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AbstractIt is shown in this paper that, by the appropriate choice of gain and inputin
uence matrices, certain eigenpairs of a vibrating system may be assignedwhile the other eigenpairs remain unchanged.The system under considertion is modelled by a set of second order di�er-ential equations and the assignment is carried by multi-input state feedbackcontrol.The solution may be of particular interest in the stabilization and controlof 
exible structures using smart materials, where only a small part of theeigenstructure is to be reassigned and the rest is required to remain unchanged.The method presented is illustrated with a numerical example.
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1 IntroductionConsider the vibratory system modelled by the second order matrix dif-ferential equation M �x+C _x+Kx = 0; (1)where the dots denote di�erentiation with respect to time and the n-square real matricesM ;C andK are symmetric. Separation of variablesx(t) = ze�t;z a constant vector;in (1), leads to the quadratic eigenvalue problem of �nding the eigenvalues�k and the associated eigenvectors zk 6= 0, which satisfyP (�k)zk = 0; k = 1; 2; : : : ; 2n; (2)where P (�) = (�2M + �C +K):Assembling the 2n relations (2) we can writeMZ�2 +CZ� +KZ = O;where � = diagf�1; �2; � � � ; �2ng and Z = (z1;z2; � � � ;z2n). Our interesthere is in the case where the set f�kg2n1 is distinct, from which it followsthat the eigenvectors fzkg2n1 are two-fold linearly independent in thesense that W = � ZZ�� (3)is invertible. If (�;z) is an eigenpair of (2) then the complex conjugate(�;z) is also an eigenpair becauseM ;C and K are real. Hence, we cansay that the sets f�kg2n1 and fzkg2n1 are pairwise self-conjugate in thesense that they are self-conjugate and zp = zq whenever �p = �q, for allp and q. Where there is no ambiguity, we will refer to a diagonal matrixof the �k and the matrix of corresponding zk as pairwise self-conjugateif the associated sets are pairwise self-conjugate.The dynamics of (1) can be modi�ed by applying a control forceBu(t), B an n �m matrix and u(t) a time dependent m vector. Themodel relation (1) now becomesM �x+C _x+Kx = Bu(t): (4)The special choice u(t) = F T _x+GTx; (5)July 13, 1999, 12:26. Page: 3



where F and G are n �m matrices, is called state feedback control andleads to the eigenvalue problemMYD2 + (C �BF T )Y D + (K �BGT )Y = O; (6)where Y 2 Cn�2n is the eigenvector matrix and the diagonal D 2 C2n�2nis the eigenvalue matrix.We note in passing that whereas (5) applies state feedback controlusing position and velocity, the choiceu(t) = F T �x+GT _xapplies state feedback control using accelereation and velocity. Thischoice leads to a problem which can be recast as a position and velocityproblem for the same M ;C and K matrices but taken in the reverseorder. We leave the details for the interested reader.The problem of �nding F and G such that the closed loop quadraticpencil �2M + �(C � BF T ) + (K � BGT ) has a desired set of 2neigenvalues is called the eigenvalue assignment or more popularly, thepole placement problem, in control theory literature. In most practi-cal situations, however, only a few eigenvalues of the open loop pencilP (�) = �2M + �C +K are undesirable (i.e. do not lie in the left halfplane as required for stability). In those situations, it makes more senseto replace only the undesirable eigenvalues while leaving the others un-changed. This modi�ed pole placement problem is called the partial poleplacement problem. The partial pole placement problem for the quadraticpencil P (�) has been solved recently in the single and multi input cases[5, 6]. The solutions in both cases have been obtained solely in the sec-ond order setting in the sense that they do not depend on a �rst orderrealisation [9, 4] and deal directly with matricesM ;K and C. While thepole placement problem is important in its own right, it is to be notedthat, if the system transient response needs to be altered by feedback,both eigenvalue placement as well as eigenvector placement should beconsidered.This is easily seen from the model expansion theorem (see [9, 3]) whichsays that every solution x(t) of (1) in the form x(t) = ze�t, represeting afree response of (1), can be written in terms the eigenvalues and eigen-vectors of the pencil P (�):x(t) = 2nXk=1 ake�ktzk:July 13, 1999, 12:26. Page: 4



Thus, the eigenvalues determine the rate at which the system responsedecays or grows, while the eigenvectors determine the shape of the re-sponse.The problem of altering both the eigenvalues and the eigenvectors ofthe closed loop pencil is know as the eigenstructure assignment problem.For the second order system eigenstructure problem see [9, 10, 13, 2]and the �rst order system see [1, 16, 7, 14].Unfortunately, the eigenstructure problem, in general, is not solvableif the matrix B is given (see [10]). Recent progress with smart materialsmakes the concept of full state feedback, with a dense matrix B, possible[11] and practical. Also, control of robot vibration allows application ofa full state feedback control. In this paper we consider a more tractableproblem, namely the partial eigenstructure assignment problem by al-lowing B to be chosen. Speci�cally, we consider the problem Problem1.1 stated below and obtain a solution of the problem entirely in thesecond order setting, without resorting to the �rst order realisation, sothat the problem order is not doubled, the inverse ofM is not computedexplicitly and the exploitable structures o�ered by the problem, such assparsity, symmetry, de�niteness etc. are preserved.In order that the control be realizable by means of physical devices,the matrices B;F and G must all be real. In such a case the eigenvalueand eigenvectors are pairwise self-conjugate.Let us partition the n�2n eigenvector matrix and 2n�2n eigenvaluematrix as follows:Z = (Z1 Z2 ) ;m 2n�m � = ��1 �2 � m2n�mm 2n�m ;where Z1 and �1 are pairwise self-conjugate.In this paper we address the followingProblem 1.1 Given(a) real symmetric M ;C and K,(b) Z1 and �1 pairwise self-conjugate(c) Y 1 2 Cn�m, D1 2 Cm�m, pairwise self-conjugate such that withY = (Y 1 Z2 ) ;m 2n�m D = �D1 �2 � m2n�mm 2n�m ;July 13, 1999, 12:26. Page: 5



the matrix � YYD � (7)is invertible,�nd B;F ;G 2 Rn�m such that (6) holds.2 Main resultsThe solution process consists of two stages:(a) determine matrices B̂; F̂ and Ĝ which are generally complex andwhich satisfyMYD2 + (C � B̂F̂ T )YD + (K � B̂ĜT )Y = O: (8)(b) from B̂; F̂ and Ĝ �nd real B;F , and G such that BF T = B̂F̂ Tand BGT = B̂ĜT .Let us focus �rst on stage (a).Suppose that ~B, ~F and ~G is a solution. ThenMY 1D21 +CY 1D1 +KY 1 = ~B( ~F TY 1D1 + ~GTY 1): (9)Suppose that ~B; ~F and ~G is a solution to Problem 1.1, and letW 2Cm�p, p � m have pseudoinverse W+ 2 Cp�m such that WW+ = I 2Rm�m. Then B̂ = ~BW , F̂ = ~FW+ and Ĝ = ~GW+, is anothersolution because ~B ~F T = B̂F̂ T and ~B ~GT = B̂ĜT .UsingW 2 Cm�p with p > m allows for the construction of a solutionin which B can have dimension n� p, p > m. This fact is a consequenceof the arbitrariness in the solution which we will not pursue here.Denote W = ~F TY 1D1 + ~GTY 1: (10)Then, provided that W is invertible, B̂ = ~BW is admissable for someF̂ and Ĝ. We can therefore takeB̂ =MY 1D21 +CY 1D1 +KY 1 (11)by virtue of (9) and (10). Relations (11) and (8) together imply thatF̂ TY 1D1 + ĜTY 1 = I : (12)In [15] it is shown thatJuly 13, 1999, 12:26. Page: 6



Theorem 2.1 For any � 2 Cm�m,F̂ =MZ1�1�; Ĝ = �KZ1�; (13)satisfy MZ2�22 + (C � B̂F̂ T )Z2�2 + (K � B̂ĜT )Z2 = O:In other words, F̂ and Ĝ of the form (13) ensure that the last 2n �meigenpairs of the uncontrolled system are also eigenpairs of the controlledsystem.Putting (13) into (12) gives� = (�1ZT1MY 1D1 �ZT1KY 1)�1 (14)from which F̂ and Ĝ can be determined.The solution B̂, F̂ and Ĝ which result from this process is in generalcomplex. However, we now show that the products B̂F̂ T and B̂ĜT arealways real.It follows from (8) and the pairwise self-conjugacy of Y and D thatwe can write, denoting the conjugates by overbars,MYD2 + (C � B̂F̂ T )Y D + (K � B̂ĜT )Y = O: (15)Conjugating (8) givesMYD2 + (C � B̂F̂ T )Y D + (K � B̂ĜT )Y = O: (16)Subtracting (15) from(16) gives�B̂F̂ T � B̂F̂ T�Y D + �B̂ĜT � B̂ĜT�Y = Owhich can be rewritten in block matrix form as� B̂ĜT � B̂ĜT j B̂F̂ T � B̂F̂ T �� YYD � = O:The invertiblity of (7) implies that the left hand matrix vanishes, fromwhich it follows that B̂F̂ T and B̂ĜT are real.July 13, 1999, 12:26. Page: 7



2.0.1 Real B;F and G from B̂; F̂ and ĜAt the start of the second stage we have generally complex B̂; F̂ andĜ but real products B̂F̂ T and B̂ĜT . Therefore, let us denote the realn� 2n product H = B̂[F̂ T jĜT ];and let LR =HL 2 Rn�m, R 2 Rm�2n, be any factoring of the right hand sideH. Thenwe can take B to be L and the �rst n columns of R to be F T and thelast n to be GT .The two factorings which immediately come to mind for this purposeare the QR factoring and the Singular Value Decomposition (SVD) (seefor example [12, 8, 3] We now describe the use of these two factoringsto �nd real B;F , and G. In both of these cases we use the so-calledtruncated or compact form of the factoring.The truncated QR factorisation [12] produces an L 2 Rn�m in whichthe m columns are orthognal and an R 2 Rm�2n which is upper trian-gular. For example, in the case of 5� 10 matrix H we haveLR = 0BBBBB@x x xx x xx x xx x xx x x1CCCCCA0B@ x x x x x j x x x x xx x x x j x x x x xx x x j x x x x x1CA :By contrast, when the rank ofH ism � n, the compact SVD producesthree matrices U 2 Rn�m, orthogonal, � 2 Rm�m, diagonal, and V 2R2n�m, orthogonal which are such thatU�V T =H;U � V T0BBBBB@x x xx x xx x xx x xx x x1CCCCCA 0B@ x x x1CA 0B@ x x x x x j x x x x xx x x x x j x x x x xx x x x x j x x x x x1CAIn this case we take B to be the product U� and we take the �rst nrows of V to be F and the last n rows to be GLR = (U�)V T : (17)July 13, 1999, 12:26. Page: 8



3 ExampleIn this section we demonstrate the technique on a simple example. Theexample models a 4 degree-of-freedom, system in which we assign twoeigenpairs. The open loop system we use has the matricesM = I;C = diagf1=2; 0; 0; 1=2g;and K = 0BBB@ 5 �5 0 0�5 10 �5 00 �5 10 �50 0 �5 6. 1CCCAThis system has eigenvalues �k shown in Table 1.k �k dk1 �2:0923(e�001)� 1:8256(e+000)i �1:0000(e+000) � 1:0000(e+000)i2 �2:0923(e�001) + 1:8256(e+000)i �1:0000(e+000) + 1:0000(e+000)i3 �1:3080(e�001)� 3:1920(e+000)i �2:0923(e�001) � 1:8256(e+000)i4 �1:3080(e�001) + 3:1920(e+000)i �2:0923(e�001) + 1:8256(e+000)i5 �1:2147(e�001)� 4:4412(e�001)i �1:3080(e�001) + 3:1920(e+000)i6 �1:2147(e�001) + 4:4412(e�001)i �1:3080(e�001) � 3:1920(e+000)i7 �3:8508(e�002)� 4:1362(e+000)i �1:2147(e�001) + 4:4412(e�001)i8 �3:8508(e�002) + 4:1362(e+000)i �1:2147(e�001) � 4:4412(e�001)iTable 1: Spectra of the open and closed loop systems.We reassign the eigenvalues �7;8 and their associated eigenvectors bysetting D1 = � 1 + i 1� i� ; Y 1 = 0BBB@ 1 + 1i 1� 1i1 + 2i 1� 2i1 + 3i 1� 3i1 + 4i 1� 4i 1CCCAUsing Theorem 2.1 and (14) we getB̂ = 0BBB@ 1 � 7i 1 + 7i4 � 2i 4 + 2i6 � 2i 6 + 2i6:5 + 5:5i 6:5 � 5:5i 1CCCAJuly 13, 1999, 12:26. Page: 9



F̂ = 0BBB@ 5:1427e � 001 � 2:4550e � 002i 5:1427e � 001 + 2:4550e � 002i�1:2016e + 000 + 1:1168e � 001i �1:2016e + 000 � 1:1168e � 001i1:2253e + 000 � 1:1171e � 001i 1:2253e + 000 + 1:1171e � 001i�5:7169e � 001 + 2:4195e � 002i �5:7169e � 001 � 2:4195e � 002i 1CCCAĜ = 0BBB@ 7:7611e � 001 + 6:0498e � 001i 7:7611e � 001 � 6:0498e � 001i�2:0047e + 000 � 1:4635e + 000i �2:0047e+ 000 + 1:4635e + 000i2:0126e + 000 + 1:4914e + 000i 2:0126e + 000 � 1:4914e + 000i�8:1763e� 001 � 6:7288e � 001i �8:1763e � 001 + 6:7288e � 001i 1CCCA :However, as mentioned earlier, the products B̂F̂ T and B̂ĜT are real:B̂F̂ T = 0BBB@ 0:6848 �0:8398 0:8867 �0:80474:0159 �9:1664 9:3555 �4:47686:0730 �13:9729 14:2567 �6:76356:9555 �16:8497 17:1576 �7:6982 1CCCA ;B̂ĜT = 0BBB@ 10:0220 �24:4978 24:9052 �11:05558:6288 �21:8914 22:0663 �9:232611:7333 �29:9102 30:1165 �12:50313:4347 �9:9630 9:7576 �3:2276 1CCCA :Taking the SVD of H = B̂[F̂ T jĜT ] and forming the product in (17)gives B = 0BBB@ 35:3526 13:995636:5157 0:416350:7391 �1:512724:0369 �18:0236 1CCCA :Separating the �rst n and the last n rows of the matrixV = �FG�in (17) yieldsF = 0BBB@ 0:1127 �0:2357�0:2578 0:59110:2631 �0:6011�0:1256 0:2597 1CCCA ;G = 0BBB@ 0:2349 0:1227�0:5967 �0:24310:6013 0:2606�0:2511 �0:1557 1CCCA :July 13, 1999, 12:26. Page: 10



The eigenvalues of the system controlled by this B;F and G via (6)are displayed in Table 1. It can be seen that the assignment of therequired eigenvalues has occured and that the eigenvalues intended toremian unchanged are unaltered by the feedback. Although we do notdisplay them, the eigenvectors of the controlled system are assigned asrequired.4 ConclusionWe have developed a method for the partial eigenstructure assignmentof the multi-input state feedback control system modelled by a set ofsecond order di�erential equations.We have shown that the input in
uence matrix B, and the gain ma-trices F and G can be chosen to assign just a part of the eigenstructurearbitrarily while leaving the rest unchanged. The column dimension ofthe matrix B must be at least as large as the number of eigepairs to beassigned but B can be constructed to be have greater column dimensionif necessary. But fewer columns cannot achieve the required asignment.The method developed builds on our previous results in which we de-termined an explicit solution for the single input partial pole assignmentproblem in vibrartory systems.Although the solution here is not unique and is generally complex,we show that, for pairwise self conjugate data, a real solution is easlilyavailable. This is important for practical problems.The method has been illustrated with a modest numerical example.References[1] A.N. Andry, E.Y. Shapiro, and J.C. Chung. Eigenstructure assign-ment for linear systems. IEEE Trans. Aerospace and Electronic sys-tems, 19(5):711{729, 1983.[2] E. Chu and B.N. Datta. Numerically robust pole assignment forsecond-order systems. Int. J. Control, 64:1113{1127, 1996.[3] B.N. Datta. Numerical linear algebra and applications. Brooks/ColePublishing Company, Paci�c Grove, California, 1995.[4] B.N. Datta. Numerical Methods for Linear Control Systems Designand Analysis. Academic Press, New York, 1999. To appear.July 13, 1999, 12:26. Page: 11
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