perfect prediction for
error-free data). Following [70], we tested the acceptability of
the constructed operator statistically using Student-test for the
differences between empirical and predicted grades of member-
ship. The mean of the sample is 0.000 03 (versus 0.052 for min
operator [70]), the observed standard deviation is 0.036 (versus
0.067) and the result is (versus 3.471), which means
that at a given confidence level the proposed aggre-
gation operator should be accepted (min is rejected). Increasing
confidence level to does not change this result.

The proposed approach of constrained least squares splines
compares favorably with other methods of approximation of
aggregation operators, such as using neural networks or non-
linear regression [29]. First of all, the method of splines is linear
and consequently the solution is reached in the first iteration.
Secondly, it allows one to represent monotonicity explicitly, as
nonnegativity of the coefficients, whereas in other methods this
is not feasible. Splines are very flexible to model functions of
any shape, and their quality of fit is controlled by the number
of approximation knots. Finally, many semantically important
properties of certain families of aggregation operators, such as
commutativity and idempotency, can be enforced by using in-
terpolation conditions at key points, whereas other methods are
less adaptable. Thus, constrained splines satisfy the first three
requirements we set in the problem of approximation of aggre-
gation operators.

Disadvantages of this approach are also clear. There is no se-
mantic interpretation of spline coefficients, and the constructed
operator behaves like a black box. Tensor-product spline re-
quires many coefficients to be determined, and hence substan-
tial amount of empirical data (that may not be available). Even
though LSEI method can solve underdetermined systems (less
data than coefficients), for quality approximation the data is es-
sential. Consequently, in case of few data, the previously de-
scribed parametric approach should be used.
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(a)

(b)

Fig. 6. Observed versus predicted membership values. (a) Monotone spline
operator. (b) Min operator.

VI. CPOL SYSTEM

CPOL is an intranet-based medical decision support system
that offers both solicited and unsolicited advice to a general
practitioner (GP) during care planning. Care planning is a de-
cision making step in the process ofCoordinated Care, a trial
of which is run by the SA HealthPlus division of the South Aus-
tralian Health Commission. CPOL provides a single coherent
source whereby the GP can review a HealthPlus patient’s EPR in
the context of devising a plan of prospective services and medi-

cations. In the same application environment CPOL provides ac-
cess to clinical practice guidelines tailored for SA HealthPlus. It
employs multiple methods of active decision support by linking
clinical guidelines with the routine observations from the elec-
tronic medical record. Unsolicited advice is provided “just in
time” without disrupting the GPs workflow. The mechanisms
for doing this include using nonverbal clues, facilitating imple-
mentation of the decision consistent with the advice (and pro-
viding critical advice otherwise), structuring data entry forms
in a way that conveys the advice, and also providing narrative
advice at critical steps [10], [64].

Fuzzification of clinical guidelines is an important step in
their electronic implementation, and the problem of selecting, or
approximating, aggregation operators plays a major role in this
context. It is not always clear what kind of logical operations is
behind “and” and “or” connectives, whether these operators are
compensatory and what are the importance factors. Experts are
ambiguous in answering these questions, and rather than tor-
turing them with knowledge elicitation procedure, we offered
them a selection of real and dummy cases, where they had to
make a decision. This data was used to fit the aggregation op-
erators (either in parametric or nonparametric form) to experts’
decision pattern. We illustrate this process on guidelines from
SA HealthPlus as implemented in CPOL.

The first guideline is for bone density studies with indicators
as discussed earlier (as per Table I). If the weighted sum of the
indicators applicable to a given patient (based on their EPR) is
more than 5, then the procedure is recommended (CPOL places
a red “!” attention flag by the BDS service as well as describing
the service as “recommended” in its guideline). If the sum is
between 3 and 5, BDS is suggested as an option (and receives
a yellow “?” attention flag). As we mentioned earlier, this rule
corresponds to bounded sum operator

with given by importance factors divided by 5. The member-
ship functions (for individual antecedents) are piecewise linear
and they are given in Table II. These membership functions
have been chosen for simplicity reasons, however they still ad-
equately describe the corresponding fuzzy sets. More advanced
methods of membership function estimation from the data are
described in [2], [7], [58], [70].

As the data we took 20 cases, for which three experts (respira-
tory specialists involved in the framing of the guideline for use
in SA HealthPlus) gave their opinion on applicability of BDS.
We fitted the coefficients of the operator using DataFit nonlinear
regression software. The vector of resulting coefficients was

. It may appear that at least
within the bounded sum model, the “smoker” and “poor phys-
ical activity” indicators do not play any major role in doctors’
decision making. We realize, however, that we used a very small
number of cases, and the data were not evenly spread across its
domain. All the patients participating in the study were either
smokers or exsmokers and, although, we formally accounted
for the time since they quit smoking, it introduced a bias into
experts’ opinions. As to the “poor physical activity” indicator,
it appears that doctors use more sophisticated criteria than just
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TABLE II
MEMBERSHIPFUNCTIONS FORBONE DENSITY STUDY INDICATORS

the walking distance. The fact that the data does not support the
experts’ opinion on the importance of the last two indicators de-
serves further investigation both from decision making and user
interface perspective.

Other guideline examples from CPOL that can be readily
fuzzified are

IF Diastolic Blood Pressure mmHgOR Systolic Blood

Pressure mmHg,

THEN Check BP every visit

IF BMI OR BMI OR % weight loss in 3 months,

THEN Consider Dietician service

IF Total Cholesterol OR LDL OR HDL OR Triglyz-

erides

THEN Consider dietary therapy

IF Received dietary therapy AND after 2 readings

(TotChol OR (HDL AND TotChol ) OR (HDL AND

Triglyzerides )),

THEN Consider drug therapy.

There are no indicators about the form of aggregation
operators, and nonparametric-spline approach seems to be
most appropriate. However, the total number of basis functions
is , where is the number of indicators, and hence large
amounts of empirical data are needed to find the spline coeffi-
cients. These data can be routinely collected when employing
an on-line health information system such as CPOL, and our
research team intends to develop further empirical models in
this fashion as the system is used further.

VII. CONCLUSION

In absence of set-theoretical criteria, semantical clarity, flex-
ibility and goodness of fit to empirical data become the deci-
sive factors in selecting aggregation operators. Both parametric
and nonparametric regression can be employed to find the func-
tional form of the aggregation operator. Parametric regression
provides better semantical clarity, but is not as flexible and pre-
cise as nonparametric methods. In the case of nonparametric
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regression, multivariate linear least squares splines provide ex-
cellent flexibility, but may not preserve monotonicity, which is
semantically essential for general aggregation operators. To en-
force this property, linear constraints on spline coefficients have
to be introduced.

An appropriate choice of basis functions in the space of linear
splines results in an especially simple form of the constraints
that can be used in standard algorithms. The availability of
such algorithms makes the problem of monotone approxi-
mation straightforward. In addition, important properties of
certain classes of aggregation operators can be translated into
interpolation conditions, and therefore easily incorporated into
the algorithm. Thus, splines are not only flexible to model
general aggregation operators, but are also adaptable to model
particular families.

The major application of the proposed methods is seen in ex-
pert and decision support systems where little is known about
how the criteria (risk factors, indicators, etc.) should be aggre-
gated. Experts in the field can provide their guess about relative
importance of such criteria, and their “feeling” about mathemat-
ical properties of aggregation operators (compensatory or accu-
mulative behavior, or lack of thereof), and can also provide em-
pirical data by considering various cases themselves. These data
are subsequently used for regression analysis. An example of
practical application of our method is the CPOL system, which
incorporates fuzzy versions of several clinical guidelines.
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