Reinforcement Learning for Stochastic Cooperative
Multi-Agent-Systems

Martin Lauer
University of Osnabriick

Abstract

We present a distributed variant of Q-learning that al-
lows to learn the optimal cost-to-go function in stochas-
tic cooperative multi-agent domains without communica-
tion between the agents.

1. Introduction

Multi-agent reinforcement learning is faced with the
problem of several independent agents acting in a
shared environment with the objective to learn a strat-
egy to act optimally with respect to a given reward
function [1, 2, 6].

We present an algorithm for general stochastic en-
vironments for the model-free independet learner (IL)
[3] case. No explicit communication between the agents
is assumed. In its ’full-lists’- variant, convergence to
the optimal joint policy can be shown. In a more ef-
ficient ’'reduced-lists’-variant, theoretical convergence
currently is only known for deterministic environments.

2. A learning algorithm for independent
learners (IL)

The framework we consider here is a stan-
dard Markov Decision Process (MDP) where ac-
tions are vectors of agent individual decisions. The
goal is to find an optimal policy 7* that maxi-
mizes the sum of discounted rewards.

Independent learners suffer from the lack of informa-
tion about the actions taken by their teammates. They
only know about their own contribution a; to the joint
action. A value estimation based on that information
alone would therefore mix the rewards of several differ-
ent joint action vectors and thus become meaningless.
The problem is therefore, that the independent learn-
ers must somehow be able to distinguish between the
different joint actions. The key idea of the following al-
gorithm is, that the agent can distinguish between dif-
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ferent joint actions without knowing, what exactly the
joint actions are. This will be realized by the idea of
implicit coordination’. We will develop our algorithm
in four basic steps:

1. Idea of implicit coordination Each agent i
maintains a list for every state s, L;(s), where each en-
try corresponds to exactly one joint action. A list entry
contains a tuple of the form L;(s)[l] = (Q, a;,n) where
a; is component 7 of the (implicitly) referenced joint
action vector, @) the respective Q-value and n counts
the number of occurrences of the pair (s,a), where
a = (a1,as,...a,) is the joint action of the m agents.
If we can assure, that at every single point in time, all
agents select the same index [ to access their individ-
ual lists and select the action L;(s)[].a;, then the re-
ward can be uniquely assigned. The reward is caused
by the joint action implicitly referenced by the list in-
dex. Accordingly, the Q-value of that entry, L;(s)[l].Q,
can be correctly updated.

2. The Select_.Index procedure The Se-
lect_Index procedure is realized in every agent and has
to assure, that at every point in time all agents get
the same index. As a necessary condition this there-
fore assumes, that all agents are aware of the same
time, e.g. by reliably counting the number of deci-
sion cycles.

3. Efficient exploration To enforce efficient ex-
ploration, the lists are sorted according to decreasing
Q-values. This means, that the most promising actions
are at the beginning of the list.

4. Reduced lists When the lists contain an en-
try for every possible joint action, then the approach
is called the ’full lists’-variant of the algorithm. How-
ever, dealing with full lists will be rather impractical.
A more feasible way is to only consider lists with a re-
duced number of joint actions (‘reduced lists’-variant).
The size of a list is denoted by [,,4,. Certainly, ignor-
ing some joint actions yields the danger of missing the
optimal solution. Therefore, after some training cycles
(the ’training interval’), the list is partially reset. Only
the lieep best entries are preserved; the rest of the list



is reinitialized and new candidates get a chance. This
means, every list entry from lpeep + 1 t0 lyas is as-
signed a new individual action; the () and n entries are
reset to zero. To enforce a stabilization of the learn-
ing process, the length of the training intervals is in-
creased in course of learning.

Convergence: The proof of the theoretical soundness of
the ‘full lists’-approach is based on exploiting its rela-
tionship to standard Q-learning (see full version of this

paper).
2.1. Description of the algorithm

Here is a coarse description of an implementation:
Every agent ¢ keeps for every state s a list, where ev-
ery entry in the list, L(s)[l] stores three values: the
individual action L(s)[l].a € Actions(i), the number
Li(s)[]].n € N of times that the index [ has been se-
lected up to now, and the current Q-value L(s)[I].Q €
R. Each list contains at most I,,,, entries.

A procedure LearnTransition(state s) is realized
in every agent. It selects an individual action (corre-
sponding to a selected index ;) which is applied to the
environment. The observed successor state is then used
to update the Q-value of state s at index [;. Learn-
ing of transitions is repeated until a certain number
(num_traincycles) of cycles is done. Then, each agent
resets parts of his list : First, the lists are sorted by de-
creasing Q-values, then all but lice, entries are deleted.
The freed list entries are filled again by new candidate
actions. The whole process is repeated, until the op-
timal policy is found or approximated to a sufficient
level.

3. Empirical Results

The example we consider is the ’climbing game’
taken from [3]:
ag | a1 | a2
bo 11 | -30 0
b1 | -30 7 0
ba 0 6 5

Claus and Boutilier showed, that their learning
scheme for ILs will find an equilibrium, which not nec-
essarily is the optimal solution. In fact, for the climb-
ing game they reported that the agents learned to play
(a1,b1), which yields a reward of 7, whereas the maxi-
mum reward is 11 for joint action (ag, bp).

The full-list variant of our algorithm can be theo-
retically shown to find the optimal solution. For the
more efficient reduced-lists variant, where theoretical
convergence is not guaranteed at the moment, empiri-
cal results demonstrate the success of the algorithm in
finding optimal solutions (in the experiments, the list
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Figure 1. Reduced-lists algorithm for stochastic
climbing game with noise variance 1. Learned Q-
values of optimal (solid) and second best action
(dashed) at the end of training cycle. The opti-
mal action was found after 300 cycles and kept
from then on in the (reduced) list.

had 2 entries). In extensions of the results of Claus and
Boutillier, this can also be observed for different noise
levels (see figure 1).

4. Conclusion

The proposed approach overcomes the elementary
problem in distributed learning of distinguishing be-
tween random noise and structural influence of other
agents. It is based on an implicit agreement at the be-
ginning of learning. A more detailed description and
more empirical results can be found in the full version
of this paper.
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