
 

 

  

Abstract—We consider a fishery model containing predator fish 

and prey fish in which the predators are the commercial fish. We also 

divide each year into a spawning period and a harvesting period. The 

modified Lotka–Volterra interspecific competition model is applied 

to the fisheries system in spawning periods while an additional 

variable, harvesting effort of fishermen, is introduced to the system 

during the harvesting period. The existence of steady state solutions 

and closed orbits are theoretically studied and the local and global 

stabilities of steady state solutions are also studied. The fisheries 

population dynamics, total revenue earned by government and 

fishermen are investigated numerically for a range of taxation levels 

and a range of limits imposed on maximum fishing effort. 

 

Keywords— Bio–economic model, harvesting revenue, predator–

prey model, sustainable fishery, taxation policy.  

I. INTRODUCTION 

 ATER covers more than 70 percent of the Earth’s 

surface. The majority of the Earth’s water is saltwater in 

the oceans. Therefore, coastal and marine ecosystems play an 

important role not only in controlling the Earth’s climate but 

also in providing diverse habitats for marine organisms and 

natural resources for human recreation. Moreover, food webs 

and food chains in marine ecosystems are an important source 

of food and medicine for humans. In earlier years, fishing was 

usually only for the purpose of feeding ones own family or 

village and was carried out with simple equipment which could 

only catch a small percentage of the available fish. At the 

present time, with increasing demand for fish products the 

purpose of harvesting becomes commerce [1]. In addition, 

fishing vessels now have available high technology equipment 
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that can locate and catch a high percentage of available fish. 

Since fishery products are renewable resources, few people 

believed until recently that marine species can be driven to 

extinction [2]. Several examples of collapse of commercially 

important fish populations have now been documented [3]–[6].   

 In order to protect fishery resources, fisheries management 

is required. The better the natural resource management is, the 

longer the natural resources are available. 

The numbers and pattern of aquatic animals over time can 

be described by population dynamics as controlled by birth, 

death, and migration. Mathematical models are behind the 

success of population dynamics. Tools of mathematical 

modeling have been extensively used in fisheries management 

[3]–[6]. Several authors have suggested that taxation can be 

used by governments as a control measure. In addition, the 

effects of imposing a tax on landed fish have been investigated 

in several studies for controlling overfishing [6]–[10].   

Another method that has been adopted as a fish 

conservation measure is the banning of fish harvesting during 

important periods, for example, when the fish are spawning.  

For example, the Ministry of Agriculture and Cooperatives of 

the Royal Thai Government [11] has seen that the Gulf of 

Thailand in the locality of Prachuap Khiri Khan, Chumphon, 

and Surat Thani Provinces (as shown in Fig. 1) is a place 

where some aquatic animals spawn and breed during the 

summer period. In order to protect such aquatic animals, as 

well as for the fertility and sustainable utilization of aquatic 

animals, the Ministry has declared that the three–month period 

from February 15 to May 15 of every year is a spawning 

period and that fishing appliances will be prohibited in the 

sensitive areas during this period. 

 
Fig. 1: Gulf of Thailand from Google Map  
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 Consequently, we assume that each year can be divided into 

a spawning period and a harvesting period as shown in Fig. 2. 

In the spawning period, many aquatic animals migrate to 

special areas where conditions are suitable for spawning and 

for protection of the young animals such as mangrove forest. 

Under the Thai government law, fish harvesting is prohibited 

during this period.  We will assume that Thai citizens obey the 

law strictly and that no fish is caught during this period.  

The outline of the paper is as follows. The population 

dynamics in each period are described in section 2. In section 

3, we analyze the qualitative structure of each model in terms 

of steady state solutions, local stability, global stability, and 

absence of close orbit. In section 4, numerical studies of the 

model are shown for a variety of conditions imposed on 

taxation levels and maximum fishing effort.  Finally, in section 

5, we draw conclusions about whether taxation and imposing 

limits on fishing effort can be used as control measures to 

maintain a sustainable fishery. 

 

                           Phase I                           Phase II 

                    Harvesting Period            Spawning Period 

                          (9 months)                      (3 months) 

 

         0t                                        1t                           2t   

Fig. 2: The timeline of spawning and harvesting periods. 

II. MODEL FORMULATION 

We consider a population dynamics consisting of a predator 

fish population and a prey fish population. Also, we assume 

that the predators are the commercial fish that are harvested by 

the fishermen [1]. 

A. Spawning Period 

In this period, there is no human interference. Consequently, 

the system can be described by Model 1, a modified Lotka-

Volterra interspecific predator-prey competition model, 

 

( )dx rx
K x ay

dt K
= − −                             (1) 

( )dy sy
L y bx

dt L
= − +                             (2) 

 

where x(t), y(t) are the prey and predator population densities 

at time t, respectively. Here, the parameters K, L represent 

carrying capacities and r, s represent the natural growth rates 

of prey and predator, respectively. The parameter a is the per 

capita rate of predation of the predator, and b is the product of 

the per capita rate of predation and the rate of converting prey 

into the predator. 

The term xy approximates the likelihood that a prey is 

encountered by a predator. Both species are assumed to move 

randomly and to be uniformly distributed over their habitat. An 

encounter is assumed to decrease the prey population and 

increase the predator population.  

For biological processes, each parameter must be positive 

while each variable must be nonnegative at all times and we 

assume that (0) 0x >  and (0) 0y > . 

B. Harvesting Period 

In this period, harvesting by humans is introduced. It is 

assumed that only predator species are harvested and that the 

harvesting term is of the form, 

 

Harvesting term = qEy 

 

where q is a catchability coefficient. The harvesting effort is 

denoted by E which represents the amount of time the 

fishermen spend fishing (hours, days, weeks, or months). The 

harvesting function is based on CPUE (catch–per–unit–effort) 

which is the average number of fish caught in a unit of time 

due to effort [12]. Harvesting the predator will reduce its 

abundance, so (2) becomes  

 

( )dy sy
L y bx qyE

dt L
= − + − .                   (3) 

 

It is also assumed that all of the landed predator fish can be 

sold at an average market price p per unit biomass.  Thus, the 

total revenue of the fishermen per unit time is: 

 

Total revenue = pqEy. 

 

The total cost of harvesting the predator is assumed to be 

proportional to the fishing effort, that is 

 

Total cost = cE, 

 

where c is the real unit cost of effort for harvesting the 

predator. As a result, the net revenue of fisherman from 

harvesting the predator is given by 

 

Profit of harvesting = pqEy – cE. 

 

 From economic analysis, the change of fishing effort can be 

adjusted in response to the net revenue. Therefore the fishing 

effort adjustment equation is defined by 

 

( )dE
pqyE cE

dt
φ= −                              (4) 

 

where φ  is the adjustment coefficient and 0 1φ< ≤ . 

The system in the harvesting period can be described by 

Model 2 composed of (2), (3), and (4).                                           

C. Imposed Taxation 

 Kar [9]–[10] proposed that taxation could be used as a 

control instrument in order to protect a fish population from 

over exploitation. We will apply his ideas to our taxation 

model. In order to control the exploitation of the fishery, the 

regulatory agency imposes a tax per unit biomass of the landed 
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fish. Let τ  be a tax per unit of harvested predator. Then, 

0τ =  means no taxation, 0τ <  could denote government 

subsidies to the fisherman and 0τ >  is tax collected by the 

government.  We will assume that [ ]min max,τ τ τ∈  where 
minτ , 

maxτ  are a lower bound and an upper bound on a charged tax 

rate, respectively.  For a tax τ , the revenue of the fishermen 

will be reduced to  p τ− .  If we assume that the fishing effort 

is determined by the revenue, then imposing the tax leads to a 

change in the fishing effort equation from (4) to (5), i.e., 

 

( )( )dE
p qyE cE

dt
φ τ= − − .                           (5) 

  

The term qyEτ  represents the total value of the taxation, i.e., 

the revenue to the government.  

The bio–economic model including spawning periods and 

harvesting periods and taxation can be described by Model 3 

composed of (2), (3), and (5). 

III. QUALITATIVE ANALYSIS 

A. Model 1: Spawning Period 

 A steady state solution or an equilibrium point is a situation 

in which the system does not undergo any change [13]. There 

are four possible steady state solutions; namely: 

1. ( )1

1 0,0P , the extinction of prey and predator populations, 

2. ( )1

2 ,0P K , the absence of predator population and prey 

population at its boundary,  

3. ( )1

3 0,P L , the absence of prey population and predator 

population at its boundary 

4. ( )1

4 ,P x y , the coexistence of both populations where 

1

K aL
x

ab

−
=

+
 and 

1

bK L
y

ab

+
=

+
.                   (6) 

Interestingly, increasing the prey and predator growth rates r, s 

does not change the prey and predator equilibria. 

 The asymptotic stability of the steady state solutions can be 

checked by the standard linearization method (Lyapunov's first 

method) of examining the real parts of the eigenvalues of the 

Jacobian [14]. Further information about the global stability 

and existence of closed orbits are given in Theorems 1 and 2.  

 

Theorem 1 The steady state solution 1

4P  is globally 

asymptotically stable.  

 

Proof: On the following bases, ln(1 ) /(1 )x x x x> + > +  for 

1x > −  and the Volterra's Lyapunov function [15]–[16]: 
* * * * * *

( , ) ln( / ) ( ln( / ))V x y x x x x x m y y y y y= − − + − −  

where * *( , )x y  is a steady state solution and /m raL sbK= , it 

can be inferred that 1

4P  is globally asymptotically stable.  

 

Theorem 2 Model 1 has no closed orbit. 

 

Proof: According to Model 1, 

1 ( )
rx

f K x ay
K

= − −  and 2 ( )
sy

f L y bx
L

= − +  

are continuously differentiable functions. Then choose 

( , ) 1/B x y xy=  

which is always positive in the first quadrant. Thus  

1 2 0
Bf Bf r s

x y Ky Lx

∂ ∂
+ = − − <

∂ ∂
. 

Obviously, the expression does not change sign and is not 

identically zero in the positive quadrant of xy–plane. Based on 

Dulac's criteria [17], Model 1 has no closed orbit. 

B. Model 3: Imposed Taxation 

 There are six physically acceptable steady state solutions; 

namely:  

1. ( )3

1 0,0,0P  and 2. ( )3

2 ,0,0P K  which are always unstable. 

3. ( )3

3 0, ,0P L  is asymptotically stable if K aL<  and if the 

fishing revenue is negative when y L= , i.e., if 

( )q p L cτ− < . 

4. ( )3

4 , ,0P x y , where  

1

K aL
x

ab

−
=

+
 and 

1

bK L
y

ab

+
=

+
                    (7) 

is nonnegative if K aL> . Then y L> . It is asymptotically 

stable if K aL>  and if the fishing revenue is negative 

when y y= , i.e., if ( ) ( ) ( )1bK L q p c abτ+ − < + . 

5. ( )3

5
ˆˆ0, ,P y E , where  

( )
ˆ

c
y

q p τ
=

−
 and 

( )
ˆ s c
E L

qL q p τ

 
= −  − 

            (8) 

is nonnegative if p τ>  and ( )Lq p cτ− > . It is 

asymptotically stable if ( )Kq p acτ− <  and p τ> . 

6. ( )3

6
ˆ, ,P x y E , where  

( )
ac

x K
q p τ

= −
−

 and 
(1 )

( )

s c ab
E bK L

qL q p τ
 +

= + − − 
   (9) 

is nonnegative if ( ), ,p Kq p acτ τ> − > and 

( ) ( ) ( )1bK L q p c abτ+ − > + . It is asymptotically stable 

if ( )Kq p acτ− >  and p τ> . 

 The asymptotic stability of the steady state solutions can be 

checked by the standard linearization method (Lyapunov's first 

method) of examining the real parts of the eigenvalues of the 

Jacobian [14]. Further information about the global stability 

and existence of closed orbits are given in Theorems 3 and 4. 

 

Theorem 3 The steady state solution 3

6P  is globally 

asymptotically stable.  

 

Proof: The Volterra's Lyapunov function [15]–[16]: 
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* * * * * *

1

* * *

2

( , , ) ln( / ) ( ln( / ))

( ln( / ))

V x y E x x x x x m y y y y y

m E E E E E

= − − + − −

+ − −
 

where * * *( , , )x y E  is a steady state solution, 
1 /m raL sbK=  

and 
2 ( ) /m p raL sbKφ τ= −  is a Lyapunov function for this 

steady state solution. 

 

Theorem 4 Model 3 has no closed orbit. 

 

Proof: According to Model 3, 

1 ( )
rx

f K x ay
K

= − − , 2 ( )
sy

f L y bx qyE
L

= − + − , and 

3 (( ) )f p qy c Eφ τ= − −  

are continuously differentiable functions. Then choose 

( , , ) 1/B x y E xyE= . 

which is always positive in the first octant. Thus  

31 2 0
BfBf Bf r s

x y y KyE LxE

∂∂ ∂
+ + = − − <

∂ ∂ ∂
. 

Obviously, the expression does not change sign and is not 

identically zero in the positive octant of xyE–plane. Based on 

Dulac's criteria [17], Model 3 has no closed orbit. 

 

Theorem 5 Model 3 has a unique interior steady state solution 
3

6P  when the imposed tax is in the following range: 

( )0 min / , (1 ) / ( )p ac qK p c ab q bK Lτ≤ < − − + + . 

 

Proof: As shown in [6]. 

IV. NUMERICAL RESULTS 

 In this section, we assume the following values for the 

parameters: r = 2, s = 1.2, K = 2000, L = 1200, a = 1.2, b = 

0.2, q = 0.01, p = 50, c = 100, and φ  = 0.1 in appropriate 

units. For these values, the interior equilibrium point 3

6P  exists 

and is asymptotically stable. At time t = 0, we suppose the prey 

population, the predator population, and fishing effort are 451, 

1290, and 75, respectively. We will consider a simulation 

period of T = 9 months. 

A. Dynamics of fishery 

 We first examine the time–dependence of the predator and 

prey populations and the fishing effort (or revenue) for a range 

of values of taxation. We examine two ranges of taxation, i.e., 

a range of low taxation levels, 0,5,10,15, 20τ =  and a range of 

high taxation levels, 55,65,75,85,95τ = .  

 Fig. 3 and 4 show how predator and prey populations and 

fishing effort change as time increases at the different taxation 

levels. In the beginning of the period, the predator population 

drops rapidly due to a large effort, with a resulting rapid 

increase in the prey population. Then, the fishing effort starts 

to decrease because of the low predator population. This lower 

fishing effort results in the rise of the predator population. At 

the lower taxation levels, this fluctuation in populations and 

effort continues over the 9–month period of the simulation. At 

the higher taxation levels, the fluctuations gradually disappear 

 

 
Fig. 3: (a) prey population, (b) predator population, (c) fishing effort 

versus time for low taxation levels. 

 

in the 9–month period. By integrating over a longer period 

(not shown in this paper), we have found that at all taxation 

levels the populations and effort eventually approach the stable 
3

6P  equilibrium values, with the approach to equilibrium being 

faster at the higher taxation levels.  

 Fig. 3 and 4 also show that at the higher taxation levels, a 

lower prey population and a higher predator population are 
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Fig. 4: (a) prey population, (b) predator population, (c) fishing effort 

versus time for high taxation levels. 

 

obtained. These results agree with the equilibrium predator 

population values of ( )/c q p τ−  in (8)–(9) as well as prey 

population values of ( )/K ac q p τ− −  in (9). In particular, 

Fig. 3(b) suggests that there is a strong danger of overfishing 

of the predators at the lower tax levels, with a resulting 

collapse of the fishery, even though the equilibrium point is 

asymptotically and globally stable. Thus it is important in 

 
Fig. 5: Total revenue versus time for different taxation levels.  

(a) Low taxation levels, (b) High taxation levels. 

 

 
Fig. 6: Total revenue versus taxation. Price = 50. 

 

analyzing a fishery to look at the actual dynamics of the system 

and not just at the equilibrium. 

B. Dependence of revenue on taxation  

 We study how the revenue of the country (taxing authority 

changes as the tax level changes and investigate how the 
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country can gain maximum revenue. Here, the country’s 

revenue, obtained from harvesting the predator, consists of two 

parts: i.e., fishermen’s net revenue and government’s revenue 

from taxation on landed fish. During the harvesting period or 

T–month period, the fishermen’s net revenue can be 

formulated by  

0
( )

T

pqyE qyE cE dtτ− −∫  

while the government revenue is 

0
( )

T

qyE dtτ∫ . 

Therefore, the country’s revenue can be found by 

0
( )

T

pqyE cE dt−∫  

 We now examine the dependence of the total revenue on the 

level of tax on the landed fish biomass and how this revenue is 

distributed between the fishermen and the government. 

Surprisingly, the pattern of curves of aggregated net revenue 

for fishermen versus time is similar to Fig. 3(c) and 4(c). 

 Moreover, Fig. 3(b), 4(b), and 6 reveal that taxation can be 

used to achieve a profitable sustainable fishery. However, our 

results suggest that the fishermen will typically lose money at 

both low and high taxation levels. The curves of aggregated 

net revenue during the time interval reveal that the fishermen 

receive the highest profit at the beginning of the period and 

then they start losing their revenue and eventually lose money 

or obtain a low level of profit. As a result, the fishermen 

appear to either lose money or obtain low profit for most of the 

time at all different nonzero taxation levels. Our results 

therefore suggest that using taxation control on landed fish 

may not be an appropriate strategy in practice due to the 

probable loss of fishermen from the fishing industry. 

 Fig. 5(a) shows that the higher the tax level, the higher the 

total revenue. The low tax level motivates fishermen to 

harvest. Of course, the predator population drops fast. Then it 

is difficult to search for fish schools. As a result, fishermen 

have to stop harvesting for some periods of time. Fig. 5(b) 

looks like Fig. 5(a) except that there is an optimal taxation, 

around 75τ = , where the country gains most revenue. 

However, the higher tax level forces fishermen to lose 

harvesting effort. Consequently, the total revenue drops down 

while predator–prey populations are still abundant. 

C. Sustainable fishery  

 For sustainability, we use the condition that the prey and 

predator populations at the beginning of the spawning period 

are equal to the populations at the end of the harvesting period. 

We observe that the patterns of prey and predator populations 

repeat annually. For the higher taxation levels; for example 

70τ = , the predator population is being taken out of the water 

very quickly at the beginning of harvesting periods because of 

high effort. After that, the system has adapted itself. 

Obviously, the predator population can recover during the 

spawning period because there is no harvesting (as shown in 

Fig. 7). However, the predator is still in danger at the lower 

taxation levels because at the beginning of harvesting periods, 

the population drops to nearly zero (not shown here).  

 Fig. 8 demonstrates the fishermen profit and the government 

profit at 15τ = . It reveals that fishermen lose money for some 

period of time and lose more than they gain. However, 

government obtains an increasing profit. At the higher tax 

level, 70τ = , the patterns of the fishermen profit, the 

government profit, and the total profit are similar to those for 

tax level 15τ =  except that fishermen lose more money as 

shown in Fig. 9. 

 
 

 
 

 
Fig. 7: (a) prey population, (b) predator population, (c) fishing effort 

versus time including spawning and harvesting periods for 70τ = . 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 416



 

 

 
 

 
Fig. 8: (a) fishermen profit, (b) government profit versus time 

including spawning and harvesting periods for 15τ = . 

 

 
Fig. 9: Fishermen profit versus time including spawning and 

harvesting periods for 70τ = . 

 

D. Maximum harvesting effort  

 Since fishermen lose money from harvesting for many tax 

values, we will try to find a strategy that can help fishermen to  

 
 

 
 

 
Fig. 10: Fishermen profit and government profit versus maximum 

effort when (a) 0τ = , (b) 20τ = , (c) 40τ = . 

 

gain money. One strategy is to put a limit on effort. There is 

assumed to be a maximum harvesting effort.  

 In Fig. 10, we observe that when there is no tax, fishermen 

profit and total profit are identical. In order to gain most profit, 

the maximum effort of fishermen should be around 75. For 
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20τ = , fishermen profit is lower but still positive while the 

total profit is still the same. It implies that the government gain  

more from the difference. For 40τ = , the fishermen can only 

gain a profit if the maximum effort is limited to 40, and the 

profit is only very small. 

 When taxation is increased further, the maximum effort 

decreases until it cannot be found. In order to gain maximum 

profit, the effort of fishermen should equal the proper 

maximum effort. The higher the taxation, the lower the effort. 

Moreover, fishermen have more profit when effort is limited. 

Therefore, the idea of putting a limit on effort can help both 

country and fishermen gain more revenue in a sustainable 

manner. 

V. CONCLUSION AND DISCUSSION 

 Our model assumptions are as follows. Predator and prey 

can grow independently and their population sizes are 

bounded. However, predator population can overcome this 

limit by prey consumption. The price of predator is assumed to 

be a constant. Our fishermen are also assumed to have an 

alternative occupation so that they can choose to continue 

harvesting predator or to change job for a while depending on 

their profit or loss from fishing.  

 Imposing taxation can reduce harvesting effort and protect 

the predator population. Although taxation can be used to 

obtain a sustainable fish population, the government gains all 

of the profit from the fishery at any taxation level while the 

fishermen gains only at the beginning of the harvest period. 

Most of the time, the fishermen lose money at almost all tax 

levels. Therefore the fishermen cannot survive and may stop 

fishing permanently. As a result, taxation is not a sufficient 

instrument to control fishery in our model because there is no 

proper tax allowing both predators and fishermen to survive 

during the whole year. However, by putting a limit on effort, 

both country and fishermen can gain a profit and a sustainable 

fishery can be maintained. It is possible to obtain optimum tax 

values and limits to set on maximum effort so that the profits 

of country and fishermen are maximized and the fishery is also 

sustainable.  
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