
PROTOMOL, an Object-Oriented Framework for
Prototyping Novel Algorithms for Molecular
Dynamics

THIERRY MATTHEY
Department of Informatics, University of Bergen, N-5020 Bergen, Norway
and
TREVOR CICKOVSKI, SCOTT HAMPTON, ALICE KO, QUN MA, MATTHEW NY-
ERGES, TROY RAEDER, THOMAS SLABACH and JESÚS A. IZAGUIRRE
Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN 46556, United States

ProtoMol is a high-performance framework in C++ for rapid prototyping of novel algorithms
for molecular dynamics and related applications. Its flexibility is achieved primarily through the
use of inheritance and design patterns (object-oriented programming). Performance is obtained
by using templates that enable generation of efficient code for sections critical to performance
(generic programming). The framework encapsulates important optimizations that can be used
by developers, such as parallelism in the force computation. Its design is based on domain analysis
of numerical integrators for molecular dynamics (MD) and of fast solvers for the force computation,
particularly due to electrostatic interactions. Several new and efficient algorithms are implemented
in ProtoMol. Finally, it is shown that ProtoMol’s sequential performance is excellent when
compared to a leading MD program, and that it scales well for moderate number of processors.
Binaries and source codes for Windows, Linux, Solaris, IRIX, HP-UX, and AIX platforms are
available under open source license at http://protomol.sourceforge.net .

Categories and Subject Descriptors: D.1.5 [Software]: Programming Techniques—Object-Oriented Program-
ming; D.2.11 [Software Engineering]: Software Architectures—Domain Specific Architectures; D.2.13 [Soft-
ware Engineering]: Reusable Software—Reusable libraries; G.1.7 [Numerical Analysis]: Ordinary Differ-
ential Equations—Multistep and multivalue methods; G.4 [Mathematics of Computing]: Mathematical Soft-
ware—Algorithm Design and Analysis, Efficiency, Parallel and vector implementations, User interfaces; J.2
[Computer Applications]: Physical Sciences and Engineering—Chemistry, Physics; J.3 [Computer Applica-
tions]: Life and Medical Sciences—Biology and Genetics

General Terms: Object-Oriented Scientific Computing, Computer Simulations

Additional Key Words and Phrases: fast electrostatic methods, incremental parallelism, molecular
dynamics, multi-grid, multiple time stepping integration, object-oriented framework.

This research is partially supported by a National Science Foundation Biocomplexity Grant IBN-0083653,
a National Science Foundation CAREER Award ACI-0135195, the Center for Applied Mathematics at the
University of Notre Dame, and partly by the Research Council of Norway and the Norwegian High Perfor-
mance Computing Consortium (NOTUR). Corresponding authors’ email addresses:matthey@ii.uib.no ,
izaguirr@cse.nd.edu . Qun Ma’s current address: Department of Computer Science, New Jersey Institute
of Technology, University Heights, Newark, NJ 08854;qma@oak.njit.edu .
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20xx ACM 0098-3500/20xx/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx, Pages 1–27.

2 · Thierry Matthey et al.

1. INTRODUCTION

PROTOMOL is a framework for rapid development of efficient algorithms and applications
in molecular modeling, particularly of biomolecules such as proteins and DNA. It sup-
ports state-of-the-art molecular dynamics (MD) andN -body algorithms which improve the
speed and efficiency of these simulations. Because MD simulations are time consuming,
taking from hours to weeks on modern workstations and supercomputers, the design of
PROTOMOL aims at both flexibility and high performance.

Many robust and highly optimized programs exist for MD simulation of biomolecules
[Brooks and Hodo˘sc̆ek 1992; Vincent and Merz 1995; Kal´e et al. 1999; Br¨unger 1992;
Tuckerman et al. 2000]. However, these programs are not appropriate for algorithm de-
velopment and training of new students and junior researchers due to their extreme com-
plexity. Without an appropriate platform, novel algorithm development and training are
difficult to perform. Also, few of the academic programs are easy to use. This intimidates
potential users, who have to learn numerous implementation details of the simulation
methods to be able to prepare all the input files and analyze the results. In particular,
the more sophisticated algorithms have multiple parameters that interact in subtle ways.
PROTOMOL automatically detects appropriate parameters for many of the algorithms im-
plemented. Thus, algorithms successfully incorporated into this framework can be more
easily incorporated into the most popular MD programs.

PROTOMOL provides components to handle input/output (I/O), graphical user interface
(GUI) and visualization, as well as optimized algorithmic frameworks for easy incorpo-
ration and efficient implementation of new algorithms. An important optimization encap-
sulated in PROTOMOL is parallelism at a modest scale (for example, clusters or medium
size symmetric multi-processors with typical size of 32 to 64 nodes), which addresses the
needs of many MD users.

As proof of the flexibility of PROTOMOL we present examples of sophisticated MD and
N -body algorithms implemented within the framework. The program is also efficient; its
sequential performance is comparable to leading MD packages, and it scales to moderately
sized clusters1 or symmetric multi-processors. PROTOMOL has been successfully used as
an instructional tool in university courses. It is open source, and binaries and source codes
for Windows, Linux, Solaris, IRIX, HP-UX, and AIX platforms are available on its web
page,http://protomol.sourceforge.net .

We show the design, implementation and evaluation of the framework, aiming to demon-
strate how object-oriented and generic design help us achieve our twofold goal of flexibil-
ity and efficiency. We have presented partial reports on PROTOMOL in [Matthey 2002;
Matthey and Izaguirre 2001; Matthey et al. 2003].

2. BACKGROUND

MD typically solves Newton’s equations of motion:

mi
d2

dt2
~ri(t) = ~Fi(t), (1)

where the mass of theith atom ismi, its atomic position at timet is~ri(t), and its instanta-
neous force is~Fi(t).

1Clusters with reasonably fast interconnect, enabling general parallel computing.

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 3

MD Simulation:

(1) Pre-processing: Construct initial configuration of positions, velocities, and forces.
(2) loop 1 to number of steps

(a) half kick: Update velocities (by a half time stepδt/2)
(b) drift: Update positions (by a full time stepδt)
(c) evaluateforces on each particle
(d) half kick: Update velocities (by a half time stepδt/2)

(3) Post-processing

Algorithm 1. Pseudo-code of an MD simulation.

The bulk of computation in an MD simulation is spent in evaluating the force~Fi of
Eq. (1), which for conservative forces is defined as the gradient of the potential energy, or
more generally as

~Fi = −∇iU(~r1, ~r2, . . . , ~rN) + ~Fi
extended, (2)

whereU is the potential energy,~Fi
extended an extended force (e.g., velocity-based friction)

andN the total number of atoms in the system. Typically, the potential energy is given by

U = Ubonded + Unon−bonded, (3)

Ubonded = Ubond + Uangle + Udihedral + U improper, (4)

Unon−bonded = U electrostatic + ULennard−Jones. (5)

The bonded energy is a sum ofO(N) terms that define the covalent bond interactions
which model flexible molecules. The non-bonded energy is a sum ofO(N2) pair–wise
terms over all atoms.U electrostatic represents the well-known Coulomb potential and
ULennard−Jones models a van der Waals attraction and a hard-core repulsion. Whereas
the latter can usually be evaluated for a reduced range of distance, the long range effects
of the electrostatic interactions are responsible for the stability of biomolecules, and are
important in a variety of non-biological materials.

Newton’s equations of motion are often integrated numerically by the leapfrog or Verlet
method, which is single time stepping (STS), second-order accurate, time-reversible, and
symplectic. Despite its low order of accuracy, it has excellent energy conservation proper-
ties and is computationally cheap [Skeel 1999; Verlet 1967]. The choice of an integrator
that imposes different constraints on the equations of motion changes the ensemble in
which sampling or dynamics is simulated. PROTOMOL allows users to choose from among
several such ensembles, e.g., constant energy, constant temperature, and constant pressure.
Algorithm 1 describes a complete MD simulation using leapfrog. Basically, it consists
of the loop numerically solving the equations of motion, the evaluation of forces on each
particle, and some additional pre- and post-processing.

2.1 Numerical integrators

When integrating Newton’s equations of motion numerically, the fastest motions restrict
the time step to satisfy stability conditions. For an MD simulation of solvated biological
molecules, the fastest motion is around 10 femtoseconds (1 fs = 10−15 s) and the stability
limit of leapfrog is2.25 fs [Skeel 1999]. A typical step size for leapfrog method is 1 fs, and
simulations may consist of millions of time steps.

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

4 · Thierry Matthey et al.

One step of Impulse:

(1) half a long kick: update velocities using “slow” forces (by a half long-step∆t/2)
(2) vibration: propagate positions and velocities using “fast” forces (by a full long-step∆t),

using for example, Verlet/leapfrog with short time stepδt ≡ ∆t/k

(3) evaluateslow forces on each particle

(4) half a long kick: update velocities using “slow” forces (by a half long-step∆t/2)

Algorithm 2. Pseudo-code for one step of Impulse.

One step of Targeted MOLLY:

(1) half a mollified kick: update velocities using mollified “slow” forces at time-averaged
positions (by a half long-step∆t/2)

(2) vibration: propagate positions and velocities using “fast” forces and pair–wise Langevin
damping (by a full long-step∆t)

(3) time averaging: do a time-averaging of positions using “fastest” forces, and evaluate
“slow” forces using time averaged positions

(4) half a mollified kick: update velocities using mollified “slow” forces at time-averaged
positions (by a half long-step∆t/2)

Algorithm 3. Pseudo-code for one step of Targeted MOLLY discretization.

MD systems consist of different force types and have different time scales of dynamics.
Multiple time stepping (MTS) integrators address the different time scales by splitting
the forces – if possible – by frequencies and incorporating them with appropriate time
steps. Bonded forces typically are considered “fast”, while non-bonded forces have both
“fast” and “slow” components. A common MTS integrator is Verlet-I [Grubm¨uller 1989]/r-
RESPA [Tuckerman et al. 1992]/Impulse integrator (hereafter referred to as Impulse). One
step of this algorithm is shown in Algorithm 2.

PROTOMOL contributes several new MTS algorithms. For example, the momentum-
preserving Targeted MOLLY (TM) [Ma and Izaguirre 2003c; 2003a; 2003b], which allows
use of time steps of 16 fs for the “slow” forces, and 2 fs for the “fast” forces. This represents
a significant speedup over Verlet (which uses 2 fs for everything) and Impulse (which
allows 4 fs for the slow force). The speedup comes about because the “slow” forces are
most expensive to evaluate. Algorithm 3 gives one step of this integrator.

The design of the integrators in PROTOMOL has the following goals: (1) To enable
the user to compose arbitrary MTS integrators at runtime, by choosing the number of
levels, forces and integrators; (2) To accommodate different integrators under a consistent
interface; and (3) To allow pre-processing and post-processing steps for some integrators.

2.2 Boundary conditions

Boundary conditions specify how the molecules interact with their surroundings. Two
commonly used boundary conditions are: [Allen and Tildesley 1987, pp. 24-32, 156ff.]:

(1) Vacuum: this models isolated systems. It is convenient for understanding the behavior
of individual macromolecules. A spherical or cylindrical constraint force may be used
to confine the system to a sphere or a cylinder, respectively.

(2) Periodic boundary conditions (PBC): the system experiences forces as if it was part of
an infinitely large bulk. Periodic cells are used, and when evaluating forces multiple

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 5

images of particles are considered. The shape of the original cell may be cubic or
hexagonal or any other number of space filling shapes.

2.3 Fast electrostatic algorithms

Bonded interactions can be evaluated in linear time. Non-bonded interactions are more
computationally expensive. Most MD program optimizations happen here. A common
optimization for non-bonded interactions is the use of cutoffs to limit the spatial domain
of pair–wise interactions; switching functions bring energies and forces smoothly to zero
at the cutoff point. Cutoff computation can be accelerated through the use of cell lists
or pair lists, cf. [Frenkel and Smit 2002]. For strongly charged systems, however, the
electrostatic interactions play a dominant role, e.g., in protein folding, ligand binding, and
ion crystals. Several algorithms for fast electrostatic force evaluation are implemented in
PROTOMOL. These include Ewald summation (O(N3/2) time complexity) [Ewald 1921;
Fincham 1994], smooth Particle Mesh Ewald (PME) summation (O(N log N)) [Essmann
et al. 1995], and a multi-grid (MG) summation (O(N))[Brandt and Lubrecht 1990; Skeel
et al. 2002].

In the case of non periodic electrostatic forces, the problem is that of solving

U electrostatic(~r1, ~r2, . . . , ~rN) =
1
2

N∑
i=1

∑
j 6=i

qiqj

ε0 |~rj − ~ri| , (6)

where the partial charge of the atom isq, and the dielectric coefficient isε0. This is the
N -body problem.

In the case of periodic boundary conditions, the problem to be solved is

U electrostatic(~r1, ~r2, . . . , ~rN) =
1
2

N∑
i=1

N∑
j=1

′∑
~m∈Z3

qiqj

ε0 |~rj − ~ri + ~mL| , (7)

where the sum is over all periodic cells with index~m, with self-interactions excluded, and
L is the length of a periodic box cell with dimensionsL×L×L. The primed sum excludes
interactions for pairs that are in the exclusion list inside the original MD cell (~m = 0). This
is a conditionally convergent sum, and a physically meaningful interpretation is given in
[Leeuw et al. 1980]. The Ewald summation transforms this problem into the sum of two
rapidly convergent sums, one in real space and the other in reciprocal or Fourier space.

The particle mesh Ewald (PME) method [Darden et al. 1993] splits the Ewald summa-
tion such that the real part is solved using cutoff inO(N), and interpolates the charges
onto a mesh, thus allowing the use of FFT for the evaluation of the Fourier space part at a
complexity ofO(N log N).

3. FRAMEWORK DESIGN

Four main requirements for PROTOMOL were addressed during the design of the frame-
work. These reflect the submodules described in Algorithm 1.

(1) Allow end-users to compose multiple time stepping integrators dynamically. This
allows them toexperimentwith different integration schemes. MTS methods require
careful fine-tuning to get the full benefit of the technique.

(2) Allow developers to easily integrate and evaluatenovel force algorithmschemes. For
example, the force design allows the incorporation of mesh-based and MG methods,

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

6 · Thierry Matthey et al.

libparallel, libforces
libbase, libtopology

libintegrators

libfrontendComponent

Framework

Class Library

Middle Layer

Front−end

Back−end

Fig. 1. Main layers of the component-based framework PROTOMOL.

or of new force kernels that compute the potential energy and its gradient.

(3) Develop an encapsulated parallelization approach, where sequential and parallel com-
ponents coexist. This way, developers are not forced to consider the distributed nature
of the software. Parallelism itself is based on range computation and a master-slave
concept [Matthey and Izaguirre 2001].

(4) Provide facilities to compare accuracy, stability, and run-time efficiency of MD algo-
rithms and methods. This allows users to examine various algorithms side by side, as
well as determine a selection of optimal parameters.

For the design of the component-based framework PROTOMOL, three different mod-
ules were identified: front–end, middle–layer and back–end, see Fig. 1. The front-end
providescomponentsto compose and configure MD applications. The components are
responsible for the actual MD simulation set up with its integration scheme and particle
configuration. This layer is strongly decoupled from the rest to the extent that the front–
end can be replaced by a scripting language. The middle layer is awhite-box frameworkfor
numerical integration reflecting a general MTS design (see Section 3.2). The back-end is
a class librarycarrying out the force computation and providing basic functionalities (see
Section 3.3). It has a strong emphasis on run-time efficiency. PROTOMOL also implements
interactive and steered MD interfaces to the visualization program VMD2, cf. [Isralewitz
et al. 2001].

A typical PROTOMOL user interacts with the front end, either through a console, a
GUI, or an external visualization program. Depending on the user defined simulation
protocol, the appropriate objects are generated and used for simulating the system. Possible
output includes observables such as total energy (plots or files), trajectories of molecules
(visualized or stored), and various other files. The user may use haptic interfaces to steer
MD simulations. The flow of execution of a PROTOMOL simulation is illustrated in Fig. 2.

3.1 Front-end

The front-end mainly performs pre- and post-processing as in Algorithm 1. It supports a
range of different I/O facilities for common file formats to construct the initial state and
to perform output of interest. The simulation object contains positions, velocities, forces,
energies, and molecular topology objects. The molecular topology defines the connectivity

2http://www.ks.uiuc.edu/Research/vmd/

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 7

Front End

Middle Layer

Back End

Simulation Object

Console Interface

Configuration File

Integrator Factory− builds simulation objects

Chain of Integrators

Force Group Evaluator

Has

 − view output

 −view output

Uses

Each Uses

Generates

Loads

+While Simulation Running
GUI Interface

 − visualize molecules
 − plot energies

based on force and integrator specification

Topologies Forces

Fig. 2. Snapshot of the flow of execution in a typical MD simulation using PROTOMOL

and interaction strengths of atoms in a molecule. The topology is assumed to be static, e.g.,
covalent bonds of a molecule do not break during a simulation. Furthermore, the front-end
is in charge of constructing the desired integrator scheme and the associated forces to solve
Eq. (1). This is described in a configuration file using a language specific to integration
and force evaluation. This language allows dynamic definition of arbitrary integration and
force evaluation algorithms without modifying the code. A snapshot of a simple GUI
application using PROTOMOL is shown in Fig. 3. Other important front end libraries are
the integrator and force factories, which translate the user specification of integrator and
forcing scheme into an executable object.

3.2 Time stepping integration

In order to allow user composition of high-performanceMTS integrators a twofold solution
is implemented: (i) an integrator definition language (IDL) that allows the user to compose
arbitrary chains of MTS integrators and associate force evaluation algorithms at each level,
and (ii) an integrator hierarchy that efficiently supports the IDL. Object composition and
inheritance are used to provide reusable code, cf. [Gamma et al. 1995, p. 18]. Fig. 4
shows the abstract syntax for the IDL. Note that level 0 corresponds to the innermost
integrator, which should always be an STS integrator. As an example, Program 1 shows
the definition of a three level Impulse integrator in IDL. The actual frequency of evaluation
of a force at a given level is recursively defined by the product of the currentcycle length
and the frequency of the next inner integrator. Thus, in this example, bond and angle
forces are evaluated every 0.5 fs using leapfrog; dihedrals and impropers, and the short-
range Coulomb and Lennard–Jones forces are evaluated every4 × 0.5 = 2 fs; and finally
the long range (reciprocal) part of the Coulomb force is evaluated every2×4×0.5 = 4 fs.

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

8 · Thierry Matthey et al.

Fig. 3. Snapshot of a PROTOMOL GUI application. Displayed is the total energy for a simulation of decalanine.

level

force object }

value integrator name {

integrator options

STS Integrator

valuecyclelength

MTS Integrator

Integrator { MTS Integrator

STS Integrator }

force object }

Integrator Hierarchy

0level integrator name {

timestep integrator optionsvalue

Fig. 4. Syntax chart for PROTOMOL’s integrator definition language (IDL).

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 9

Integrator {
level 2 Impulse { # Long-range electrostatics

cyclelength 2
force Coulomb -algorithm Ewald -reciprocal

}
level 1 Impulse { # Medium-range forces

cyclelength 4
force Coulomb -algorithm Ewald -real -correction
force Improper, Dihedral
force Lennard-Jones -algorithm Cutoff -switchingFunction C2

}
level 0 Leapfrog { # Shortest-range forces

timestep 0.5 # (fs)
force Bond, Angle

}
}

Program 1. Three level Impulse MTS using PROTOMOL’s integrator definition language.

Single Timestep Multiple Timestep

Integrator

Nose

Molly

Shadow Hybrid Monte Carlo

Hybrid Monte Carlo

Backward EulerBSpline

H BondEquilibriumLeapfrog

Shadow Leapfrog

r−RESPA/Impulse Constant Energy

BBK

Dissipative Leapfrog
Self Consistent

Langevin Impulse
Constant Temperature

Shake Rattle Constant Energy with Constraints

Fig. 5. Partial view of the hierarchy of numerical integrators in PROTOMOL.

By using the IDL in PROTOMOL, a user can select the integrator and forces to be
used at each level. The integrator hierarchy that is supported by PROTOMOL is shown
schematically in Fig.5. An integrator can be single time stepping (STS) or MTS. Different
STS integrators may be used to define different ensembles and constraints. For example,
constrained NVE dynamics can be defined by using the STS integrator SHAKE [Ryckaert
et al. 1977] or RATTLE [Andersen 1983]. One can sample from the NVT ensemble
by using the Nos´e-Hoover, BBK [Brünger et al. 1982], Langevin Impulse [Skeel and
Izaguirre 2002], or self-consistent leapfrog [Pagonabarraga et al. 1998] integrator [Nos´e
1984; Martyna et al. 1992]. Also, different MTS integrators have different stability and
accuracy properties. In order of increasing stability, one can cite Impulse, MOLLY, the
hybrid Monte Carlo (HMC) method and the shadow HMC (SHMC). For example, SHMC
achieves an order of magnitude speedup over HMC, cf. [Hampton and Izaguirre 2004].
Finally, each integrator has a set of forces to be evaluated at each level, called aforce
group in our framework. This gives the user great flexibility in partitioning forces across
different levels.

PROTOMOL integrators can easily be extended to multiple levels, cf. [Biesiadecki and

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

10 · Thierry Matthey et al.

n

m

+evaluateSystemForces()

+evaluateExtendedForces()

ForceGroup

ExtendedForce

+parallelEvaluate()

+evaluate()

SystemForce

+parallelEvaluate()

+evaluate()

Force

+run(numTimesteps)

#doHalfKick()

#doDriftOrNextIntegrator()
#calculateForces()

StandardIntegrator

STSIntegrator

#doDriftOrNextIntegrator()

−myTimestep : Real

Leapfrog

+doDrift()

+doHalfKick()

+doKickDoDrift()

+run()

doHalfKick();
doDriftOrNextIntegrator();
calculateForces();
doHalfKick();

myForceGroup−>evaluateExtendedForces()
myForceGroup−>evaluateSystemForces()

1
Integrator

+run(numTimesteps)

#myEnergies : EnergyStructure*

#myForces : CoordinateBlock*

#myVelocities : CoordinateBlock*

#myPositions : CoordinateBlock*

#myCycleLength : int

#myNextIntegrator : StandardIntegrator*

#doDriftOrNextIntegrator()

MTSIntegrator

−myOldTotalEnergy : Real

−myOldPositions : CoordinateBlock*

−myInitialTemperature : Real

−acceptNewPositions()

−calcRandVelocity()

−returnToOldPositions()

+run()

−updatePositions()

HybridMC

Fig. 6. Collaboration diagram between the integrator object and the force objects. The diagram illustrates
the integrator hierarchy with two concrete integrator classes representing MTS and STS integrators. The force
hierarchy is pruned at the top level.

Skeel 1993]. The behavior of Algorithms 1–3, Verlet/leapfrog, Impulse and MOLLY, can
be abstracted using this form:

(1) doHalfKick()

(2) doDriftOrNextIntegrator()

(3) calculateForces()

(4) doHalfKick() .

The functioncalculateForces() evaluates each force in theforce group. The function
doHalfKick() updates the velocities by half a time step.

The integrator class hierarchy is designed using inheritance. Fig. 6 shows a close-up of
the integrator hierarchy. The collaboration between integrators and forces is as follows:

(1) At the base of this hierarchy there is an abstract integrator class. It specifies that every
integrator has to provide arun() method. This method runs some number of MD
steps. This is an instance of a virtual or dynamically bound function. Using virtual

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 11

doHalfKick();

doDriftOrNextIntegrator();

calculateForces();

doHalfKick();

calculateForces();

doHalfKick();

doHalfKick();

doDriftOrNextIntegrator();

doHalfKick();

calculateForces();

doHalfKick();

doDriftOrNextIntegrator();

*myNextIntegrator

*myNextIntegrator

MTSIntegrator: Impulse

cyclelength 2

Coulomb

forces:

MTSIntegrator: Impulse

cyclelength 4

Coulomb

forces:

Dihedral

Improper

Lennard−Jones

STSIntegrator: Leapfrog

timestep 0.5

Angle

forces:

Bond

Fig. 7. Chain of integrator objects implementing multiple time stepping schemes. MTS differs from STS in that
it calls recursively the next inner integrator before evaluating its forces. The recursion is terminated by an STS
integrator.

functions, PROTOMOL can define operations that apply to any integrator, and at run-
time the appropriate, specialized,run() method for specific integrators is invoked.
The beauty of virtual functions is that they allow existing code to be extended without
modifications.

(2) Integrators based on splitting of the update to velocities are calledStandardInte

grators . All integrators discussed in this paper fall into this category, and their
run() methods call default methodsdoHalfKick() andcalculateForces() . How-
ever, they call a virtual functiondoDriftOrNext Integrator() which at run-time
performs the appropriate action.

(3) The functiondoDriftOrNextIntegrator() is the key to the abstraction. For an
STS integrator, it updates the positions for a full step (cf. Algorithm 1), whereas for
an MTS integrator such as Impulse, it executes the next level of integration. Fig. 6
shows that MTS integrators have a pointer to the next integrator in the chain (*myNext

Integrator).
(4) Integrators such as leapfrog inherit much functionality from the hierarchy, but may

redefine routines, and add data needed for their functionality. For example, the hybrid
Monte Carlo integrator in the same figure adds a set of old positions and energy, which
is restored if the MD integration is rejected.

At run time, an integrator definition in IDL is interpreted, and an “integrator factory”
sets up the correct chain of integrators defined by the user. An example of the links and
flow of the 3 level MTS integrator set up in Program 2 is shown in Fig. 7. The level
2 integrator starts the execution cycle. Because this integrator is MTS, it calls the next

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

12 · Thierry Matthey et al.

Integrator {
level 1 BSplineMOLLY { # Long-range electrostatics

cyclelength 8
force Coulomb -algorithm Ewald -reciprocal

}
level 0 SCDLeapfrog { # Fast varying forces

timestep 2.0 # [fs]
gamma 4.0
temperature 300
force Bond, Angle, Improper, Dihedral
force Coulomb -algorithm Ewald -real -correction
force LennardJones -algorithm Cutoff -switchingFunction C2

-cutoff 6.5 -switchon 4.0
}

}

Program 2. A two-level Targeted MOLLY integrator hierarchy using IDL.

integrator instead of updating the positions itself. Likewise, the level 1 integrator also
calls the next integrator. The level 0 integrator is leapfrog and it ends the chain by calling
doDrift() , which updates the positions. Only bond and angle forces are computed at
this level, which is executed 4 times. Once execution at this level is finished, the level 1
integrator is completed. Level 1 has 4 forces to evaluate. When the cycle finishes at this
level, the process is repeated because the cycle length defined in level 2 is 2. Then, the
single force of level 2 is computed and a full integration cycle completes. The forces to
be used by an integrator object are encapsulated inForceGroup , making it possible to
perform some pre- and post-processing, e.g., to distribute the force computation among
different processors.

In summary, there are two ways of extending the framework: The first is using the IDL,
whereby the user can define new combinations of existing components. This is illustrated
in Program 2, which implements the aforementioned two-level Targeted MOLLY integra-
tion. The second way of extending the framework is to actually add a class to the integrator
inheritance hierarchy in PROTOMOL, which is simplified by the functionalities that already
exist in the framework. An example of extension of the integrator hierarchy is in Section
4.1.4.

3.3 Force computation

The design of forces, particularly non-bonded forces, tries to maximize performance.
There is a base class specifying the interface for every force evaluation. Five requirements
(or customizable options, policies) for the evaluation of pair–wise interactions of non-
bonded forces are proposed:

(R1) Algorithms to find or define the pairs orn-tuples to be evaluated from the set of all
particles, e.g., cutoff, Ewald, or all pair computations. Closely associated with this
algorithm is the algorithm to manage cells (R3), and the kernel function (R4).

(R2) Types of boundary conditions defining how to compute distances in the system, and
how to retrieve actual positions, e.g., periodic or vacuum.

(R3) Cell managers to retrieve efficiently the spatial information of each particle. Cells
can be cubic, hexagonal, or any space filling shape. This hasO(1) complexity.

(R4) Kernels that compute a potential energy term, its gradient (the force), and optionally
a matrix of second derivatives (the Hessian). A kernel operates on either a pair of
atoms or ann-tuple defined by (R1).

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 13

Bonded Algorithm

Cutoff PME Ewald

Force Kernel
Boundary Condition

Force

Nonbonded Algorithm

MultigridAll Pairs

Fig. 8. Hierarchy of force computation algorithms. There are several non-bonded algorithms available, and some
of these can be parameterized to work with different kernels (e.g., cutoff works with Coulomb or Lennard–Jones)
and boundary conditions (e.g., periodic or vacuum).

Friction

 Force Kernel

Haptic

Bonded ExternalExtendedNonbonded

Haptic

Bonded ExternalExtendedNonbonded

Magnetic Dipole

Bond Angle Torsion

Lennard−Jones

Paul Trap

GravitationElectrostatic

Fig. 9. Hierarchy of force kernels. These functions compute potential energy, its gradient (the force), and
optionally a matrix of second derivatives (the Hessian).

(R5) Components to modify the potentials and forces, i.e., switching functions.

The evaluation of non-bonded forces performs the following steps: do a distance testing,
check for exclusions, call a non-bonded kernel, apply a switching function (if specified),
and then apply the chain rule to the potential energy and forces computed. It is possible
to reuse some of the evaluation algorithms (cutoff or all pairs) for almost any pair–wise
non-bonded force kernel. This is illustrated in Fig. 8. The forces are parameterized on the
boundary condition and the kernel, and they require an algorithm to evaluate them, either
bonded or non-bonded. Examples of kernels available are given in Fig. 9: bond, angle,
dihedral and improper for bonded interactions; electrostatic, Lennard–Jones, gravitation,
and magnetic dipole for non-bonded; and extended forces such as friction and Paul trap
attraction, which are helpful in a variety of non biological applications. There is also an
external force that is the input from a haptic device, which can be used to steer the MD
simulation. For most kernels, methods for computing the corresponding Hessian or matrix
of second derivatives are available. This is useful in some advanced numerical integrators
and other applications. An example of adding a new kernel is in Section 4.1.1. An example
of adding a new non-bonded force computation algorithm called multigrid summation is

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

14 · Thierry Matthey et al.

in Section 4.1.3.
The great advantage of this generic design is maintenance — performance improvement

or bug fixes to a module of the generic non-bonded force computation apply to all non-
bonded forces automatically. For example, by changing the order of cutoff and exclusion
tests to perform the most frequent case first, performance improvement of up to 40% is
obtained. To have all non-bonded forces benefit from this optimization, it is sufficient to
change the generic method that evaluates one atom–pair interaction.

3.3.1 Force interface.Templates and inheritance are combined in the Policy or Strat-
egy pattern [Alexandrescu 2001],[Gamma et al. 1995, pp. 315-323]. This pattern promotes
the idea of varying the behavior of a class independent of its context. It is well-suited
to break up many behaviors with multiple conditions and it decreases the number of
conditional statements. In particular, this pattern is used so that the algorithm to select
then-tuples (R1) –host class– is decoupled from the other four requirements (R2–R5) –
policy classes. This allows the simultaneous evaluation of different force kernels with the
same algorithm.

Templates or generic classes enableparameterizationin ways not supported by regular
classes, cf. [Stroustrup 1997; Veldhuizen 1998]. Template parameters can be seen as place
holders that the user will fill out when instantiating an object or defining a type. The
code of template classes is created at compile time depending on user-defined types or
values. For example, in the framework design the boundary conditions are type template
parameters (periodic or vacuum) and the non-bonded force definition takes a Boolean
parameter indicating whether a switching function is used or not.

To illustrate how the different requirements interact, let us take a close look at how three
force types are defined in Program 3. The first uses a MG algorithm (R1) for fast com-
putation of theCoulomb force kernel (R4) withC2-continuous switching function. The
second uses a cutoff algorithm (R1) for computation of theLennardJones force kernel
(another example of R4), which is modified by aC1-continuous switching function (R5).
The last one simultaneously evaluates the Lennard–Jones and Coulomb force kernels. For
all forces, the interaction pairs are managed by a cubic cell managerCM(R3) and periodic
boundary conditionsPBC (R2). All forces have a common interface, a virtual function
called evaluate(), which does the evaluation of the force contributions based on its
parameterization and policy choices.

class NonbondedMultiGridForce<PBC,CM,Hermite,CoulombForce::C2>;
class NonbondedCutoffForce<CM,OneAtomPair<PBC,C1,LennardJones> >;
class NonbondedCutoffForce<CM,TwoAtomPairs<PBC,C1,LennardJones,C2,CoulombForce> >;

Program 3. Some examples of non-bonded force declarations

3.3.2 Force object creation.The definition of a force maps into a unique identification
string. Fig. 10 illustrates the force definition language for PROTOMOL users. A force
definition starts always with the keywordforce followed by the name of a force andforce
options. Examples of these are interpolation schemes, friction coefficients, etc.. Other
forces are defined only by one keyword, e.g., angle forces. The keywordscompareand
time are for comparison purposes (see Section 3.5).

As Fig. 11 illustrates, a just-in-time compiler is needed that can transform the user
definition into a real force object. The requirements of object creation are satisfied by the

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 15

timeforce compare

force name force options

,

Force Object

Fig. 10. Syntax chart for PROTOMOL’s force definition language.

Abstract Factory [Gamma et al. 1995, pp. 87-95] and the Prototype [Gamma et al. 1995,
pp. 117-126] patterns. The Abstract Factory pattern delegates the object creation, and the
Prototype pattern allows dynamic configuration. The factory is in charge of converting the
user-specified force into an object that has been properly setup to do computation. The
factory creates replicas of “prototypes” that have been registered by the developer. This
restricts the factory to create only supported objects, since not all combinations of R1-R5
make sense or are supported at a given stage of development.

force LennardJones

 −algorithm NonbondedCutoff

 −cutoff 6.5

 −switchingFunction C2

 −switchon 0.1 Lennard−Jones force with

cutoff and C2 switching function

Angle forceforce Angle

"JIT" compiler

Fig. 11. Correspondence between the input definition and the actual force object.

3.4 Parallelization

PROTOMOL follows an incremental parallelization approach [Matthey and Izaguirre 2001]
to encapsulate the parallelization details and provide mechanisms to postpone the de-
velopment of a parallel implementation. Incremental parallelization relies on common
force interfaces. Methods calledevaluate() andparallelEvaluate() , perform the
evaluation of the force contributions based on its parameterization and policy choices.
The methodevaluate() is a pure virtual function (required interface for all forces)
and expects always a sequential implementation. In contrast,parallelEvaluate() is
an optional interface for parallel implementation. In case no parallel implementation is

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

16 · Thierry Matthey et al.

provided, it will call the sequential methodevaluate() . This mechanism allows the
developer to postpone a parallel implementation, even in a parallel environment.

The parallelization itself is based on a force decomposition [Plimpton and Hendrick-
son 1996] with master-slave or with static work distribution. In case of master-slave
decomposition, the slaves are assigned on demand a range (work-command) by the mas-
ter, which represents a collection of terms of the sum of all interactions which make up
U(~r1, ~r2, . . . , ~rN). The splitting of each parallel force is defined and implemented indi-
vidually, such that each force provides splitting (or distribution) information for the master
based on its own characteristics and the actual user input. Each force defines the number of
ranges the force is divided in. The work defined by the range should be as big as possible
to reduce communication, but small enough to balance out the total work for one time
step. The framework assumes that each range of a single force represents computational
work of the same order. In some cases, a complete force type is assigned to one slave, i.e.,
when no parallel implementation is provided. After calculating all interactions (completion
of step 2c in Algorithm 1) the force and energy contributions are globally updated by
the framework. The implementation is based on MPI with some data replication. The
approach reflects to some extent the idea of multi-threading or OPENMP [OpenMP-forum
1997], but MPI allows control of data locality and more coarse-grain parallelism. The
approach may not scale well for a very large number of processors. Nevertheless, it
has performed well for a moderate number of processors, i.e., up to 32. An example of
parallelization of a force kernel is in Section 4.1.2.

We are working on parameterization for the parallelization in order to make the frame-
work more scalable. The goal is to keep parallelism encapsulated so that algorithm devel-
opers do not need to consider these details at once. The first parameter is theload distribu-
tion scheme (e.g., master-slave, static). The second is thedata managementscheme, which
allows for data distribution according to a spatial decomposition or some other sorting
criterion. The final parameter is the type ofglobal communication mechanismto be used,
such as point-to-point or broadcast, which can be chosen based on automatic analysis of
execution run-times.

3.5 Performance and accuracy monitoring

In order to make it easier to implement and evaluate new algorithms, PROTOMOL supports
fairly generic performance and accuracy monitoring. To perform experimental analysis
of algorithms, two of the most important operational principles are reasonably efficient
implementations and comparability [Johnson 2002].

To ensure efficient implementation of all algorithms to be compared, the design and
implementation of PROTOMOL was done after a thorough domain analysis of whole fam-
ilies of algorithms for MD. The analysis pinpoints commonalities and specific differences
among algorithms. The commonalities are exploited through the use of genericity and
inheritance, which results in efficient implementations for all algorithms.

To ease the evaluation and comparison of different force algorithms, comparability
functionalities were added to the framework. At present, pairs of forces can be compared
to determine energy and force errors of new force methods. The comparison is performed
on-the-fly, such that the reference force does not affect the current simulation. Program 4
shows an example of use of performance monitoring to compare the fast electrostatics
method PME using two grid sizes, such that the more accurate one serves as an accuracy
estimator. This is useful to validate and verify a simulation. Another example of use would

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 17

force compare time force Coulomb
-algorithm PME -real -reciprocal -correction
-cutoff 6.5 -gridsize 10 10 10 # Coarser grid used for the MD simulation

force compare time force Coulomb
-algorithm PME -real -reciprocal -correction
-cutoff 6.5 -gridsize 20 20 20 # Finer grid used as reference

force time LennardJones -algorithm Cutoff -switchingFunction C1 -cutoff 8.0

Program 4. Examples of accuracy and timing comparison.

be to compare two different algorithms, such as PME and Ewald, or MG and all–pair
evaluation. The first algorithm is the one being measured and the second is the reference
algorithm. Comparisons can be nested to evaluate accuracy and run-time performance
simultaneously.

4. EVALUATION OF THE FRAMEWORK

Many MD andN -body algorithms have been implemented in PROTOMOL, which has
more than 45,000 lines of code and nearly 200 reusable classes. Optimized versions,
including parallel ones, have been relatively easy to incorporate by exploiting the common
services available in the framework. An evaluation of the extensibility of PROTOMOL, its
performance, and examples of scientific and educational applications, are presented here.

4.1 Extension of the framework

We give a few examples here: (i) addition of a new force kernel; (ii) parallelization of an
existing force kernel; (iii) addition of a new non-bonded force algorithm; and (iv) addition
of a new MTS integrator.

4.1.1 Adding a new force kernel.Coulomb crystal systems are defined by ions with
an additional magnetic trap [Tosuji et al. 2002]. A commonly used trap is the Paul Trap
attraction, which is given by

UPaulTrap(~ri) =
N∑

i=1

(
1
2
miω

2
xy(x

2
i + y2

i) +
1
2
miω

2
zz2

i

)
, ~ri = (xi, yi, zi)>. (8)

Here,~ri is the coordinate of particlei, andωxy andωz parameterize the Paul Trap attrac-
tion.

Program 5 shows the implementation of this force. Lines 1–2 declare the classPaul

TrapSystemForce as a derived class fromSystemForce . The class then redefines the
methodevaluate to implement Eq. (8) in lines 5–18. Note that the class is parameter-
ized on the boundary conditions. The boundary condition class computes distances and
positions. After obtaining the massmi in line 9, the coordinates for the current atom,
pos , are obtained in line 10. Then the force and energy contributions are calculated
(lines 11–15). The potential energy contribution is accumulated in line 17. The func-
tion getParameters can be overloaded for any force function or integrator. It defines
locally what parameters should be read from the configuration files or GUI menus to
properly define this force type. For example,omegaXY (lines 21, 22) corresponds toωxy

in Eq. (8).

4.1.2 Parallelizing an existing force kernel.In order to parallelize a given force kernel,
parallelEvaluate() has to be overwritten. Furthermore, a splitting of the force compu-
tation has to be defined. For example, a velocity dependent friction could be implemented

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

18 · Thierry Matthey et al.

01 template<class TBoundaryConditions>
02 class PaulTrapSystemForce : public SystemForce
03 {
04 public: // From class SystemForce
05 virtual void evaluate(...){
06 const TBoundaryConditions &boundary = ...;
07 Real e = 0.0;
08 for(int i=0;i<topo->atoms.size();i++){
09 Real c = topo->atomTypes[topo->atoms[i].type].mass;
10 Coordinates pos(boundary.basisPosition((*positions)[i]));
11 Coordinates f(c*myOmegaXY*myOmegaXY*pos.x,c*myOmegaXY*myOmegaXY*pos.y,
12 c*myOmegaZ*myOmegaZ*pos.z);
13 (*forces)[i] -= f;
14 e += 0.5*c*(myOmegaXY*myOmegaXY*(pos.x*pos.x+pos.y*pos.y)+
15 myOmegaZ*myOmegaZ*pos.z*pos.z);
16 }
17 energies->otherEnergy += e;
18 }
19 public: // From class Force
20 virtual void getParameters(vector<ParameterType>& parameters) const{
21 parameters.push_back(ParameterType("-omegaXY",VarValType::REAL,
22 VarVal(myOmegaXY)));
23 parameters.push_back(ParameterType("-omegaZ",VarValType::REAL,
24 VarVal(myOmegaZ)));
25 }
26 protected: // New methods
27 virtual Force* doMake(string&, const vector<VarVal>&) const{
28 Real omegaXY = values[0].getReal();
29 Real omegaZ = values[1].getReal();
30 return new PaulTrapSystemForce(omegaXY,omegaZ);
31 }
...
32 };

Program 5. Implementation of a Paul Trap attraction.

01 virtual evaluate(...){...} // sequential implementation
02 virtual parallelEvaluate(...){
...
03 int n = positions->size();
04 int blocks = ...; // number of blocks
05 for(int i = 0;i<blocks;i++){
06 if(topo->parallel->next()){
07 int to = (n*(i+1))/blocks;
08 if(to > n) to = n;
09 int from = (n*i)/blocks;
10 for(int j=from;j<to;j++){
11 (*forces)[j] += (*velocities)[j]*myF;
12 } } } }

Program 6. Parallelization of a velocity dependent friction.

as described in Program 6. In this program,n is the number of particles, andblocks

defines the number of blocks, typically the number of processors. Whenever a slave
entersparallelEvaluate() , next() in line 6 will be true if theith block has not been
processed by any other slave.

4.1.3 Adding a new non-bonded force algorithm.MG summation has been used to
solve theN -body problem by [Sandak 2001; Skeel et al. 2002]. MG scales asO(N) by
imposing a hierarchical separation of spatial scales. The pair–wise interactions aresplit
into a local and a smooth part. The local part consists of short-range interactions, which
are computed directly. The smooth part represents the slowly varying energy contributions,
approximated with fewer terms – a technique known ascoarsening. MG uses interpolation

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 19

(1)

(1) (3)

(4)

(2)

(1) (3)

(4)

(4)

(3)

l

1

0

Force values Point charges

−1l

Fig. 12. The multilevel scheme of the MG algorithm. (1) Aggregate to coarser grids; (2) Compute potential
energy and force induced by the coarsest grid; (3) Interpolate potential energy and force values from coarser
grids; (4) Local corrections.

main:

(1) inverse interpolate particle charges to the finest charge grid(1)
(2) call multiscale(maxLevel, level 1)

(3) interpolate finest force grid(1) to the particles

(4) correct particle force and potential energy
(5) accumulate forces and total energy

multiscale(maxLevel, level k):

(1) if maxLevel = k then
(a) compute force values on coarsest grid(maxLevel)

(2) otherwise
(a) inverse interpolate charge grid(k) to coarser charge grid(k+1)
(b) call multiscale(maxLevel, k+1)
(c) interpolate coarser force grid(k+1) to force grid(k)
(d) correct force grid(k)

Algorithm 4. Pseudo-code of a recursive MG scheme with V-cycle.

onto a grid for both the charges and the force to represent its smooth –coarse– part. The
splitting and coarsening are applied recursively and define a grid hierarchy (Fig. 12). For
electrostatics, thekernelis defined byG(r) = r−1 andr = ||~y−~x||. G(r) is obviously not
bounded for smallr. The interpolation imposes smoothness to bound its interpolation error.
Splitting functions producesmoothed kernelsGk

smooth for grid level k ∈ {1, 2, . . . , l}.
Corrections to the force and potential energy are required when the modified, smoothed
kernel is used instead of the exact one.

The MG scheme can be described as in Algorithm 4, defining aV-cycle. It has the same
interface as the cutoff or all-pairs algorithm. The order of the interpolation schemes can

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

20 · Thierry Matthey et al.

Hybrid Monte Carlo (HMC)
Given positionsX and β := 1/(kBT), wherekB is Boltzmann’s constant andT is the
temperature:

(1) MC Step:
Generate new random momentaP from a Gaussian distribution

(2) MD Step:
Given time stepδt and trajectory lengthL:
(a) Compute energyH0(X, P)
(b) Run MD algorithm forL/δt steps
(c) Compute new energyH1(X

′, P ′)
(d) Compute change in energyδH = H1 −H0

(e) Choose a uniform random number,U , between[0, 1]
(f) Accept new positions ifU < exp(−βδH)
(g) If new positionsX ′ are rejected, restore old positions(X ′ := X).

(3) Sampling Step:
Compute observableA(x = X ′).

Algorithm 5. One step of Hybrid Monte Carlo (HMC).

be chosen from among several generic interpolation routines, which operate from particles
to grid, grid to particles, and from grid to grid. Internally, the algorithm keeps a MG
structure that contains the hierarchy of grids. The interpolation from particles to grid and
the grid data structures are reused by PME. MG is very competitive, and under periodic
boundary conditions is five times faster than PME for systems with 8,000 or more atoms.
It has already enabled material science simulations with millions of atoms that would be
otherwise intractable, cf. [Matthey 2002, pp. 49 ff.],[Matthey et al. 2003].

4.1.4 Adding a new MTS integrator.The Hybrid Monte Carlo (HMC) method consists
of short MD trajectories interleaved with a random update of momenta of all particles and
a Metropolis Monte Carlo (MC) acceptance criterion. The MC step makes HMC an exact,
rigorous method for sampling, whereas MD alone introduces a bias that depends on the
finite step size. The HMC method is described in Algorithm 5. The implementation of
HMC within PROTOMOL was challenging. The MD step of HMC is applicable to the
hierarchy, but how would the MC step apply? Given that HMC requires a STS method,
HMC was implemented as a MTS integrator. Fig. 6 shows howHybridMC derives from
MTSIntegrator . The MC step is handled by therun() method and a few auxiliary
functions. Because the updated positions of an HMC step are conditionally accepted,
HybridMC requires a unique set of methods to save and restore positions and energies
if needed. Aside from these small differences,HybridMC is just like any other MTS
integrator. Although HMC is not traditionally considered a MTS method, the versatility
and robustness of the integrator hierarchy allow HMC to fit right in.

4.2 Performance evaluation

Here we show evidence that the object-oriented and generic design of this scientific appli-
cation need not sacrifice performance. PROTOMOL was compared against NAMD 2 [Kal´e
et al. 1999], a leading MD package, because they have similar basic functionalities and
both are implemented in C++. Both sequential and parallel performances are compared.
In order to make the comparison fair, the same simulation protocol is used. Both configu-

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 21

Table I. Sequential comparison of PROTOMOL vs. NAMD 2 for one time step in average on a Pentium III,
1.26 GHz running Linux RedHat.

Test case # atoms PROTOMOL NAMD 2 Ratio
N [s] [s]

Water vacuum 423 0.01082 0.0 1215 0.89
periodic 0.01558 0.01488 1.047

BPTI vacuum 14,281 0.7826 0.889 0.88
periodic 1.3855 1.216 1.139

ApoA1 vacuum 92,224 5.6221 6.537 0.86
periodic 9.2586 10.056 0.92

5 10 15 20 25 30

10

20

30

Processors

S
pe

ed
up

Parallel Scaling, Vacuum

ApoA1 ProtoMol
ApoA1 NAMD2

5 10 15 20 25 30

10

20

30

Processors

S
pe

ed
up

BPTI ProtoMol
BPTI NAMD2

Fig. 13. Parallel scalability for vacuum on an Origin2000. BPTI and ApoA1 are solvated protein systems with
14281 and 92224 atoms, respectively.

rations use leapfrog with time step 1 fs, a non-bonded force cutoff of 10Å, and Lennard–
Jones and Coulomb forces withC1-continuous andshift switching functions, respectively.
For the structural and initial simulation state, identical input was used. PROTOMOL was
configured with a cell size of 5̊A for the water case and3 1

3 Å for the two other cases in
order to exploit the cache optimally. All runs were performed on a dedicated node of a
Linux cluster with 1.26 GHz Pentium III processors. From Table I, one can conclude that
PROTOMOL performs well and has a slightly better (sequential) scaling than NAMD 2.
Fig. 13 illustrates the parallel scalability of PROTOMOL and NAMD 2. The simulation
setup for all test cases was the same as for the sequential comparison, besides a cell size
of 5Å for all PROTOMOL runs. All runs were performed on an Origin2000 with 195MHz
R10000 processors. NAMD 2 scales better for large systems with many processors or
nodes. PROTOMOL, however, shows smooth scaling.

Fig. 14 show the parallel speedup and scalability of the full electrostatics MG imple-
mented in PROTOMOL applied on Coulomb Crystal systems [Hasse and Avilov 1991;

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

22 · Thierry Matthey et al.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

S
pe

ed
up

Processors

N=1e6
N=1e5
N=1e4
N=1e3

Fig. 14. Parallel speedup of MG electrostatic solver applied on Coulomb Crystal systems with relative force error
of order10−5 or less; performed on an IBM p690 Regatta Turbo.

Matthey et al. 2003], which are defined by a computationally dominating electrostatic part
and an electric field with linear work complexity. The simulations were performed on an
IBM p690 Regatta Turbo. Note that the sequential speedup forN = 106 is of order102 or
more compared to the direct method, and for lower accuracy a speedup of order103 was
observed.

4.3 Education and outreach

PROTOMOL is used in several applications, including simulation of ionic crystals, mag-
netic dipoles, and large biological molecules. It has also been used in courses on scientific
computing simulations at Notre Dame and Bergen (for example, CSE 5983, Computational
Biology at University of Notre Dame, USA, and IM 2004, Ion Crystallization and Dynam-
ics, at University of Bergen, Norway).

5. DISCUSSION

PROTOMOL allows rapid prototyping of fast electrostatics algorithms and integration schemes
while achieving high performance. In this section, we discuss how we achieved this.

5.1 High–performance framework and rapid prototyping

The main question addressed in this paper iswhat it takes to make a high–performance
platform that allows for rapid development of new algorithms,particularly for MD in-

3http://www.cse.nd.edu/courses/cse598k/www/
4http://realfag.uib.no/fag/2002v/IM200

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 23

tegrators andN -body solvers. There are excellent examples of highly successful rapid
prototyping environments for scientific and engineering software: for example, Math-
ematica,5 MATLAB, 6 and FEMLAB.7 However, due to the interpreted nature of these
environments, it is not possible to solve challenging MD applications in them. Nonetheless,
these environments are built on top of highly optimized libraries that are typically written in
an efficient language such as Fortran or C. A more traditional solution for high performance
software is to use directly these libraries, and perhaps write new algorithms into them.
In these libraries, such as LAPACK [Anderson et al. 1999] for linear algebra, there are
many versions of functions to perform the same task. The interfaces are also very large,
because many parameters need to be specified (ten or more are not unusual). If the library
supports parallelism, the interface of these functions will grow, and the difficulties of using
or extending them are significant, cf. ScaLAPACK [Blackford et al. 1997].

Another way of writing scientific software is suggested here:encapsulate commonalities
of families of algorithms using inheritance and templates. Inheritance allows for shared
behavior and specialization, such as in the integrator and force hierarchies presented here.
Templates, or “code skeletons”, enable highly efficient code generation at compile time.
Parallelism is encapsulated: developers of new algorithms can benefit from existing paral-
lelism, but do not have to worry about it from the beginning. Whenever possible, users are
allowed to define their own methods and protocols without having to recompile the code.
This is often done with scripting language interfaces, such as in SPASM [Beazley and
Lomdahl 1996]; in this work we have preferreddomain specific languages, because they
are easier to learn and can easily be part of a visual environment through a GUI. Another
important component is the ability to monitor performance of the algorithms, in terms
of accuracy, stability, and time. This facilitates comparison of algorithms and automatic
tuning of the parameters for complex algorithms, and greatly enhances usability of the
code. All these elements have been integrated into PROTOMOL.

Inheritance and the reuse of design patterns allow for common interfaces and optimiza-
tions, both at the algorithmic level (such as was done here for integrators and forces),
and at the architectural level (for example, by designing classes to be “make-able” by
factories, one can greatly simplify the complex process of object creation and destruction).
Maintenance is greatly improved, as well as the modularity of the code. A disadvantage of
this approach is the relative speed of C++ compiled code, which can be slower by a factor
of two to Fortran code. However, compiler technology for C++ is continually improving.
Also, PROTOMOL’s implementation can use object-oriented languages that tend to produce
more efficient code, such as Eiffel8. Another disadvantage is that there is a higher learning
curve to start adding code into the framework, because of the need to master its overall
design. However, after the initial effort, code development in PROTOMOL is easier than
using traditional methods, and more productive in the long run.

Evaluation of the framework has shown that it is simple to add new force kernels,N -
body algorithms, and integrators, both using the IDL and by adding classes. Proof of
its suitability as a research and development platform are the variety of new methods
implemented. These methods provide orders of magnitude speedups over state-of-the-art

5http://documents.worlfram.com/v4/index34.html
6http://mathworks.com/access/helpdesk/help/techdoc/matlab.shtml
7http://femlab.com
8http://www.eiffel.com

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

24 · Thierry Matthey et al.

MD andN -body technology. PROTOMOL’s sequential performance is excellent, and its
parallel performance is adequate for moderate size clusters of commodity computers.

The main remaining challenge is further customization and optimization of parallelism,
to both achieve high scalability and respect encapsulation. Spatial decomposition, dynamic
load balancing, and more complex task scheduling favor scalability, but a naive implemen-
tation of these sophisticated techniques would force developers to be aware of these issues
from the start in detriment of the rapid prototyping goals of the framework. The data
structures and the algorithms need to be decoupled further. This can be achieved by using
more generic algorithms, such as in the C++ standard library. We are implementing XML9

interfaces for all data transfers, to make PROTOMOL “grid friendly”. There are also many
integrators and methods for analysis of MD that should be incorporated. Because PRO-
TOMOL is open source, some users have already started contributing methods. We might
also wrap methods implemented in other MD programs, see below. Finally, performance
monitoring and run-time selection of optimal algorithms and parameters need to be incor-
porated more thoroughly into PROTOMOL. For example the stand-alone tool MDSIM AID

recommends optimal parameters for combinations of fast electrostatic algorithm and STS
or MTS integrators for a given simulation using PROTOMOL [Ko 2002].

5.2 Related work in design of scientific software

An MD program designed with modern object oriented software engineering techniques
is NAMD 2. It addresses several of the requirements identified in this paper and has
been an inspiration in the design of PROTOMOL. NAMD 2 is written in C++ and the
parallel language Charm++, and has excellent performance10 through the use of an efficient
data and work decomposition and active messages. However, many optimizations are
not encapsulated enough: For example, different numerical integrators are hardwired into
one sequence. Multiple tests determine what kind of equations of motion one is using,
for example NVE or NVT dynamics, and force algorithm, such as all pairs or cutoff
electrostatics. This makes it extremely difficult to add new integrators. The force com-
putation is written using compilation macros, whereas PROTOMOL uses generic classes
(templates). These have type checking and are a more reliable way of writing software.
Most importantly, in NAMD 2 developers need to deal with active messages, which hide
the control flow, and the distributed nature of the data decomposition. PROTOMOL’s design
hides these optimizations at the deepest level.

Another MD suite of programs written in Fortran 77 as a platform for algorithm develop-
ment and parameterization is TINKER.11 It is a series of programs that provide many tools
for MD simulation and analysis. PROTOMOL has more integration andN -body algorithms
available, whereas TINKER has more force field support, including a polarizable force
field for proteins. It is possible to interface modules between this program (and several
others) and PROTOMOL.

PROTOMOL was influenced by BALL [Boghossian et al. 1999], a library that abstracts
the data structures used in molecular modeling; OOMPAA [Huber and McCammon 1999],
which emphasizes the use of generic algorithms; and BOOGA [Streit1997], an object-
oriented framework for visualization. Compared to BALL, PROTOMOL provides algorith-

9http://www.w3.org/XML
10NAMD 2 is the recipient of a 2002 Gordon Bell Award, for scaling to thousands of processors.
11http://dasher.wustl.edu/tinker/

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 25

mic facilities for integrators andN -body solvers not available there. They have interesting
abstractions, such as force field, that would be helpful in PROTOMOL. PROTOMOL would
also benefit from generic algorithms in the style of OOMPAA.

ACKNOWLEDGMENTS

Many students have contributed to PROTOMOL. Special thanks to Jeremiah Willcock who
first designed the non-bonded force evaluation structure as a final project for a graduate
computer science course taught by J. A. Izaguirre. Simon Kanaan carefully proofread
this manuscript. A list of all contributors can be found in the PROTOMOL web page:
http://protomol.sourceforge.net.

REFERENCES

ALEXANDRESCU, A. 2001.Modern C++ design: generic programming and design patterns applied. Addison-
Wesley, Reading, Massachusetts.

ALLEN, M. P. AND TILDESLEY, D. J. 1987.Computer Simulation of Liquids. Clarendon Press, Oxford, New
York. Reprinted in paperback in 1989 with corrections.

ANDERSEN, H. C. 1983. Rattle: A ‘velocity’ version of the Shake algorithm for molecular dynamics
calculations.J. Comput. Phys. 52, 24–34.

ANDERSON, E., BAI , Z., BISCHOF, C., BLACKFORD, S., DEMMEL, J., DONGARRA, J., DU CROZ, J.,
GREENBAUM, A., HAMMARLING , S., MCKENNEY, A., AND SORENSEN, D. 1999.LAPACK Users’ Guide,
Third ed. Society for Industrial and Applied Mathematics, Philadelphia, PA.

BEAZLEY, D. M. AND LOMDAHL , P. S. 1996. Lightweight computational steering of very large scale molecular
dynamics simulations. InProceedings of Supercomputing ’96.

BIESIADECKI, J. J.AND SKEEL, R. D. 1993. Dangers of multiple-time-step methods.J. Comput. Phys. 109,2,
318–328.

BLACKFORD, L. S., CHOI, J., CLEARY, A., D’A ZEVEDO, E., DEMMEL, J., DHILLON , I., DONGARRA, J.,
HAMMARLING , S., HENRY, G., PETITET, A., STANLEY, K., WALKER, D., AND WHALEY, R. C. 1997.
ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA.

BOGHOSSIAN, N. P., KOHLBACHER, O.,AND LENHOF, H.-P. 1999. BALL: Biochemical Algorithms Library.
In 3rd Int. Workshop on Algorithm Engineering (WAE-99), J. S. Vitter and C. D. Zaroliagis, Eds. Lecture Notes
in Computer Science, vol. 1668. Springer-Verlag, London, 330–344.

BRANDT, A. AND LUBRECHT, A. A. 1990. Multilevel matrix multiplication and fast solution of integral
equations.J. Comput. Phys. 90, 348–370.

BROOKS, B. R. AND HODOS̆C̆EK, M. 1992. Parallelization of CHARMM for MIMD machines.Chemical
Design Automation News 7, 16–22.

BRÜNGER, A., BROOKS, C. B., AND KARPLUS, M. 1982. Stochastic boundary conditions for molecular
dynamics simulations of ST2 water.Chem. Phys. Lett. 105, 495–500.

BRÜNGER, A. T. 1992. X-PLOR, Version 3.1: A System for X-ray Crystallography and NMR. The Howard
Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University.

DARDEN, T. A., YORK, D. M., AND PEDERSEN, L. G. 1993. Particle mesh Ewald. AnN · log(N) method for
Ewald sums in large systems.J. Chem. Phys. 98, 10089–10092.

ESSMANN, U., PERERA, L., AND BERKOWITZ, M. L. 1995. A smooth particle mesh Ewald method.J. Chem.
Phys. 103,19, 8577–8593.

EWALD , P. 1921. Die Berechnung optischer und elektrostatischer Gitterpotentiale.Ann. Phys. 64, 253–287.

FINCHAM , D. 1994. Optimisation of the Ewald sum for large systems.Mol. Sim. 13, 1–9.

FRENKEL, D. AND SMIT, B. 2002. Understanding Molecular Simulation, Second Edition. Academic Press,
San Diego.

GAMMA , E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns. Elements of Reusable
Object-Oriented Software.Addison-Wesley, Reading, Massachusetts.

GRUBMÜLLER, H. 1989. Dynamiksimulation sehr großer Makromolek¨ule auf einem Parallelrechner. M.S.
thesis, Physik-Dept. der Tech. Univ. M¨unchen, Munich.

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

26 · Thierry Matthey et al.

HAMPTON, S.AND IZAGUIRRE, J. A. 2004. Improved sampling for biological molecules using Shadow Hybrid
Monte Carlo. Accepted inInternational Conference on Computational Science(ICCS 2004), Poland.

HASSE, R. H.AND AVILOV, V. V. 1991. Structure and Mandelung energy of spherical Coulomb crystals.Phys.
Rev. A 44,7, 4506–4515.

HUBER, G. A. AND MCCAMMON , J. A. 1999. OOMPAA—Object-oriented model for probing assemblages of
atoms.J. Comput. Phys 151,1, 264–282.

ISRALEWITZ, B., GAO, M., AND SCHULTEN, K. 2001. Steered molecular dynamics and mechanical functions
of proteins.Curr. Opinion Struct. Biol. 11, 224–230.

JOHNSON, D. S. 2002. A theoretician’s guide to the experimental analysis of algorithms. InData
Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges,
M. Goldwasser, D. S. Johnson, and C. C. McGeoch, Eds. American Mathematical Society, Providence, RI,
215–250.

KAL É, L., SKEEL, R., BHANDARKAR , M., BRUNNER, R., GURSOY, A., KRAWETZ, N., PHILLIPS, J.,
SHINOZAKI , A., VARADARAJAN, K., AND SCHULTEN, K. 1999. NAMD2: Greater scalability for parallel
molecular dynamics.J. Comput. Phys. 151, 283–312.

KO, A. 2002. MDSimAid: An automatic recommender for optimization of fast electrostatic algorithms for
molecular simulations. M.S. thesis, University of Notre Dame, Notre Dame, Indiana, USA.

LEEUW, S. W. D., PERRAM, J. W.,AND SMITH , E. R. 1980. Simulation of electrostatic systems in periodic
boundary conditions. I. lattice sums and dielectric constants.Proc. R. Soc. Lond. A 373, 27–56.

MA, Q. AND IZAGUIRRE, J. A. 2003a. Long time step molecular dynamics using targeted langevin stabilization.
In Proceedings of the ACM Symposium on Applied Computing, Melbourne, FL. ACM, New York, 178–182.

MA, Q. AND IZAGUIRRE, J. A. 2003b. Targeted langevin stabilization of molecular dynamics. InProc. of the
SIAM Conference on Computational Science and Engineering (CSE’03)(CD-ROM). SIAM, San Diego, CA.

MA, Q. AND IZAGUIRRE, J. A. 2003c. Targeted mollified impulse — a multiscale stochastic integrator for long
molecular dynamics simulations.SIAM Multiscale Model. Simul. 2,1, 1–21.

MARTYNA , G. J., KLEIN, M. L., AND TUCKERMAN, M. E. 1992. Nos´e-Hoover chains: The canonical
ensemble via continuous dynamics.J. Chem. Phys. 97,4, 2635–2643.

MATTHEY, T. 2002. Framework design, parallelization and force computation in molecular dynamics. Ph.D.
thesis, University of Bergen, Bergen, Norway.

MATTHEY, T., HANSEN, J. P.,AND DREWSEN, M. 2003. Coulomb bi-crystals of species with identical charge-
to-mass ratios.Phys. Rev. Lett. 91,16, 165001.

MATTHEY, T. AND IZAGUIRRE, J. A. 2001. ProtoMol: A molecular dynamics framework with incremental
parallelization. InProc. of the Tenth SIAM Conf. on Parallel Processing for Scientific Computing (PP01).
Proceedings in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia.

MATTHEY, T., KO, A., AND IZAGUIRRE, J. A. 2003. ProtoMol, an object-oriented framework for algorithmic
development. InComputational Science—ICCS 2003, International Conference, Melbourne, Australia and St.
Petersburg, Russia. Springer-Verlag, Berlin, 50–59. Lecture Notes Comput. Sci. 2659.

NOSÉ, S. 1984. A unified formulation of the constant temperature molecular dynamics methods.J. Chem.
Phys. 81,1, 511–519.

OPENMP-FORUM. 1997. OpenMP: A proposed industry standard API for shared memory programming.
technical report.http://www.openmp.org .

PAGONABARRAGA, I., HAGEN, M. H. J., AND FRENKEL, D. 1998. Self-consistent dissipative particle
dynamics algorithm.Europhys. Lett. 42,4, 377–382.

PLIMPTON, S. AND HENDRICKSON, B. 1996. A new parallel method for molecular dynamics simulation of
macromolecular systems.J. Comp. Chem. 17,3, 326.

RYCKAERT, J., CICCOTTI, G.,AND BERENDSEN, H. 1977. Numerical integration of the Cartesian equation of
motion of a system with constraints: molecular dynamics of n-alkanes.J. Chem. Phys. 23, 327–341.

SANDAK , B. 2001. Multiscale fast summation of long-range charge and dipolar interactions.J. Comp.
Chem. 22,7, 717–731.

SKEEL, R. D. 1999. Integration schemes for molecular dynamics and related applications. InThe Graduate
Student’s Guide to Numerical Analysis, M. Ainsworth, J. Levesley, and M. Marletta, Eds. Springer Ser.
Comput. Math., vol. 26. Springer-Verlag, Berlin, 119–176.

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

PROTOMOL, an Object-Oriented Framework for Molecular Dynamics · 27

SKEEL, R. D. AND IZAGUIRRE, J. A. 2002. An impulse integrator for Langevin dynamics.Mol. Phys. 100,24,
3885–3891.

SKEEL, R. D., TEZCAN, I., AND HARDY, D. J. 2002. Multiple grid methods for classical molecular dynamics.
J. Comp. Chem. 23,6, 673–684.

STREIT, C. 1997. BOOGA, ein komponentenframework f¨ur grafikanwendungen. Ph.D. thesis, Institute of
Computer Science and Applied Mathematics, University of Berne.

STROUSTRUP, B. 1997.The C++ Programming Language, Third ed. Addison-Wesley, Reading, Massachusetts.
TOSUJI, H., KISHIMOTO, T., TOTSUJI, C., AND TSURUTA, K. 2002. Competition between two forms of

ordering in finite Coulomb clusters.Phys. Rev. Lett. 88,12.
TUCKERMAN, M., BERNE, B. J., AND MARTYNA , G. J. 1992. Reversible multiple time scale molecular

dynamics.J. Chem. Phys. 97,3, 1990–2001.
TUCKERMAN, M. E., YARNE, D., SAMUELSON, S. O., HUGHES, A. L., AND MARTYNA , G. J. 2000.

Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques
and software paradigms on distributed memory computers.Comput. Phys. Commun. 128, 333–376.

VELDHUIZEN, T. 1998. Blitz++: The library that thinks it is a compiler. Conference presentation, Extreme!
Computing Laboratory, Indiana University Computer Science Department. Sept.

VERLET, L. 1967. Computer ‘experiments’ on condensed fluids I. Thermodynamical properties of
Lennard–Jones molecules.Phys. Rev. 159, 98–103.

V INCENT, J.AND MERZ, K. M. 1995. A highly portable parallel implementation of AMBER using the Message
Passing Interface standard.J. Comp. Chem. 11, 1420–1427.

Received MM YY; MM YY; accepted MM YY

ACM Transactions on Mathematical Software, Vol. x, No. x, xx 20xx.

