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1 IntroductionThe e�cient execution of a parallel program on a parallel machine requires thatthe communicating processes of the program be assigned to the processors ofthe machine so as to minimize its overall running time. When processes areassumed to coexist simultaneously for the duration of all the program, thisoptimization problem is called mapping. It amounts to balancing the compu-tational weight of the processes among the processors of the machine, whilereducing the communication overhead induced by parallelism by keeping in-tensively intercommunicating processes on nearby processors. In many suchprograms, the underlying computational structure can be conveniently modeledas a graph in which vertices correspond to processes that handle distributedpieces of data, and edges reect data dependencies. The mapping problem canthen be addressed by assigning processor labels to the vertices of the graph, sothat all processes assigned to some processor are loaded and run on it. In aSPMD context, this is equivalent to the distribution of data structures acrossprocessors; in this case, all pieces of data assigned to some processor are handledby a single process located on this processor.A mapping is called static if it is computed prior to the execution of theprogram and is never modi�ed at run-time. Static mapping is NP-complete inthe general case [6]. Therefore, many studies have been carried out in orderto �nd sub-optimal solutions in reasonable time. Speci�c algorithms have beenproposed for mesh [18] and hypercube [4, 10] topologies. When the target ma-chine is assumed to have a communication network in the shape of a completegraph, the static mapping problem turns into the partitioning problem, whichhas also been intensively studied [1, 13, 15, 23].Scotch is a project carried out at the Laboratoire Bordelais de Rechercheen Informatique (LaBRI) of the Universit�e Bordeaux I, by the ALiENor (AL-gorithmics and ENvironments for parallel computing) team. Its goal is to studystatic mapping by the means of graph theory, using a \divide and conquer"approach. This work has resulted in the development of the Dual RecursiveBipartitioning (or DRB) mapping algorithm and the analysis of several graphbipartitioning heuristics, all of which have been embodied in the Scotch soft-ware package for static mapping. This package allows the user to map e�cientlyany weighted source graph onto any weighted target graph, or even onto discon-nected subgraphs of a given target graph, in an observed running time linearin the number of source edges and logarithmic in the number of target vertices.This paper analyzes the results that have been obtained to date within theScotch project. We introduce the DRB mapping algorithm, and determinethe conditions under which it achieves maximal e�ciency. We validate our de-sign choices by means of experimental studies, which evidence the interactionsbetween the structure of the algorithm and the topologies of the source and2



target graphs. The rest of the paper is organized as follows. Section 2 givessome de�nitions, and section 3 presents the most important aspects of the DualRecursive Bipartitioning algorithm. The inuence of the recursion process onthe quality of the mappings is discussed in section 4, and section 5 deals withcomplexity issues. Sections 6 and 7 focus on the source and architecture bi-partitioning algorithms that we use, respectively. In each of the four abovesections, the solutions that we propose for the problems at stake are discussed,tested, and validated by means of experimental analyses; for the sake of clarityand readability, these are described within the bodies of the sections, ratherthan in a separate part of the paper. Section 8 describes the capabilities of theScotch 3.0 software package for static mapping, and section 9 compares itsperformance to other static mapping and partitioning software packages suchas Chaco [12] and MeTiS [16]. Then follows the conclusion.2 De�nitions2.1 Static mappingThe parallel program to be mapped onto the target architecture is modeled bya weighted unoriented graph S called source graph or process graph. VerticesvS and edges eS of S are assigned integer weights w(vS) and w(eS ), whichestimate the computation weight of the corresponding process and the amountof communication to be transmitted on the inter-process channel, respectively.The target machine onto which is mapped the parallel program is also modeledby a valuated unoriented graph T called target graph or architecture graph.Vertices vT and edges eT of T are assigned integer weights w(vT ) and w(eT ),which estimate the computational power of the corresponding processor and thecost of traversal of the inter-processor link, respectively. A mapping of a sourcegraph S onto a target graph T consists of two applications �S;T : V (S) �!V (T ) and �S;T : E(S) �! P(E(T )), where P(E(T )) denotes the set of all thesimple loopless paths that can be built from E(T ). �S;T (vS) = vT if processvS of S is mapped onto processor vT of T , and �S;T (eS ) = fe1T ; e2T ; : : : ; enTg ifcommunication channel eS of S is routed through communication links e1T , e2T ,: : : , enT of T . j�S;T (eS)j denotes the dilation of edge eS , that is the number ofedges of E(T ) used to route eS .2.2 Cost functionsThe computation of e�cient static mappings requires an a-priori knowledgeof the dynamic behavior of the target machine with respect to the programswhich are run on it. This knowledge is synthesized in a cost function, the na-ture of which determines the characteristics of the desired optimal mappings.Cost functions may account for criteria such as the load balance on the target3



processors, the communication load balance on the communication links, theminimization of inter-processor communication, the minimization of the dila-tion of the edges of the source graph, etc. In general, several such criteria arecombined into a unique aggregate cost function by means of weighted sums.However, the biggest drawback of aggregate functions lies in the setting of theweighting coe�cients. In particular, the trade-o� between computation andcommunication criteria is hard to tune, and must be evaluated for every di�er-ent target machine.Therefore, as several authors did before [5, 17, 23], we have chosen to sepa-rate computation criteria from communication ones. The goal of our mappingalgorithm is thus to minimize some communication cost function, while keep-ing the load balance within a user-speci�ed tolerance. The communication costfunction fC that we have chosen is the sum, for all edges, of their dilationmultiplied by their weight:fC(�S;T ; �S;T ) def= XeS2E(S)w(eS ) j�S;T (eS)j :This function, which has already been considered by several authors for hyper-cube target topologies [4, 10, 12], has several interesting properties: it is easy tocompute, allows incremental updates performed by iterative algorithms, and itsminimization favors the mapping of intensively intercommunicating processesonto nearby processors; regardless of the type of routing implemented on thetarget machine (store-and-forward or cut-through), it models the tra�c on theinterconnection network and thus the risk of congestion. The strong positivecorrelation between its values and e�ective execution times has been experimen-tally veri�ed by several authors [10, 13].2.3 Performance criteriaThe quality of mappings is evaluated with respect to the criteria for quality thatwe have chosen: the balance of the computation load across processors, and theminimization of the interprocessor communication cost modeled by function fC .These criteria lead to the de�nition of several parameters, whose expressions aregiven below.For load balance, one can de�ne �map, the average load per computationalpower unit (which does not depend on mappings), and �map, the load imbalanceratio, as �map def= PvS2V (S)w(vS )PvT2V (T )w(vT ) and4



�map def= PvT2V (T ) �������0B@ 1w(vT ) PvS 2 V (S)�S;T (vS) = vTw(vS)1CA � �map�������PvS2V (S)w(vS) :However, since the maximum load imbalance ratio is provided by the user inthe input of the mapping, the information given by these parameters is of littleinterest; what matters is the minimization of the communication cost functionunder this load balance constraint.For communication, the salient parameter to consider is fC . It can be nor-malized as �exp, the average edge expansion, which can be compared to �dil,the average edge dilation; these are de�ned as�exp def= fCPeS2E(S)w(eS) and �dil def= PeS2E(S) j�S;T(eS )jjE(S)j :�exp def= �exp�dil is smaller than 1 when the mapper succeeds in putting heavilyintercommunicating processes closer to each other than it does for lightly com-municating processes; it is equal to 1 if all edges have same weight.A mapping will be said better than another if its communication cost fC issmaller than the one of the other graph, and provided that its load imbalanceis below the user-de�ned tolerance.2.4 Test graphsThe source graphs that have been used to test our mapping program belongto two distinct classes. The �rst one is made of triangular and quadrangularunstructured meshes related to uid dynamics, structural mechanics, or combi-natorial optimization problems. The computations performed for every vertexof these graphs being supposed identical, they are all homogeneous, that is haveunity vertex and edge weights. The second class contains valuated interprocesscommunication graphs issued from a parallel implementation of a sparse blockCholesky factorization solver, which represent partitions of the unknowns in-duced by a nested dissection method. The most imbalanced graph, REF0 , isthe direct output of the nested dissection process. Others are obtained fromthis one by means of a re�nement process, in which heavier vertices are splitinto cliques of lighter vertices. This allows for better granularity of the problem,at the expense of vertex and {mostly{ edge creations. Therefore, most of thesegraphs have very high degree; see [3] for reference.The characteristics of all these graphs are summed-up in table 1. � and �stand for the minimum and maximum degrees of the graphs, respectively. Inall this paper, diam denotes graph diameter, and M2, H, and K represent thebidimensional grid, hypercube, and complete graphs, respectively.5



min max min maxName Class jV (S)j jE(S)j � � w(vS) w(vS) w(eS) w(eS)3ELT 2D F.E. 4720 13722 3 9 1 1 1 14ELT 2D F.E. 15606 45878 3 10 1 1 1 14ELT2 2D F.E. 11143 32818 3 12 1 1 1 1BODY 3D F.E. 45087 163734 0 28 1 1 1 1BUMP 2D F.E. 9800 28989 3 8 1 1 1 1BCSSTK29 3D F.E. 13992 302748 4 70 1 1 1 1BCSSTK30 3D F.E. 28924 1007284 3 218 1 1 1 1BCSSTK31 3D F.E. 35588 572914 1 188 1 1 1 1BCSSTK32 3D F.E. 44609 985046 1 215 1 1 1 1BRACKET 3D F.E. 62631 366559 3 32 1 1 1 1OCEAN 3D F.E. 143437 409593 1 6 1 1 1 1PWT 3D F.E. 36519 144794 0 15 1 1 1 1ROTOR 3D F.E. 99617 662431 5 125 1 1 1 1SPHERE 3D F.E. 16386 49152 4 6 1 1 1 1REF0 N.D. 2047 7750 2 186 167 686298 6 4560REF1 N.D. 2453 47659 2 444 167 270419 1 1403REF2 N.D. 2815 84406 2 542 167 83652 1 1104REF3 N.D. 3093 105713 2 584 167 38749 1 444REF4 N.D. 3470 135148 2 633 167 25910 1 264Table 1: Characteristics of the source graphs used for our tests.2.5 Experimental conditionsOur tests have been carried out on a SGI Onyx machine with 190 MHz R10000processors and 128 Mb of main memory. The measured times are total CPUtimes (user and system) taken to compute mappings, excluding data loading andresults saving. Except if explicitly mentioned, all the mapping computationsused logarithmic indexing, adaptive sequencing, and the gfx strategy, with aload imbalance tolerance ratio of 0:005; these parameters will be de�ned in thefollowing, when needed.3 The Dual Recursive Bipartitioning algorithm3.1 Description of the algorithmOur mapping algorithm uses a divide and conquer approach to recursively allo-cate subsets of processes to subsets of processors [19]. It starts by consideringa set of processors, also called the domain, containing all the processors of thetarget machine, and with which is associated the set of all the processes to map.At each step, the algorithm bipartitions a yet unprocessed domain into two dis-joint subdomains, and calls a graph bipartitioning algorithm to split the subset6



of processes associated with the domain across the two subdomains. Whenevera domain is restricted to a single processor, its associated processes are assignedto it and recursion stops, as written in the following sketch.mapping (D, P)Set_Of_Processors D;Set_Of_Processes P;{ Set_Of_Processors D0, D1;Set_Of_Processes P0, P1;if (|P| == 0) /* If nothing to do. */return;if (|D| == 1) { /* If one processor in D */result (D, P); /* P is mapped onto it. */return;}(D0, D1) = processor_bipartition (D);(P0, P1) = process_bipartition (P, D0, D1);mapping (D0, P0); /* Perform recursion. */mapping (D1, P1);}The association of a subdomain with every process de�nes a partial mapping ofthe process graph. The complete mapping is achieved when successive biparti-tionings have reduced all subdomain sizes to one.The above algorithm lies on the ability to de�ne �ve main objects:� a domain structure, which represents a set of processors in the targetarchitecture.� a domain bipartitioning function, which, given a domain, bipartitions it intwo disjoint subdomains.� a domain distance function, which gives, in the target graph, a measureof the distance between two disjoint domains. Since domains may notbe convex nor connected, this distance may be estimated. However, itmust respect certain homogeneity properties, such as giving more accurateresults as domain sizes decrease. The domain distance function is usedby the graph bipartitioning algorithms to compute the communicationfunction to minimize, since it allows the mapper to estimate the dilation ofthe edges that link vertices which belong to di�erent domains. Using sucha distance function amounts to considering that all routings use shortestpaths on the target architecture. This is not unreasonable to assume, asmost existing parallel machines handle routing dynamically with shortest-path routings. We have thus chosen that our program would not provideroutings for the communication channels, leaving their handling to thecommunication system of the target machine.7



� A process subgraph structure, which represents the subgraph induced by asubset of the vertex set of the original source graph.� A process subgraph bipartitioning function, which bipartitions subgraphsin two disjoint pieces to be mapped onto the two subdomains computedby the domain bipartitioning function.All of these routines are seen as black-boxes by the mapping program, which canthus accept any kind of target architecture and process bipartitioning functions(see sections 6 and 7).3.2 Partial cost functionThe production of e�cient complete mappings requires that all graph biparti-tionings favor the criteria that we have chosen. Therefore, the bipartitioningof a subgraph S0 of S should maintain load balance within the user-speci�edtolerance, and minimize the partial communication cost function f 0C , de�ned asf 0C(�S;T ; �S;T ) def= Xv 2 V (S0)fv; v0g 2 E(S)w(fv; v0g) j�S;T (fv; v0g)j ;which accounts for the dilation of edges internal to subgraph S0 as well as for theone of edges which belong to the cocycle of S0, as shown in �gure 1. Taking intoaccount the results of partial mappings issued by previous bipartitionings makesit possible to avoid local choices that might prove globally bad, as explainedbelow.
D0 D1

Da. Initial position. D0 D1

Db. After one vertex is moved.Figure 1: Edges accounted for in the partial communication cost function whenbipartitioning the subgraph associated with domain D between the two subdo-mains D0 and D1 of D. Dotted edges are of dilation zero, their two ends beingmapped onto the same subdomain. Thin edges are cocycle edges.8



4 Job sequencing schemes4.1 Sequencing schemesFrom an algorithmic point of view, our mapper behaves as a greedy algorithm,since the assignment of a process to a subdomain is never reconsidered. Thedouble recursive call performed at each step induces a recursion scheme in theshape of a binary tree, each vertex of which corresponds to a bipartitioning job,that is the bipartitioning of both a domain and its associated process subgraph.In the case of depth-�rst sequencing, as written in the above sketch, bipar-titioning jobs run in the left branches of the tree have no information on thedistance between the vertices they handle and neighbor vertices to be processedin the right branches. On the contrary, sequencing the jobs according to a by-level (breadth-�rst) travel of the tree allows that any bipartitioning job of a givenlevel may have information on the subdomains to which all the processes havebeen assigned at the previous level. Thus, when deciding in which subdomainto put a given process, a bipartitioning job can account for the communicationcosts induced by all the neighboring processes, whether they are handled by thejob itself or not, since it can estimate in f 0C the dilation of the correspondingedges. This results in an interesting feed-back e�ect: once an edge has been keptin a cut between two subdomains, the distance between its end vertices will beaccounted for in the partial communication cost function to be minimized, andfollowing jobs will be more likely to keep these vertices close to each other, asillustrated in �gure 2. Moreover, since all domains are split at every level, theyall have equivalent sizes, which respects the distance homogeneity and gives thealgorithm more coherence (see section 7.3).We have de�ned a third sequencing scheme, called adaptive, which selectsthe job which has the highest number of cocycle edges linking it to jobs thathandle subgraphs with fewer vertices than it has. The goal of this adaptivescheme is to emulate breadth-�rst sequencing, while using as much as possiblemapping results produced by jobs of the same levels. As a matter of fact, no jobwill be selected if bigger jobs (that is, jobs belonging to higher levels) remainunselected, and once a job has been selected in a level, jobs which share edgeswith it will be selected next, so that they can use the most accurate distanceinformation regarding these cocycle edges.4.2 Evaluation of the sequencing schemesFigure 3 illustrates the advantages of adaptive sequencing compared to breadth-�rst sequencing. Figure 3.a represents the BUMP mesh. Figure 3.b shows thepartial result of the �rst two levels of the mapping of this graph onto the bidi-mensional grid M2(4; 2): with every graph vertex is associated a disk whose greylevel indicates the subdomain to which the vertex currently belongs; two ver-tices have disks of same grey level if they are mapped onto the same subdomain.9
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CL2b. Breadth-�rst sequencing.Figure 2: Inuence of depth-�rst and breadth-�rst sequencings on the bipar-titioning of a domain D belonging to the leftmost branch of the bipartition-ing tree. With breadth-�rst sequencing, the partial mapping results regardingvertices that belong to the right branches of the bipartitioning tree are moreaccurate (C.L. stands for \Cut Level").At this point, breadth-�rst and adaptive sequencings give the same result, sincethe recursive decomposition of the graph into bands of same orientation zeroesthe contribution of cocycle edges, such that the order in which jobs are biparti-tioned in the �rst two levels is irrelevant. However, this is no longer true at thenext level.Figure 3.c shows the �nal mapping of BUMP onto M2(4; 2) using breadth-�rst sequencing. Let the four subdomains of �gure 3.b be labeled \1", \2",\3", and \4" from left to right. With breadth-�rst sequencing, they are biparti-tioned in order \3", \4", \1", \2". Subdomain 3 is the �rst to be bipartitioned,and therefore has no useful cocycle information to use. Then subdomain 4 isbipartitioned, and takes advantage of the result of the bipartitioning of subdo-main 3 to minimize the number of cocycle edges of dilation 2: the frontier ofthe resulting bipartition matches the one computed for subdomain 3. However,when subdomain 1 is bipartitioned, it has no information on how subdomain 2is going to be bipartitioned. Therefore, it assigns at random the two result-ing subgraphs to the two processors it handles. When subdomain 2 is �nallybipartitioned, it must account for the allocation performed for subdomains 1and 3. Unfortunately, the two processors of subdomain 1 have been associatedwith the subgraphs generated by the bipartition in a way opposite to the one ofsubdomains 3 and 4, which results in a \twisted" mesh. To accommodate forthis, the job which bipartitions subdomain 2 builds an overlapping \diagonal"bipartition which tends to minimize the local communication cost function byreducing as much as possible the number of edges of dilation 2.On the other hand, with adaptive sequencing, bipartitioning jobs are selected10



a. The BUMP mesh.b. Result of the �rst two levels of the mapping ofBUMP onto M2(4; 2).c. Result of the mapping of BUMP onto M2(4; 2)with the breadth-�rst sequencing.d. Result of the mapping of BUMP onto M2(4; 2)with the adaptive sequencing.Figure 3: Result of the mapping of graph BUMP onto M2(4; 2) with breadth-�rst and adaptive job sequencings. 11



provided that at least one of their neighbors has been processed. Therefore,once one of the four subdomains has been bipartitioned, processors are associ-ated with subgraphs so that the mesh is not twisted, and frontiers can matchacross subdomains. This propagation of mapping results between neighboringjobs yields the more regular and e�cient mapping of �gure 3.d.To evaluate the respective e�ciency of these three sequencing schemes, wehave used all of them to map our test graphs onto hypercubes and square bidi-mensional grids of increasing sizes. Globally, adaptive sequencing is the moste�cient scheme in term of average expansion, providing the best mappings ofthe three in 48:2 percent of the runs, followed by depth-�rst sequencing with39:9 percent, and then breadth-�rst sequencing with 35:1 percent (the sumis over 100 percent since several schemes can give the same best result). Infact, breadth-�rst sequencing does better than depth-�rst sequencing on aver-age. However, when this happens, it is most often outperformed by adaptivesequencing, so from now we will only compare adaptive and depth-�rst sequenc-ings. When only these two schemes are taken into account, the adaptive schemecomputes the best mappings in 63:7 percent of the runs, and the depth-�rstscheme in 51:2 percent of the runs. However, results di�er signi�cantly accord-ing to the target topology and the type of source graph, as shown in table 2.Note that, in this table, we have summed-up the results over columns and rows.Although aggregating values obtained for graphs of di�erent nature may notseem correct, we did it to show that, regardless of one of the parameters, theother has a signi�cant impact on mapping results.SourceN.D. 2D F.E. 3D F.E. all F.E. allTarget a.s. d.f.s. a.s. d.f.s. a.s. d.f.s. a.s. d.f.s. a.s. d.f.s.H(x) 57.7 53.3 55.5 55.5 74.1 40.7 63.5 49.2 61.1 50.9M2(x;x) 44.0 72.0 80.0 40.0 93.3 33.3 85.7 37.1 68.3 51.6all 52.9 60.0 64.3 50.0 81.0 38.1 71.4 44.9 63.7 51.2Table 2: Percentage of �nding the best mapping for the adaptive (a.s.) anddepth-�rst (d.f.s.) sequencings, for several classes of source graphs and targetarchitectures.For nested-dissection graphs, depth-�rst sequencing is more e�cient on aver-age than adaptive sequencing; it does better for large hypercubes, and its supe-riority is obvious for bidimensional grids, with 72:0 percent against 44:0 percent.Because of the high density and heavy edge weights of nested-dissection graphs,knowing more accurately many edge dilations (and particularly the ones of theheaviest edges) compensates the risk of computing worse partial mappings inthe left branches of the bipartitioning tree, all the more when edge dilations12



may be large, as it is the case for grid target architectures.For �nite-element meshes, adaptive sequencing clearly outperforms depth-�rst sequencing. When source graphs are loosely connected, exhibit great lo-cality, and are of small dimensionality, the feed-back and of propagation e�ectsthat we have discussed above help to \unfold" the source graph on the targetarchitecture as e�ciently as possible. The depth-�rst scheme behaves better forhypercube topologies since the high degree and small diameter of these graphslimit the consequences of bad choices made in the left branches of the sequencingtree, while providing the jobs of the right branches accurate distance informa-tion regarding the vertices which have been already mapped.The conclusion of this study is that the e�ciency of job sequencing schemesstrongly depends on the nature of the source and target graphs. When sourcegraphs are strongly connected and/or have heavily weighted edges, depth-�rstsequencing does better than the breadth-�rst-like adaptive sequencing, becausethe contribution of the heaviest edges dominates the cost function. On the op-posite, when source graphs are loosely connected, exhibit great locality, and areof small dimensionality, adaptive sequencing is much more e�cient in preservingthis locality in the resulting mapping. Adaptive sequencing should therefore bepreferred when mapping �nite-element meshes onto parallel architectures.As a closing remark, one can note that, by using the hypercube as targettopology and depth-�rst sequencing, our mapping algorithm becomes very sim-ilar to the one of Ercal, Ramanujam, and Sadayappan [4]. In that sense, ourwork, by formalizing the concepts of domain, distance, and execution scheme,can be seen as a generalization of theirs that handles any target topology andgraph bipartitioning method.5 Complexity analysisThe purpose of this section is to evaluate the complexity of our recursive map-ping algorithm with respect to the ones of the bipartitioning methods that areused within the bipartitioning jobs.Let ALGO be an algorithm. We note CSpa(ALGO) the maximal space com-plexity of this algorithm. It represents the biggest amount of memory whichthe algorithm may need during its execution, this memory space being freed atcompletion. Similarly, we note CTim(ALGO) the maximal time complexity ofthe algorithm. The interest of some heuristics is that their e�ective behavior canbe several orders of magnitude below their maximal complexity, although thiscannot be mathematically proven. Therefore, we note C0Spa(ALGO) the spacebehavior of algorithm ALGO, and C0Tim(ALGO) its time behavior. Unlike com-plexity, which is a theoretical, proven, result, the behavior of an algorithm is an13



empirical result, only based on experimentation. However, it is reliable, becauseobserved in a quasi systematic way on a great number of examples, and justi�edby qualitative arguments.Let BipaT and BipaS be the domain and subgraph bipartitioning algorithmsused by our DRB algorithm.Proposition 1 Let S be a source graph and T be a target graph, with jE(S)j �jE(T )j, jV (S)j � jV (T )j, and jE(S)j � jV (S)j. If, for all T 0 � T and S0 �S, CSpa(BipaT (T 0)) is in O(jE(T 0)j + jV (T 0)j) and CSpa(BipaS(S0)) is inO(jE(S0)j + jV (S0)j), and if BipaT gives subdomains of equivalent sizes, thenCSpa(DRB(S; T )) is in O(jE(S)j).Proof. By using neighbor lists, S is stored in O(jV (S)j + jE(S)j) space. Since,by hypothesis, BipaT gives subdomains of equivalent sizes, the domain biparti-tioning binary tree is complete at least up to its before-last level, and its depthis dlog2(jV (T )j)e. Let Fi(S; T ), with i � 0, be the set of (T 0; S0) pairs pro-cessed by the bipartitioning jobs at level i of the bipartitioning tree, where T 0is a subdomain of T and S0 the subgraph of S mapped onto T 0. In particular,F0(S; T ) = f(S; T )g.Since bipartitioning jobs free after completion the memory space that they use,the space complexity of our DRB algorithm is the maximum over all jobs oftheir space complexity:CSpa(DRB(S; T )) = O(jE(S)j) +O(jV (S)j) + O dlog2(jV (T )j)emaxi=0max(S0;T0)2Fi(S;T) max(CSpa(BipaT (T 0)); CSpa(BipaS(S0)))1A :At each level of the bipartitioning tree, all process subgraphs and subdomainsare disjoint subgraphs of the initial source and target graphs, which are thereforeof smaller sizes. The above expression is thus clearly bounded by the complexityof the �rst level, so CSpa(DRB(S; T )) = O(jE(S)j) : utIn the same way, the time complexity of our DRB algorithm can be computedunder the same conditions.Proposition 2 Let S be a source graph and T a target graph, with jE(S)j �jE(T )j, jV (S)j � jV (T )j, and jE(S)j � jV (S)j. If, for all T 0 � T and S0 �S, CTim(BipaT (T 0)) is in O(jE(T 0)j + jV (T 0)j) and CTim(BipaS(S0)) is inO(jE(S0)j + jV (S0)j), and if BipaT gives subdomains of equivalent sizes, thenCTim(DRB(S; T )) is in O(jE(S)j log2(jV (T )j)).14



Proof. Using the de�nitions of the previous proposition, we haveCTim (DRB(S; T )) = O0B@dlog2(jV (T )j)eXi=0 X(S0;T 0)2Fi(S;T )(CTim (BipaT (T 0))+CTim(BipaS(S0 )))1CA :At each level of the bipartitioning tree, all subdomains and subgraphs are dis-joint subgraphs of the initial source and target graphs. Therefore, the sum foreach level of complexities linear in the number of vertices and edges of thesesubgraphs is at most linear in the number of vertices and edges of the initialsource and target graphs. Thus,CTim (DRB(S; T )) = O0@dlog2(jV (T )j)eXi=0 O(jE(T )j+ jV (T )j+ jE(S)j+ jV (S)j)1A= O (jE(S)j dlog2(jV (T )j)e) : utFor what precedes, provided that the time behaviors C0Tim of all our biparti-tioningmethods are inO(jE(S0)j+jV (S0)j), we should have C0Tim(DRB(S; T )) =O(jE(S)j log2(jV (T )j)). Thanks to the bipartitioning methods that we use, thisproves true, and is veri�ed by two sets of experiments. The �rst one deals withthe linearity in the number of edges of source graphs. We have mapped sourcegraphs onto many target topologies, and obtain in all cases plots that have alinear shape (see for instance �gure 4). The second set of experiments con�rmsthat the running time of our mapper is logarithmic in the number of vertices ofthe target graph as long as the number of processors is smaller than the numberof processes. We have mapped source graphs onto many target topologies of thesame family, and obtain in all cases plots which have a logarithmic shape (andtherefore which are of linear shape with a log/lin plotting, as in �gure 5).6 Process graph bipartitioning methodsThe core of our recursive mapping algorithm uses process graph bipartitioningmethods as black boxes. It allows the mapper to run any type of graph bipar-titioning method compatible with our criteria for quality. Bipartitioning jobsmaintain an internal image of the current bipartition, which indicates for everyvertex of the job whether it is currently assigned to the �rst or the second sub-domain. It is therefore possible to apply several di�erent methods in sequence,each one starting from the result of the previous one, and to select the meth-ods with respect to the job characteristics, which permits us to de�ne mappingstrategies. 15
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Figure 5: Running time of the mapping of some �nite-element and nested-dissection graphs onto bidimensional meshes M2(x; y) of increasing dimensions,with strategy gfx.that the maximization of the number of layers results in the minimization of thesizes {and therefore of the cocycles{ of the layers. This property has alreadybeen used by George and Liu to reorder sparse linear systems using the nesteddissection method [7], and by Simon in [24].6.1.2 The Improved Fiduccia-Mattheyses methodThe Fiduccia-Mattheyses graph bipartitioning heuristic [5] is an almost-linearimprovement of the Kernighan-Lin algorithm [17]. Its goal is to minimize thecut between two vertex subsets, while maintaining the balance of their cardinalswithin a limited user-speci�ed tolerance. Starting from an initially balanced so-lution of any cut value, it proceeds iteratively by trying, at each stage, to reducethe cut of the current solution. The algorithm maintains, for all the vertices ofboth subsets, a gain value, which represents the value by which the current cutwould decrease if the vertex were moved to the other subset (gains may thus benegative). Vertices of identical gain are linked into gain linked lists which arestored as entries of a gain array. At each stage, the algorithm builds an order-17



ing of as many vertices as it can, by repeating the following process: it picksin the two subsets the vertex of largest current gain and whose move will notset the balance out of the user-speci�ed tolerance. When a vertex is selected,the algorithm fakes to move it and updates the gains of its neighboring verticesaccordingly. This is repeated until all vertices have been chosen or no moveof yet unprocessed vertices would keep the load balance within the tolerance.Once the ordering is complete, the new solution is built from the current oneby moving as many vertices of the ordering as necessary to get the maximumaccumulated gain. Thus, by considering the accumulated gain, the algorithmallows hill-climbing from local minima of the cut cost function.The almost-linearity of this algorithm is based on two limitations. First, it issupposed that vertex degrees are small and that all edges have unity weight, sothat the range of the gain values is small, and thus the search in the gain arrayfor a vertex of best gain is assumed to take an almost-constant time. Second,all vertices are supposed to have equal (unity) weights, so that moving the headof a given gain list is equivalent in balance to moving any vertex in this list.Unfortunately, the above is no longer true when vertices and edges have non-unity weights and when gains account for the distance between edge ends. Asa matter of fact, the handling of huge weights raises three problems.The �rst one is the access time to the linked list of largest gain. To solveit, we have �rst added to each gain array a binary-tree structure that recordedthe number of vertices present in every sub-tree (see �gure 6.a). Thanks tothis, the search for the linked list of largest gain was performed in a time log-arithmic in the size of the gain array; it was thus bounded by the number ofaddress bits of the machine which ran the mapper, and therefore considered asconstant. However, the above solution ampli�ed the second problem, which isspace consumption.Since the biggest gain value which can be obtained during a mapping canbe as large as diam(T )�(S)maxeS2E(S) w(eS), the size of linear gain arrayscan be prohibitive for valuated graphs. To keep the gain table a reasonablesize guaranteeing an almost-constant access time, we have �nally implementeda logarithmic indexing of gain tables, as shown in �gure 6.b. In this case, thenumber of entries of the gain array is bounded by the number of bits codingan integer, which is a small constant. The di�erences in behavior betweenthe algorithms with linearly and logarithmically indexed gain arrays are small,since in both cases vertices with big gains are handled �rst. As a matter of fact,when vertices linked within the same logarithmically indexed gain list are notneighbors, moving one of them does not modify the gain of the others, and theorder of their moving has no importance, whatever indexing type is considered.If they are neighbors, the choice of a neighbor rather than another can inuencethe behavior of the algorithm; however, the resulting approximation is of thesame order of magnitude as the one inherent to the initial Fiduccia-Mattheysesalgorithm. Moreover, when the initial bipartition is already well structured (as18
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6.1.3 The \exactifying" algorithmThis method is used to post-process other methods when strict load balance isessential. The goal of this greedy algorithm is to reduce load imbalance whilekeeping the value of the communication cost function as small as possible. Thevertex set is scanned in order of decreasing vertex weights, and vertices aremoved from one subdomain to the other if doing so reduces load imbalance.When several vertices have same weight, they are inserted in a gain table anal-ogous to the one used by our Fiduccia-Mattheyses algorithm, so that the vertexwhose swap decreases most the communication cost function is selected �rst.6.2 Handling of imbalanced graphsImbalanced process graphs, that is graphs such that some processes have weightsmuch heavier than the average, lead to several problems. Let us consider forinstance a complete process graph such that all vertices have weight one, exceptfor one single vertex whose weight is equal to the number of vertices of the graph.If an exact bipartitioning algorithm were run on this graph, the heaviest vertexwould be assigned to one subdomain and all the others vertices to the other,leaving all processors of the �rst subdomain idle, but one, as shown in �gure 8.Imbalanced process graphs may be handled in two di�erent ways, according tothe two opposite following arguments.� On one hand, one could think that since the heaviest process will completelast, it is useless to spread the other processes over all the processors. It isbetter to balance the load over a smaller number of processors, and leavethe rest idle so that they can be allocated to other users of the parallelmachine.� On the other hand, since the processors of the domain have already beenreserved, it is better to use them all, and spread processes as much aspossible. Processes will therefore use the independent resources of everyprocessor (computational power, memory, local disks, : : : ) with smallerrisk of contention.We have chosen to implement the second approach, since it allows to take advan-tage of all the resources that have been reserved for the execution of the parallelprogram, while allowing features similar to the ones of the �rst approach if wechoose to restrict the target domain before the mapping process takes place.As a matter of fact, let S be the source graph to be mapped onto the targetarchitecture T that has been reserved for execution. If we want all workingprocessors to be loaded at least as much as the one that will host the heaviest21
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a. Construction of a subdomain with13 vertices (lower right corner) on a 8by 8 bidimensional grid architecture. b. Construction of a subdomain with17 vertices (lower left corner) on theremaining architecture.Figure 9: Subdomain construction on M2(8; 8) by weighted bipartitioning.According to the second approach that we have chosen, and in order toprevent excessive weights from perturbating the bipartitioning process, we have22



implemented an adaptive weight limitation procedure. At the beginning ofevery job, it computes the e�ective weights of all the processes, which are theminimum of the real weights of the processes and a multiple of the mean realweight of the processes assigned to the current domain. The multiplicativefactor is dynamically adjusted so that the mean of the e�ective weights becentered with respect to all the e�ective weights. The use of e�ective weights bythe bipartitioning algorithms amounts, for imbalanced subgraphs, to computingload balance more in term of numbers of processes than in term of process loads,which reduces the impact of pathological cases such as the one described above.6.3 Evaluation of the partitioning methodsAs said before, the di�erent bipartitioning methods that we have implementedcan be combined into what we call strategies. In this study, we have focused onfour strategies: f, the plain Fiduccia-Mattheyses method; fx, which uses theexactifying method in post-processing; gf, which feeds the Fiduccia-Mattheysesmethod with the result of the Gibbs-Poole-Stockmeyer method; and gfx, whichpost-processes the latter with the exacti�er. In order to compare these fourstrategies, we have used them to map our test graphs onto the hypercube, bidi-mensional grid, and complete graph topologies. Mapping results signi�cantlydi�er according to the structure of the source graphs. We present below quali-tative results, which we illustrate by experiments carried out on the hypercubetarget topology.For nested dissection graphs (see �gures 10 and 11), the use of the g methodalways improves mapping quality. The strong hierarchical structure of thesegraphs is very well suited for their clustering into layers, which yields very goodinitial partitions. On the opposite, post-processing the partitions with the xmethod always increases the cost function. Since these graphs are of high degreeand have large edge weights, the f method tends to minimize the cost functionby unbalancing the partitions so as to prevent heavy edges from being kept inthe cut. Enforcing strict balance is therefore likely to turn these heavy edgesinto cut edges, and thus to increase the communication cost. Consequently,the exacti�er should not be used for weighted graphs if cut minimization andconnectivity are essential.For �nite-element meshes (see �gures 12 and 13), the methods used in pre-and post-processing of the Fiduccia-Mattheyses method have only little impacton the quality of the mappings. This is due to the topological properties oftriangular meshes of low dimensionality, which are fairly well suited for theFiduccia-Mattheyses heuristic. Unlike what we have observed for nested dissec-tion graphs, the use of the x method does not increase the average expansion.Since these graphs are not weighted, the exacti�er moves the vertices that pe-nalizes less the cost function. Most often, these are vertices which have someneighbors in the other subdomain, so that the exactifying process only resultsin a small displacement of the cut, which does not reects upon the quality of23



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 100 1000

A
v
e
r
a
g
e
 
e
x
p
a
n
s
i
o
n

|V(T)|

f
fx
gf
gfx

Figure 10: Average expansion of the mapping of graph REF4 onto H(x) withseveral strategies.the bipartitionings. A most useful result regards execution times: the compu-tation of initial bipartitions by means of the g method, if it does not improvethe quality of the partitions in this case, decreases computation times by 20 to30 percent on average, by reducing the number of passes necessary for theFiduccia-Mattheyses algorithm to converge. This is not new, as several authorsinsisted on the importance of providing good starting partitions to avoid pre-mature termination due to local minima of the cost function, and to achievefaster convergence [9, 15]. From the above, the most suited strategy to mapunweighted �nite-element meshes is the gfx strategy, which is used in all theexperiments of section 9.7 Domain bipartitioning methodsAccording to the type of target architecture, the values of the domain functionscan be algorithmically computed at run-time, or be extracted from precomputedlook-up decomposition tables. 24
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Figure 11: Running time of the mapping of graph REF4 onto H(x) with severalstrategies.7.1 Domain bipartitioning by mappingSince, in our approach, the recursive bipartitionings of target graphs are fullyindependent with respect to the ones of source graphs (yet, the opposite isfalse), the recursive decomposition of a given target architecture needs only tobe computed once, in order to store the resulting data in look-up decompositiontables which will be used in the mapping process. Decomposition tables can beeasily computed with our mapper, by mapping the considered target graph ontothe complete graph with same number of vertices. Mapping onto the completegraph zeroes the contribution of cocycle edges (since every subdomain is atdistance 1 from all the others), so that only local cut minimization is considered.In the resulting decomposition, strongly-connected clusters of processors will bekept uncut as long as possible, and strongly-connected clusters of processeswill therefore tend to be mapped onto them. In the case of heterogeneousarchitectures, the minimization of the communication function favors the cutof the edges with smallest weights, that is of biggest bandwidth. From thecommunication point of view, we obtain a hierarchical decomposition in whichlinks of highest bandwidth act as backbones between subdomains containing25
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Figure 12: Average expansion of the mapping of graph BRACKET onto H(x)with several strategies.links with smaller bandwidth.The mapping of a source graph onto any target graph can be performed intwo steps. First, the mapping engine is called a �rst time to map the targetgraph onto the complete graph, in order to build the decomposition table forthis architecture. Then, it is called a second time to map the source graphonto the target architecture, using the decomposition table that has just beencomputed.7.2 Algorithmic domain bipartitioningThe algorithmic handling of some speci�c architectures (meshes, hypercubes,complete graphs, multi-stage networks: : : ), which may seem redundant with re-spect to the general-purpose decomposition table mechanism, allows the mapperto handle huge regular target architectures without storing tables whose sizesevolve as the square of the number of processors.For instance, the bidimensional grid target architecture is algorithmically im-plemented such that domains are rectangular areas, the domain bipartitioningfunction splits a domain along its smallest dimension into two parts of equiv-26
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Figure 13: Running time of the mapping of graph BRACKET onto H(x) withseveral strategies.alent sizes (within one row or column), and the distance function returns thedistance between the centers of the two domains. For hypercube target archi-tectures, domains are sub-hypercubes, the domain bipartitioning function splitsa hypercube into two sub-hypercubes, and the domain distance function returnsthe number of bits which di�er in the labeling of sub-hypercubes.However, for non-standard target architectures (such as, for instance, a non-rectangular subdomain of a bidimensional grid architecture), the built-in func-tions cannot be used, and a proper decomposition table must be computed.7.3 Evaluation of the decomposition techniquesIn order to compare the two above decomposition techniques, we have mappedour test graphs onto several target architectures, using decompositions com-puted either algorithmically or by mapping onto the complete graph.The target architecture that we have studied most is the bidimensional grid,since the members of this family may have any non-power-of-two number ofvertices, and their decompositions can be represented and analyzed easily. Thealgorithmic decomposition of bidimensional meshes that we have implemented27



in our mapper uses a nested dissection approach such that square domains arealways partitioned along the same dimension, which gives very regular decom-position patterns, as in �gure 14. On the opposite, the cuts of square domainscomputed by mappingmay not all have the same orientation (they may not evenbe straight), since only local cut minimization is achieved and thus no globalcoherence can be maintained, as illustrated in �gure 15. The same holds for thehypercube topology as well: all the bipartitionings computed at the same levelof an algorithmic decomposition have the same orientation, which may not bethe case for mapped decompositions.Figure 14: Algorithmic decomposition of the M2(4; 4) architecture.Figure 15: Decomposition of the M2(4; 4) architecture by strictly balanced map-ping onto K(16). Unlike for algorithmic decompositions, the orientation of thecuts of square domains may vary.Figure 16 shows the average expansion of the mapping of graph BRACKETonto bidimensional grids of various sizes that have been decomposed algorith-mically, by mapping with strict enforcement of load balance (that is, by usingour exactifying algorithm in post-processing), and by mapping with a weak loadbalance constraint of 10 percent. In all our experiments on bidimensional grids,the expansions computed using strictly mapped decompositions are from 5 to 10percent above the ones of algorithmic decompositions, except for a few cases forwhich interactions between the behavior of the Fiduccia-Mattheyses algorithm,the shape of the graph, and the structure of the decomposition, lead to betterresults. This relative ine�ciency of strictly mapped grid decompositions hastwo main reasons.� The �rst one is the di�culty for the Fiduccia-Mattheyses graph bipar-titioning method to handle bidimensional grids as source graphs. As amatter of fact, let us consider the smallest connected subset of the ver-28



tices of a graph that are assigned to the same subdomain and such thatthis subset is stable, that is such that the removal of a vertex from thesubset does not improve the cut. Among all the regular uniform meshes,the bidimensional grid is the topology that allows stable subsets of small-est size (see �gure 17). Consequently, for this architecture, stable subsetsare easier to obtain than for other types of meshes, which increases theprobability of the algorithm to be trapped in local minima of the com-munication cost function. This behavior had already been diagnosed byGilbert and Zmijewski [9] for the Kernighan-Lin heuristic.� The second reason comes from the strict enforcement of load balance.When a grid of odd dimensions is bipartitioned for the �rst time, thefrontier between the two resulting subdomains exhibits a step-shaped dis-continuity (see �gure 18). As bipartitionings go on, this phenomenoncan lead to the creation of \L"-shaped subdomains. To bipartition sucha subdomain while minimizing the cut, the algorithm assigns to one ofthe subdomains the curved section of the \L", and to the other its twoends. This results in the construction of disconnected subdomains, whichperturbates the computation of the distance function since this do notrespect the principle of locality that we have introduced in section 3. Thedisconnected bipartitioning of \L"-shaped domains is favored by the 4-connectivity of the grid, for which cutting along a diagonal is twice asexpensive as cutting along a dimension.The impact of this second phenomenon can be reduced by performing imbal-anced bipartitionings instead of strictly balanced bipartitionings. For instance,using an imbalance ratio of 10 percent decreases the average expansion of themappings in more than 80 percent of the runs, as illustrated in �gure 16.For the hypercube target topology, the overcost induced by strictly mappeddecompositions is of 2 to 3 percent over algorithmic ones, as shown for graphBRACKET in �gure 19. These ratios are smaller than for the bidimensionalgrid because of the comparatively large degree and small diameter of the hyper-cube topology, which limit the impact of bad mappings. Moreover, hypercubesalways have number of vertices which are powers of two, as well as a very regularstructure, which always induce with the Fiduccia-Mattheyses algorithm a regu-lar bipartitioning along some dimension. One can besides note that the smalleststable set of H(n) is H ��n2��, since swapping any vertex that has less than �n2�neighbors in its own subdomain reduces the cut. Increasing the imbalance toler-ance of the bipartitionings has no e�ect for hypercubes, since the minimum cutis achieved by strictly balanced bipartitioning in some dimension [2]. However,this may result in a cut along a dimension other than the one that would havebeen selected in the case of strict bipartitioning, and therefore may yield slightlydi�erent mapping results. 29
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Figure 16: Average expansion of the mapping of graph BRACKET onto bidi-mensional grids M2(x; y) decomposed algorithmically, by strictly balanced map-ping, and by mapping with a balance constraint of 10 percent.The above experiments on the bidimensional grid tend to prove that cutminimization is more important than load balance, since enforcing strictly bal-anced bipartitionings can lead to decompositions which perturbate the behaviorof the distance function. In order to understand the mutual inuences of thestructure of the decompositions on the behavior of the distance function, wehave mapped our test graphs onto algorithmic decompositions of bidimensionalgrids that have been computed by three di�erent methods: the plain (withinone row or one column) nested dissection algorithm presented above, an imbal-anced nested dissection algorithm which allocates one third of the vertices toa subdomain and the remaining two thirds to the other, and a multiple one-way dissection algorithm that performs all recursive bipartitionings along somedimension before considering other dimensions.The resulting expansions for graph BRACKET are given in �gure 20. Inalmost all the cases, balanced nested dissection behaves best, and multiple one-way dissection worst. The une�ciency of multiple one-way dissection is due tothe impact of the decomposition on the behavior of the distance function. As amatter of fact, the principle of the Dual Recursive Bipartitioning algorithm is to30



Figure 17: Smallest stable subsets for regular uniform mesh graphs. Movingone single vertex from the black part to the grey one does not improve thecommunication cost function, that is does not decrease the number of edgeswhose ends are of di�erent colors.Figure 18: Decomposition of the M2(3; 5) architecture by strictly balanced map-ping onto K(15).re�ne the partial mapping induced by recursive bipartitionings of domains andtheir associated process sets, up to give a complete mapping when all subdo-mains are of size one. The e�ciency of the algorithm is a result of the feed-backe�ect that we have discussed in section 4: every bipartitioning job uses thevalues of the current partial mapping to evaluate its local communication costfunction, and optimize accordingly the bipartition that it computes. In order forthe distance function to be accurate and reliable, so that the decisions made atsome level do not prove bad at the next, its variations must decrease as domainsizes diminish. However, for multiple one-way dissection, the variability of thedistance between domains, which decreases as bipartitionings are performed inthe �rst dimension, roughly increases when the �rst bipartitioning is performedin the second dimension, as shown in �gure 21. Therefore, this bipartitioningand the following ones, which have a greater impact on the cost function thanthe preceding ones, are performed after them, when the number of degrees offreedom of the problem has already been signi�cantly reduced; therefore, theymay not optimize the bipartition as they would have done if they had beenconsidered before. This is why nested-dissection schemes (whether balanced orimbalanced), which respect the property of the distance function and performcostly bipartitionings when the number of degrees of freedom is maximal, yieldbetter results. This is also why the balanced scheme is the most e�cient: inthe unbalanced scheme, bipartitionings that deal with large subdomains may31
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Figure 19: Average expansion of the mapping of graph BRACKET onto hyper-cubes H(x) decomposed algorithmically and by strictly balanced mapping.be carried out after ones that deal with smaller subdomains.The tests carried out in this section show that algorithmic decompositionsbased on algorithmically computed nested dissections yield in almost all casesmappings of better quality than the ones that use decompositions computed bymapping. This is not really surprising, since the de�nition of decompositionalgorithms requires some knowledge of the topological properties of the consid-ered target architectures, which can be exploited to provide more regular ande�cient decompositions that preserve the properties of the distance function.As a matter of fact, a most important result of these experiments is theformalization of the characteristics of the distance function that make it suit-able for the Dual Recursive Bipartitioning algorithm. To produce mappingsof quality, the distance function must be such as to give more accurate resultsas the sizes of the end domains diminish, and such that its variations decreaseaccordingly. These properties are coherent with the local nature of the DRBalgorithm, which tries to make the less informative choices at �rst, and re�nesthe partial mappings as domain sizes diminish. In practice, we have observedthat target architectures that do not allow to de�ne decompositions that respect32
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Figure 20: Average expansion of the mapping of graph BRACKET onto bidi-mensional grids decomposed algorithmically by nested dissection, unbalanced(one third/two thirds) nested dissection, and multiple one-way dissection.these locality properties behave rather badly with the DRB algorithm. This isfor instance the case for the FFT target architecture.For the computation of mapped decompositions, cut minimization is moreimportant than load balance. Therefore, a large load imbalance tolerance shouldbe used, and bipartitioning methods that seek strict load balance, such as theexactifying method, should be avoided.8 The Scotch software packageScotch [22] is a software package for static mapping which embodies the al-gorithms developed within the Scotch project. Apart from the mapper itself,the Scotch package contains programs to build and test source graphs, com-pute target graph decompositions, and visualize mapping results. Advancedcommand-line interface and vertex labeling capabilities make them easy to in-terface with other programs. See [20] for details.The mapper can map any weighted source graph onto any weighted target graph,33



Figure 21: Decomposition of the M2(6; 6) architecture by multiple one-way dis-section, and its inuence on the distance function. The variability of the dis-tance function decreases as bipartitionings are performed in the �rst dimension,but roughly increases when the �rst bipartitioning is performed in the seconddimension.or even onto disconnected subgraphs of a given target graph, which is very use-ful in the context of multi-user parallel machines. On these machines, whenusers request processors in order to run their jobs, the partitions allocated bythe operating system may not be regular nor connected, because of existingpartitions already attributed to other people. With Scotch, it is possible tobuild a target decomposition corresponding to this partition, and therefore tomap processes onto it, automatically and regardless of the partition shape.The Scotch 3.0 academic distribution may be obtained from the ScotchWWW page at http://www.labri.u-bordeaux.fr/~pelegrin/scotch/, or byftp at ftp.u-bordeaux.fr in directory /pub/Local/Info/Software/Scotch.The distribution �le, named scotch 3.0A.tar.gz, contains the executables forseveral machines and operating systems, along with documentation and sample�les. A collection of test graphs in our format, gathered from other packagesand from individuals, is also available from the WWW page.9 Comparison to other partitioning and map-ping software packagesWhen mapping onto the complete graph, Scotch behaves as a standard graphpartitioner. Table 4 summarizes edge cuts that we have obtained for classicaltest graphs, compared to the ones computed by Chaco [12] and MeTiS [16].Since not accounting for the target topology generally leads to worse perfor-mance results of the mapped applications [10, 13] due to long-distance com-munication, static mapping is more attractive than strict partitioning for mostcommunication-intensive applications. Recently, Chaco has recently gainedstatic mapping capabilities by the addition of a feature called terminal propaga-tion [14], which is similar to the accounting for cocycle edges that we do in f 0Cfor our DRB algorithm. Tables 5 and 6 summarize some results that have been34



Chaco 1.0 MeTiS 2.0Graph K(64) K(128) K(256) K(64) K(128) K(256)4ELT 2928 4514 6869 2965 4600 6929BCSSTK30 241202 318075 423627 190115 271503 384474BCSSTK31 65764 98131 141860 65249 97819 140818BCSSTK32 106449 153956 223181 106440 152081 222789BRACKET 34172 46835 66944 29983 42625 60608PWT 9166 12737 18268 9130 12632 18108ROTOR 53804 75140 104038 53228 75010 103895Scotch 3.0Graph K(64) K(128) K(256)4ELT 2941 4604 6900BCSSTK30 194539 277122 382375BCSSTK31 70275 102250 143212BCSSTK32 112846 160429 226991BRACK2 30270 42743 60583PWT 9286 12887 18366ROTOR 55511 77136 105006Table 4: Edge cut produced by Chaco 1.0, MeTiS 2.0, and Scotch 3.0 forpartitions with 64, 128, and 256 blocks (Chaco and MeTiS data extractedfrom [15]).obtained by Chaco 2.0 with terminal propagation and by Scotch 3.0 whenmapping graphs 4ELT and BCSSTK32 onto hypercubes and meshes of varioussizes.In many cases, Scotch 3.0 produces partitions whose cut and communi-cation cost are within a few percent of the ones computed by the two otherprograms, and can therefore be used as a state-of-the-art graph partitioner andmapper. However, for some graphs (e.g. BCSSTK32), its results are of muchless quality. This lack of quality is due to the fact that Scotch 3.0 does notuse a multi-level approach, as do the two others [12, 15]. By coarsening thegraphs they work on, multi-level partitioners increase the capability of theirlocal partitioning algorithms to take advantage of topological properties thatwere else of a too global level for them to deal with, and thus greatly improvetheir ability to avoid local minima of the cost function. Consequently, we arecurrently developing a multi-level method for Scotch, which will be availablein version 3.1. The �rst results that we have obtained with this new versioncon�rm our analysis, since the cut values that we get become equivalent to theones of the two other software packages, and outperform them in two thirds ofthe tested cases [21]. 35



Chaco 2.0-TP Scotch 3.0Target cut fC cut fCH(1) 168 168 143 143H(2) 412 484 402 403H(3) 796 863 693 761H(4) 1220 1447 1191 1314H(5) 1984 2341 2027 2307H(6) 3244 3811 3280 3858H(7) 5288 6065 5131 6049M2(5,5) 1779 2109 1929 2423M2(10,10) 4565 6167 4612 6361Table 5: Edge cut and communication cost produced by Chaco 2.0 with Termi-nal Propagation and by Scotch 3.0 for mappings of graph 4ELT onto severaltarget architectures (Chaco data extracted from [11]).
Chaco 2.0-TP Scotch 3.0Target cut fC cut fCH(1) 5562 5562 11381 11381H(2) 15034 15110 24711 26092H(3) 26843 27871 44736 48872H(4) 49988 53067 63273 72802H(5) 79061 89359 93197 115148H(6) 119011 143653 133788 167356H(7) 174505 218318 184400 240890M2(5,5) 64156 76472 77504 117794M2(10,10) 150846 211672 169165 287467Table 6: Edge cut and communication cost produced by Chaco 2.0 with Ter-minal Propagation and by Scotch 3.0 for mappings of graph BCSSTK32 ontoseveral target architectures (Chaco data extracted from [11]).36



10 ConclusionIn this paper, we have presented the Dual Recursive Bipartitioning (DRB) al-gorithm for static mapping that we have developed. Several studies have beencarried out in order to validate the design choices that we made, and to evaluatethe inuence of the parameters of the algorithm on the quality of mappings. Inparticular, we have shown that a depth-�rst traversal of the bipartitioning treeis more suitable to map graphs that are strongly connected, and that breadth-�rst-like sequencing is most e�cient for graphs that exhibit great locality, suchas �nite-element meshes. We have evidenced that indexing the gains of theFiduccia-Mattheyses graph partitioning algorithm on a logarithmic scale doesnot undermine its performance, and allows it to store and retrieve huge gainvalues in constant time. We have also shown that the decompositions of targetarchitectures must be such that the variations of the distance function decreasewith time, in order to preserve the local nature of the DRB algorithm. Then, wehave outlined the capabilities of Scotch, a software package for static mappingwhich implements the DRB algorithm and is able to map any weighted sourcegraph onto any weighted target graph. The mappings and partitions producedby Scotch 3.0 are globally equivalent in quality to the one of the most e�-cient software packages known, although for some cases its lack of a multi-levelmethod impedes its performance.Work in progress includes the development of new graph bipartitioningmeth-ods, and in particular of multi-level schemes, as in [15]. The �rst results obtainedto date with the new version show an average gain in quality of about 10 per-cent compared to the mappings computed by Scotch 3.0, which makes it moree�cient than Chaco and MeTiS in two thirds of the tested cases. Scotch iscurrently being evaluated to decompose unstructured meshes into domains forparallel aerodynamics codes that run on the Cray T3D. We expect this studyto help us determine the characteristics of e�cient mappings with respect tothe type of numerical method used, in order to develop suitable bipartitioningstrategies. A nested-dissection ordering code for a parallel direct block solveris also being developed, based on the graph partitioning library that makes upthe core of our mapping program.References[1] S. T. Barnard and H. D. Simon. A fast multilevel implementation of re-cursive spectral bisection for partitioning unstructured problems. Concur-rency: Practice and Experience, 6(2):101{117, 1994.[2] A. Bel Hala. Congestion optimale du plongement de l'hypercube H(n)dans la châ�ne P (2n). RAIRO Informatique Th�eorique et Applications,27(4):1{17, 1993. 37
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