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Abstract. Continuous time random walks incorporate a random waiting
time between random jumps. They are used in physics to model particle
motion. A physically realistic rescaling uses two different time scales for the
mean waiting time and the deviation from the mean. This paper derives
the scaling limits for such processes. These limit processes are governed by
fractional partial differential equations that may be useful in physics. A
transfer theorem for weak convergence of finite dimensional distributions of
stochastic processes is also obtained.

1. Introduction

The classical diffusion equation governs a Brownian motion. For particles

undergoing classical diffusion, the location X(t) of a randomly selected particle

at time t ≥ 0 possesses a Gaussian probability distribution that scales accord-

ing to X(ct) ∼ cHX(t) where H = 1/2 and ∼ means identically distributed.

The relative concentration C(x, t) for a cloud of particles undergoing classical

diffusion will approximate the probability distribution of X(t). Anomalous

diffusion occurs when the concentration profile is non-Gaussian or the scaling

rate H 6= 1/2. Fractional Brownian motion and (fractional) Lévy motion are

the simplest stochastic models for anomalous diffusion. Governing equations

for Lévy motion employ fractional derivatives in space instead of the usual
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second derivative. These equations model superdiffusion, where the scaling

rate H > 1/2. Fractional derivatives in time are useful to model subdiffusion,

where 0 < H < 1/2. Many applications in contaminant transport seem to

require a governing equation with a time derivative greater than one. How-

ever, a correct mathematical formulation of such models has proven elusive.

In this paper, we employ continuous time random walks as a stochastic model

of anomalous diffusion. A judicious rescaling leads to a long-time limit process

consistent with a time derivative greater than one. In fact, the form of the

limit density leads directly to a governing equation with a time derivative of

order 1 < γ ≤ 2.

Continuous time random walks generalize a simple random walk by imple-

menting a random waiting time between jumps. For finite mean waiting times

and finite variance jumps with mean zero, the classical rescaling (shrink the

time scale by c > 0 and the space scale by c1/2) leads to Brownian motion in

the scaling limit as c → ∞. Probability densities p(x, t) of this limit process

solve the classical diffusion equation ∂p/∂t = D∂2p/∂x2 for some D > 0. In-

finite variance jumps in the strict domain of attraction of a stable law lead

to Lévy motion. Probability densities of this limit process solve a fractional

diffusion equation ∂p/∂t = D∂αp/∂xα with 0 < α < 2 [9]. Vector jumps in

the strict domain of attraction of an operator stable law lead to operator Lévy

motion, whose densities solve a generalized diffusion equation [10]. Infinite

mean waiting times introduce a fractional time derivative of order 0 < γ < 1

[13].

Self-similar limit processes with X(ct) ∼ cHX(t) are associated with a

rescaling c > 0 in time and cH in space (H = 1/α for a Lévy motion). For

H 6= 1 these processes cannot contain a constant drift term, since this term

scales linearly. A physically meaningful stochastic model for particle diffu-

sion with drift assumes a particle jump size with a nonzero mean. In order

to get convergence to a limit process, one typically uses two spatial scales:

The mean jump is rescaled by c > 0 (just like the time scale) and the devia-

tion from the mean is rescaled by c1/2, leading to Brownian motion with drift

(see, e.g., Ross [15] exercise 10.8). The resulting diffusion equation with drift

∂p/∂t = −v∂p/∂x+D∂2p/∂x2 contains two spatial derivatives, resulting from
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the two spatial scales. The same limit results from a simple random walk,

or a continuous time random walk with finite mean jumps. This includes the

case where the waiting times are positive random variables in the domain of

attraction of a stable law with index 1 < γ ≤ 2. But in this case, we can

also employ two time scales, rescaling the mean waiting time by c > 0 and

the deviation from the mean by c1/γ . This rescaling leads to a different limit

process, whose probability densities p(x, t) govern a fractional partial differen-

tial equation that provides a new model for anomalous diffusion. This paper

develops the limit theory for these continuous time random walks.

Using two scales may seem unnatural, but it is actually quite physical. Take

the simple random walk where the particle jump variables have nonzero mean.

Scaling limits of this process can be understood in terms of examining the

particle diffusion at an ever finer time scale. As the time scale shrinks by

a factor of c > 0, the mean particle displacement shrinks at the same rate,

but the displacement from that mean shrinks at a slower rate c1/2 for finite

variance jumps. Using two spatial scales is necessary to preserve the detail at

both scales. The same applies to our model with two time scales. Using two

time scales preserves detail in the limit process that would otherwise be lost,

and leads to a richer set of stochastic models for anomalous diffusion. It is

these physical applications that motivate the present study.

2. Continuous time random walks

Let J1, J2, . . . be nonnegative independent and identically distributed (i.i.d)

random variables that model the waiting times between jumps of a particle.

We set T (0) = 0 and T (n) =
∑n

j=1 Jj, the time of the nth jump. The particle

jumps are given by i.i.d. random vectors Y1, Y2, . . . on Rd which are assumed

independent of (Ji). Let S(0) = 0 and S(n) =
∑n

i=1 Yi, the position of the

particle after the nth jump. For t ≥ 0 let

(2.1) Nt = max{n ≥ 0 : T (n) ≤ t},

the number of jumps up to time t and define

(2.2) S(Nt) =

Nt∑

i=1

Yi
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the position of a particle at time t. The stochastic process {S(Nt)}t≥0 is called

a continuous time random walk (CTRW).

Assume that J1 ≥ 0 belongs to the domain of attraction of some stable law

with index 1 < γ ≤ 2. Then there exist bn > 0 such that

(2.3) bn(T (n) − nµ) = bn

n∑

i=1

(Ji − µ) ⇒ D

where µ = EJ1 is the mean and D is stable with index γ. Here ⇒ denotes

convergence in distribution. Since J1 ≥ 0, the Lévy measure of D is supported

on the positive reals (see, e.g., [11] Corollary 8.2.19), and hence the limit D has

characteristic function E(eikD) = ea(−ik)
γ

for some a > 0 (see, e.g., [11] Lemma

7.3.8). For t ≥ 0 let T (t) =
∑[t]

j=1 Jj and let b(t) = b[t], where [t] denotes the

integer part of t. Then b(t) = t−1/γL(t) for some slowly varying function L(t)

(so that L(λt)/L(t) → 1 as t → ∞ for any λ > 0, see for example [6]). Then

it follows from Example 11.2.18 in [11] and (2.3) that

(2.4) {b(c)(T ([ct]) − µ[ct])}t≥0
f.d.
=⇒ {D(t)}t≥0

where
f.d.
=⇒ denotes convergence in distribution of all finite dimensional mar-

ginal distributions. The process {D(t)} has stationary independent incre-

ments, and since the distribution ρ of D = D(1) is stable and D(0) = 0,

{D(t)} is called a stable Lévy process. Moreover

(2.5) {D(ct)}t≥0
f.d.
= {c1/γD(t)}t≥0

for all c > 0, where
f.d.
= denotes equality of all finite dimensional marginal

distributions. Hence by Definition 13.4 of [16] the process {D(t)} is selfsimilar

with exponent 1/γ. See [16] for more details on stable Lévy processes and

selfsimilarity.

Assume that (Yi) are i.i.d. Rd-valued random variables independent of (Ji)

and assume that Y1 belongs to the strict generalized domain of attraction of

some full operator stable law ν, where full means that ν is not supported on

any proper hyperplane of Rd. By Theorem 8.1.5 of [11] there exists a function

B ∈ RV(−E) (that is, B(c) is invertible for all c > 0 and B(λc)B(c)−1 →
λ−E = exp(−E logλ) as c → ∞ for any λ > 0), E being a d× d matrix with
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real entries, such that

(2.6) B(n)S(n) = B(n)
n∑

i=1

Yi ⇒ A as n→ ∞,

where A has distribution ν. Then νt = tEν for all t > 0, where Tν{dx} =

ν{T−1dx} is the probability distribution of TA for any Borel measurable func-

tion T : Rd → Rm. Note that by Theorem 7.2.1 of [11] the real parts of the

eigenvalues of E are greater than or equal to 1/2.

Moreover, if we define the stochastic process {S(t)}t≥0 by S(t) =
∑[t]

i=1 Yi it

follows from Example 11.2.18 in [11] that

(2.7) {B(c)S(ct)}t≥0
f.d.
=⇒ {A(t)}t≥0 as c→ ∞,

where {A(t)} has stationary independent increments with A(0) = 0 almost

surely and PA(t) = νt = tEν for all t > 0; PX denoting the distribution of X.

Then {A(t)} is continuous in law, and it follows that

(2.8) {A(ct)}t≥0
f.d.
= {cEA(t)}t≥0 for all c > 0

so by Definition 11.1.2 of [11] the stochastic process {A(t)} is operator selfsimi-

lar with exponent E. We call {A(t)} an operator Lévy motion. If the exponent

E = aI a constant multiple of the identity, then ν is a stable law with index

α = 1/a, and {A(t)} is a classical d-dimensional Lévy motion. In the special

case a = 1/2 the process {A(t)} is a d-dimensional Brownian motion.

The following example illustrates the connection between CTRW scaling

limits and their governing equations. Assume that d = 1, bn = n−1/γ for

some 0 < γ < 1, Yi symmetric, and B(n) = n−1/α for some 0 < α ≤ 2.

Consider a rescaled CTRW, where time t ≥ 0 is replaced by ct, waiting times

Ji are replaced by c−1/γJi, and jumps Yi are replaced by c−1/αYi. For large

c > 0 the particle location is c−1/αS(cn) ≈ A(n) at time c−1/γT (cn) ≈ D(n).

Inverting the time process shows that c−γN(ct) ≈ E(t) = inf{u : D(u) > t}.
Composing the two processes c−γ/αS(Nct) ≈ (cγ)−1/αS(cγE(t)) ≈ A(E(t))

suggests that the CTRW scaling limit is a Lévy motion A(t) subordinated

to an independent inverse Lévy motion E(t). This argument can be made

rigorous by proving process convergence in the Skorokhod J1 topology and

using continuous mapping arguments [12]. The process A(t) represents the
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limiting case of particle jumps in a simple random walk, and the subordinator

E(t) compensates for the waiting times.

The symmetric stable random variable A(t) has characteristic function

p̂(k, t) = E(eikA(t)) = e−ct|k|
α

for some c > 0, which is evidently the solution to

a simple ordinary differential equation

(2.9)
dp̂(k, t)

dt
= −c|k|αp̂(k, t)

with initial condition p̂(k, 0) ≡ 1 corresponding to A(0) = 0 almost surely.

Since ∂αp(x, t)/∂|x|α has Fourier transform −|k|αp̂(k, t), equation (2.9) is

equivalent to

(2.10)
∂p(x, t)

∂t
= c

∂αp(x, t)

∂|x|α

so that p(x, t) is the point source solution to this fractional partial differential

equation. Since D(x)
d
= x1/γD and {E(t) ≤ x} = {D(x) ≥ t} we have

P{E(t) ≤ x} = P{D(x) ≥ t} = P{x1/γD ≥ t} = P{(D/t)−γ ≤ x} for any

x > 0. Then a simple conditioning argument shows that

(2.11) h(x, t) =
t

γ

∫ ∞

0

p(x, ξ)gγ(tξ
−1/γ)ξ−1/γ−1dξ

is the density of the CTRW scaling limit A(E(t)), where gγ is the density of

D. Take Fourier-Laplace transforms [13] to get

(2.12) h̄(k, s) =

∫ ∞

−∞

∫ ∞

0

eikxe−sth(x, t)dt dx =
sγ−1

sγ + c|k|α

so that (sγ + c|k|α)h̄(k, s) = sγ−1. Since sγg(s) − sγ−1 is the Laplace trans-

form of the Caputo derivative (d/dt)γg(t) [5, 14], inverting yields a space-time

fractional partial differential equation

(2.13)

(
d

dt

)γ

h(x, t) = c
∂αh(x, t)

∂|x|α

used by Zaslavsky [19] to model Hamiltonian chaos. Particle jumps with heavy

tails P (|Yi| > x) ≈ x−α for 0 < α < 2 introduce a fractional space derivative

into the governing equation, whose order coincides with the power law expo-

nent. Waiting times with heavy tails P (Ji > t) ≈ t−γ for 0 < γ < 1 introduce a

fractional time derivative. In the next section, we develop governing equations

with fractional time derivatives of order 1 < γ < 2.
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3. Two time scales

Some applications [8] of the fractional diffusion equation (2.13) seem to

require a fractional time derivative of order 1 < γ ≤ 2, while (2.13) is restricted

to 0 < γ < 1. The CTRW model provides a simple solution to this problem,

along with a physical interpretation of the underlying stochastic process of

particle jumps. Suppose that the waiting times Ji ≥ 0 belong to the domain

of attraction of a stable random variable D with index 1 < γ ≤ 2. Then

µ = EJi > 0 exists and (2.3) holds. Using the simple approach outlined in

Section 2 does not work in this case, since the sum in (2.3) does not converge

without centering. Instead we use two time scales, replacing the mean waiting

time by c−1µ and the deviation from the mean by b(c)(Ji − µ). The sum

T (c)(n) =

n∑

i=1

(
c−1µ+ b(c)(Ji − µ)

)

cannot represent the time of the nth particle jump, since it is possible that

T (c)(n+ 1) < T (c)(n). A simple correction is to let

τ (c)
n = max{T (c)(j) : 0 ≤ j ≤ n}

be the time of the nth jump. Then N
(c)
t = inf{n ≥ 0 : τ

(c)
n ≥ t} is the number

of particle jumps by time t at scale c.

In this section we will compute the scaling limit of these stochastic processes.

Define D̄(t) = D(t)+µt, a Lévy motion with drift. Note that D̄(t) → ∞ almost

surely as t → ∞ by the strong law of large numbers for Lévy processes (see,

e.g., Theorem 36.5 on p.246 in [16]). However, since γ > 1, the process D̄(t) is

not monotone increasing. Define M̄(t) = sup{D̄(u) : 0 ≤ u ≤ t} the maximum

process, and Ē(t) = inf{x ≥ 0 : M̄(x) ≥ t} its (left) inverse process. It follows

from Lemma 13.6.3 of [17] that now

{Ē(t) ≤ x} = {M̄(x) ≥ t} and {N (c)
t ≤ x} = {τ (c)

[x] ≥ t}.

Note that Ē(t) and N
(c)
t are continuous from the left with right hand limits.

The right-continuous processes Ñ
(c)
t = max{n ≥ 0 : τ

(c)
n ≤ t} and Ẽ(t) =

inf{x ≥ 0 : M̄(x) > t} are not useful in this application since we require

N
(c)
0 = 0 and Ē(0) = 0 almost surely.



8 P. BECKER-KERN, M.M. MEERSCHAERT, AND H-P. SCHEFFLER

Lemma 3.1. The process {M̄(t)} at any time t > 0 has a density with respect

to Lebesgue measure.

Proof. Assume µ = 1, which entails no loss of generality. Theorem 1 in [3]

shows that

u

∫ ∞

0

∫ ∞

0

e−us−λTdTP (M̄(s) < T )ds

=exp

{
1

2π

∫ ∞

u

∫ ∞

−∞

λ

ξ(ξ − iλ)

iξ + a(−iξ)γ

x(x− (iξ + a(−iξ)γ))
dξ dx

}(3.1)

for all λ, u > 0. The integrand has two poles in the upper complex halfplane,

at ξ = iλ and whenever x = iξ + a(−iξ)γ . For a > 0 and 1 < γ ≤ 2, let

0 < α ≤ π/γ and define

Ω(α) :=

{
reiθ : −α < θ < α and

sin(θ)

a sin(γθ)
< rγ−1 <

sin(α)

a sin(γα)

}

a region in the complex plane, where we take sin(α)/a sin(γα) = ∞ when

α = π/γ. Lemma 3.1 in [2] shows that there exists a unique holomorphic

function q : C \ (−∞,−a(γ − 1)(aγ)
γ

1−γ ] → Ω(π/γ) such that

aq(z)γ − q(z) = z,

and that there exists an analytic function m(t) with
∫ ∞
0
e−ztm(t) dt = 1/q(z)

for z > 0. A computation [2] involving complex contour integration shows that
∫ ∞

0

∫ ∞

0

e−us−λTdTP (M̄(s) < T )ds =
1 − λ/q(u)

u+ λ− aλγ

and then since P{Ē(T ) ≤ s} = P{M̄(s) ≥ T} we can integrate by parts to

get
∫ ∞

0

∫ ∞

0

e−us−λTP{Ē(T ) ≤ s} ds dT =
1 − aλγ−1 + u/q(u)

u(u+ λ− aλγ)
.(3.2)

Let gγ be the γ-stable density whose characteristic function is ĝγ(k) = e(−ik)
γ
.

Inverting (3.2) shows that

(3.3) P{Ē(t) ≤ s} =

∫ ∞

t−s

(as)1/γ

gγ(u) du+

∫ s

0

m(s− u)

(au)1/γ
gγ

(
t− u

(au)1/γ

)
du.

Since P{M̄(s) ≥ t} = P{Ē(t) ≤ s}, taking the derivative with respect to t

shows that M̄(s) has a density. �
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Remark 3.2. As t → ∞ the first integral term in (3.3) dominates the second

so that

(3.4) P{Ē(t) ≤ s} ∼
∫ ∞

t−s

(as)1/γ

gγ(u) du = P{D̄(s) ≥ t}

in view of the fact (still assuming that µ = 1) that D̄(s) is identically distrib-

uted with (as)1/γDγ + s where Dγ is the stable random variable with density

gγ. If D̄(s) were an increasing process, the left-hand and right-hand expres-

sions in (3.4) would be equal. Hence the second term in (3.3) compensates for

the fact that D̄(s) is not monotone.

Theorem 3.3. Under the assumptions of Section 2 we have

{c−1N
(c)
t }t≥0

f.d.
=⇒ {Ē(t)}t≥0 as c→ ∞.

Proof. Writing T (c)([ct]) = b(c)(T ([ct]) − µ[ct]) + c−1[ct]µ, use (2.4) and

c−1[ct]µ→ µt together with Theorem 4.1 in [18] to see that

{T (c)([ct])}t≥0 ⇒ {D̄(t)}t≥0 in J1.

Using Theorem 13.4.1 of [17] this implies
{

sup
0≤s≤t

T (c)([cs])
}
t≥0

⇒
{

sup
0≤s≤t

D̄(s)
}
t≥0

in J1

which is exactly

(3.5) {τ (c)
[ct]}t≥0 ⇒ {M̄(t)}t≥0 in J1.

Fix any 0 < t1 < · · · < tm and x1, . . . , xm ≥ 0. Then using (3.5) we have

P{c−1N
(c)
ti ≤ xi ∀i = 1, . . . , m} = P{N (c)

ti ≤ cxi ∀i = 1, . . . , m}

= P{τ (c)
[cxi]

≥ ti ∀i = 1, . . . , m}

→ P{M̄(xi) ≥ ti ∀i = 1, . . . , m}

= P{Ē(ti) ≤ xi ∀i = 1, . . . , m}

as c→ ∞, using (3.5) and Lemma 3.1. �

Assume µ = 1, which entails no loss of generality. Equation (3.2) shows that

the density m(s, t) of the hitting time Ē(t) has Laplace-Laplace transform

m̄(u, λ) =

∫ ∞

0

∫ ∞

0

e−us−λtm(s, t) ds dt =
1 − aλγ−1 + u/q(u)

u+ λ− aλγ
.(3.6)
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Writing (u+ λ− aλγ)m̄(u, λ) = 1 − aλγ−1 + u/q(u) and inverting shows that

m(s, t) solves a fractional partial differential equation

(3.7) a

(
d

dt

)γ

m(s, t) − d

dt
m(s, t) =

d

ds
m(s, t) − f(s)δ(t)

with conditions m(s, 0) = δ(s);m(0, t) = mt(s, 0) = 0 ∀ s, t > 0; s 7→ m(s, t)

is a probability density for all t > 0, and f(s) has Laplace transform u/q(u),

see [2] for more details. The Caputo derivative (d/dt)γ for 1 < γ ≤ 2 can

be defined by requiring that (d/dt)γ F (t) has Laplace transform λγF̃ (λ) −
λγ−1F (0) − λγ−2F ′(0) where F̃ (λ) is the Laplace transform of F (t), see for

example [5, 14]. For 0 < γ < 1 the density m(s, t) of the hitting time E(t) for

the inverse stable subordinator solves

(3.8) a

(
d

dt

)γ

m(s, t) = − d

ds
m(s, t).

This follows from (5.4) in [12] with L = −d/ds corresponding to the trivial shift

process A(t) = t, noting that the Caputo derivative (d/dt)γ F (t) for 0 < γ ≤ 1

has Laplace transform λγF̃ (λ)−λγ−1F (0), and that the last term t−γ/Γ(1−γ)
in (5.4) of [12] is absorbed into the Caputo derivative as the inverse Laplace

transform of λγ−1. Using two time scales allows us to extend equation (3.8) to

the case 1 < γ ≤ 2 in (3.7).

4. CTRW limit theorem with two time scales

Generalizing the classical CTRW model in Section 2, we now prove a limit

theorem for the rescaled CTRW process {S(N
(c)
t )}t≥0 with two time scales.

The limiting process is a subordination of the operator stable Lévy process

{A(t)}t≥0 in (2.7) by the process {Ē(t)}t≥0 introduced in Section 3. We first

derive a technical result which is of independent interest. It generalizes Gne-

denko’s transfer theorem to
f.d.
=⇒-convergence of stochastic processes. Fix any

m, k ≥ 1. For any x ∈ Rm and c > 0 let µc(x), ν(x) be probability measures

on Rk. We say that

µc(x) ⇒ ν(x) as c→ ∞

uniformly on compact subsets of Rm if

µc(x
(c)) ⇒ ν(x) as c→ ∞
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whenever x(c) → x as c→ ∞.

Proposition 4.1. Assume that for any x ∈ Rm and c > 0 probability measures

µc(x) and ν(x) on Rk are given such that µc(x) ⇒ ν(x) as c→ ∞ uniformly on

compact subsets of Rm and that x 7→ ν(x) is weakly continuous and x 7→ µc(x)

is weakly measurable for any c > 0. Assume further that ρc, ρ are probability

measures on Rm for any c > 0 such that ρc ⇒ ρ as c→ ∞. Then

∫
µc(x)dρc(x) ⇒

∫
ν(x)dρ(x) as c→ ∞.

Proof. For a Borel probability measure ψ on Rk and any bounded continuous

function f : Rk → R1 let 〈ψ, f〉 =
∫
f(y)dψ(y). Let ψc =

∫
µc(x)dρc(x) and

ψ =
∫
ν(x)dρ(x). Then we have to show that

(4.1) 〈ψc, f〉 → 〈ψ, f〉 as c→ ∞

for all bounded continuous functions f : Rk → R1. Fix any such function f

and let K = supx∈Rk |f(x)|. Since ρc ⇒ ρ as c→ ∞ it follows from Prohorov’s

theorem that {ρc}c>0 is uniformly tight and hence, given ε > 0 there exists a

R > 0 such that ρc{‖x‖ > R} < ε/(4K) for all c > 0 and ρ{‖x‖ = R} = 0.

By assumption 〈µc(x(c)), f〉 → 〈ν(x), f〉 as c → ∞ whenever x(c) → x. Hence

〈µc(x), f〉 → 〈ν(x), f〉 uniformly on compact subsets of Rm. Then there exists

a c0 > 0 such that for all c ≥ c0 and all ‖x‖ ≤ R

|〈µc(x), f〉 − 〈ν(x), f〉| < ε

4
.

Since {‖x‖ ≤ R} is a ρ-continuity set and x 7→ 〈ν(x), f〉 is a bounded contin-

uous function, there exists a c1 ≥ c0 such that for all c ≥ c1

∣∣∣
∫

‖x‖≤R
〈ν(x), f〉dρc(x) −

∫

‖x‖≤R
〈ν(x), f〉dρ(x)

∣∣∣ < ε

4
.
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Then for c ≥ c1 we obtain

|〈ψc, f〉 − 〈ψ, f〉| =
∣∣∣
∫

〈µc(x), f〉dρc(x) −
∫

〈ν(x), f〉dρ(x)
∣∣∣

≤
∣∣∣
∫

‖x‖≤R
〈µc(x), f〉dρc(x) −

∫

‖x‖≤R
〈ν(x), f〉dρ(x)

∣∣∣

+

∫

‖x‖>R
|〈µc(x), f〉|dρc(x) +

∫

‖x‖>R
|〈ν(x), f〉|dρ(x)

≤
∫

‖x‖≤R
|〈µc(x), f〉 − 〈ν(x), f〉|dρc(x)

+
∣∣∣
∫

‖x‖≤R
〈ν(x), f〉dρc(x) −

∫

‖x‖≤R
〈ν(x), f〉dρ(x)

∣∣∣ +
ε

2

<
ε

4
ρc{‖x‖ ≤ R} +

ε

4
+
ε

2

≤ ε.

Since ε > 0 is arbitrary (4.1) follows and the proof is complete. �

The following result is similar to Theorem 4.2 in [12]. However, since the

subordinator {Ē(t)} does not exist as a stochastic process in D([0,∞),R1) we

use a completely different method.

Theorem 4.2. Under the assumptions of Section 2 we have

(4.2) {B(c)S(N
(c)
t )}t≥0

f.d.
=⇒ {A(Ē(t))}t≥0

Proof. Fix any 0 < t1 < · · · < tm. Then in view of the independence of (Ji)

and (Yi) we obtain

P
(B(c)S(N

(c)
ti

):1≤i≤m)
=

∫
P(B(c)S(xi):1≤i≤m)dP(N

(c)
ti

:1≤i≤m)
(x1, . . . , xm)

=

∫
P(B(c)S(xi):1≤i≤m)d cP(c−1N

(c)
ti

:1≤i≤m)
(x1, . . . , xm)

=

∫
P(B(c)S(cxi):1≤i≤m)dP(c−1N

(c)
ti

:1≤i≤m)
(x1, . . . , xm).

(4.3)

Now let ρc be the distribution of (c−1N
(c)
ti : 1 ≤ i ≤ m) and let ρ be the

distribution of (Ē(ti) : 1 ≤ i ≤ m). Then ρc, ρ are probability measures on

Rm and it follows from Theorem 3.3 that ρc ⇒ ρ as c→ ∞. Furthermore, for
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x = (x1, . . . , xm) ∈ Rm
+ let

µc(x) = P(B(c)S(cxi):1≤i≤m)

ν(x) = P(A(xi):1≤i≤m)

Then µc(x), ν(x) are probability measures on (Rd)m and since {A(t)}t≥0 as

a Lévy process is stochastically continuous the mapping x 7→ ν(x) is weakly

continuous. Note that the right hand side of (4.3) is equal to
∫
µc(x)dρc(x).

If we can show that

(4.4) µc(x
(c)) ⇒ ν(x) as c→ ∞

whenever x(c) → x ∈ Rm
+ then Proposition 4.1 implies that for the right hand

side of (4.3) we get
∫
µc(x)dρc(x) ⇒

∫
ν(x)dρ(x)

=

∫
P(A(xi):1≤i≤m)dP(Ē(ti):1≤i≤m)(x1, . . . , xm)

= P(A(Ē(ti)):1≤i≤m)

as c→ ∞.

It remains to show (4.4). Assume that x(c) = (x
(c)
1 , . . . , x

(c)
m ) → x =

(x1, . . . , xm) where without loss of generality 0 ≤ x1 ≤ · · · ≤ xm. If µ̂ is

the characteristic function of the distribution µ of Yi then it follows from

(2.7) along with Lévy’s continuity theorem that B(c)µ̂[ct] → ν̂t as c → ∞
for any t > 0, and hence B(c)µ̂[ct+o(c)] = (B(c)µ̂[ct])1+o(1) → ν̂t as well, so

B(c)S(ct+ o(c)) ⇒ A(t). Then for any fixed 1 ≤ i ≤ m we have

B(c)(S([cx
(c)
i ]) − S([cx

(c)
i−1]))

d
= B(c)(S([cx

(c)
i ] − [cx

(c)
i−1]))

⇒ A(xi − xi−1)
d
= A(xi) − A(xi−1)

as c→ ∞, and since these random vectors are independent we also have

(4.5)
(
B(c)(S([cx

(c)
i ]) − S([cx

(c)
i−1])) : 1 ≤ i ≤ m

)

⇒
(
A(xi) − A(xi−1) : 1 ≤ i ≤ m

)

as c→ ∞. Then continuous mapping implies that

µc(x
(c)) = P

(B(c)S(cx
(c)
i ):1≤i≤m)

⇒ P(A(xi):1≤i≤m) = ν(x)
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as c→ ∞, proving (4.4). �

Recall from [7] Theorem 4.10.2 that the distribution νt of A(t) in (2.7) has

a C∞ density p(x, t), so that dνt(x) = p(x, t)dx, and that m(s, t) is the density

of the hitting time Ē(t).

Corollary 4.3. The limiting process {A(Ē(t))}t≥0 obtained in Theorem 4.2

has the density

(4.6) h(x, t) =

∫ ∞

0

p(x, s)m(s, t)ds.

Proof. This is a simple conditioning argument, using the fact that {A(t)} and

{Ē(t)} are independent stochastic processes. �

Assume µ = 1, which entails no loss of generality. The density of the CTRW

limit process A(Ē(t)) solves a governing equation that provides a model for

anomalous diffusion. Since ν is infinitely divisible it defines a strongly continu-

ous semigroup G(t)f(x) =
∫
f(x−y)νt(dy) for f ∈ L1(Rd) and t ≥ 0. Theorem

2.2 in [1] shows that the generator L of this semigroup is a linear operator on

L1(Rd) defined by setting the Fourier transform of Lf equal to ψ(k)f̂(k), where∫
ei〈k,x〉νt(dx) = etψ(k) and f̂(k) =

∫
ei〈k,x〉f(x) dx is the Fourier transform of

f(x). Then the density h(x, t) of the CTRW limit process in Corollary 4.3

solves the fractional partial differential equation

(4.7) −a
(
d

dt

)γ

h(x, t) +
d

dt
h(x, t) = Lh(x, t) + δ(t)g(x)

where g(x) has Fourier transform ĝ(k) = −ψ(k)/q(−ψ(k)). To see this, take

Laplace-Fourier transforms in (4.7) to get

−aλγ h̄(k, λ) + aλγ−1 + λh̄(k, λ) − 1 = ψ(k)h̄(k, λ) + ĝ(k)

and then solve to obtain

h̄(k, λ) =
1 − aλγ−1 + ĝ(k)

λ− aλγ − ψ(k)
.

Now just check that the function h(x, t) given by (4.6) has this Laplace-Fourier

transform, see [2] for details. Zaslavsky [19] proposed a fractional kinetic

equation

(4.8)

(
d

dt

)γ

h(x, t) = Lh(x, t)
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for Hamiltonian chaos, where 0 < γ < 1. Equation (4.7) extends this equation

to the case 1 < γ ≤ 2. When γ = 1 these equations reduce to the classical

Cauchy equation

(4.9)

(
d

dt

)
h(x, t) = Lh(x, t).
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