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Abstract 

Several researchers have employed the notion of reliability of coverage to extend the set covering 

and maximal coverage models.  We discuss the suitability of these models in general for choosing 

ambulance station or vehicle locations.  Then, we discuss one particular model (the queueing 

maximum availability location problem) in greater detail and describe difficulties encountered in 

applying it using realistic data. 
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1. Introduction 

EMS systems typically have performance targets of the form “reach x% of patients in y minutes 

or less” (e.g., Fitch et al., 1993, Blackwell and Kaufman, 2002, Henderson and Mason, 2004).  

Many planning models for EMS station and vehicle location use an analogous concept of 

coverage, where a call is considered covered if there is an available ambulance within some time 

or distance standard.  The most basic coverage models are the set covering (Toregas et al., 1971) 

and maximum coverage (Church and Revelle, 1974) models. 

In this paper, we critique a class of coverage models that have been proposed for emergency 

service systems and are referred to as either maximum availability models (Revelle and Hogan, 

1988 and 1989, Marianov and Revelle, 1996) or maximum reliability models (Ball and Lin, 

1993).  Although these models differ from each other in many ways, they share the following 

characteristic: the demand nodes are classified into ones where the probability of an ambulance 

being available within a coverage standard is at least α, i.e., are “covered with α-reliability,” (α is 

a user-specified parameter) and ones where this is not true.  Nodes in the former set contribute 

their demand to the objective function and nodes in the latter set do not.  The primary basis for 

our critique of this family of models is that they measure performance in a fashion that is 

inconsistent with performance measures currently used in most real EMS systems. 

We will not attempt a complete survey of maximum reliability and maximum availability 

models, as our purpose is to examine the fundamental assumptions that these models have in 

common rather than the modeling features that differentiate them.  We refer the reader to Berman 

and Krass (2002) for an excellent review of location problems with stochastic demand and 

congestion which includes a thorough discussion of the family of models that we focus on.  

Brotcorne et al. (2003) provide another good review of ambulance location models. 

The remainder of this paper is organized as follows: § 2 describes a probabilistic 

generalization of the set covering location problem, § 3 contrasts maximum availability or 

reliability models with the maximum coverage location problem, and § 4 considers a specific 

model from the maximum availability / reliability family of models, provides computational 

results, and discusses difficulties with using this model in practice. 
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2. The Probabilistic Set Covering Problem 

The set covering model, originally proposed by Toregas et al. (1971), is one of the cornerstones 

of the facility location literature.  If demand point i is within a distance standard of a service 

location, so that the service can be delivered within an acceptable period after a request for 

service from i is received, then i is considered to be covered.  Defining I as the set of demand 

locations and J as the set of candidate station locations, and  

aij = 1 if candidate location j can cover demand point i, 0 otherwise, 

xj = 1 if candidate location j is selected, 0 otherwise, 

the set covering problem can be expressed as follows: 

(P0)  min ∑
∈Jj

jx  

s.t. Iixa
Jj

jij ∈≥∑
∈

  ,1  

      Jjx j ∈∈   },1,0{ . 

While the set covering model may be appropriate in some contexts, it is not suitable for 

locating emergency medical service vehicles.  The coverage constraints require that every 

demand point be covered by a station.  In most instances this requires the location of too many 

stations and the solutions produced are not economically viable.   

When assessing the applicability of the set covering model in the context of emergency 

vehicle service location, researchers noted another shortcoming: the model assumes that vehicles 

are always available.  In reality, ambulances are typically busy at least 30% of the time.  

Consequently, researchers attempted to incorporate vehicle availability into the set covering 

model (Revelle and Hogan, 1989, Marianov and Revelle, 1994).  Defining xj to be the number of 

ambulances located at site j, such probabilistic covering models can be represented as follows: 

(P1)  min ∑
∈Jj

jx  

s.t. ,  ,)( IixPi ∈≥ α  

      Jjx j ∈∈   },,1,0{ K . 

Here, the coverage constraints have been replaced by chance constraints that ensure that the 

probability )(xPi  that demand point i is covered is at least α, for all demand points. 
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The assumptions and the approach used to express the coverage probabilities ( )
i

P x  are 

crucial in determining the tractability of models in this class.  The usual approach is to find a way 

to convert the chance constraints into linear deterministic equivalents of the form  

Iibxa i

Jj

jij ∈≥∑
∈

  , , 

i.e., the number of vehicles that would cover demand point i, if available, is at least bi.  Instead of 

discussing the different approaches that have been taken to achieve this simplification, we make a 

simple observation: the stochastic set covering model (P1) is more demanding than the 

deterministic set covering model (P0), because achieving the specified probabilistic coverage may 

require multiple coverage of some demand points.  If the deterministic set covering model 

produces solutions that are too expensive to implement, then its probabilistic generalization will 

produce solutions that are even less likely to be useful in practice. 

Berman and Krass (2002) critique the simplifying assumptions made to arrive at a tractable 

formulation in these models.  However they do not mention perhaps the most serious 

shortcoming: these models do not realistically represent the goals of EMS system designers.  A 

common service level target in EMS system design in North America is the coverage of 90% of 

all urgent calls in a municipality within 8 minutes (for example, see Fitch et al., 1993, De Maio et 

al., 2003).  In other words, the focus is on system wide coverage rather than coverage in 

individual neighborhoods.  In our experience, EMS practitioners realize that it is financially 

prohibitive to provide the same response time performance for all areas of a city and they focus 

on the aggregate performance target.  Although targets may be set for individual neighborhoods, 

these targets are not the drivers of system design.  Yet (P1) forces coverage of every demand 

point with a certain probability.   

A more realistic approach is to minimize the number of vehicles, subject to an aggregate 

coverage constraint.  We will refer to this problem as (P2) and in the process of formulating it we 

will demonstrate that (P2) is a relaxation of (P1).  Define di to be the demand at demand point i, 

and multiply both sides of each constraint in (P1) by di to obtain the constraint set 

IidxPd iii ∈α≥   ,)( .  Then add these constraints to obtain a single constraint 

,)( DxPd
Ii

ii α≥∑
∈

where D is the total demand in the system.  Here, the left-hand-side equals the 
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expected number of calls covered in the entire system, and the right-hand-side equals a fraction α 

of the total demand.  To summarize, (P2) is the following problem. 

 (P2)  min ∑
∈Jj

jx  

s.t. ,)( αDxPd
Ii

ii ≥∑
∈

 

      Jjx j ∈∈   ,...},1,0{ . 

Given that (P2) is a relaxation of (P1), it follows that (P1) will require at least as many 

ambulances as (P2), and in most real-world instances, it will require many more.  We now 

demonstrate, via an example, that the ratio of the two objective function values can be arbitrarily 

large. 

Example: Consider a 5-node network; a central node and 4 peripheral nodes.  Suppose 96% of 

the calls come from the central node and 1% of the calls come from each of the peripheral nodes.  

Assume that travel times between nodes are too high for cross-nodal ambulance service, so each 

node operates as a separate subsystem.  Calls arrive according to a Poisson process with arrival 

rate λ = 100 calls per week and service times are distributed exponentially with average service 

time 1/µ = 50 minutes, which implies a service rate of µ = 202 per week. Calls arriving to a 

subsystem while at least one subsystem server is idle are served, and calls arriving while all 

servers are busy are not served, which implies that each subsystem is an independent M/M/s/s 

queue.  If we require coverage of 90% of all calls for each subsystem (Problem P1), then we 

would locate 2 servers at the central node and one server at each of the peripheral nodes, for a 

total of 6 ambulances.  In contrast, if we require coverage of 90% of the total number of calls 

(Problem P2), then we would only locate 2 servers at the central node.  Hence, v(P1)/v(P2) = 6/2 

= 3, where v(Pi) is the value of problem Pi.  We can make this ratio arbitrarily high by increasing 

the number of peripheral nodes while keeping the percentage of demand at the central node 

constant.  Hence, the solution to (P1) can be arbitrarily poor when used as a solution for (P2).   

Admittedly, this is a pathological example.  Locating servers only at the central node 

amounts to service denial to the peripheral nodes and this is not a defensible way to design an 

EMS system.  However, the example demonstrates the possible consequences of solving the 

wrong problem.  While the example overstates the case, most real-world EMS systems provide 

better coverage in high-demand areas (such as the downtown core) than in regions of lower 

demand (such as suburbs).  Response time standards are typically less strict and actual 
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performance is typically worse in rural than in urban areas in the US, UK, and Germany (Fitch, 

2005, Felder and Brinkmann, 2002), indicating that standard setters have decided against equal 

access to ambulance service irrespective of location. 

3. Maximum Availability Location Problems 

The maximum coverage model addresses the problem that the set covering model may prescribe 

solutions that are too expensive.  It does so by maximizing the amount of demand that is covered, 

given an upper limit on the number of stations.  Like the set covering model, the maximum 

coverage model assumes that an ambulance is always available at every station.  Revelle and 

Hogan (1989), Ball and Lin (1993), and Marianov and Revelle (1996) all present generalizations 

of the maximum covering model that fall into the following framework: 

(P4)  max ∑
α∈ ),( xCi

id  

s.t. ∑
∈

≤
Jj

j px  

      Jjx j ∈∈   ,...},1,0{ , 

where C(α,x) is the set of demand nodes i for which α≥)(xPi .  Importantly, the objective 

function of this family of models measures something very different from the “fraction of calls 

covered” that is commonly used in EMS systems: it measures the amount of demand that is at 

demand points that will be “covered with α-reliability.”  A simple example illustrates the 

difference.  Suppose that response times are deterministic.  Demand node 1 has a demand of 100 

and 8.0)(1 =xP  while demand node 2 has a demand of 10 and 95.0)(2 =xP .  Then the expected 

number of calls that will be covered is 100 × 0.8 + 10 × 0.95 = 89.5, while the objective function 

of (P4), using α = 0.9, would count only 10 calls as being covered with 90% reliability.  Galvao, 

et al. (2005) hint at this inconsistency between the objective function of maximum availability 

models and the performance measures that drive EMS system design. 

In the next section, we describe the details of Marianov and Revelle’s (1996) formulation, 

which is one instance of (P4). 

4. Q-MALP: Implementation Issues and Computational Results 

Marianov and Revelle (1996) presented the Queueing Maximal Availability Location Problem 

(Q-MALP), formulated as follows.  Let xkj equal one if station j has k or more vehicles and zero 
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otherwise, and let yik equal 1 if k or more vehicles can cover demand node i.  The set of candidate 

locations that can cover demand point i is denoted N(i).  Suppose Rij is the response time from 

station j (if it has an available ambulance) to a call at demand point i and suppose that the 

coverage time standard is S.  Then station j is included in the set N(i) if Pr{Rij ≤ S} ≥ β.  Note that 

in contrast to much of the literature on ambulance location models that tacitly assumes a one-to-

one relationship between distances and response times, Marianov and Revelle recognize that 

response times can vary even for a fixed station-demand point pair. 

Next, consider the set of all demand nodes that, if they had stations (with ambulances), could 

cover demand node i, i.e., M(i) = {k : Pr{Rkj ≤ S} ≥ β}.  Define the arrival rate for this region as 

( )i kk M i
d

∈
λ =∑ , let 1/µi be the average service time for ambulances within N(i) that respond to 

calls within M(i), and let 
( ) 1

p

i kjj N i k
s x

∈ =
=∑ ∑  be the total number of vehicles in N(i), with p the 

maximum number of vehicles in the system.  Marianov and Revelle approximate the probability 

Pi that demand node i is covered by 1 ( / , )
i i i

B s− λ µ , where B(r, s) is the Erlang B loss function, 

i.e., the probability that all servers are busy in an M/G/s/s loss system with offered load r and s 

servers.  Marianov and Revelle (1996) and Berman and Krass (2002) discuss the assumptions that 

are necessary to justify this approximation.  Then ( ) min{ :1 ( / , ) }
i i i i

b i s B s= − λ µ ≥ α  is the 

minimum number of vehicles needed in N(i) to ensure that demand point i is covered with α 

reliability.  With all of these assumptions and definitions in place, we can present the integer 

program that Marianov and Revelle proposed: 

(P5) 

, ( )

( )

1 ( ) 1

, 1

1

Maximize

Sujbect to ,

, , 2, , ( )

, {0,1}, , , 1, ,

i i b i

i I

b i p

ik kj

k j N i k

ik i k

p

kj

j J k

kj ik

d y

y x i I

y y i I k b i

x p

x y i I j J k p

∈

= ∈ =

−

∈ =

≤ ∈

≤ ∈ =

=

∈ ∈ ∈ =

∑

∑ ∑ ∑

∑∑

K

K

 

We implemented this model for data from Edmonton, Alberta, with 180 demand nodes and 

10 candidate station locations.  Before presenting our computational results, we discuss some 

issues that we encountered when we tried to use the Q-MALP model. 
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First, one needs to determine values for the parameters α and β.  This is problematic because 

the meaning of these parameters is unclear.  As far as we know, these quantities are not measured, 

tracked, or discussed by EMS practitioners. 

An appropriate benchmark value for β might be 50%, which corresponds to counting 

candidate locations with a median response time within the coverage standard as being able to 

cover a particular demand point.  For α, values close to 100% would presumably be appropriate.  

Given that there is no obvious way to determine the “right values” for α and β, we attempted to 

solve Q-MALP parametrically with α = 80%, 90%, 95%, and 99%, and β = 35%, 50%, and 65%.  

(We encountered long computational times when α was set to 99% and failed to find a feasible 

solution for one of the instances.) 

Second, one needs to determine the average service time 1/µi for the region M(i) around 

demand node i.  The difficulty here is that average service times 1/µkj for station – demand node 

pairs (k, j) where ( )k M i∈  and ( )j N i∈  can vary widely.  The average service time 1/µi should 

presumably be a weighted average of the average service times 1/µkj over all station-demand node 

pairs, but the appropriate weights depend on the number of vehicles at each station, which are not 

known a priori.  To circumvent this difficulty, we used a simple average. 

We solved (P5) parametrically in α, β, and p (the maximum number of vehicles).  To 

measure the quality of each solution to (P5) we used the approximate hypercube model, extended 

to allow for multiple vehicles at some stations (Budge et al., 2007a), to estimate the probability 

that a vehicle from station j is dispatched to a call from demand point i, for all station – demand 

point pairs.  We then combined these dispatch probabilities with the probability that an 

ambulance from station j, if dispatched to respond to a call from demand point i, would reach the 

call within the response time standard, to arrive at the system-wide expected coverage.  For 

comparison, we provide the expected coverage that is achieved by attempting to maximize 

expected coverage directly, using the heuristic described in (Budge et al., 2007b). 

Table 1 presents our results.  For each value of p we show the expected coverage for the 

optimal solution to Q-MALP, as a function of α and β.  For comparison, we show the expected 

coverage obtained using the approach from Budge et al. (2007b).  We refer to this as the 

“maximum expected coverage,” but note that the procedure from Budge et al. (2007b) does not 

guarantee global optimality.  The computation times shown for Q-MALP are totals over all 
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instances solved for a particular value of p.  The computation times for maximum expected 

coverage correspond to running the algorithm from Budge et al. (2007b) for ten iterations. 

We observe the following from Table 1: 

• The Q-MALP solutions are quite sensitive to the values of α and β.  Coverage 

differences of more than 20% are observed for different choices of parameter values. 

• For every p that we tried, direct maximization of expected coverage achieves higher 

expected coverage than parametric solution of Q-MALP over α and β with differences 

ranging from 0.1% to 0.6%. 

• The “best” values for α and β vary depending on the value for p.  However, there is a 

consistent pattern that the highest value we tried for β results in the highest expected 

coverage. 

• Solving Q-MALP parametrically takes two to six times as long as maximizing expected 

coverage directly, for the set of parameter values we chose. 

For this data set, the most realistic values for p are in the range 16 to 20.  With 16 

ambulances, the system performance target of 90% expected coverage is just met, using the 

maximum expected coverage solution, which was found in 6.7 minutes.  In contrast, parametric 

solution of Q-MALP indicates that the 90% performance target cannot be met with 16 

ambulances, and it required about an hour of computation to reach this conclusion.  The 0.6 

percentage point difference in expected coverage between the best Q-MALP solution and the 

maximum expected coverage is of practical importance—in the vicinity of 90% coverage a one 

percentage point difference corresponds roughly to adding one ambulance to the system, which is 

a significant expense. 

To summarize, the Q-MALP objective function is not equivalent to the expected coverage 

performance measure that typically drives EMS system design and the same is true for other 

maximum availability location models.  One can solve Q-MALP parametrically in α and β, 

evaluate the expected coverage for the resulting solutions, and choose the best one.  However, 

this procedure is not necessary because one can heuristically maximize expected coverage 

directly and, based on our computational results, this usually results in higher quality solutions in 

less time.  Furthermore, it may be difficult to explain the concept of α-reliability and how it 
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differs from expected coverage to practitioners.  Given these difficulties with maximum 

availability models, we propose the use of maximum expected coverage models for ambulance 

location problems instead. 

 

Table 1: Expected coverage for Q-MALP solutions found by varying p, α, and β, and the 

maximum expected coverage, for each value of p.  The highest expected coverage found 

by solving Q-MALP is shown in bold, for each value of p. 

p = 16 ambulances 

β \ α 80% 90% 95% 99%  Max. exp. coverage 

35% 85.7% 76.2% 76.8% *  90.3% 

50% 87.5% 85.7% 84.4% 70.5%   

65% 89.7% 87.1% 84.5% 77.1%   

       

Comp. time (min.): 29.9**   6.7 

* No feasible solution found in 12 hours of computation. 

** Excludes instance where no feasible solution was found 

p = 20 ambulances 

β \ α 80% 90% 95% 99%  Max. exp. coverage 

35% 90.9% 88.7% 77.8% 68.9%  93.1% 

50% 91.2% 89.5% 91.2% 83.5%   

65% 92.7% 92.5% 90.0% 80.9%   

       

Comp. time (min.): 12.7   6.7 

p = 25 ambulances 

β \ α 80% 90% 95% 99%  Max. exp. coverage 

35% 92.1% 91.3% 86.3% 82.4%  94.4% 

50% 91.7% 91.0% 92.6% 85.4%   

65% 93.4% 93.5% 94.3% 87.3%   

       

Comp. time (min.): 35.0   5.8 
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