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Coordination of Groups of Mobile Autonomous Agents Using Nearest
Neighbor Rules

Abstract
In a recent Physical Review Letters article, Vicsek et al. propose a simple but compelling discrete-time model of
n autonomous agents (i.e., points or particles) all moving in the plane with the same speed but with different
headings. Each agent’s heading is updated using a local rule based on the average of its own heading plus the
headings of its “neighbors.” In their paper, Vicsek et al. provide simulation results which demonstrate that the
nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite
the absence of centralized coordination and despite the fact that each agent’s set of nearest neighbors change
with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In
addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves
to be a graphic example of a switched linear system which is stable, but for which there does not exist a
common quadratic Lyapunov function.
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Coordination of Groups of Mobile Autonomous
Agents Using Nearest Neighbor Rules

Ali Jadbabaie, Jie Lin, and A. Stephen Morse, Fellow, IEEE

Abstract—In a recent Physical Review Lettersarticle, Vicsek
et al. propose a simple but compelling discrete-time model of
autonomous agents (i.e., points or particles) all moving in the plane
with the same speed but with different headings. Each agent’s
heading is updated using a local rule based on the average of its
own heading plus the headings of its “neighbors.” In their paper,
Vicsek et al. provide simulation results which demonstrate that
the nearest neighbor rule they are studying can cause all agents
to eventually move in the same direction despite the absence of
centralized coordination and despite the fact that each agent’s
set of nearest neighbors change with time as the system evolves.
This paper provides a theoretical explanation for this observed
behavior. In addition, convergence results are derived for several
other similarly inspired models. The Vicsek model proves to be
a graphic example of a switched linear system which is stable,
but for which there does not exist a common quadratic Lyapunov
function.

Index Terms—Cooperative control, graph theory, infinite prod-
ucts, multiagent systems, switched systems.

I. INTRODUCTION

I N [1], Vicsek et al. propose a simple but compelling
discrete-time model of autonomous agents (i.e., points

or particles) all moving in the plane with the same speed but
with different headings. Each agent’s heading is updated using
a local rule based on the average of its own heading plus the
headings of its “neighbors.” Agent’s neighborsat time , are
those agents which are either in or on a circle of pre-specified
radius centered at agent’s current position. The Vicsek
model turns out to be a special version of a model introduced
previously by Reynolds [2] for simulating visually satisfying
flocking and schooling behaviors for the animation industry. In
their paper, Vicseket al. provide a variety of interesting simu-
lation results which demonstrate that the nearest neighbor rule
they are studying can cause all agents to eventually move in the
same direction despite the absence of centralized coordination
and despite the fact that each agent’s set of nearest neighbors
change with time as the system evolves. In this paper, we
provide a theoretical explanation for this observed behavior.
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There is a large and growing literature concerned with
the coordination of groups of mobile autonomous agents.
Included here is the work of Cziroket al. [3] who propose
one-dimensional models which exhibit the same type of
behavior as Vicsek’s. In [4] and [5], Toner and Tu construct
a continuous ”hydrodynamic" model of the group of agents,
while other authors such as Mikhailov and Zanette [6] consider
the behavior of populations of self propelled particles with
long range interactions. Schenket al. determined interactions
between individual self-propelled spots from underlying reac-
tion-diffusion equation [7]. Meanwhile, in modeling biological
systems, Grünbaum and Okubo use statistical methods to
analyze group behavior in animal aggregations [8]. This paper
and, for example, the work reported in [9]–[12] are part of a
large literature in the biological sciences focusing on many
aspects of aggregation behavior in different species.

In addition to these modeling and simulation studies, research
papers focusing on the detailed mathematical analysis of emer-
gent behaviors are beginning to appear. For example, Luiet al.
[13] use Lyapunov methods and Leonardet al. [14] and Ol-
fati and Murray [15] use potential function theory to understand
flocking behavior, and Ögrenet al. [16] uses control Lyapunov
function-based ideas to analyze formation stability, while Fax
and Murray [17] and Desaiet al. [18] employ graph theoretic
techniques for the same purpose.

The one feature which sharply distinguishes previous ana-
lyzes from that undertaken here is that this paper explicitly takes
into account possible changes in nearest neighbors over time.
Changing nearest neighbor sets is an inherent property of the
Vicsek model and in the other models we consider. To ana-
lyze such models, it proves useful to appeal to well-known re-
sults [19], [20] characterizing the convergence of infinite prod-
ucts of certain types of nonnegative matrices. The study of in-
finite matrix products is ongoing [21]–[26], and is undoubtedly
producing results which will find application in the theoretical
study of emergent behaviors.

Vicsek’s model is set up in Section II as a system of
simultaneous, one-dimensional recursion equations, one for
each agent. A family of simple graphs onvertices is then
introduced to characterize all possible neighbor relationships.
Doing this makes it possible to represent the Vicsek model
as an -dimensional switched linear system whose switching
signal takes values in the set of indices which parameterize
the family of graphs. The matrices which are switched within
the system turn out to be nonnegative with special structural
properties. By exploiting these properties and making use of a
classical convergence result due to Wolfowitz [19], we prove
that all agents’ headings converge to a common steady state

0018-9286/03$17.00 © 2003 IEEE
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heading provided the agents are all “linked together” via
their neighbors with sufficient frequency as the system evolves.
The model under consideration turns out to provide a graphic
example of a switched linear system which is stable, but for
which there does not exist a common quadratic Lyapunov
function.

In Section II-B, we define the notion of an average heading
vector in terms of graph Laplacians [27] and we show how
this idea leads naturally to the Vicsek model as well as to
other decentralized control models which might be used for the
same purposes. We propose one such model which assumes
each agent knows an upper bound on the number of agents in
the group, and we explain why this model has convergence
properties similar to Vicsek’s.

In Section III, we consider a modified version of Vicsek’s dis-
crete-time system consisting of the same group ofagents, plus
one additional agent, labeled 0, which acts as the group’s leader.
Agent 0 moves at the same constant speed as itsfollowers but
with a fixed heading . The th follower updates its heading just
as in the Vicsek model, using the average of its own heading plus
the headings of its neighbors. For this system, each follower’s
set of neighbors can also include the leader and does so when-
ever the leader is within the follower’s neighborhood defining
circle of radius . We prove that the headings of allagents
must converge to the leader’s provided allagents are “ linked
to their leader” together via their neighbors frequently enough
as the system evolves. Finally, we develop a continuous-time
analog of this system and prove under condition milder than im-
posed in the discrete-time case, that the headings of allagents
again converge to the heading of the group’s leader.

II. L EADERLESSCOORDINATION

The system studied by Vicseket al. [1] consists of au-
tonomous agents (e.g., points or particles), labeled 1 through,
all moving in the plane with the same speed but with different
headings.1 Each agent’s heading is updated using a simple local
rule based on the average of its own heading plus the headings of
its “neighbors.” Agent ’s neighborsat time , are those agents
which are either in or on a circle of pre-specified radiuscen-
tered at agent’s current position. In the sequel denotes
the set of labels of those agents which are neighbors of agent
at time . Agent ’s heading, written , evolves in discrete-time
in accordance with a model of the form

(1)

where is a discrete-time index taking values in the nonnegative
integers , and is the average of the head-
ings of agent and agent’s neighbors at time; that is

(2)

where is the number of neighbors of agentat time .
Observe that the preceding heading update rule maps headings
with values into a heading with a value also in .

1The Vicsek system also includes noise input signals, which we ignore in this
paper.

Because of this, it makes sense to represent headings at any
finite time , as real numbers in . Of course it is entirely
possible that in the limit as , a heading might approach
the value ; any such limiting value is interpreted as a heading
of 0. Analogous statement apply to all other models considered
in the sequel. Accordingly, throughout the paper headings at any
finite time , are represented as real numbers in .

The explicit form of the update equations determined by
(1) and (2) depends on the relationships between neighbors
which exist at time . These relationships can be conveniently
described by a simple, undirected graph2 with vertex set

which is defined so that is one of the
graph’s edges just in case agentsand are neighbors. Since
the relationships between neighbors can change over time, so
can the graph which describes them. To account for this we
will need to consider all possible such graphs. In the sequel we
use the symbol to denote a suitably defined set, indexing the
class of all simple graphs defined on vertices.

The set of agent heading update rules defined by (1) and (2),
can be written in state form. Toward this end, for each ,
define

(3)

where is the adjacency matrix of graph and the diag-
onal matrix whoseth diagonal element is the valence of vertex

within the graph. Then

(4)

where is the heading vector and
is a switching signal whose value at time

, is the index of the graph representing the agents’ neighbor
relationships at time. A complete description of this system
would have to include a model which explains howchanges
over time as a function of the positions of theagents in the
plane. While such a model is easy to derive and is essential for
simulation purposes, it would be difficult to take into account in
a convergence analysis. To avoid this difficulty, we shall adopt
a more conservative approach which ignores howdepends on
the agent positions in the plane and assumes instead thatmight
be any switching signal in some suitably defined set of interest.

Our goal is to show for a large class of switching signals
and for any initial set of agent headings that the headings
of all agents will converge to the same steady state value

. Convergence of the to is equivalent to the state
vector converging to a vector of the form where

. Naturally, there are situations where
convergence to a common heading cannot occur. The most
obvious of these is when one agent—say theth—starts so
far away from the rest that it never acquires any neighbors.
Mathematically, this would mean not only that is never

2By an undirectedgraph on vertex setV = f1; 2; . . .ng is meantV
together with a set of unordered pairsE = f(i; j): i; j 2 Vg which are called

’s edges. Such a graph issimpleif it has no self-loops [i.e.,(i; j) 2 E only if
i 6= j] or repeated edges (i.e.,E contains only distinct elements). By thevalence
of a vertexv of is meant the number of edges ofwhich are “incident” on
v where by anindicantedge onv is meant an edge(i; j) of for which either
i = v or j = v. Theadjacency matrixof is ann� n matrix of whoseijth
entry is 1 if(i; j) is one of ’s edges and 0 if it is not.
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connected3 at any time , but also that vertex remains an
isolated vertex of for all . This situation is likely to be
encountered if is very small. At the other extreme, which
is likely if is very large, all agents might remain neighbors
of all others for all time. In this case, would remain fixed
along such a trajectory at that value in for which
is a complete graph. Convergence ofto can easily be
established in this special case because withso fixed, (4)
is a linear, time-invariant, discrete-time system. The situation
of perhaps the greatest interest is between these two extremes
when is not necessarily complete or even connected for
any , but when no strictly proper subset of ’s vertices
is isolated from the rest for all time. Establishing convergence
in this case is challenging becausechanges with time and (4)
is not time-invariant. It is this case which we intend to study.
Toward this end, we denote by the subset of consisting
of the indices of the connected graphs in . Our
first result establishes the convergence offor the case when

takes values only in .
Theorem 1: Let be fixed and let

be a switching signal satisfying , . Then

(5)

where is a number depending only on and .
It is possible to establish convergence to a common heading

under conditions which are significantly less stringent that those
assumed in Theorem 1. To do this we need to introduce sev-
eral concepts. By theunion of a collection of simple graphs,

, each with vertex set , is meant the
simple graph with vertex set and edge set equaling the union
of the edge sets of all of the graphs in the collection. We say that
such a collection isjointly connectedif the union of its members
is a connected graph. Note that if such a collection contains at
least one graph which is connected, then the collection must be
jointly connected. On the other hand, a collection can be jointly
connected even if none of its members are connected.

It is natural to say that the agents under consideration are
linked togetheracross a time interval if the collection
of graph encountered along the
interval, is jointly connected. Theorem 1 says, in essence, that
convergence of all agents’ headings to a common heading is
for certain provided all agents are linked together across each
successive interval of length one (i.e., all of the time). Of course
there is no guarantee that along a specific trajectory the
agents will be so linked. Perhaps a more likely situation, at least
when is not too small, is when the agents are linked together
across contiguous intervals of arbitrary but finite length. If the
lengths of such intervals are uniformly bounded, then in this
case too convergence to a common heading proves to be for
certain.

3A simple graph with vertex setV = f1; 2; . . . ; ng and edge setE is
connectedif has a “path” between each distinct pair of its verticesi andj where
by apath(of lengthm) between verticesi andj is meant a sequence of distinct
edges of of the form(i; k ); (k ; k ); . . . (k ; j). is completeif has a
path of length one (i.e., an edge) between each distinct pair of its vertices.

Theorem 2: Let be fixed and let
be a switching signal for which there exists an infinite sequence
of contiguous, nonempty, bounded, time-intervals ,

, starting at , with the property that across each
such interval, the agents are linked together. Then

(6)

where is a number depending only on and .
The hypotheses of Theorem 2 require each of the collec-

tions , , to be jointly
connected. Although no constraints are placed on the intervals

, , other than that they be of finite length, the con-
straint on is more restrictive than one might hope for. What
one would prefer instead is to show that (6) holds for every
switching signal for which there is an infinite sequence of
bounded, nonoverlappingbut not necessarily contiguousin-
tervals across which the agents are linked together. Whether
or not this is true remains to be seen.

A sufficient but not necessary condition forto satisfy the
hypotheses of Theorem 2 is that on each successive interval

, take on at least one value in. Theorem 1 is thus
an obviously a consequence of Theorem 2 for the case when all
intervals are of length 1. For this reason we need only develop
a proof for Theorem 2. To do this we will make use of certain
structural properties of the . As defined, each is square and
nonnegative, where by anonnegativematrix is meant a matrix
whose entries are all nonnegative. Eachalso has the property
that its row sums all equal 1 (i.e., ). Matrices with these
two properties are calledstochastic[28]. The have the addi-
tional property that their diagonal elements are all nonzero. For
the case when (i.e., when is connected), it is known
that becomes a matrix with all positive entries for

sufficiently large [28]. It is easy to see that if
has all positive entries, then so does . Such and

are examples of “primitive matrices” where by aprimitive
matrix is meant any square, nonnegative matrixfor which

is a matrix with all positive entries for sufficiently large
[28]. It is known [28] that among the eigenvalues of a prim-
itive matrix, there is exactly one with largest magnitude, that
this eigenvalue is the only one possessing an eigenvector with
all positive entries, and that the remaining eigenvalues
are all strictly smaller in magnitude than the largest one. This
means that for , 1 must be ’s largest eigenvalue and
all remaining eigenvalues must lie within the open unit circle.
As a consequence, each such must have the property that

for some row vector . Any stochastic ma-
trices for which is a matrix of rank 1 is called
ergodic[28]. Primitive stochastic matrices are thus ergodic ma-
trices. To summarize, each is a stochastic matrix with pos-
itive diagonal elements and if then is also primitive
and, as a result, ergodic. The crucial convergence result upon
which the proof of Theorem 2 depends is classical [19] and is
as follows.

Theorem 3 (Wolfowitz):Let be a fi-
nite set of ergodic matrices with the property that for each
sequence of positive length, the matrix
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product is ergodic. Then for each infinite
sequence, there exists a row vectorsuch that

The finiteness of the set is crucial to Wol-
fowitz’s proof. This finiteness requirement is also the reason
why we’ve needed to assumecontiguous, bounded intervals in
the statement of Theorem 2.

In order to make use of Theorem 3, we need a few facts con-
cerning products of the types of matrices we are considering.
First, we point out that the class of stochastic matrices
with positive diagonal elements is closed under matrix multi-
plication. This is because the product of two nonnegative ma-
trices with positive diagonals is a matrix with the same proper-
ties and because the product of two stochastic matrices is sto-
chastic. Second, we will use the following key result.4

Lemma 1: Let be a set of indices in for
which is a jointly connected collection
of graphs. Then the matrix product is ergodic.

Proof of Theorem 25 : Let denote the least upper
bound on the lengths of the intervals , .
By assumption . Let , and

, . Clearly
. To complete the theorem’s proof, it is,

therefore, enough to show that

(7)

for some row vector since this would imply (6) with
. In view of Lemma 1, the constraints on

imply that each such matrix product , is
ergodic. Moreover the set of possible ,
must be finite because each is a product of at
most matrices from which is a finite set.
But .
Therefore, by Theorem 3

(8)

For each , let be the largest nonnegative integer
such that . Then, and

so

(9)

Note that is a bounded function because
is the product of at most matrices which

come from a bounded set. Moreover
as because of (8). From this and (9), it follows that

as . Therefore, (7) holds.
To prove Lemma 1 we shall make use of the standard partial

ordering on nonnegative matrices by writing
whenever is nonnegative. Let us note that if is a

4We are indebted to M. Artzrouni, University of Pau, France, for his help with
the proof of an earlier version of this lemma.

5The authors thank D. Liberzon for pointing out a flaw in the original version
of this proof, and S. Meyn for suggesting how to fix it.

primitive matrix and if , then is primitive as well.
Lemma 1 is a simple consequence of the following result.

Lemma 2: Let be a positive integer and let
be nonnegative matrices. Suppose that

the diagonal elements of all of the are positive and let and
denote the smallest and largest of these, respectively. Then

(10)

Proof: Set . It will be shown by induction that

(11)

holds for . Toward this end. note that it is
possible to write each as where is nonneg-
ative. Then, for any

Hence

Since and it follows that

(12)

Setting and proves that (11) holds for . If
, the proof is complete.

Now, suppose that and that (11) holds for
where is some integer in .

Then, so by the inductive
hypothesis

(13)

However, using (12) times, we can write

Thus

This and (13) imply that (11) holds for . Therefore, by
induction (11) is true for all .

Proof of Lemma 1:Set where
and are respectively the adjacency matrix and diag-

onal valence matrix of the union of the collection of graphs
. Since the collection is jointly con-

nected, its union is connected which means thatis primitive.
By Lemma 2

(14)

where is a positive constant depending on the matrices in the
product. Since for ,
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and , it must be true that
, . From this and (14) it follows that

(15)
However, and so

Since the product is bounded below by a prim-
itive matrix, namely , the product must be primitive as well.
Since is also a stochastic matrix, it must there-
fore be ergodic.

As we have already noted, . Thus, span
is an -invariant subspace. From this and standard existence
conditions for solutions to linear algebraic equations, it follows
that for any matrix with kernel spanned by, the
equations

(16)

have unique solutions , and moreover that

spectrum (17)

As a consequence of (16) it can easily be seen that for any se-
quence of indexes in

(18)

Since has full-row rank and , the convergence of
a product of the form to for some row
vector , is equivalent to convergence of the corresponding
product to the zero matrix. Thus, for ex-
ample, if is an infinite sequence of indices in,
then, in view of Theorem 3

(19)

Some readers might be tempted to think, as we first did, that
the validity of (19) could be established directly by showing
that the in the product share a common quadratic Lyapunov
function. More precisely, (19) would be true if there were a
single positive–definite matrix such that all of the matrices

were negative definite. Although each
can easily be shown to be discrete-time stable, there

are classes of for which that no such common Lyapunov ma-
trix exists. While we have not been able to construct a simple
analytical example which demonstrates this, we have been able
to determine, for example, that no common quadratic Lyapunov
function exists for the class of all whose associated graphs
have 10 vertices and are connected. One can verify that this is
so by using semidefinite programming and restricting the check
to just those connected graphs on ten vertices with either nine
or ten edges.

It is worth noting that existence of a common quadratic Lya-
punov function for all discrete time stable matrices

in some given finite set , is a much stronger
condition than is typically needed to guarantee that all infinite

products of the converge to zero. It is known [29] that con-
vergence to zero of all such infinite products is in fact equiva-
lent to the “joint spectral radius” of being strictly less than
1 where byjoint spectral radius of is meant

Here, is any norm on the space of real matrices. It
turns out that does not depend on the choice of norm [21,
p. 237]. On the other hand, a “tight” sufficient condition for the
existence of a common quadratic Lyapunov function for the ma-
trices in , is [30]. This condition istight in
the sense that one can find a finite set of matrices with
joint spectral radius , whose infinite products con-
verge to zero despite the fact that there does not exist common
quadratic Lyapunov function for the set. From this one can draw
the conclusion that sets of matrices with “large”are not likely
to possess a common quadratic, even though all infinite products
of such matrices converge to zero. This can in turn help explain
why it has proved to be necessary to go as high as to
find a case where a common quadratic Lyapunov function for a
family of does not exist.

A. Generalization

It is possible to interpret the Vicsek model analyzed in the last
section as the closed-loop system which results when a suitably
defined decentralized feedback law is applied to the-agent
heading model

(20)

with open-loop control . To end up with the Vicsek model,
would have to be defined as

(21)

where is theaverageheading errorvector

(22)

and, for each , is the symmetric matrix

(23)

known in graph theory as theLaplacianof [27], [31]. It is
easily verified that equations (20) to (21) do indeed define the
Vicsek model. We have elected to callthe average heading
error because if at some time , then the heading of
each agent with neighbors at that time will equal the average of
the headings of its neighbors.

In the present context, Vicsek’s control (21) can be viewed as
a special case of a more general decentralized feedback control
of the form

(24)

where for each , is a suitably defined, nonsingular
diagonal matrix withth diagonal element . This, in turn, is an
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abbreviated description of a system ofindividual agent control
laws of the form

(25)

where for , is the th entry of and

. Application of this control to (20) would result in
the closed-loop system

(26)

Note that the form of (26) implies that ifand were to con-
verge to a constant values, and , respectively, then would
automatically satisfy . This means that control (24) au-
tomatically forces each agent’s heading to converge to the av-
erage of its neighbors, if agent headings were to converge at all.
In other words, the choice of the does not effect the require-
ment that each agent’s heading equal the average of the headings
of its neighbors, if there is convergence at all.

The preceding suggests that there might be useful choices for
the alternative to those considered by Vicsek, which also
lead to convergence. One such choice turns out to be

(27)

where is any number greater than. Our aim is to show that
with the so defined, Theorem 2 continues to be valid. In
sharp contrast with the proof technique used in the last section,
convergence will be established here using a common quadratic
Lyapunov function.

As before, we will use the model

(28)

where, in view of the definition of the in (27), the are
now symmetric matrices of the form

(29)

To proceed we need to review a number of well known and
easily verified properties of graph Laplacians relevant to the
problem at hand. For this, let be any given simple graph with

vertices. Let be a diagonal matrix whose diagonal elements
are the valences of ’s vertices and write for ’s adjacency
matrix. Then, as noted before, the Laplacian ofis the sym-
metric matrix . The definition of clearly implies
that . Thus, must have an eigenvalue at zero and
must be an eigenvector for this eigenvalue. Surprisinglyis al-
ways a positive semidefinite matrix [31]. Thus,must have a
real spectrum consisting of nonnegative numbers and at least
one of these numbers must be 0. It turns out that the number of
connected components of is exactly the same as the multi-
plicity of ’s eigenvalue at 0 [31]. Thus, is a connected graph
just in case has exactly one eigenvalue at 0. Note that the trace
of is the sum of the valences of all vertices of. This number
can never exceed and can attain this high value only
for a complete graph. In any event, this property implies that the
maximum eigenvalue of is never larger that . Actu-
ally, the largest eigenvalue ofcan never be larger than[31].

This means that the eigenvalues of must be smaller than
1 since . From these properties it clearly follows that the
eigenvalues of must all be between 0 and 1, and
that if is connected, then all will be strictly less than 1 except
for one eigenvalue at 1 with eigenvector. Since each is of
the form , each possesses all of these properties.

Let be a fixed switching signal with value at time
. What we’d like to do is to prove that as , the

matrix product converges to for some row
vector . As noted in the Section II-A, this matrix product will
so converge just in case

(30)

where as in Section II-A, is the unique solution to
and is any full rank matrix satis-

fying . For simplicity and without loss of generality we
shall henceforth assume that the rows ofform a basis for the
orthogonal complement of the span of. This means that
equals the identity , that ,
and, thus, that each is symmetric. Moreover, in view of (17)
and the spectral properties of the, , it is clear that each

, must have a real spectrum lying strictly inside of
the unit circle. This plus symmetry means that for each ,

is negative definite, that is negative definite
and thus, that is a common discrete-time Lyapunov matrix for
all such . Using this fact it is straight forward to prove that
Theorem 1 holds for system (26) provided the are defined
as in (27) with .

In general, each is a discrete-time stability matrix for
which is negative definite only if . To craft a
proof of Theorem 2 for the system described by (26) and (27),
one needs to show that for each interval on which

is a jointly connected
collection of graphs, the product
is a discrete-time stability matrix and

is negative definite. This is a direct consequence of the following
proposition.

Proposition 1: If is a jointly con-
nected collection of graphs, then

is a negative–definite matrix.
In the light of Proposition 1, it is clear that the conclusion

Theorem 2 is also valid for the system described by (26) and
(27). A proof of this version of Theorem 2 will not be given.

To summarize, both the Vicsek control defined by
and the simplified control given by

achieve the same emergent behavior. While
latter is much easier to analyze than the former, it has the
disadvantage of not being a true decentralized control because
each agent must know an upper bound (i.e.,) on the total
number of agents within the group. Whether or not this is really
a disadvantage, of course depends on what the models are to
be used for.
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The proof of Proposition 1 depends on two lemmas. In the
sequel, we state the lemmas, use them to prove Proposition 1,
and then conclude this section with proofs of the lemmas them-
selves.

Lemma 3: If is a jointly connected
collection of graphs with Laplacians , then

kernel span (31)

Lemma 4: Let be a set of real
symmetric, matrices whose induced 2-norms are all less than
or equal to 1. If

kernel (32)

then the induced two-norm of is less than 1.
Proof of Proposition 1: The definition of the in (29)

implies that . Hence, by Lemma 3 and the
hypothesis that is a jointly connected
collection

kernel span (33)

We claim that

kernel (34)

To establish this fact, let be any vector such that
, . Since has independent rows, there is a

vector such that . But , so
. Hence, for some number

. But , so . This
implies that and, thus, that . However,
this must be true for all . It follows from (33)
that span and, since , that . Therefore,
(34) is true.

As defined, the are all symmetric, positive semi-definite
matrices with induced 2-norms not exceeding 1. This and (34)
imply that the family of matrices satisfy the
hypotheses of Lemma 4. It follows that Proposition 1 is true.

Proof of Lemma 3:In the sequel we write for the
Laplacian of a simple graph. By the intersectionof a collec-
tion of simple graphs, , each with vertex
set , is meant the simple graphwith vertex set and edge set
equaling the intersection of the edge sets of all of the graphs in
the collection. It follows at once from the definition of a Lapla-
cian that

for all . Repeated application of this identity to the set
yields the relation

(35)

which is valid for . Since all matrices in (35) are posi-
tive semidefinite, any vector which makes the quadratic form

vanish, must also make
the quadratic form vanish. Since
any vector in the kernel of each matrix has this property,
we can draw the following conclusion:

kernel kernel

Suppose now that is a jointly con-
nected collection. Then the union is
connected so its Laplacian must have exactly spanfor its
kernel. Hence, the intersection of the kernels of the
must be contained in span . But span is contained in
the kernel of each matrix in the intersection and, there-
fore, in the intersection of the kernels of these matrices as well.
It follows that (31) is true.

Proof of Lemma 4:In the sequel we write for the
2-norm of a real -vector and for the induced 2-norm of
a real matrix. Let be any real, nonzero-vector.
It is enough to show that

(36)

In view of (32) and the assumption that , there must be a
largest integer such that kernel

. We claim that

(37)

To show that this is so we exploit the symmetry of to write
as where

are real numbers and is an orthonormal set of
eigenvectors of with real eigenvalues . Note
that , , because . Next,
observe that since
and , there must be at least one integersuch that

. Hence, . However,
so

Moreover

so ; therefore, (37) is true.
In view of the definition of , .

From this and (37), it follows that
.

However, because each has an induced
two-norm not exceeding 1. Therefore, (36a) is true.

III. L EADER FOLLOWING

In this section, we consider a modified version of Vicsek’s
discrete-time system consisting of the same group ofagents
as before, plus one additional agent, labeled 0, which acts as the
group’s leader. Agent 0 moves at the same constant speed as its

followers but with a fixed heading . The th follower updates
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its heading just as before, using the average of its own heading
plus the headings of its neighbors. The difference now is that
each follower’s set of neighbors can include the leader and does
so whenever the leader is within the follower’s neighborhood
defining circle of radius . Agent ’s update rule, thus, is of the
form

(38)

where as before, is the set of labels of agent’s neighbors
from the original group of followers, and is the number
of labels within . Agent 0’s heading is accounted for in
the th average by defining to be 1 whenever agent 0 is a
neighbor of agent and 0 otherwise.

The explicit form of the update equations exemplified by
(38), depends on the relationships between neighbors which
exist at time . Like before, each of these relationships can be
conveniently described by a simple undirected graph. In this
case, each such graph has vertex set and is
defined so that is one of the graph’s edges just in case
agents and are neighbors. For this purpose we consider an
agent—say —to be a neighbor of agent 0 whenever agent 0
is a neighbor of agent. We will need to consider all possible
such graphs. In the sequel we use the symbolto denote a set
indexing the class of all simple graphs defined on vertices

. We will also continue to make reference to the
set of all simple graphs on vertices . Such graphs are
now viewed as subgraphs of the . Thus, for , now
denotes the subgraph obtained fromby deleting vertex 0 and
all edges incident on vertex 0.

The set of agent heading update rules defined by (38) can be
written in state form. Toward this end, for each , let
denote the adjacency matrix of the-agent graph and
let be the corresponding diagonal matrix of valences of.
Then, in matrix terms, (38) becomes

(39)

where is now a switching signal whose
value at time , is the index of the graph representing the
agent system’s neighbor relationships at timeand for ,

is the diagonal matrix whoseth diagonal element is
1, if is one of ’s edges and 0, otherwise.

Much like before, our goal here is to show for a large class of
switching signals and for any initial set of follower agent head-
ings, that the headings of allfollowers converge to the heading
of the leader. For convergence in the leaderless case we required
all -agents to be linked together across each interval within
an infinite sequence of contiguous, bounded intervals. We will
need a similar requirement in the leader following case under
consideration. Let us agree to say that theagents arelinked
to the leaderacross an interval if the collection of graphs

encountered along the interval is
jointly connected. In other words, the agents are linked to

their leader across an intervaljust when the -member
group consisting of the agents and their leader is linked to-
gether across. Note that for the -agent group to be linked to
its leader across does not mean that the-agent group must be
linked together across. Nor is the -agent group necessarily
linked to its leader acrosswhen it is linked together across.
Our main result on discrete-time leader following is next.

Theorem 4: Let and be fixed and let
be a switching signal for which there

exists an infinite sequence of contiguous, nonempty, bounded,
time-intervals , , starting at , with the
property that across each such interval, the-agent group of
followers is linked to its leader. Then

(40)

The theorem says that the members of the-agent group all
eventually follow their leader provided there is a positive integer

which is large enough so that the-agent group is linked to its
leader across each contiguous, nonempty time-interval of length
at most . In the sequel, we outline several ideas upon which the
proof of Theorem 4 depends.

To begin, let us note that to prove that (40) holds is equivalent
to proving that where is the heading error

vector . From (39) it is easy to deduce that
satisfies the equation

(41)

where for , is

(42)

Note that the partitioned matrices

(43)

are stochastic where, for

(44)

To proceed, we need a few more ideas concerned with non-
negative matrices. In the sequel, we write whenever

is a positive matrix, where by apositive matrixis meant
a matrix with all positive entries. For any nonnegative matrix

of any size, we write for the largest of the row sums of
. Note that is the induced infinity norm of and con-

sequently is sub-multiplicative. We denote by , the matrix
obtained by replacing all of ’s nonzero entries with a 1. Note
that if and only if . It is also true for any pair of

nonnegative matrices and with positive diagonal el-
ements, that . Moreover, in view of Lemma
2, any such pair of matrices must also satisfy and

.
Let be a given set of indices in . It

is possible to relate the connectedness of the collection
to properties of the matrix pairs

. Let us note first that for any
, the indices of the nonzero rows of are precisely

the labels of vertices in which are connected to vertex 0
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by paths of length 1. More generally, for any integer ,
the indices of the nonzero rows of are the
labels of vertices in connected to vertex 0 by paths of length
less than or equal to. Hence, for such , the nonzero rows
of the sum must be the labels of
vertices in the union of the collection
which are connected to vertex 0 by paths of length less than
or equal to . It follows that if is
jointly connected, there must be a value ofsufficiently large
so that . Since any vertex
in a connected graph with vertices is reachable from
any other vertex along a path of length of at most , it
follows that if is jointly connected,
then , . Now it is easy
to see from the definitions of the and in (42) and (44)
respectively, that , . We
have proved the following lemma.

Lemma 5: Let be any set of indices in
for which is a jointly connected collec-
tion of graphs. Then

(45)

Now, consider the partitioned matrices defined by (43).
Since each of these matrices is stochastic and products of sto-
chastic matrices are also stochastic, for each and each

, is stochastic. However

Moreover, if is connected, then

(46)

because of Lemma 5. It follows that if is connected and
, the row sums of must all be less that 1. In other words

(47)

The following proposition generalizes (47) and is central to the
proof of Theorem 4.

Proposition 2: Let be a finite positive integer. There exists
a positive number , depending only on , for which

(48)

for every sequence of at length at most pos-
sessing values which each occur in the sequence
at least times and for which is a
jointly connected collection of graphs.

The proof of this proposition depends on the following basic
property of nonnegative matrices.

Lemma 6: Let be a finite sequence of
nonnegative matrices whose diagonal entries are all positive.

Suppose that is a matrix which occurs in the sequence at least
times. Then

(49)

Proof: We claim that for

(50)

provided is a product within which occurs at
least times. Suppose is a product within which

occurs at least once. Then where
and are nonnegative matrices with positive diagonal elements.
By Lemma 2, and . Thus,

which proves that (50) is true for .
Now suppose that (50) holds for and let

be a product within which occurs at least
times. We can write where

and are nonnegative matrices with positive diagonal elements
and is a product within which occurs at leasttimes. By the
inductive hypothesis, . By Lemma 2,

. It follows that
and thus that (50) holds for . By induction, (50)

therefore holds for all . Hence, the lemma is
true.

Proof of Proposition 2: It will be enough to prove that

(51)

for every sequence of length at most possessing
values which each occur in the sequence at least

times and for which is a jointly
connected collection of graphs. For if this is so, then one can
define the uniform bound

where is the set of all such sequences. Note that if (51)
holds, because is a finite set.

Let be a sequence of at length at mostpos-
sessing values which each occur in the sequence
at least times and for which is a
jointly connected collection of graphs. The definition of the
in (43) implies that

where and for . Since
the are all stochastic, must be stochastic
as well. Thus, to establish (51) it is sufficient to prove that

(52)

By assumption, each member of occurs
in the sequence at least times. For

, let be the smallest integer such that .
Since each occurs at least times, each must occur at
least times in the subsequence . It follows
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from Lemma 6 and the definition of that .
Thus, . Since this hold for all

,

From this and (45) it follows that . But

, so (52) is true.
Proposition 2 actually implies that any finite product

will be a discrete-time stability matrix pro-
vided there is a set of indices for which
i) each occurs in the set at least
times and ii) is a jointly connected
collection of graphs. From this it is not difficult to see that
any finite product will be ergodic provided

is a jointly connected collection of
graphs.6 It is possible to use this fact together with Wolfowitz’s
theorem (Theorem 3) to devise a proof of Theorem 4, much
like the proof of Theorem 2 given earlier. On the other hand,
it is also possible to give a simple direct proof of Theorem 4,
without using Theorem 3, and this is the approach we take.

Proof of Theorem 4:Let denote the set of all
subsets of with the property that

is a jointly connected collection. The
constraints on imply that takes on every value in one
such subset on every interval , . Let be the
number of elements in . Then for any integer there must
be at least one subset inwhose elements are each values of
at least times on any sequence of contiguous time-intervals.
Set , and let be the least upper bound on
the lengths of the intervals, , . By assumption,

. Let denote the state transition matrix defined

by , and ,
,. Then . To complete the

theorem’s proof, it is, therefore, enough to show that

(53)

Clearly . More-
over, for , is an interval of length at most

on which takes on at least times, every value
in some subset in . It follows from Propo-
sition 2 and the definition of that ,
where is a positive number depending only on
which satisfies . Hence, , from
which (53) follows at once.

IV. L EADER FOLLOWING IN CONTINUOUS TIME

Our aim here is to study the convergence properties of the
continuous-time version of the leader-follower model discussed
in the last section. We begin by noting that the update rule for

6Using this fact and the structure of theF it is also not difficult to show
that any finite productF F � � �F will be a discrete-time stability matrix
provided only thatf ; ; . . . ; g is a jointly connected collection of
graphs.

agent ’s heading, defined by (38), is what results when the local
feedback law

(54)

is applied to the open-loop discrete-time heading model

(55)

The continuous-time analog of (55) is the integrator equation

(56)

where now takes values in the real half interval .
On the other hand, the continuous time analog of (54) has
exactly the same form as (54), except in the continuous time
case, , and are continuous-time variables.
Unfortunately, in continuous time control laws of this form
can lead to chattering because neighbor relations can change
abruptly with changes in agents’ positions. One way to avoid
this problem is to introduce dwell time, much as was done in
[32]. What this means in the present context is that each agent
is constrained to change its control law only at discrete times.
In particular, instead of using (54), to avoid chatter agent
would use a hybrid control law of the form

(57)

where is a pre-specified positive number called adwell time
and is an infinite time sequence such that

, . In the sequel we will analyze controls of this
form subject to two simplifying assumptions. First we will as-
sume that all agents use the same dwell time which we hence-
forth denote by . Second we assume the agents are synchro-
nized in the sense that for all
and all . These assumptions enable us to writeas

(58)

where , and are as before, is the
Laplacian of , and is a piecewise constant
switching signal with successive switching times separated by

time units. Application of this control to the vector version of
(56) results in the closed-loop continuous-time leader-follower
model

(59)

In analogy to the discrete-time case, let us agree to say
that the agents arelinked to the leaderacross an interval

between switching times and , if the collection of
graphs encountered along
the interval, is jointly connected. Much like before, our goal
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here is to show for a large class of switching signals and for
any initial set of follower agent headings, that the headings
of all followers converge to the heading of the leader. For
convergence, we shall continue to require there to exist infinite
sequence of bounded, nonoverlapping time-intervals across
which the -agent group is linked to its leader. However, unlike
the discrete-time case we shall not require this sequence of
intervals to be contiguous.

Theorem 5: Let , and be fixed and let
be a piecewise-constant switching signal

whose switching times satisfy , .
If there is an infinite sequence of bounded, nonoverlapping
time-intervals , , with the property that across
each such interval the-agent group of followers is linked to
its leader, then

(60)

Theorem 5 states thatwill converge to , no matter what
the value of , so long as is greater than zero. This is in
sharp contrast to other convergence results involving dwell time
switching such as those given in [33], which hold only for suffi-
ciently large values of . Theorem 5 is a more or less obvious
consequence of the following lemma.

Lemma 7: Let

(61)

Then

(62)

Moreover, for each finite set of indices in for
which is jointly connected, and each set
of finite, positive times ,

(63)

Proof of Theorem 5:Let
, and for , set

(64)

From inequality (62) in Lemma 7 it follows that

(65)

By assumption there is a finite upper boundon the lengths of
the intervals across which the agents are linked
to their leader. This and the assumption that ,

, imply that , where is the smallest
positive integer such that . Let be the set of all
sequences of at length at most for which

is jointly connected. Define

(66)

Note that because the inequality in (63) is strict, because
is a finite set, because is compact and because the

matrix exponentials in (66) depend continuously on the. In
view of the definition of and the definitions of the in (64),

(67)

However

This, (65), (67) and the sub-multiplicative property of the in-
duced infinity norm imply that

(68)

Set and note that

because of (59). Let be the state transition ma-
trix of . Then

. To complete the proof it is, therefore,
enough to show that

(69)

In view of the definitions of the ,

From this and (68) it follows that

(70)

However

so

From this and (70), it now follows that (69) is true.
Proof of Lemma 7:Fix and . Observe first

that

(71)

where is the matrix . As
noted previously, the partitioned matrix

(72)

originally defined in (43), is stochastic with positive diagonal
elements as are the matrices

(73)

Since

(74)
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must also be nonnegative with positive diagonal elements.
But , where is the
identity, so the same must be true of . Moreover

which means that and, thus,
that is stochastic. In summary, is a stochastic
matrix with positive diagonal entries.

Equations (72)–(74) imply that

where

(75)

Therefore

(76)

However, is row-stochastic, so must have its
row sums all bounded above by 1. From this and (71) it follows
that (62) is true.

Now suppose that is a jointly con-
nected collection of graphs. Then by Lemma 5

(77)

This and (75) imply that

(78)

because all of the matrices in the sums defining thein (75)
are nonnegative.

Using (76) and the definition of in (71) we can write

(79)

where and , .
Since the matrix on the right in (79) is stochastic, its row sums
all equal one. To complete the proof it is, therefore, enough to
show that

(80)

Note that for any nonnegative matrix ,
because the matrix in the def-

inition is nonnegative. Thus, for
, and consequently .

Therefore, . From this and
(78) it follows that (80) is true and, thus, that the inequality in
(63) is correct.

V. CONCLUDING REMARKS

As stated in the abstract, the main objective of this paper has
been to provide a theoretical explanation for behavior observed
in the simulation studies reported in [1]. We refer the interested
reader to Vicsek’s paper and references cited therein, for a more
thorough description of the model considered and for data doc-
umenting the simulation studies performed.

The theorems in this paper all provide convergence results
for rich classes of switching signals and arbitrary initial heading
vectors. Of course as soon as one elects to interpret these results
in the context of heading models for mobile autonomous agents,
one needs to add qualifications, because the actual switching
signal generated along a particular model’s trajectory would
have to depend on the model’s initial heading vector. To make
such a dependence explicit (and to run meaningful simulations)
more complete models would have to be defined. In carrying out
this step, one can expect to obtain a variety of results. For ex-
ample, with very large agent sensing regions (i.e.,very large)
and agents initially near each other, one would expect enough
connectivity along resultant trajectories for convergence to a
common heading to occur. On the other hand, with widely dis-
tributed initial agent positions andvery small, one would ex-
pect to see a bifurcation of the group into distinct subgroups with
different steady state headings. In other words, a complete deter-
ministic understanding of the flocking problems we’ve consid-
ered would require both more complete agent motion models as
well as an understanding of the nonlinear feedback process upon
which actually would depend. An alternative probabilistic ap-
proach might enable one to circumvent or at least simplify the
analysis of the feedback process.

Some versions of the Vicsek model and others considered
in this paper may ultimately find application in coordination
of groups of mobile autonomous agents. Of course before this
can happen many compelling issues such as collision avoidance,
and the effects of disturbances, noise, sensing errors, vehicle
modeling errors, etc. would have to be satisfactorily addressed.
For example, the collision avoidance question might also be ap-
proached by replacing the point models implicitly used in this
paper, with the model of a bumper-like “virtual shell” within
which each agent vehicle is constrained to remain [34].

While the analysis in this paper is deterministic and does
not address the noise issue, the results obtained suggest that
to understand the effect of additive noise, one should focus on
how noise inputs effect connectivity of the associated neighbor
graphs. Simulation results presented in [1] indicate that when
noise intensity in the system is fixed, there is aphase transi-
tion as the density of the agents is increased, i.e., there is a crit-
ical density after which all agents eventually become aligned.
It is possible that this phenomenon can be adequately explained
using percolation theory of random graphs [35].

The results of this paper have been extended to the case
where there are inter-agent forces due to attraction, repulsion
and alignment [36]. The new results indicate that the conver-
gence arguments used in this paper also apply to the more
general problem considered in [36] under similar assumptions
regarding the connectivity of the graph representing the nearest
neighbor relationships.
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The convergence proof for Vicsek’s model presented in Sec-
tion II relies heavily on Wolfowitz’s theorem. By generalizing
some of the constructions Wolfowitz used in his proof, it is
possible to develop a convergence result for a continuous-time
analog of the Vicsek model which is quite similar to Theorem 5.

In studying continuous-time leader-following, we imposed
the requirement that all followers use the same dwell time. This
is not really necessary. In particular, without much additional
effort it can be shown that Theorem 5 remains true under the
relatively mild assumption that all agents use dwell times which
are rationally related. In contrast, the synchronization assump-
tion may be more difficult to relax. Although convergence is
still likely without synchronization, the aperiodic nature of’s
switching times which could result, make the analysis problem
more challenging.

The use of simply averaging rules such as those discussed in
this paper can sometimes have counter-intuitive consequences
which may be undesirable in some applications. For example
the average of headings 0.01 and is so this might
cause two agents with headings both close to 0, to both approx-
imately reverse direction to a heading ofon the next step. It
would be of interest to determine how update rules might be
modified to avoid this type of behavior. Of course issues along
these lines would not arise at all if the systems we’ve consid-
ered were modeling other physically significant variables such
as agent speed or temperature where one could take all of
rather than just as the set in which the take values.

The models we have analyzed are of course very simple and
as a consequence, they are probably not really descriptive of ac-
tual bird-flocking, fish schooling, or even the coordinated move-
ments of envisioned groups of mobile robots. Nonetheless, these
models do seem to exhibit some of the rudimentary behaviors of
large groups of mobile autonomous agents and for this reason
they serve as a natural starting point for the analytical study
of more realistic models. It is clear from the developments in
this paper, that ideas from graph theory and dynamical system
theory will play a central role in both the analysis of such biolog-
ically inspired models and in the synthesis of provably correct
distributed control laws which produce such emergent behav-
iors in man-made systems.
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