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ABSTRACT
Spiral structures are one of the most difficult patterns to classify. In this paper, some
important characteristics of the two-spiral problem are discussed. The paper discusses the
reasons why linear and non-linear approaches have difficulties with classifying such data. The
paper focusses on how structural information about spirals can be useful in providing critical
information to a neural network for their recognition. Results are presented on neural network
solutions to the classical two-spiral problem by extracting structural and rotational
information from the spiral training data.

1. SPIRAL STRUCTURES
Spiral data is found in several natural and physical domains. The classic double helix DNA,
the motion of particles in cyclotrons, and spiral feed in manufacturing are some of the well-
known examples. Spirals are particularly intriguing because of their high levels of non-
linearity and resistance to shape transformation under rotation, translation or other scalar
operations. Spirals structures are also attractive for their temporal properties and are found to
be particularly hard to classify. For pattern recognition purposes, spiral recognition problems
are specially attractive since we can manipulate their complexity with relative ease and
control its size.

The spiral problem is a classic example of non-linear data. It is impossible to separate two
spirals coiling around each other with a linear method. The spiral data is considered here in
two dimension since previous work exists in this area for comparison. However, spirals can
be generated in any number of dimensions. The benchmark spiral program, available from the
Carnegie Mellon AI repository, generates two sets of points, each set with 96.density + 1 data
points (3 revolutions of 32 times the density plus one end point). If a total of N data points are
to be generated, then the spiral shape parameters change as follows,  1≤ i ≤ N:

angle = ( i.π) / (16.density ) ...(1)
radius = maxRadius.((104.density) - i) / (104.density)) ...(2)
x = radius.cos(angle) ...(3)
y = radius.sin(angle) ...(4)

Here x and y are the spiral data points generated by the program, and π= 3.14. Since data
points are generated in sequence, equations 1-4 are time dependent. The temporal nature of
the resultant spiral is shown in Figure 1. Here the angle and radius of the spiral changes as
new data is generated in sequence. The spiral is temporal because at a given point in time, the
angle of the spiral that determines its position (x, y) is dependent on time (i in equation 1).

The two spirals are governed by three parameters: density ϕ, radius σ, and offset δ1. The
density variable defines the total number of points generated within an envelope defined by

                                                          
1 The original spiral was proposed with ϕ = 1, σ = 6.5 and δ = .1 (ref: Carnegie Mellon AI Repository)



the radius. Data belonging to two different classes lie on these two different spirals
(represented as a sequence of white and black circles in Figure 1). By manipulating spiral
parameters, it is possible to generate different spirals with varying radius and length.

Figure 1.  2D Spiral data scatterplot. Two spirals with a
maximum radius of 6.5 coil around each other. The two
different classes are highlighted in a hypersphere with
their training data (white and black points) and a test pattern
is illustrated with a black square.
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A pattern classifier working on the problem should be able to recognise the training set before
making test classifications. The benchmark has a training set, and test sets. The training set is
represented by the vector {x, y}. The test sets may be thought of as noisy spirals, i.e. training
set plus a uniform level of noise δ. For the two spiral problem, three test sets are possible: {x,
y+δ}, {x+δ, y} and {x+δ, y+δ} where δ is a pre-defined scalar representing noise or offset.
This method of offsetting test sets on different variables has been used for historical reasons
than personal preference. It is possible to generate several different test sets of noisy spirals
with varying δ. Uncertainty in pattern recognition occurs when: the offset δ is large for a
small radius σ spiral or when data is dense, i.e. ϕ is large.

2. PREVIOUS RESEARCH
Recognising the two spiral benchmark is a difficult task for several pattern recognition
approaches since spiral data is highly non-linear. The problem has been difficult to solve
using neural approaches (see Touretzky and Pomerleau[1] for a discussion). It has been
observed that backpropagation and its relatives encounter significant problems when training
the neural network. In particular, deriving the optimal architecture is difficult, and
furthermore, the training times are large. In addition, the spiral is under-constrained, i.e. data
not lying on the spiral is often misclassified. For this reason, the two spiral problem has been
particularly popular for testing novel neural and statistical pattern recognition classifiers.
Considerable work has been done in the area since mid 1980s and in 1990s and a number of
intelligent approaches have been applied to solving the spiral problem; neural networks:
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Fahlman[2], Fahlman and Lebiere[3], Lang and Witbrock[4], Tay and Evans[5]; neurofuzzy
methods: Sun and Jang[6]; and data encoding methods: Chua et al.[7], Jia and Chua[8]. In
addition, several other studies have tested their proposed pattern recognition methods on this
benchmark problem since this process served as an indicator of their success with real-world
problems, e.g. Ulgen et al.'s[9] hypercube separation algorithm’s initial success with this
benchmark confirmed superior results with hand-written character recognition data. Singh[10]
used a single nearest neighbour method to recognise the two spiral data. Singh[11] used a
fuzzy classifier to recognise spiral data and Singh[12] studied the effect of noise
contamination of various types on the recognition performance. Singh[13] have also extended
the fuzzy approach to recognising spirals in three dimensions.

3. LEARNING SPIRALS
The two-spiral problem, and its variants in higher dimension have some very interesting
structural and spatial properties. If we are to study each spiral individually (n spirals in n
dimension), we find that spirals are generated from the origin and move outwards in a helical
structure. As they move outwards, the distance of the spiral from the origin increases and the
distances between two successive points on the spiral also increase. However, these two
distances are of little help for classification since they remain the same for both spirals and are
not discriminatory.

The spirals have very interesting spatial properties. The overall structure of the spiral remains
a spiral under rotation, translation or displacement. One of the methods for solving the
problem may be the spiral unfolding such that the two spirals become linearly separable.
However, this proposition is more difficult that it seems. The only other method of learning
about spirals is to learn functions generating them using a black box type method. Neural
networks, often claimed as universal approximators, have found spiral learning difficult. This
is for two reasons. Spiral function is non-linear and time-dependent. Neural networks using
standard MLP with backpropagation do not have the necessary information on the time-
element through feedback loops to learn such a structure. Another reason is that both spirals,
candidates in the discrimination process, have nearly the same function, except for some
constant displacement scalar that preserves the distance between them. So, what additional
tools do we have to enable ordinary neural networks to recognise different spirals?

Figure 2 shows the change in angle of the two spirals as it grows. Figure 3 shows how we
may use this information. The angle θ is calculated as the change from (xi, yi) to (xi+1, yi+1) on
the same spiral, rather than the angle of a given point from the origin with respect to the x
axis. A close observation of the two spirals in Figure 1, and Figure 2 will reveal the fact that
this change in θ for the two spirals at any given time is different from each other. This is a
very important observation. If we are to calculate the sine of θ, then we find that this
additional information gives us the power to discriminate between the two spirals.

The procedure now is to divide the training data into two halves; one for the first spiral and
two for the second spiral. For each spiral, we compute the change in angle starting from the
first point; if we represent spiral points as (xi, yi), then we create a new training file for each
spiral with the information (xi, yi, sinθ), where sinθ is given by:



The two new training files are now combined by interleaving the patterns from the two
spirals. This training file is now fed to the neural network for training.

Figure 2. The two-spiral problem in three dimension.
The spirals are separated on the basis of their class
(left side of the class axis represents spirals or type1,
and the right hand side represents spirals of type 2).

        Figure 3. Change in angle with spiral movement
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data now consists of the tuples {x, y, sin(θθθθ)}for spirals. The test data originally
s {x, y+δ}, {x+δ, y} and {x+δ, y+δ} is also represented as {x, y+δ, sin(θθθθ) },



{x+δ, y, sin(θθθθ) } and {x+δ, y+δ, sin(θθθθ)}. For the test set, the sine of θ is calculated from the
test data.

A simple multi-layer perceptron network using backpropagation with momentum is
implemented with a learning rate of η=.1, and momentum of µ=.9. The network has the
configuration 3xhx1 where h is the number of hidden nodes in a single hidden layer. The
neural network is randomly initialised before the start of the training. The number of hidden
nodes is increased in every trial and the generalisation error is noted. The number of hidden
nodes is selected for the model that provides the least complexity and the least generalisation
error. This is shown in Figure 3.

Figure 4. The selection of optimal network architecture

In Figure 4, the generalisation error decreases as the number of hidden nodes is increased. The
increase in hidden nodes lead to a larger network that has a better generalisation ability. This
performance however saturates after h=15. From Figure 4, we select the optimal number of
hidden nodes equal to 15. Our experimentation is conducted from now on with a neural
network having an architecture of 3x15x1. The three inputs to the network are the coordinates
and the sine of the angle. The one output of the network is the class of the spiral, coded as 0 or
1 for spiral type 1 and 2.

5. RESULTS
The neural network was trained with an architecture of 3x15x1 for a total of 5000 epochs. The
training and testing was performed using the Stuttgart Neural Network Simulator (SNNS).
The training was performed with patterns from different spirals interleaved for a stable change
in network weights. The trained network was then given the test data. The test data is
produced for the three cases of spiral displacement as described before. For each case, the
offset δ is varied from .1 to 1.0; these values are chosen as appropriate since for the spiral
envelope of 6.5, each spiral coils roughly three times within this envelope as shown in
Figure 1.

The test results are shown in Table 1. The recognition rate on different types of test sets is
shown. Considering the combination of test data type and the offset δ, a total of 30 test sets
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have been used. The test results are very impressive. The neural network performance on
classification approaches up to 97% correct recognition, and even with high values of spiral
displacement in either one or both dimensions, the recognition rates remain particularly high.

    Table 1. Testing on displaced data sets; spiral radius = 6.5

δ Recognition
rate % on
(x+δ, y)

Recognition
rate % on
(x, y+δ)

Recognition
rate % on
(x+δ, y+δ)

.1 97 95 95

.2 97 92 92

.3 97 91 92

.4 96 92 91

.5 95 92 92

.6 94 91 91

.7 93 90 87

.8 92 88 86

.9 89 90 86
1.0 89 91 87

The results show that the neural learning of spiral structures is assisted by including training
information on change in spiral angle with the generation of each successive point on the
spiral.

6. CONCLUSION
In this paper, spiral structures have been recognised using the standard neural network
method. The paper discusses why traditionally neural networks find it difficult to learn spiral
structures without information on their temporal movement. When this information is
available, neural networks are very efficient in their recognition. This work will prompt
further work on using the same technique for recognising spirals in higher dimension.
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