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Abstract

The combinatorial optimization problem of assigning the coexisting communi-
cating processes of a parallel program onto a parallel machine so as to minimize
its overall execution time is called static mapping. In this paper, we present
a mapping algorithm based on the recursive bipartitioning of both the source
process graph and the target architecture graph, whose divide and conquer and
modular approach allows the handling of many topologies and bipartitioning
methods. Specific experimental studies are carried out in order to validate the
algorithm, and determine the conditions under which it achieves maximum ef-
ficiency. We analyze the interactions between the order in which the recursive
bipartitionings are performed and the structure of the graphs to map; we eval-
uate the features of our implementation of the Fiduccia-Mattheyses algorithm
for graph partitioning that allow it to handle weighted graphs; and we evidence
the influence of the decomposition of the target topology on mapping quality.
Then we outline the capabilities of SCoTCH 3.0, a software package for static
mapping that implements this approach, and compare its performance to other
mapping and partitioning software packages.

*This work was supported by the French GDR PRS



1 Introduction

The efficient execution of a parallel program on a parallel machine requires that
the communicating processes of the program be assigned to the processors of
the machine so as to minimize its overall running time. When processes are
assumed to coexist simultaneously for the duration of all the program, this
optimization problem is called mapping. It amounts to balancing the compu-
tational weight of the processes among the processors of the machine, while
reducing the communication overhead induced by parallelism by keeping in-
tensively intercommunicating processes on nearby processors. In many such
programs, the underlying computational structure can be conveniently modeled
as a graph in which vertices correspond to processes that handle distributed
pieces of data, and edges reflect data dependencies. The mapping problem can
then be addressed by assigning processor labels to the vertices of the graph, so
that all processes assigned to some processor are loaded and run on it. In a
SPMD context, this is equivalent to the distribution of data structures across
processors; in this case, all pieces of data assigned to some processor are handled
by a single process located on this processor.

A mapping is called static if it is computed prior to the execution of the
program and is never modified at run-time. Static mapping is NP-complete in
the general case [6]. Therefore, many studies have been carried out in order
to find sub-optimal solutions in reasonable time. Specific algorithms have been
proposed for mesh [18] and hypercube [4, 10] topologies. When the target ma-
chine is assumed to have a communication network in the shape of a complete
graph, the static mapping problem turns into the partitioning problem, which
has also been intensively studied [1, 13, 15, 23].

SCOTCH is a project carried out at the Laboratoire Bordelais de Recherche
en Informatique (LaBRI) of the Université Bordeaux I, by the ALiENor (AL-
gorithmics and ENvironments for parallel computing) team. Its goal is to study
static mapping by the means of graph theory, using a “divide and conquer”
approach. This work has resulted in the development of the Dual Recursive
Bipartitioning (or DRB) mapping algorithm and the analysis of several graph
bipartitioning heuristics, all of which have been embodied in the SCOTCH soft-
ware package for static mapping. This package allows the user to map efficiently
any weighted source graph onto any weighted target graph, or even onto discon-
nected subgraphs of a given target graph, in an observed running time linear
in the number of source edges and logarithmic in the number of target vertices.

This paper analyzes the results that have been obtained to date within the
ScoTcH project. We introduce the DRB mapping algorithm, and determine
the conditions under which it achieves maximal efficiency. We validate our de-
sign choices by means of experimental studies, which evidence the interactions
between the structure of the algorithm and the topologies of the source and



target graphs. The rest of the paper is organized as follows. Section 2 gives
some definitions, and section 3 presents the most important aspects of the Dual
Recursive Bipartitioning algorithm. The influence of the recursion process on
the quality of the mappings is discussed in section 4, and section 5 deals with
complexity issues. Sections 6 and 7 focus on the source and architecture bi-
partitioning algorithms that we use, respectively. In each of the four above
sections, the solutions that we propose for the problems at stake are discussed,
tested, and validated by means of experimental analyses; for the sake of clarity
and readability, these are described within the bodies of the sections, rather
than in a separate part of the paper. Section 8 describes the capabilities of the
ScoTcH 3.0 software package for static mapping, and section 9 compares its
performance to other static mapping and partitioning software packages such
as CHACO [12] and METIS [16]. Then follows the conclusion.

2 Definitions

2.1 Static mapping

The parallel program to be mapped onto the target architecture is modeled by
a weighted unoriented graph S called source graph or process graph. Vertices
vs and edges es of S are assigned integer weights w(vg) and w(es), which
estimate the computation weight of the corresponding process and the amount
of communication to be transmitted on the inter-process channel, respectively.
The target machine onto which is mapped the parallel program is also modeled
by a valuated unoriented graph T called target graph or architecture graph.
Vertices vp and edges er of T are assigned integer weights w(vr) and w(er),
which estimate the computational power of the corresponding processor and the
cost of traversal of the inter-processor link, respectively. A mapping of a source
graph S onto a target graph 7' consists of two applications 75, : V(5) —
V(T) and psr @ E(S) — P(E(T)), where P(E(T)) denotes the set of all the
simple loopless paths that can be built from E(T). 7s.(vg) = vy if process
vg of S is mapped onto processor vy of T, and psr(es) = {ek, ek, ... b} if
communication channel es of S is routed through communication links ek, €2,

.., el of T. |psr(es)| denotes the dilation of edge eg, that is the number of
edges of E(T) used to route eg.

2.2 Cost functions

The computation of efficient static mappings requires an a-priori knowledge
of the dynamic behavior of the target machine with respect to the programs
which are run on 1t. This knowledge is synthesized in a cost function, the na-
ture of which determines the characteristics of the desired optimal mappings.
Cost functions may account for criteria such as the load balance on the target



processors, the communication load balance on the communication links, the
minimization of inter-processor communication, the minimization of the dila-
tion of the edges of the source graph, ete. In general, several such criteria are
combined into a unique aggregate cost function by means of weighted sums.
However, the biggest drawback of aggregate functions lies in the setting of the
weighting coefficients. In particular, the trade-off between computation and
communication criteria is hard to tune, and must be evaluated for every differ-
ent target machine.

Therefore, as several authors did before [5, 17, 23], we have chosen to sepa-
rate computation criteria from communication ones. The goal of our mapping
algorithm is thus to minimize some communication cost function, while keep-
ing the load balance within a user-specified tolerance. The communication cost
function fo that we have chosen is the sum, for all edges, of their dilation
multiplied by their weight:

fC(TS,TapS,T) = Z w(eS) |pS,T(eS)| .

eSEE(S)

This function, which has already been considered by several authors for hyper-
cube target topologies [4, 10, 12], has several interesting properties: it is easy to
compute, allows incremental updates performed by iterative algorithms, and its
minimization favors the mapping of intensively intercommunicating processes
onto nearby processors; regardless of the type of routing implemented on the
target machine (store-and-forward or cut-through), it models the traffic on the
interconnection network and thus the risk of congestion. The strong positive
correlation between its values and effective execution times has been experimen-
tally verified by several authors [10, 13].

2.3 Performance criteria

The quality of mappings is evaluated with respect to the criteria for quality that
we have chosen: the balance of the computation load across processors, and the
minimization of the interprocessor communication cost modeled by function fe.
These criteria lead to the definition of several parameters, whose expressions are
given below.

For load balance, one can define piy,qp, the average load per computational
power unit (which does not depend on mappings), and 6,4, the load imbalance

ratio, as
’ > w(vs)
det vSEV(S)

Homar = T w(or)
’UTEV(T)

and



w(ll)T) > w(vs)| — fmap
vreV(T) vs € V(S)
5 def T7s,r(vs) = vrp
e 2. w(vs)

’Usev(S)

However, since the maximum load imbalance ratio is provided by the user in
the input of the mapping, the information given by these parameters is of little
interest; what matters is the minimization of the communication cost function
under this load balance constraint.

For communication, the salient parameter to consider is f. It can be nor-
malized as fi.op, the average edge expansion, which can be compared to g,
the average edge dilation; these are defined as

> psrles)

det fe and det es€E(S)
e T Y ules) e [E(S)]
eSEE(S)
beap = lifjj is smaller than 1 when the mapper succeeds in putting heavily

intercommunicating processes closer to each other than it does for lightly com-
municating processes; it is equal to 1 if all edges have same weight.

A mapping will be said better than another if its communication cost f¢ is
smaller than the one of the other graph, and provided that its load imbalance
is below the user-defined tolerance.

2.4 Test graphs

The source graphs that have been used to test our mapping program belong
to two distinct classes. The first one is made of triangular and quadrangular
unstructured meshes related to fluid dynamics, structural mechanics, or combi-
natorial optimization problems. The computations performed for every vertex
of these graphs being supposed identical, they are all homogeneous, that is have
unity vertex and edge weights. The second class contains valuated interprocess
communication graphs issued from a parallel implementation of a sparse block
Cholesky factorization solver, which represent partitions of the unknowns in-
duced by a nested dissection method. The most imbalanced graph, REF0, is
the direct output of the nested dissection process. Others are obtained from
this one by means of a refinement process, in which heavier vertices are split
into cliques of lighter vertices. This allows for better granularity of the problem,
at the expense of vertex and —mostly— edge creations. Therefore, most of these
graphs have very high degree; see [3] for reference.

The characteristics of all these graphs are summed-up in table 1. § and A
stand for the minimum and maximum degrees of the graphs, respectively. In
all this paper, diam denotes graph diameter, and M5, H, and K represent the
bidimensional grid, hypercube, and complete graphs, respectively.



Name Class | [V(S)| | |E(S)| |6 | A | "0 | max | mim g max
w(vs) | wlvs) |wles) | wles)

3ELT 2D F.E. | 4720 | 13722 [ 3] O 1 1 1 1
AELT oD F.E. | 15606 | 45878 | 3 | 10 1 1 1 1
AELT?2 oD F.E. | 11143 | 32818 | 3 | 12 1 1 1 1
BODY 3D F.E. | 45087 | 163734 | 0 | 28 1 1 1 1
BUMP oD F.E. | 9800 | 28989 | 3| 8 1 1 1 1
BCSSTK29 | 3D F.E. | 13992 | 302748 | 4 | 70 1 1 1 1
BCSSTK30 | 3D F.E. | 28924 | 1007284 | 3 | 218 1 1 1 1
BCSSTK31 | 3D F.E. | 35588 | 572014 | 1 | 188 1 1 1 1
BCSSTK32 | 3D F.E. | 44609 | 985046 | 1 | 215 1 1 1 1
BRACKET | 3D F.E. | 62631 | 366559 | 3 | 32 1 1 1 1
OCEAN 3D F.E. | 143437 | 409593 | 1| 6 1 1 1 1
PWT 3D F.E. | 36519 | 144794 | 0 | 15 1 1 1 1
ROTOR 3D F.E. | 99617 | 662431 | 5 | 125 1 1 1 1
SPHERE | 3DF.E. | 1638 | 49152 | 4| 6 1 1 1 1
REF0 N.D. 2047 7750 | 2 | 186 | 167 | 686298 6 | 4560
REF1 N.D. 2453 | 47659 | 2 | 444 | 167 | 270419 1| 1403
REF?2 N.D. 2815 | 84406 | 2 | 542 | 167 | 83652 1| 1104
REF3 N.D. 3093 | 105713 | 2 | 584 | 167 | 38749 1| 444
REF4 N.D. 3470 | 135148 | 2 | 633 | 167 | 25910 1| 264

Table 1: Characteristics of the source graphs used for our tests.

2.5 Experimental conditions

Our tests have been carried out on a SGI Onyx machine with 190 MHz R10000
processors and 128 Mb of main memory. The measured times are total CPU
times (user and system) taken to compute mappings, excluding data loading and
results saving. FExcept if explicitly mentioned, all the mapping computations
used logarithmic indexing, adaptive sequencing, and the gfx strategy, with a
load imbalance tolerance ratio of 0.005; these parameters will be defined in the
following, when needed.

3 The Dual Recursive Bipartitioning algorithm

3.1 Description of the algorithm

Our mapping algorithm uses a divide and conquer approach to recursively allo-
cate subsets of processes to subsets of processors [19]. It starts by considering
a set of processors, also called the domain, containing all the processors of the
target machine, and with which is associated the set of all the processes to map.
At each step, the algorithm bipartitions a yet unprocessed domain into two dis-
joint subdomains, and calls a graph bipartitioning algorithm to split the subset




of processes associated with the domain across the two subdomains. Whenever
a domain is restricted to a single processor, its associated processes are assigned
to it and recursion stops, as written in the following sketch.

mapping (D, P)
Set_0f_Processors D;
Set_0f_Processes P;
{
Set_0f_Processors DO, Di;
Set_0f_Processes PO, P1;

if (|P| == 0) /* If nothing to do. */
return;

if (ID] == 1) { /* If one processor in D */
result (D, P); /* P is mapped onto it. */
return;

}

(DO, D1) = processor_bipartition (D);
(PO, P1) = process_bipartition (P, DO, D1);
mapping (DO, PO); /* Perform recursion. */
mapping (D1, P1);

}

The association of a subdomain with every process defines a partial mapping of
the process graph. The complete mapping is achieved when successive biparti-
tionings have reduced all subdomain sizes to one.

The above algorithm lies on the ability to define five main objects:

e a domain structure, which represents a set of processors in the target
architecture.

e a domain bipartitioning function, which, given a domain, bipartitions it in
two digjoint subdomains.

e a domain distance function, which gives, in the target graph, a measure
of the distance between two disjoint domains. Since domains may not
be convex nor connected, this distance may be estimated. However, it
must respect certain homogeneity properties, such as giving more accurate
results as domain sizes decrease. The domain distance function is used
by the graph bipartitioning algorithms to compute the communication
function to minimize, since it allows the mapper to estimate the dilation of
the edges that link vertices which belong to different domains. Using such
a distance function amounts to considering that all routings use shortest
paths on the target architecture. This is not unreasonable to assume, as
most existing parallel machines handle routing dynamically with shortest-
path routings. We have thus chosen that our program would not provide
routings for the communication channels, leaving their handling to the
communication system of the target machine.



e A process subgraph structure, which represents the subgraph induced by a
subset of the vertex set of the original source graph.

e A process subgraph bipartitioning function, which bipartitions subgraphs
in two disjoint pieces to be mapped onto the two subdomains computed
by the domain bipartitioning function.

All of these routines are seen as black-boxes by the mapping program, which can
thus accept any kind of target architecture and process bipartitioning functions
(see sections 6 and 7).

3.2 Partial cost function

The production of efficient complete mappings requires that all graph biparti-
tionings favor the criteria that we have chosen. Therefore, the bipartitioning
of a subgraph S’ of S should maintain load balance within the user-specified
tolerance, and minimize the partial communication cost function ff., defined as

fé‘(Ts,Ta ps,T) = Z w({v’ v/}) |pS,T({Ua U/})| )
v e V(S
{v,v'} € B(S)

which accounts for the dilation of edges internal to subgraph S’ as well as for the
one of edges which belong to the cocycle of S| as shown in figure 1. Taking into
account the results of partial mappings issued by previous bipartitionings makes
it possible to avoid local choices that might prove globally bad, as explained
below.

Do D,

a. Initial position. b. After one vertex is moved.

Figure 1: Edges accounted for in the partial communication cost function when
bipartitioning the subgraph associated with domain D between the two subdo-
mains Dy and Dy of D. Dotted edges are of dilation zero, their two ends being
mapped onto the same subdomain. Thin edges are cocycle edges.



4 Job sequencing schemes

4.1 Sequencing schemes

From an algorithmic point of view, our mapper behaves as a greedy algorithm,
since the assignment of a process to a subdomain is never reconsidered. The
double recursive call performed at each step induces a recursion scheme in the
shape of a binary tree, each vertex of which corresponds to a bipartitioning job,
that is the bipartitioning of both a domain and its associated process subgraph.

In the case of depth-first sequencing, as written in the above sketch, bipar-
titioning jobs run in the left branches of the tree have no information on the
distance between the vertices they handle and neighbor vertices to be processed
in the right branches. On the contrary, sequencing the jobs according to a by-
level (breadth-first) travel of the tree allows that any bipartitioning job of a given
level may have information on the subdomains to which all the processes have
been assigned at the previous level. Thus, when deciding in which subdomain
to put a given process, a bipartitioning job can account for the communication
costs induced by all the neighboring processes, whether they are handled by the
job itself or not, since it can estimate in f the dilation of the corresponding
edges. This results in an interesting feed-back effect: once an edge has been kept
in a cut between two subdomains, the distance between its end vertices will be
accounted for in the partial communication cost function to be minimized, and
following jobs will be more likely to keep these vertices close to each other, as
illustrated in figure 2. Moreover, since all domains are split at every level, they
all have equivalent sizes, which respects the distance homogeneity and gives the
algorithm more coherence (see section 7.3).

We have defined a third sequencing scheme, called adaptive, which selects
the job which has the highest number of cocycle edges linking it to jobs that
handle subgraphs with fewer vertices than it has. The goal of this adaptive
scheme is to emulate breadth-first sequencing, while using as much as possible
mapping results produced by jobs of the same levels. As a matter of fact, no job
will be selected if bigger jobs (that is, jobs belonging to higher levels) remain
unselected, and once a job has been selected in a level, jobs which share edges
with 1t will be selected next, so that they can use the most accurate distance
information regarding these cocycle edges.

4.2 Evaluation of the sequencing schemes

Figure 3 illustrates the advantages of adaptive sequencing compared to breadth-
first sequencing. Figure 3.a represents the BUMP mesh. Figure 3.b shows the
partial result of the first two levels of the mapping of this graph onto the bidi-
mensional grid M2 (4, 2): with every graph vertex is associated a disk whose grey
level indicates the subdomain to which the vertex currently belongs; two ver-
tices have disks of same grey level if they are mapped onto the same subdomain.
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a. Depth-first sequencing. b. Breadth-first sequencing.

Figure 2: Influence of depth-first and breadth-first sequencings on the bipar-
titioning of a domain D belonging to the leftmost branch of the bipartition-
ing tree. With breadth-first sequencing, the partial mapping results regarding
vertices that belong to the right branches of the bipartitioning tree are more
accurate (C.L. stands for “Cut Level”).

At this point, breadth-first and adaptive sequencings give the same result, since
the recursive decomposition of the graph into bands of same orientation zeroes
the contribution of cocycle edges, such that the order in which jobs are biparti-
tioned in the first two levels is irrelevant. However, this is no longer true at the
next level.

Figure 3.c shows the final mapping of BUMP onto M(4,2) using breadth-
first sequencing. Let the four subdomains of figure 3.b be labeled “17, “27,
“3”, and “4” from left to right. With breadth-first sequencing, they are biparti-
tioned in order “37, “4”, “1”7, “2”. Subdomain 3 is the first to be bipartitioned,
and therefore has no useful cocycle information to use. Then subdomain 4 is
bipartitioned, and takes advantage of the result of the bipartitioning of subdo-
main 3 to minimize the number of cocycle edges of dilation 2: the frontier of
the resulting bipartition matches the one computed for subdomain 3. However,
when subdomain 1 is bipartitioned, it has no information on how subdomain 2
is going to be bipartitioned. Therefore, it assigns at random the two result-
ing subgraphs to the two processors it handles. When subdomain 2 is finally
bipartitioned, it must account for the allocation performed for subdomains 1
and 3. Unfortunately, the two processors of subdomain 1 have been associated
with the subgraphs generated by the bipartition in a way opposite to the one of
subdomains 3 and 4, which results in a “twisted” mesh. To accommodate for
this, the job which bipartitions subdomain 2 builds an overlapping “diagonal”
bipartition which tends to minimize the local communication cost function by
reducing as much as possible the number of edges of dilation 2.

On the other hand, with adaptive sequencing, bipartitioning jobs are selected

10



a. The BUMP mesh.

b. Result of the first two levels of the mapping of
BUMP onto M2(4, 2).

c. Result of the mapping of BUMP onto M(4,2)
with the breadth-first sequencing.

d. Result of the mapping of BUMP onto Ms(4,2)
with the adaptive sequencing.

Figure 3: Result of the mapping of graph BUMP onto Ms(4,2) with breadth-
first and adaptive job sequencings.

11



provided that at least one of their neighbors has been processed. Therefore,
once one of the four subdomains has been bipartitioned, processors are associ-
ated with subgraphs so that the mesh is not twisted, and frontiers can match
across subdomains. This propagation of mapping results between neighboring
jobs yields the more regular and efficient mapping of figure 3.d.

To evaluate the respective efficiency of these three sequencing schemes, we
have used all of them to map our test graphs onto hypercubes and square bidi-
mensional grids of increasing sizes. Globally, adaptive sequencing is the most
efficient scheme in term of average expansion, providing the best mappings of
the three in 48.2 percent of the runs, followed by depth-first sequencing with
39.9 percent, and then breadth-first sequencing with 35.1 percent (the sum
is over 100 percent since several schemes can give the same best result). In
fact, breadth-first sequencing does better than depth-first sequencing on aver-
age. However, when this happens, it is most often outperformed by adaptive
sequencing, so from now we will only compare adaptive and depth-first sequenc-
ings. When only these two schemes are taken into account, the adaptive scheme
computes the best mappings in 63.7 percent of the runs, and the depth-first
scheme in 51.2 percent of the runs. However, results differ significantly accord-
ing to the target topology and the type of source graph, as shown in table 2.
Note that, in this table, we have summed-up the results over columns and rows.
Although aggregating values obtained for graphs of different nature may not
seem correct, we did it to show that, regardless of one of the parameters,; the
other has a significant impact on mapping results.

Source
N.D. 2D F.E. 3D F.E. all F.E. all
| Target | a.s. | d.fs. | as. | dfs. | as. | dfs. | as. | dfs. | as. | dfs.
H(z) 57.7 53.3 | 55.5 55.5 | 74.1 40.7 | 63.5 49.2 | 61.1 50.9
Mo (z,z) || 44.0 72.0 | 80.0 40.0 | 93.3 33.3 | 85.7 37.1 | 68.3 51.6
all 52.9 60.0 | 64.3 50.0 | 81.0 38.1 | 71.4 44.9 | 63.7 51.2

Table 2: Percentage of finding the best mapping for the adaptive (a.s.) and
depth-first (d.f.s.) sequencings, for several classes of source graphs and target
architectures.

For nested-dissection graphs, depth-first sequencing is more efficient on aver-
age than adaptive sequencing; it does better for large hypercubes, and its supe-
riority is obvious for bidimensional grids, with 72.0 percent against 44.0 percent.
Because of the high density and heavy edge weights of nested-dissection graphs,
knowing more accurately many edge dilations (and particularly the ones of the
heaviest edges) compensates the risk of computing worse partial mappings in
the left branches of the bipartitioning tree, all the more when edge dilations

12



may be large, as it is the case for grid target architectures.

For finite-element meshes, adaptive sequencing clearly outperforms depth-
first sequencing. When source graphs are loosely connected, exhibit great lo-
cality, and are of small dimensionality, the feed-back and of propagation effects
that we have discussed above help to “unfold” the source graph on the target
architecture as efficiently as possible. The depth-first scheme behaves better for
hypercube topologies since the high degree and small diameter of these graphs
limit the consequences of bad choices made in the left branches of the sequencing
tree, while providing the jobs of the right branches accurate distance informa-
tion regarding the vertices which have been already mapped.

The conclusion of this study is that the efficiency of job sequencing schemes
strongly depends on the nature of the source and target graphs. When source
graphs are strongly connected and/or have heavily weighted edges, depth-first
sequencing does better than the breadth-first-like adaptive sequencing, because
the contribution of the heaviest edges dominates the cost function. On the op-
posite, when source graphs are loosely connected, exhibit great locality, and are
of small dimensionality, adaptive sequencing is much more efficient in preserving
this locality in the resulting mapping. Adaptive sequencing should therefore be
preferred when mapping finite-element meshes onto parallel architectures.

As a closing remark, one can note that, by using the hypercube as target
topology and depth-first sequencing, our mapping algorithm becomes very sim-
ilar to the one of Ercal, Ramanujam, and Sadayappan [4]. In that sense, our
work, by formalizing the concepts of domain, distance, and execution scheme,
can be seen as a generalization of theirs that handles any target topology and
graph bipartitioning method.

5 Complexity analysis

The purpose of this section is to evaluate the complexity of our recursive map-
ping algorithm with respect to the ones of the bipartitioning methods that are
used within the bipartitioning jobs.

Let ALGO be an algorithm. We note Cspa(ALGO) the maximal space com-
plexity of this algorithm. It represents the biggest amount of memory which
the algorithm may need during its execution, this memory space being freed at
completion. Similarly, we note Cr;mn(ALGO) the maximal time complexity of
the algorithm. The interest of some heuristics is that their effective behavior can
be several orders of magnitude below their maximal complexity, although this
cannot be mathematically proven. Therefore, we note Cf,,(ALGO) the space
behavior of algorithm ALGO, and C/,,,(ALGO) its time behavior. Unlike com-

plexity, which is a theoretical, proven, result, the behavior of an algorithm is an

13



empirical result, only based on experimentation. However, it is reliable, because
observed in a quasi systematic way on a great number of examples, and justified
by qualitative arguments.

Let BipaT and BipaS be the domain and subgraph bipartitioning algorithms
used by our DRB algorithm.

Proposition 1 Let S be a source graph and T be a target graph, with |E(S)| >
B, VS > VD), and [ES)| > V(S If, for all T/ C T and & C
S, Cspa(BipaT(T")) is in O(|E(T")| + |[V(T")]) and Cspa(BipaS(S")) is in
O(|E(S")| + |V(S")]), and if BipaT gives subdomains of equivalent sizes, then
Cspa(DRB(S,T)) is in O(|E(S)]).

Proof. By using neighbor lists, S is stored in O(|V(S)| + |E(S)]) space. Since,
by hypothesis, BipaT gives subdomains of equivalent sizes, the domain biparti-
tioning binary tree is complete at least up to its before-last level, and its depth
is [log,(JZV(T))]. Let F;(S,T), with ¢ > 0, be the set of (77,5") pairs pro-
cessed by the bipartitioning jobs at level 7 of the bipartitioning tree, where T"
is a subdomain of 7" and S’ the subgraph of S mapped onto 7’. In particular,
Fo(S,T) ={(5, 1)}

Since bipartitioning jobs free after completion the memory space that they use,
the space complexity of our DRB algorithm is the maximum over all jobs of
their space complexity:

[og(IV (T)])]
Cspa(DRB(S,T)) = O(E(S)]) +O(V(5)]) +0( max

i=0

max max(Cspq(BipaT(T")), Cspa(BipaS(S")))
G
At each level of the bipartitioning tree, all process subgraphs and subdomains
are disgjoint subgraphs of the initial source and target graphs, which are therefore
of smaller sizes. The above expression is thus clearly bounded by the complexity
of the first level, so

Cspa(DRB(S,T)) = O(|E(5)]) -
O

In the same way, the time complexity of our DRB algorithm can be computed
under the same conditions.

Proposition 2 Let S be a source graph and T a target graph, with |E(S)| >
B, VS = VD), and [BS)| > V(S 1f, for all T/ C T and &' C
S, Crim(BipaT (1)) is in O(|E(T")| + |V(T")|) and Crim(BipaS(S")) is in
O(|E(S")| + |V(S")]), and if BipaT gives subdomains of equivalent sizes, then
Crim(DRB(S,T)) is in O(E(S)]| loga(IV(T)]).

14



Proof. Using the definitions of the previous proposition, we have

[log, (IV(T)D1

Crim(DRB(S,T)) = O > > (Crim(BipaT(T"))+
i=0 (S, TeF(5,T)
CTZ‘m(BipClS(S/ )))

At each level of the bipartitioning tree, all subdomains and subgraphs are dis-
joint subgraphs of the initial source and target graphs. Therefore, the sum for
each level of complexities linear in the number of vertices and edges of these
subgraphs is at most linear in the number of vertices and edges of the initial
source and target graphs. Thus,

[og,(1V(T)])]
Crim(DRB(S,T)) = O Y OUEM|+ VD) + B+ V()

= O ([E(S)] Nogz(IV(T)NT)

a
For what precedes, provided that the time behaviors C’,,, of all our biparti-
tioning methods are in O(|E(S")|+|V (S)|), we should have C,, . (DRB(S,T)) =
O(|E(S)] log,(|JV(T)])). Thanks to the bipartitioning methods that we use, this
proves true, and is verified by two sets of experiments. The first one deals with
the linearity in the number of edges of source graphs. We have mapped source
graphs onto many target topologies, and obtain in all cases plots that have a
linear shape (see for instance figure 4). The second set of experiments confirms
that the running time of our mapper is logarithmic in the number of vertices of
the target graph as long as the number of processors is smaller than the number
of processes. We have mapped source graphs onto many target topologies of the
same family, and obtain in all cases plots which have a logarithmic shape (and
therefore which are of linear shape with a log/lin plotting, as in figure 5).

6 Process graph bipartitioning methods

The core of our recursive mapping algorithm uses process graph bipartitioning
methods as black boxes. It allows the mapper to run any type of graph bipar-
titioning method compatible with our criteria for quality. Bipartitioning jobs
maintain an internal image of the current bipartition, which indicates for every
vertex of the job whether it i1s currently assigned to the first or the second sub-
domain. It is therefore possible to apply several different methods in sequence,
each one starting from the result of the previous one, and to select the meth-
ods with respect to the job characteristics, which permits us to define mapping
strategies.
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Figure 4: Running time of the mapping of finite-element (F.E.) and nested-
dissection (N.D.) graphs onto the bidimensional grid M2 (8, 8), with strategy
gfx.

6.1 Graph bipartitioning methods

Several graph bipartitioning methods have been implemented to date: random
and greedy algorithms to compute initial bipartitions and refine them, a back-
tracking method, and an improved version of the Fiduccia-Mattheyses heuristic.

6.1.1 The Gibbs-Poole-Stockmeyer method

This bipartitioning method is inspired from an algorithm proposed by Gibbs,
Poole, and Stockmeyer to minimize the dilation of graph orderings, that is the
maximum absolute value of the difference between the numbers of neighbor
vertices [8]. The graph is sliced by using a breadth-first spanning tree rooted at
a randomly chosen vertex, and this process is iterated by selecting a new root
vertex within the last layer as long as the number of layers increases. Then,
starting from the current root vertex, vertices are assigned layer after layer to
the first subdomain, until half of the total weight has been processed. Remaining
vertices are then allocated to the second subdomain.

As for the original Gibbs, Poole, and Stockmeyer algorithm, it is assumed
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Figure 5: Running time of the mapping of some finite-element and nested-
dissection graphs onto bidimensional meshes Ms(#, y) of increasing dimensions,
with strategy gfx.

that the maximization of the number of layers results in the minimization of the
sizes —and therefore of the cocycles— of the layers. This property has already
been used by George and Liu to reorder sparse linear systems using the nested
dissection method [7], and by Simon in [24].

6.1.2 The Improved Fiduccia-Mattheyses method

The Fiduccia-Mattheyses graph bipartitioning heuristic [5] is an almost-linear
improvement of the Kernighan-Lin algorithm [17]. Tts goal is to minimize the
cut between two vertex subsets, while maintaining the balance of their cardinals
within a limited user-specified tolerance. Starting from an initially balanced so-
lution of any cut value, it proceeds iteratively by trying, at each stage, to reduce
the cut of the current solution. The algorithm maintains, for all the vertices of
both subsets, a gain value, which represents the value by which the current cut
would decrease if the vertex were moved to the other subset (gains may thus be
negative). Vertices of identical gain are linked into gain linked lists which are
stored as entries of a gain array. At each stage, the algorithm builds an order-
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wng of as many vertices as it can, by repeating the following process: it picks
in the two subsets the vertex of largest current gain and whose move will not
set the balance out of the user-specified tolerance. When a vertex is selected,
the algorithm fakes to move it and updates the gains of its neighboring vertices
accordingly. This is repeated until all vertices have been chosen or no move
of yet unprocessed vertices would keep the load balance within the tolerance.
Once the ordering is complete, the new solution is built from the current one
by moving as many vertices of the ordering as necessary to get the maximum
accumulated gain. Thus, by considering the accumulated gain, the algorithm
allows hill-climbing from local minima of the cut cost function.

The almost-linearity of this algorithm is based on two limitations. First, it is
supposed that vertex degrees are small and that all edges have unity weight, so
that the range of the gain values is small, and thus the search in the gain array
for a vertex of best gain is assumed to take an almost-constant time. Second,
all vertices are supposed to have equal (unity) weights, so that moving the head
of a given gain list is equivalent in balance to moving any vertex in this list.
Unfortunately, the above is no longer true when vertices and edges have non-
unity weights and when gains account for the distance between edge ends. As
a matter of fact, the handling of huge weights raises three problems.

The first one is the access time to the linked list of largest gain. To solve
it, we have first added to each gain array a binary-tree structure that recorded
the number of vertices present in every sub-tree (see figure 6.a). Thanks to
this, the search for the linked list of largest gain was performed in a time log-
arithmic in the size of the gain array; it was thus bounded by the number of
address bits of the machine which ran the mapper, and therefore considered as
constant. However, the above solution amplified the second problem, which is
space consumption.

Since the biggest gain value which can be obtained during a mapping can
be as large as diam(7") A(S) max. cp(s)w(es), the size of linear gain arrays
can be prohibitive for valuated graphs. To keep the gain table a reasonable
size guaranteeing an almost-constant access time, we have finally implemented
a logarithmic indexing of gain tables, as shown in figure 6.b. In this case, the
number of entries of the gain array is bounded by the number of bits coding
an integer, which is a small constant. The differences in behavior between
the algorithms with linearly and logarithmically indexed gain arrays are small,
since in both cases vertices with big gains are handled first. As a matter of fact,
when vertices linked within the same logarithmically indexed gain list are not
neighbors, moving one of them does not modify the gain of the others; and the
order of their moving has no importance, whatever indexing type is considered.
If they are neighbors; the choice of a neighbor rather than another can influence
the behavior of the algorithm; however, the resulting approximation is of the
same order of magnitude as the one inherent to the initial Fiduccia-Mattheyses
algorithm. Moreover, when the initial bipartition is already well structured (as
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Figure 6: These two data structures both allow for the searching of a vertex of
big(gest) gain in constant time. However, the second structure is much more
efficient in space than the first one.

for instance when the Gibbs-Poole-Stockmeyer algorithm is used to compute an
initial partition), the area within which vertices are swapped is small, and the
risk for it to move is small.

The third problem caused by weighted graphs regards load balance. Because
of the non-unity vertex weights, moving the head of a gain list may not result in
the best load balance compared to other vertices in the same list, and moving
a weighted vertex from the heaviest subdomain to the other can even increase
load imbalance instead of reducing it, as for instance when moving the vertex
with weight 3 in the imbalanced assignment of figure 7. As no data structure
could easily avoid the evaluation of vertices which would cause imbalance if they
were moved, and since we did not want to scan the whole lists for the vertex
of best load balance, we have chosen to scan the gain list of best logarithmic
gain till a vertex whose move would not cause imbalance is found. This is not
unreasonable to do, since the imbalance tolerance defines a valid working space
which should be fully utilized in order to jump over local minima of the com-
munication cost function.

To ensure the validity of logarithmic indexing and study the consequences of
grouping vertices of different gains into the same gain lists, we have replaced the
entries of the logarithmic gain table by sub-arrays indexed by the leftmost non-
zero bits of the gain values. Therefore, vertices that have the same leftmost non-
zero bit, and which would have been stored in the same list in the logarithmic
gain table, may now be stored in the distinct gain lists of the sub-array, according
to the value of their leftmost non-zero bits, that we call sub-bits. Table 3
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Figure 7: Imbalanced assignment computed by one of our greedy bipartitioning
algorithms, and optimal assignment.

summarizes the average expansions of the mapping with the gfx strategy (see
section 6.3) of graph ROTOR onto square bidimensional grids, using linear and
logarithmic indexings of the gain tables of the Fiduccia-Mattheyses method;
for logarithmic indexing, several numbers of sub-bits have been tested. As
expected, the linear and logarithmic indexings give equivalent results, and none
of them proves significantly better than the other. One can note that, in this
example, the expansion values for linear and logarithmic indexing are equal
for a number of sub-bits greater than or equal to 4. Tt means that, for these
mappings, using 4 sub-bits generates enough distinct gain list entries to store
all the different gain values used in the bipartitioning process, which results in a
behavior identical to the one of linear indexing. However, logarithmic indexing
proves more efficient in practice, since for instance graph RFEF4 could not be
mapped onto M2(32, 32) with linear indexing, because of gain overflow, in spite
of the allocation of a linear gain array with 2'% entries.

V(D) Linear Logarithmic (number of sub-bits)
0o | 1 [ 2 T 4
4 || 0.00880 0.01199 | 0.00883 | 0.00883 | 0.00880
16 0.04666 0.05037 | 0.04493 | 0.04509 | 0.04666
64 || 0.12422 0.13114 | 0.12144 | 0.12352 | 0.12422
256 0.29499 0.31046 | 0.28697 | 0.29175 | 0.29499
1024 0.65186 0.68044 | 0.63095 | 0.64586 | 0.65186

Table 3: Average expansion of the mapping of graph ROTOR onto square
bidimensional grids, with the gfx strategy, and using linear and logarithmic
(with 0, 1, 2, and 4 sub-bits) indexings of the gain tables of the Fiduccia-
Mattheyses method.
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6.1.3 The “exactifying” algorithm

This method 1s used to post-process other methods when strict load balance 1s
essential. The goal of this greedy algorithm is to reduce load imbalance while
keeping the value of the communication cost function as small as possible. The
vertex set is scanned in order of decreasing vertex weights, and vertices are
moved from one subdomain to the other if doing so reduces load imbalance.
When several vertices have same weight, they are inserted in a gain table anal-
ogous to the one used by our Fiduccia-Mattheyses algorithm, so that the vertex
whose swap decreases most the communication cost function is selected first.

6.2 Handling of imbalanced graphs

Imbalanced process graphs, that is graphs such that some processes have weights
much heavier than the average, lead to several problems. Let us consider for
instance a complete process graph such that all vertices have weight one, except
for one single vertex whose weight is equal to the number of vertices of the graph.
If an exact bipartitioning algorithm were run on this graph, the heaviest vertex
would be assigned to one subdomain and all the others vertices to the other,
leaving all processors of the first subdomain idle, but one, as shown in figure 8.
Imbalanced process graphs may be handled in two different ways, according to
the two opposite following arguments.

e On one hand, one could think that since the heaviest process will complete
last, it is useless to spread the other processes over all the processors. It is
better to balance the load over a smaller number of processors, and leave
the rest idle so that they can be allocated to other users of the parallel
machine.

e On the other hand, since the processors of the domain have already been
reserved, it is better to use them all, and spread processes as much as
possible. Processes will therefore use the independent resources of every
processor (computational power, memory, local disks, ...) with smaller
risk of contention.

We have chosen to implement the second approach, since it allows to take advan-
tage of all the resources that have been reserved for the execution of the parallel
program, while allowing features similar to the ones of the first approach if we
choose to restrict the target domain before the mapping process takes place.
As a matter of fact, let .S be the source graph to be mapped onto the target
architecture 7' that has been reserved for execution. If we want all working
processors to be loaded at least as much as the one that will host the heaviest
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Figure 8: Exact bipartitioning of a strongly imbalanced graph.

process, the target architecture must be restricted to 7° C T such that
> (w(vs))
’Usev(S)

vslggfs)(w(vs))

[V(T")] = min | [V(T)],

The construction of 7" from T can be performed by our mapper, by mapping T
onto the weighted path graph with two vertices of weights equal to the desired
[V(T")] and to |[V(T)| — |V(T")|, respectively. This unique weighted biparti-
tioning tends to minimize the cut between the two resulting subgraphs of T,
and therefore to maximize communication within each of them. 7" is taken as
the subgraph of T that has been mapped onto the vertex of weight |V (7")|, as
illustrated in figure 9.

a. Construction of a subdomain with b. Construction of a subdomain with
13 vertices (lower right corner) on a 8 17 vertices (lower left corner) on the
by 8 bidimensional grid architecture. remaining architecture.

Figure 9: Subdomain construction on M2 (8, 8) by weighted bipartitioning.

According to the second approach that we have chosen, and in order to
prevent excessive weights from perturbating the bipartitioning process, we have
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implemented an adaptive weight limitation procedure. At the beginning of
every job, it computes the effective weights of all the processes, which are the
minimum of the real weights of the processes and a multiple of the mean real
weight of the processes assigned to the current domain. The multiplicative
factor is dynamically adjusted so that the mean of the effective weights be
centered with respect to all the effective weights. The use of effective weights by
the bipartitioning algorithms amounts, for imbalanced subgraphs, to computing
load balance more in term of numbers of processes than in term of process loads,
which reduces the impact of pathological cases such as the one described above.

6.3 Evaluation of the partitioning methods

As said before, the different bipartitioning methods that we have implemented
can be combined into what we call strategies. In this study, we have focused on
four strategies: £, the plain Fiduccia-Mattheyses method; £x, which uses the
exactifying method in post-processing; gf, which feeds the Fiduccia-Mattheyses
method with the result of the Gibbs-Poole-Stockmeyer method; and gfx, which
post-processes the latter with the exactifier. In order to compare these four
strategies, we have used them to map our test graphs onto the hypercube, bidi-
mensional grid, and complete graph topologies. Mapping results significantly
differ according to the structure of the source graphs. We present below quali-
tative results, which we illustrate by experiments carried out on the hypercube
target topology.

For nested dissection graphs (see figures 10 and 11), the use of the g method
always improves mapping quality. The strong hierarchical structure of these
graphs is very well suited for their clustering into layers, which yields very good
initial partitions. On the opposite, post-processing the partitions with the x
method always increases the cost function. Since these graphs are of high degree
and have large edge weights, the £ method tends to minimize the cost function
by unbalancing the partitions so as to prevent heavy edges from being kept in
the cut. Enforcing strict balance is therefore likely to turn these heavy edges
into cut edges, and thus to increase the communication cost. Consequently,
the exactifier should not be used for weighted graphs if cut minimization and
connectivity are essential.

For finite-element meshes (see figures 12 and 13), the methods used in pre-
and post-processing of the Fiduccia-Mattheyses method have only little impact
on the quality of the mappings. This is due to the topological properties of
triangular meshes of low dimensionality, which are fairly well suited for the
Fiduccia-Mattheyses heuristic. Unlike what we have observed for nested dissec-
tion graphs, the use of the x method does not increase the average expansion.
Since these graphs are not weighted, the exactifier moves the vertices that pe-
nalizes less the cost function. Most often, these are vertices which have some
neighbors in the other subdomain, so that the exactifying process only results
in a small displacement of the cut, which does not reflects upon the quality of
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Figure 10: Average expansion of the mapping of graph REF4 onto H(z) with
several strategies.

the bipartitionings. A most useful result regards execution times: the compu-
tation of initial bipartitions by means of the g method, if it does not improve
the quality of the partitions in this case, decreases computation times by 20 to
30 percent on average, by reducing the number of passes necessary for the
Fiduccia-Mattheyses algorithm to converge. This is not new, as several authors
insisted on the importance of providing good starting partitions to avoid pre-
mature termination due to local minima of the cost function, and to achieve
faster convergence [9, 15]. From the above, the most suited strategy to map
unweighted finite-element meshes is the gfx strategy, which is used in all the
experiments of section 9.

7 Domain bipartitioning methods

According to the type of target architecture, the values of the domain functions
can be algorithmically computed at run-time, or be extracted from precomputed
look-up decomposition tables.
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Figure 11: Running time of the mapping of graph REF4 onto H(x) with several
strategies.

7.1 Domain bipartitioning by mapping

Since, in our approach, the recursive bipartitionings of target graphs are fully
independent with respect to the ones of source graphs (yet, the opposite is
false), the recursive decomposition of a given target architecture needs only to
be computed once, in order to store the resulting data in look-up decomposition
tables which will be used in the mapping process. Decomposition tables can be
easily computed with our mapper, by mapping the considered target graph onto
the complete graph with same number of vertices. Mapping onto the complete
graph zeroes the contribution of cocycle edges (since every subdomain is at
distance 1 from all the others), so that only local cut minimization is considered.
In the resulting decomposition, strongly-connected clusters of processors will be
kept uncut as long as possible, and strongly-connected clusters of processes
will therefore tend to be mapped onto them. In the case of heterogeneous
architectures, the minimization of the communication function favors the cut
of the edges with smallest weights, that is of biggest bandwidth. From the
communication point of view, we obtain a hierarchical decomposition in which
links of highest bandwidth act as backbones between subdomains containing
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Figure 12: Average expansion of the mapping of graph BRACKET onto H(z)
with several strategies.

links with smaller bandwidth.

The mapping of a source graph onto any target graph can be performed in
two steps. First, the mapping engine is called a first time to map the target
graph onto the complete graph, in order to build the decomposition table for
this architecture. Then, it is called a second time to map the source graph
onto the target architecture, using the decomposition table that has just been
computed.

7.2 Algorithmic domain bipartitioning

The algorithmic handling of some specific architectures (meshes, hypercubes,
complete graphs, multi-stage networks. . . ), which may seem redundant with re-
spect to the general-purpose decomposition table mechanism, allows the mapper
to handle huge regular target architectures without storing tables whose sizes
evolve as the square of the number of processors.

For instance, the bidimensional grid target architecture is algorithmically im-
plemented such that domains are rectangular areas, the domain bipartitioning
function splits a domain along its smallest dimension into two parts of equiv-
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Figure 13: Running time of the mapping of graph BRACKET onto H(x) with
several strategies.

alent sizes (within one row or column), and the distance function returns the
distance between the centers of the two domains. For hypercube target archi-
tectures, domains are sub-hypercubes, the domain bipartitioning function splits
a hypercube into two sub-hypercubes, and the domain distance function returns
the number of bits which differ in the labeling of sub-hypercubes.

However, for non-standard target architectures (such as, for instance, a non-
rectangular subdomain of a bidimensional grid architecture), the built-in func-
tions cannot be used, and a proper decomposition table must be computed.

7.3 Evaluation of the decomposition techniques

In order to compare the two above decomposition techniques, we have mapped
our test graphs onto several target architectures, using decompositions com-
puted either algorithmically or by mapping onto the complete graph.

The target architecture that we have studied most is the bidimensional grid,
since the members of this family may have any non-power-of-two number of
vertices, and their decompositions can be represented and analyzed easily. The
algorithmic decomposition of bidimensional meshes that we have implemented
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in our mapper uses a nested dissection approach such that square domains are
always partitioned along the same dimension, which gives very regular decom-
position patterns, as in figure 14. On the opposite, the cuts of square domains
computed by mapping may not all have the same orientation (they may not even
be straight), since only local cut minimization is achieved and thus no global
coherence can be maintained, as illustrated in figure 15. The same holds for the
hypercube topology as well: all the bipartitionings computed at the same level
of an algorithmic decomposition have the same orientation, which may not be
the case for mapped decompositions.
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Figure 14: Algorithmic decomposition of the My(4, 4) architecture.
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Figure 15: Decomposition of the M3(4, 4) architecture by strictly balanced map-
ping onto K(16). Unlike for algorithmic decompositions, the orientation of the
cuts of square domains may vary.

Figure 16 shows the average expansion of the mapping of graph BRACKET
onto bidimensional grids of various sizes that have been decomposed algorith-
mically, by mapping with strict enforcement of load balance (that is, by using
our exactifying algorithm in post-processing), and by mapping with a weak load
balance constraint of 10 percent. In all our experiments on bidimensional grids,
the expansions computed using strictly mapped decompositions are from 5 to 10
percent above the ones of algorithmic decompositions, except for a few cases for
which interactions between the behavior of the Fiduccia-Mattheyses algorithm,
the shape of the graph, and the structure of the decomposition, lead to better
results. This relative inefficiency of strictly mapped grid decompositions has
two main reasons.

e The first one 1s the difficulty for the Fiduccia-Mattheyses graph bipar-
titioning method to handle bidimensional grids as source graphs. As a
matter of fact, let us consider the smallest connected subset of the ver-
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tices of a graph that are assigned to the same subdomain and such that
this subset is stable, that is such that the removal of a vertex from the
subset does not improve the cut. Among all the regular uniform meshes,
the bidimensional grid is the topology that allows stable subsets of small-
est size (see figure 17). Consequently, for this architecture, stable subsets
are easier to obtain than for other types of meshes, which increases the
probability of the algorithm to be trapped in local minima of the com-
munication cost function. This behavior had already been diagnosed by
Gilbert and Zmijewski [9] for the Kernighan-Lin heuristic.

e The second reason comes from the strict enforcement of load balance.
When a grid of odd dimensions is bipartitioned for the first time, the
frontier between the two resulting subdomains exhibits a step-shaped dis-
continuity (see figure 18). As bipartitionings go on, this phenomenon
can lead to the creation of “L”-shaped subdomains. To bipartition such
a subdomain while minimizing the cut, the algorithm assigns to one of
the subdomains the curved section of the “L”, and to the other its two
ends. This results in the construction of disconnected subdomains, which
perturbates the computation of the distance function since this do not
respect the principle of locality that we have introduced in section 3. The
disconnected bipartitioning of “L”-shaped domains is favored by the 4-
connectivity of the grid, for which cutting along a diagonal is twice as
expensive as cutting along a dimension.

The impact of this second phenomenon can be reduced by performing imbal-
anced bipartitionings instead of strictly balanced bipartitionings. For instance,
using an imbalance ratio of 10 percent decreases the average expansion of the
mappings in more than 80 percent of the runs, as illustrated in figure 16.

For the hypercube target topology, the overcost induced by strictly mapped
decompositions is of 2 to 3 percent over algorithmic ones, as shown for graph
BRACKET in figure 19. These ratios are smaller than for the bidimensional
grid because of the comparatively large degree and small diameter of the hyper-
cube topology, which limit the impact of bad mappings. Moreover, hypercubes
always have number of vertices which are powers of two, as well as a very regular
structure, which always induce with the Fiduccia-Mattheyses algorithm a regu-
lar bipartitioning along some dimension. One can besides note that the smallest
stable set of H(n)is H ({%]), since swapping any vertex that has less than {%]
neighbors in its own subdomain reduces the cut. Increasing the imbalance toler-
ance of the bipartitionings has no effect for hypercubes, since the minimum cut
is achieved by strictly balanced bipartitioning in some dimension [2]. However,
this may result in a cut along a dimension other than the one that would have
been selected in the case of strict bipartitioning, and therefore may yield slightly
different mapping results.
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Figure 16: Average expansion of the mapping of graph BRACKET onto bidi-
mensional grids Ma(z, y) decomposed algorithmically, by strictly balanced map-
ping, and by mapping with a balance constraint of 10 percent.

The above experiments on the bidimensional grid tend to prove that cut
minimization is more important than load balance, since enforcing strictly bal-
anced bipartitionings can lead to decompositions which perturbate the behavior
of the distance function. In order to understand the mutual influences of the
structure of the decompositions on the behavior of the distance function, we
have mapped our test graphs onto algorithmic decompositions of bidimensional
grids that have been computed by three different methods: the plain (within
one row or one column) nested dissection algorithm presented above, an imbal-
anced nested dissection algorithm which allocates one third of the vertices to
a subdomain and the remaining two thirds to the other, and a multiple one-
way dissection algorithm that performs all recursive bipartitionings along some
dimension before considering other dimensions.

The resulting expansions for graph BRACKET are given in figure 20. In
almost all the cases, balanced nested dissection behaves best, and multiple one-
way dissection worst. The unefficiency of multiple one-way dissection is due to
the impact of the decomposition on the behavior of the distance function. As a
matter of fact, the principle of the Dual Recursive Bipartitioning algorithm is to
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Figure 17: Smallest stable subsets for regular uniform mesh graphs. Moving
one single vertex from the black part to the grey one does not improve the
communication cost function, that is does not decrease the number of edges
whose ends are of different colors.
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Figure 18: Decomposition of the M3(3, 5) architecture by strictly balanced map-
ping onto K(15).

refine the partial mapping induced by recursive bipartitionings of domains and
their associated process sets, up to give a complete mapping when all subdo-
mains are of size one. The efficiency of the algorithm is a result of the feed-back
effect that we have discussed in section 4: every bipartitioning job uses the
values of the current partial mapping to evaluate its local communication cost
function, and optimize accordingly the bipartition that it computes. In order for
the distance function to be accurate and reliable, so that the decisions made at
some level do not prove bad at the next, its variations must decrease as domain
sizes diminish. However, for multiple one-way dissection, the variability of the
distance between domains, which decreases as bipartitionings are performed in
the first dimension, roughly increases when the first bipartitioning is performed
in the second dimension, as shown in figure 21. Therefore, this bipartitioning
and the following ones, which have a greater impact on the cost function than
the preceding ones, are performed after them, when the number of degrees of
freedom of the problem has already been significantly reduced; therefore, they
may not optimize the bipartition as they would have done if they had been
considered before. This is why nested-dissection schemes (whether balanced or
imbalanced), which respect the property of the distance function and perform
costly bipartitionings when the number of degrees of freedom is maximal, yield
better results. This i1s also why the balanced scheme is the most efficient: in
the unbalanced scheme, bipartitionings that deal with large subdomains may
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Figure 19: Average expansion of the mapping of graph BRACKET onto hyper-
cubes H(z) decomposed algorithmically and by strictly balanced mapping.

be carried out after ones that deal with smaller subdomains.

The tests carried out in this section show that algorithmic decompositions
based on algorithmically computed nested dissections yield in almost all cases
mappings of better quality than the ones that use decompositions computed by
mapping. This is not really surprising, since the definition of decomposition
algorithms requires some knowledge of the topological properties of the consid-
ered target architectures, which can be exploited to provide more regular and
efficient decompositions that preserve the properties of the distance function.

As a matter of fact, a most important result of these experiments is the
formalization of the characteristics of the distance function that make it suit-
able for the Dual Recursive Bipartitioning algorithm. To produce mappings
of quality, the distance function must be such as to give more accurate results
as the sizes of the end domains diminish, and such that i1ts variations decrease
accordingly. These properties are coherent with the local nature of the DRB
algorithm, which tries to make the less informative choices at first, and refines
the partial mappings as domain sizes diminish. In practice, we have observed
that target architectures that do not allow to define decompositions that respect
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Figure 20: Average expansion of the mapping of graph BRACKET onto bidi-
mensional grids decomposed algorithmically by nested dissection, unbalanced
(one third/two thirds) nested dissection, and multiple one-way dissection.

these locality properties behave rather badly with the DRB algorithm. This is
for instance the case for the FFT target architecture.

For the computation of mapped decompositions, cut minimization is more
important than load balance. Therefore, a large load imbalance tolerance should
be used, and bipartitioning methods that seek strict load balance, such as the
exactifying method, should be avoided.

8 The ScoTcH software package

ScoTcH [22] is a software package for static mapping which embodies the al-
gorithms developed within the SCOTCH project. Apart from the mapper itself,
the ScoTcH package contains programs to build and test source graphs, com-
pute target graph decompositions, and visualize mapping results. Advanced
command-line interface and vertex labeling capabilities make them easy to in-
terface with other programs. See [20] for details.

The mapper can map any weighted source graph onto any weighted target graph,
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Figure 21: Decomposition of the M1(6, 6) architecture by multiple one-way dis-
section, and its influence on the distance function. The variability of the dis-
tance function decreases as bipartitionings are performed in the first dimension,
but roughly increases when the first bipartitioning is performed in the second
dimension.

or even onto disconnected subgraphs of a given target graph, which is very use-
ful in the context of multi-user parallel machines. On these machines, when
users request processors in order to run their jobs, the partitions allocated by
the operating system may not be regular nor connected, because of existing
partitions already attributed to other people. With ScoTcH, it is possible to
build a target decomposition corresponding to this partition, and therefore to
map processes onto it, automatically and regardless of the partition shape.

The ScoTcH 3.0 academic distribution may be obtained from the ScoTcH
WWW page at http://www.labri.u-bordeaux.fr/"pelegrin/scotch/, or by
ftp at ftp.u-bordeaux.fr in directory /pub/Local/Info/Software/Scotch.
The distribution file, named scotch_3.0A.tar.gz, contains the executables for
several machines and operating systems, along with documentation and sample
files. A collection of test graphs in our format, gathered from other packages
and from individuals, is also available from the WWW page.

9 Comparison to other partitioning and map-
ping software packages

When mapping onto the complete graph, SCOTCH behaves as a standard graph
partitioner. Table 4 summarizes edge cuts that we have obtained for classical
test graphs, compared to the ones computed by CHAco [12] and METIS [16].
Since not accounting for the target topology generally leads to worse perfor-
mance results of the mapped applications [10, 13] due to long-distance com-
munication, static mapping is more attractive than strict partitioning for most
communication-intensive applications. Recently, CHACO has recently gained
static mapping capabilities by the addition of a feature called terminal propaga-
tion [14], which is similar to the accounting for cocycle edges that we do in ff
for our DRB algorithm. Tables 5 and 6 summarize some results that have been

34



Graph CHACO 1.0 METIIS 2.0

K(64) [ K(128) | K(256) K(64) [ K(128) [ K(256)
4ELT 2928 4514 6869 2965 4600 6929
BCSSTK30 241202 318075 423627 190115 271503 384474
BCSSTK31 65764 98131 141860 65249 97819 140818
BCSSTK32 106449 153956 223181 106440 152081 222789

BRACKET 34172 46835 66944 29983 42625 60608
PWT 9166 12737 18268 9130 12632 18108
ROTOR 53804 75140 104038 53228 75010 103895
SCOTCH 3.0
Graph
P K(64) | K(128) | K(256)
4ELT 2941 4604 6900

BCSSTK30 194539 | 277122 | 382375
BCSSTK31 70275 | 102250 143212
BCSSTK32 112846 | 160429 226991

BRACK2 30270 42743 60583
PWT 9286 12887 18366
ROTOR 55511 77136 105006

Table 4: Edge cut produced by CHaco 1.0, METIS 2.0, and ScorcH 3.0 for
partitions with 64, 128, and 256 blocks (CHAcO and MEDS data extracted
from [15]).

obtained by CHAcCO 2.0 with terminal propagation and by SCOoTCH 3.0 when
mapping graphs JFLT and BCSSTKS32 onto hypercubes and meshes of various
sizes.

In many cases, SCOTCH 3.0 produces partitions whose cut and communi-
cation cost are within a few percent of the ones computed by the two other
programs, and can therefore be used as a state-of-the-art graph partitioner and
mapper. However, for some graphs (e.g. BCSSTK32), its results are of much
less quality. This lack of quality is due to the fact that ScoTcH 3.0 does not
use a multi-level approach, as do the two others [12, 15]. By coarsening the
graphs they work on, multi-level partitioners increase the capability of their
local partitioning algorithms to take advantage of topological properties that
were else of a too global level for them to deal with, and thus greatly improve
their ability to avoid local minima of the cost function. Consequently, we are
currently developing a multi-level method for ScoTcH, which will be available
in version 3.1. The first results that we have obtained with this new version
confirm our analysis, since the cut values that we get become equivalent to the
ones of the two other software packages, and outperform them in two thirds of
the tested cases [21].
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CHACO 2.0-TP SCOTCH 3.0
cut | fc cut | fc

H(l) 168 168 143 143

H(2) 412 484 402 403

H(3) 796 863 693 | 761

H(4) 1220 1447 1191 1314

H(5)

H(e)

H(7)

1984 2341 2027 | 2307
3244 | 3811 3280 3858
5288 6065 5131 | 6049
5,5) 1779 | 2109 1929 2423
10,10) 4565 6167 4612 6361

Table 5: Edge cut and communication cost produced by CHAcO 2.0 with Termi-
nal Propagation and by ScoTcH 3.0 for mappings of graph JFLT onto several
target architectures (CHACO data extracted from [11]).

CHAcoO 2.0-TP SCOTCH 3.0
cut | fc cut | fc
H(l) 5562 5562 11381 11381
H(2) 15034 15110 24711 26092
H(3) 26843 27871 44736 48872
H(4) 49988 53067 63273 72802
H(5)
H(6)
H(7)

79061 89359 93197 | 115148
119011 | 143653 133788 | 167356
174505 | 218318 184400 | 240890
5,5) 64156 76472 77504 | 117794
10,10) 150846 | 211672 169165 | 287467

Table 6: Edge cut and communication cost produced by CHAco 2.0 with Ter-
minal Propagation and by ScoTcH 3.0 for mappings of graph BCSSTK32 onto
several target architectures (CHACO data extracted from [11]).
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10 Conclusion

In this paper, we have presented the Dual Recursive Bipartitioning (DRB) al-
gorithm for static mapping that we have developed. Several studies have been
carried out in order to validate the design choices that we made, and to evaluate
the influence of the parameters of the algorithm on the quality of mappings. In
particular, we have shown that a depth-first traversal of the bipartitioning tree
is more suitable to map graphs that are strongly connected, and that breadth-
first-like sequencing is most efficient for graphs that exhibit great locality, such
as finite-element meshes. We have evidenced that indexing the gains of the
Fiduccia-Mattheyses graph partitioning algorithm on a logarithmic scale does
not undermine its performance, and allows it to store and retrieve huge gain
values in constant time. We have also shown that the decompositions of target
architectures must be such that the variations of the distance function decrease
with time, in order to preserve the local nature of the DRB algorithm. Then, we
have outlined the capabilities of SCOTCH, a software package for static mapping
which implements the DRB algorithm and is able to map any weighted source
graph onto any weighted target graph. The mappings and partitions produced
by ScoTcH 3.0 are globally equivalent in quality to the one of the most effi-
cient software packages known, although for some cases its lack of a multi-level
method impedes its performance.

Work in progress includes the development of new graph bipartitioning meth-
ods, and in particular of multi-level schemes, as in [15]. The first results obtained
to date with the new version show an average gain in quality of about 10 per-
cent compared to the mappings computed by ScoTcH 3.0, which makes it more
efficient than CHACO and MEIDS in two thirds of the tested cases. SCOTCH is
currently being evaluated to decompose unstructured meshes into domains for
parallel aerodynamics codes that run on the Cray T3D. We expect this study
to help us determine the characteristics of efficient mappings with respect to
the type of numerical method used, in order to develop suitable bipartitioning
strategies. A nested-dissection ordering code for a parallel direct block solver
is also being developed, based on the graph partitioning library that makes up
the core of our mapping program.
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