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Abstract

It is shown in this paper that, by the appropriate choice of gain and input
influence matrices, certain eigenpairs of a vibrating system may be assigned
while the other eigenpairs remain unchanged.

The system under considertion is modelled by a set of second order differ-
ential equations and the assignment is carried by multi-input state feedback
control.

The solution may be of particular interest in the stabilization and control
of flexible structures using smart materials, where only a small part of the
eigenstructure is to be reassigned and the rest is required to remain unchanged.

The method presented is illustrated with a numerical example.
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1 Introduction

Consider the vibratory system modelled by the second order matrix dif-
ferential equation

Mi+Ce+ Ke =0, (1)

where the dots denote differentiation with respect to time and the n-
square real matrices M, C and K are symmetric. Separation of variables

At

x(t) = ze', z a constant vector,

in (1), leads to the quadratic eigenvalue problem of finding the eigenvalues
A, and the associated eigenvectors z, # 0, which satisfy

P()\k)ZkZO, k= 1,2,...,2n, (2)

where

P(A) = (VM + )\C + K).
Assembling the 2n relations (2) we can write
MZA*+CZA +KZ =0,

where A = diag{A1, Xs, -+, A9} and Z = (21, 22, -+, 22,). Our interest
here is in the case where the set {)\k}fn is distinct, from which it follows
that the eigenvectors {zk}fn are two-fold linearly independent in the

sense that 7
W= (ZA) (3)

is invertible. If (X, z) is an eigenpair of (2) then the complex conjugate
(A, %) is also an eigenpair because M, C and K are real. Hence, we can
say that the sets {)\k}fn and {zk}fn are pairwise self-conjugate in the
sense that they are self-conjugate and z, =z, whenever A\, = A, for all
p and g. Where there is no ambiguity, we will refer to a diagonal matrix
of the Ay and the matrix of corresponding z; as pairwise self-conjugate
if the associated sets are pairwise self-conjugate.

The dynamics of (1) can be modified by applying a control force
Bu(t), B an n x m matrix and u(t) a time dependent m vector. The
model relation (1) now becomes

Méi + Cx + Ko = Bu(t). (4)

The special choice

u(l) = F'& + G e, (5)
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where F' and G are n x m matrices, is called state feedback control and
leads to the eigenvalue problem

MYD?+ (C -BF"YD+ (K - BGTY = O, (6)

where Y € C"*?" is the eigenvector matrix and the diagonal D € C*"*?"
is the eigenvalue matrix.

We note in passing that whereas (5) applies state feedback control
using position and velocity, the choice

u(t)=F'éa + G"&

applies state feedback control using accelereation and velocity. This
choice leads to a problem which can be recast as a position and velocity
problem for the same M ,C and K matrices but taken in the reverse
order. We leave the details for the interested reader.

The problem of finding F' and G such that the closed loop quadratic
pencil XM + \C — BFT) + (K — BGT) has a desired set of 2n
eigenvalues is called the eigenvalue assignment or more popularly, the
pole placement problem, in control theory literature. In most practi-
cal situations, however, only a few eigenvalues of the open loop pencil
P(A) = MM + AC + K are undesirable (i.e. do not lie in the left half
plane as required for stability). In those situations, it makes more sense
to replace only the undesirable eigenvalues while leaving the others un-
changed. This modified pole placement problem is called the partial pole
placement problem. The partial pole placement problem for the quadratic
pencil P(A) has been solved recently in the single and multi input cases
[5, 6]. The solutions in both cases have been obtained solely in the sec-
ond order setting in the sense that they do not depend on a first order
realisation [9, 4] and deal directly with matrices M, K and C. While the
pole placement problem is important in its own right, it is to be noted
that, if the system transient response needs to be altered by feedback,
both eigenvalue placement as well as eigenvector placement should be
considered.

This is easily seen from the model expansion theorem (see [9, 3]) which
says that every solution z(#) of (1) in the form z(¢) = ze, represeting a
free response of (1), can be written in terms the eigenvalues and eigen-
vectors of the pencil P()):

2n
x(t) = Z age ¥z
k=1
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Thus, the eigenvalues determine the rate at which the system response
decays or grows, while the eigenvectors determine the shape of the re-
sponse.

The problem of altering both the eigenvalues and the eigenvectors of
the closed loop pencil is know as the eigenstructure assignment problem.

For the second order system eigenstructure problem see [9, 10, 13, 2]
and the first order system see [1, 16, 7, 14].

Unfortunately, the eigenstructure problem, in general, is not solvable
if the matrix B is given (see [10]). Recent progress with smart materials
makes the concept of full state feedback, with a dense matrix B, possible
[11] and practical. Also, control of robot vibration allows application of
a full state feedback control. In this paper we consider a more tractable
problem, namely the partial eigenstructure assignment problem by al-
lowing B to be chosen. Specifically, we consider the problem Problem
1.1 stated below and obtain a solution of the problem entirely in the
second order setting, without resorting to the first order realisation, so
that the problem order is not doubled, the inverse of M is not computed
explicitly and the exploitable structures offered by the problem, such as
sparsity, symmetry, definiteness etc. are preserved.

In order that the control be realizable by means of physical devices,
the matrices B, F' and G must all be real. In such a case the eigenvalue
and eigenvectors are pairwise self-conjugate.

Let us partition the n x 2n eigenvector matrix and 2n x 2n eigenvalue
matrix as follows:

A m
Z2=(2, Z2), AZ( 1 Az) -
m 2n—m ’

m 2n—m

where Z; and A; are pairwise self-conjugate.
In this paper we address the following

Problem 1.1 Given

(a) real symmetric M, C and K,

(b) Z1 and Ay pairwise self-conjugate

(¢c) Y1 €C™, Dy €C™ ™, pairwise self-conjugate such that with

D m

e m e (P) )0
m 2n—m

m 2n—m 5
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the matrix

Y
(vp) 7
is invertible,
find B, F,G € R"™™ such that (6) holds.

2 Main results

The solution process consists of two stages:
(a) determine matrices B , F and G which are generally complex and
which satisfy
MYD*+(C-BF )YD+(K-BG )Y =0. (3

(b) from B, F and G find real B, F, and G such that BFT = BF'
and BGT = BGT
Let us focus first on stage (a).
Suppose that B, F and G is a solution. Then

MY ,D?+CY,D, +KY,=B(F' Y.\D,+G'Y,). (9

Suppose that B, F' and G is a solution to Problem 1.1, and let W &
C™*P. p > m have pseudoinverse W+ € CP*™ such that WW* =1 ¢
R™™  Then B = BW, F = FW' and G = GW™, is another
solution because BF' = BFT and BG' = BGT

Using W € C™*? with p > m allows for the construction of a solution
in which B can have dimension n x p, p > m. This fact is a consequence
of the arbitrariness in the solution which we will not pursue here.

Denote

W=FYD+&GVY,. (10)

Then, provided that W is invertible, B = BW is admissable for some
F and G. We can therefore take

B=MY,D!+CY,D, +KY, (11)
by virtue of (9) and (10). Relations (11) and (8) together imply that
F'Y D+G&Y, =1 (12)
In [15] it is shown that
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Theorem 2.1 For any ® € C"*"™,
F=MZAN®, G=-KZ0, (13)
satisfy
MZ,A2+(C — BF')ZyA, + (K — BG')Z, = 0.

In other words, F and G of the form (13) ensure that the last 2n —m
eigenpairs of the uncontrolled system are also eigenpairs of the controlled
system.

Putting (13) into (12) gives

®=(MZIMY,D, - ZTKY,)™! (14)

from which F' and G can be determined.

The solution B, F and G which result from this process is in general

complex. However, we now show that the products BFT and BG are
always real.

It follows from (8) and the pairwise self-conjugacy of Y and D that
we can write, denoting the conjugates by overbars,

MYD’ +(C - BF YD+ (K - BG')Y = 0. (15)

Conjugating (8) gives

MYD’ +(C - BF YD+ (K - BG')Y = 0. (16)

Subtracting (15) from(16) gives
(BF - BF')YD+(BG" - BG")Y =0

which can be rewritten in block matrix form as

T .1 | T a.r\( Y
(BG - BG | BF —BF )(ﬁ) =0.
The invertiblity of (7) implies that the left hand matrix vanishes, from
which it follows that BFT and BGT are real.
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2.0.1 Real B, F and G from B,F and G

At the start of the second stage we have generally complex B, F and

G but real products BFT and BGT Therefore, let us denote the real
n x 2n product

H=B[F'|G'),

and let
LR=H

L c R™™ R c R™? be any factoring of the right hand side H. Then
we can take B to be L and the first n columns of R to be FT and the
last n to be GT.

The two factorings which immediately come to mind for this purpose
are the QR factoring and the Singular Value Decomposition (SVD) (see
for example [12, 8, 3] We now describe the use of these two factorings
to find real B, F, and G. In both of these cases we use the so-called
truncated or compact form of the factoring.

The truncated QR factorisation [12] produces an L € R™™ in which
the m columns are orthognal and an R € R™*?" which is upper trian-
gular. For example, in the case of 5 x 10 matrix H we have

r T

r T r v r z x | z x oz x @
LR=|z2 2 = r x x x | r x x v =

r x x r z x | v z x v x

r T

By contrast, when the rank of H is m < n, the compact SVD produces
three matrices U € R"*™, orthogonal, ¥ € R™*™  diagonal, and V €
R**™ orthogonal which are such that

Usv? = H,
U ¥ vT
r Tr X
r Tr X X $$$$$|$$$$$
r Tr X X $$$$$|$$$$$
r Tr X X $$$$$|$$$$$
r Tr X

In this case we take B to be the product UY and we take the first n
rows of V to be F' and the last n rows to be G

LR=(UY) V" (17)
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3 Example

In this section we demonstrate the technique on a simple example. The
example models a 4 degree-of-freedom, system in which we assign two
eigenpairs. The open loop system we use has the matrices

M =1I.C = diag{1/2,0,0,1/2},

and
5 =5 0 0
-5 10 -5 0
K = 0 -5 10 =5
0 0 —5 6.

This system has eigenvalues A; shown in Table 1.

I3 Ak d
1 ][ —2.0923(e—001) — 1.8256(e+000)i | —1.0000(e+000) — 1.0000(e+000)i
2 || =2.0923(e—001) + 1.8256(e+000)i | —1.0000(e+000) + 1.0000(e+000)i
3 || —1.3080(e—001) — 3.1920(e+000)7 | —2.0923(e—001) — 1.8256(&+000)i
4 || =1.3080(e—001) + 3.1920(e+00 07 | —2.0923(e—001) + 1.8256(e+-000)7
5 || —1.2147(e—001) — 4.4412(e—001) | —1.3080(e—001) + 3.1920(e+000)
6 || —1.2147(e—001) + 4.4412(—001) | —1.3080(e—001) — 3. 1920(e+00 0i
7 || =3.8508(e—002) — 4.1362(e+000)i | —1.2147(e—001) + 4.4412(e—001)i
8 || —3.8508(e—002) + 4.1362(e+000)i | —1.2147(e—001) — 4.4412(e—001)i

Table 1: Spectra of the open and closed loop systems.

We reassign the eigenvalues A7 s and their associated eigenvectors by
setting

141 1—-1
RN oty -2
D= i) Y= s
144 1—4
Using Theorem 2.1 and (14) we get
1 -7 1+
- 42 442
B = 6 — 2 6+ 2
6.5+ 5.5t 6.5 — 5.5
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5.1427e¢ — 001 — 2.4550e — 002¢
—1.2016e + 000 4 1.1168e — 0012

A

F= 1.2253¢ + 000 — 1.1171e — 001:
—5.7169¢ — 001 + 2.4195¢ — 002;

7.7611¢ — 001 + 6.0498¢ — 0014

& — | —2:0047¢ + 000 — 1.4635¢ + 000:

2.0126¢e + 000 4 1.4914e + 0002
—8.1763e — 001 — 6.7288¢ — 0012

5.1427e¢ — 001 4 2.4550e — 0022
—1.2016e + 000 — 1.1168e — 001+
1.2253e 4 000 4+ 1.1171e — 0012
—5.7169¢ — 001 — 2.4195¢ — 002;

7.7611e — 001 — 6.0498¢ — 0012
—2.0047¢ + 000 + 1.4635¢ + 0002
2.0126¢e + 000 — 1.4914e + 0002
—8.1763e — 001 4 6.7288e — 0012

AT A AT
However, as mentioned earlier, the products BF and BG  are real:

0.6848  —0.8308
| 40159 —9.1664
BE =1 40730 —13.9729
6.9555 —16.8497
10,0220 —24.4978
7 $.6288  —21.8914
BG =1 117333 _929.9102
34347 —9.9630

0.8867 —0.8047

9.3555 —4.4768
14.2567 —6.7635 |’
17.1576  —7.6982
24.9052 —11.0555
22.0663  —9.2326
30.1165 —12.5031

9.7576  —3.2276

Taking the SVD of H = B[FT|GT] and forming the product in (17)

gives
35.3526 13.9956
B 36.5157 0.4163
50.7391  —1.5127
24.0369 —18.0236

Separating the first n and the last n rows of the matrix

G

o

in (17) yields

0.1127 —0.2357
—0.2578  0.5911

F= 02631 —0.6011 |'C=
—0.1256  0.2597
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0.2349 0.1227
—0.5967 —0.2431
0.6013 0.2606
—0.2511  —0.1557
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The eigenvalues of the system controlled by this B, F and G via (6)
are displayed in Table 1. It can be seen that the assignment of the
required eigenvalues has occured and that the eigenvalues intended to
remian unchanged are unaltered by the feedback. Although we do not
display them, the eigenvectors of the controlled system are assigned as
required.

4 Conclusion

We have developed a method for the partial eigenstructure assignment
of the multi-input state feedback control system modelled by a set of
second order differential equations.

We have shown that the input influence matrix B, and the gain ma-
trices F' and G can be chosen to assign just a part of the eigenstructure
arbitrarily while leaving the rest unchanged. The column dimension of
the matrix B must be at least as large as the number of eigepairs to be
assigned but B can be constructed to be have greater column dimension
if necessary. But fewer columns cannot achieve the required asignment.

The method developed builds on our previous results in which we de-
termined an explicit solution for the single input partial pole assignment
problem in vibrartory systems.

Although the solution here is not unique and is generally complex,
we show that, for pairwise self conjugate data, a real solution is easlily
available. This is important for practical problems.

The method has been illustrated with a modest numerical example.
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