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Abstract—This paper addresses the challenge of enabling non-
expert users to command robots to perform complex high-level
tasks using natural language. It describes an integrated system
that combines the power of formal methods with the acces-
sibility of natural language, providing correct-by-construction
controllers for high-level specifications that can be implemented,
and easy-to-understand feedback to the user on those that cannot
be achieved. This is among the first works to close this feedback
loop, enabling users to interact with the robot in order to identify
a succinct cause of failure and obtain the desired controller. The
supported language and logical capabilities are illustrated using
examples involving a robot assistant in a hospital.

I. INTRODUCTION

As robots become more ubiquitous, multi-capable and
general-purpose, it is desirable for them to be easily con-
trollable by non-expert users. The near future will likely
see robots in homes and offices, performing everyday tasks
such as fetching coffee and tidying rooms. The challenge of
programming robots to perform these tasks has until recently
been the domain of experts, requiring hard-coded high-level
implementations and ad-hoc use of low-level techniques such
as path-planning during execution. Recent advances in the ap-
plication of formal methods to robot control have enabled au-
tomated synthesis of correct-by-construction hybrid controllers
for complex high-level tasks (e.g., [15, 13, 1, 4, 17, 26]).

However, most current approaches require the user to pro-
vide task specifications in logic, or a similarly structured
specification language [16]; users must formally reason about
system requirements rather than providing an intuitive descrip-
tion of the desired outcome. This motivates a robot control
platform that allows users to specify behaviors via natural
language (text or speech) and provides either the desired robot
controller or an explanation for why one cannot exist.

This paper presents an integrated platform that enables robot
control from natural language specifications for situated high-
level tasks. Natural language commands to the robot are parsed
using semantic analysis into a formal specification which is
used to synthesize a hybrid controller. If no implementation
exists, the user is provided with an explanation and the
portions of the specification that cause failure. The proposed
system thus combines the power of formal methods with

the accessibility of natural language, providing correct-by-
construction controllers for specifications that can be imple-
mented and easy-to-understand feedback for those that cannot.

There are several previous approaches that use natural
language for controlling robots. Some frameworks translate
instructions in unconstrained natural language into formal goal
descriptions and action scripts for tasks like navigation and
manipulation [9, 18, 25]. Others map high-level instructions to
more fine-grained sequences of commands, filling in missing
information [5]. This paper builds on components presented in
[6], adding natural language capabilities to deal with a wider
class of specifications, and providing fine-grained feedback on
specifications that cannot be implemented.

On the controller synthesis front, recent work has tackled the
problem of analyzing high-level specifications that are unsyn-
thesizable. Feedback about the cause of unsynthesizability can
be provided to the user in the form of a modified specification
[10, 14], a highlighted fragment of the original specification
[20], or by allowing the user to interact with an adversarial en-
vironment that prevents the robot from achieving the specified
behavior [21, 22]. Building upon these approaches, this work
provides minimal explanations of unsatisfiable specifications,
as described in Section V, and provides fine-grained natural
language feedback that is not necessarily just a subset of the
original natural language specification. It also enhances the
interactive visualization tool with feedback on why particular
robot actions may be disallowed in a given state, as described
in Section VI-B.

II. SYSTEM OVERVIEW

Fig. 1 shows the system’s main components and the con-
nections between them. The Situated Language Understanding
Robot Platform (SLURP) consists of parsing, semantic inter-
pretation, LTL generation, and feedback components; these
are described in detail in Section III. This module is the
natural language connection between the user and the logical
representations used within the Linear Temporal Logic Mis-
siOn Planning (LTLMoP) toolkit [11]. LTLMoP, which also
interfaces with the SAT solver PicoSAT [2], provides an envi-
ronment for creating, analyzing, and executing specifications.
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Fig. 1: System Overview

Subcomponents of LTLMoP are detailed in Section IV.

III. TRANSFORMING NATURAL LANGUAGE INTO LOGIC
WITH SLURP

The Situated Language Understanding Robot Platform
(SLURP) enables the conversion of natural language spec-
ifications into Linear Temporal Logic formulas. The user’s
instructions are processed through a pipeline of natural lan-
guage components which identify the syntactic structure of the
sentences, extract semantic information from them, and create
logical formulas to be used in controller synthesis. While
many previous natural language systems for robot control have
relied on per-scenario grammars that allow the unification
of semantic information and natural language representations
[8], this work uses a combination of robust, general-purpose
components. An advantage of this approach compared to per-
scenario grammars is that the core language models need not
be modified across scenarios; to adapt to new scenarios all that
is required is that the LTL generation be extended to support
additional types of commands.

A. Identifying Linguistic Structure

Before a sentence may be converted into logical formulas,
the linguistic structure of the sentence must be identified.

1) Parsing: Parsing is the process of assigning a hierar-
chical structure to a sentence. While simple natural language
understanding can be performed with shallower processing
techniques, parsing allows for recovery of the hierarchical
structure of the sentence, allowing for proper handling of natu-
ral language phenomena such as negation (e.g., Never go to the
lounge) and coordination (e.g., Go to the lounge and kitchen)
which are crucial to understanding commands. SLURP uses
the pipeline of natural language processing components used
by Brooks et al. [6]: the Bikel parser [3] combined with the
null element (understood subject) restoration of Gabbard et al.
[12] to parse sentences. Before being given to the parser, the
input is tagged using MXPOST [23]. The models used by
these systems require no in-domain training. The output of
these modules is given in Figure 2A.

2) Semantic interpretation: The semantic interpretation
module uses the parse tree to extract verbs and their arguments.
For example, in the sentence Carry meals from the kitchen to
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(A) Tagging, parsing, and null element restoration

Agent: * (understood subject)
Verb: go
Preposition: to
Location: the hallway

(B) VerbNet frame matching

Initially, the hallway has not been visited:
¬s.mem visit hallway

Define a persistent memory of going to the hallway:
�(©s.mem visit hallway⇔

(s.mem visit hallway∨©s.hallway))
Always eventually have a memory of visiting the hallway:

� �(s.mem visit hallway)

(C) LTL formula generation

Fig. 2: Conversion of the sentence “Go to the hallway.” into
LTL formulas through parsing, semantic interpretation, and
LTL generation.

all patient rooms, the desired structure is a carry command
with an object of meals, a source of kitchen, and a destination
of all patient rooms.

To extract verbs and their arguments from parse trees,
SLURP uses VerbNet [24], a large database of verbs and
the types of arguments they can take. The VerbNet database
identifies verbs as members of senses: groups of verbs which
in similar contexts have similar meanings. For example, the
verbs carry, lug, and haul belong to the general sense CARRY,
because in some contexts they are roughly equivalent in
meaning. For each sense, VerbNet provides a set of frames,
which indicates the possible arguments to the sense. Consider
the following sentence: Carry meals to all patient rooms.
The verb carry is mapped to the sense CARRY. An example
of a frame for this sense is [AGENT, VERB, THEME, TO
TOWARDS, DESTINATION]. Each role in the frame, subject
to its associated syntactic constraints, is mapped to a part
of the parse tree. In this case, SLURP creates the following
mapping: [AGENT→ *, VERB→ carry, ..., DESTINATION→
all patient rooms]. Among the frames that completely match



the parse tree, SLURP chooses the frame that expresses the
most semantic roles. The chosen match is then used to fill in
the appropriate fields in the command.

B. Generation of LTL Formulas

The information provided by VerbNet allows the identifica-
tion of verbs and their arguments; these verbs must then be
used to generate logical formulas defining robot tasks.

1) Linear Temporal Logic (LTL): The underlying logical
formalism used in this work is Linear Temporal Logic (LTL),
a modal logic that includes temporal operators, allowing
formulas to specify the truth values of atomic propositions over
time. LTL formulas are constructed from atomic propositions
π ∈ AP according to the following recursive grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ϕ | ©ϕ | ϕUϕ,

where ¬ is negation, ∨ is disjunction, © is “next”, and U is a
strong “until”. Conjunction (∧), implication (⇒), equivalence
(⇔), “eventually” ( �) and “always” (�) are derived from
these operators. Informally, the formula ©ϕ expresses that ϕ

is true in the next time step. Similarly, a sequence of states
satisfies �ϕ if ϕ is true in every position of the sequence, and
�ϕ if ϕ is true at some position of the sequence. Therefore,

the formula � �ϕ is satisfied if ϕ is true infinitely often. For
a formal definition of the LTL semantics, see Clarke et al. [7].

Task specifications in this work are expressed as LTL
formulas of the form ϕ = ϕe ⇒ ϕs with ϕp = ϕ i

p ∧ϕ t
p ∧ϕ

g
p ,

where ϕ i
p,ϕ

t
p and ϕ

g
p for p ∈ {e,s} represent the initial

conditions, safeties and goals for the environment (e) and
the robot (s). An overview of the process that generates LTL
formulas from natural language is given in Figure 2. First, the
linguistic structure of the sentence is recovered, then semantic
information is extracted from the structure, and finally the
semantic information is used to generate LTL formulas.

2) Types of commands: There are two primary types of
properties allowed – safety properties, which guarantee that
“something bad never happens”, and liveness conditions,
which state that “something good (eventually) happens”. These
correspond naturally to LTL formulas with operators � and �.
While the domain of actions expressible in natural language is
effectively infinite, the set of actions that a robot can perform
in practice is limited. SLURP can easily be extended to cover
additional actions, but those covered so far by the system are:

1) Going to rooms (Go to the kitchen.)
2) Patrolling (continuously visiting) rooms (Patrol the hallway.)
3) Never going to a room (Don’t go to the lounge.)
4) Searching a room (Search the cafeteria.)
5) Following (Follow me.)
6) Enabling/disabling actuators (Activate your camera.)
7) Carrying items (Carry meals from the kitchen to all patient

rooms.)

Each command is mapped to a set of senses in VerbNet so
that a varied set of individual verbs may be used to signify
each command. As a result, SLURP is only limited in its
vocabulary coverage by the contents of VerbNet—which is
easily expanded to support additional verbs if needed—and by
what actions can be expressed using LTL. Each command may

be freely combined with conditional structures (e.g., “If you
hear an alarm...”), negation, coordination, and quantification.

3) Quantification: To allow the same command to be
conveniently performed on a set of locations, commands
can be specified over quantified arguments. For example, the
command “go to all patient rooms” will be unrolled to apply
to all rooms tagged with the keyword “patient.”

4) LTL Generation: For each supported command, LTL is
generated by macros which create the appropriate assumptions,
restrictions, and goals. In the example given in Figure 2, the
resulting LTL formulas define a memory of having visited the
hallway, and the goal of setting that memory.1

Formulas are generated by mapping each command to
combinations of macros. These macros include goals (goal(x)
generates � �(x)), persistent memories (memory(x) generates
�(©s.mem x⇔ (s.mem x∨©s.x))), and complete at least
once (alo(x) generates (goal(s.mem x) ∧ memory(x))). For
example, patrolling a room is mapped to goal(room), and
going to a room is mapped to alo(room). More complex exam-
ples of generation involving combinations of these macros are
given in Sections VI and VII. A challenge in creating a correct
mapping is that negation of a command does not necessarily
imply its logical negation; a command to avoid a room (or
equivalently not go to it) simply generates �¬s.room without
a memory as in the non-negated case.

5) The Generation Tree: A novel aspect of the LTL gen-
eration process is that the transformations undertaken are
automatically recorded in a generation tree to allow for a
more interpretable analysis of the specification generated. As
shown in Figure 3, the generation tree allows for a hierarchical
explanation of how LTL formulas are generated from natural
language. There is a tree corresponding to each natural lan-
guage statement, rooted at the natural language statement, with
LTL formulas as leaves. The intermediate nodes are created
by the LTL generation process to explain how the statement
was subdivided and why each LTL formula was generated.

In addition to allowing the user to inspect the generated
LTL, the generation tree enables mapping between LTL for-
mulas and natural language for specification analysis. As
is shown in the following sections, this allows for natural
language explanations of problems detected in the specifica-
tion. During execution of the generated controller (either in
simulation or with a real robot), it also allows the system to
answer the question “What are you doing?” by responding
with language from the generation tree. For example, in
Figure 3, if the current goal being pursued during execution is
� �s.mem visit lounge, the system responds: “I’m currently
trying to ‘visit lounge’.” In cases where the original instruction
involves quantification, identification of the sub-goal is partic-
ularly useful. If the user enters “go to all patient rooms,” the
generation tree will contain a sub-tree for each patient room,
allowing for clear identification of which room is relevant to
any problems with the specification.

1This arguably unintuitive translation is due to specifications in LTLMoP
being restricted to a fragment of LTL for computational reasons [17].



Go to the lounge.

Command: go; Location: lounge

Visit “lounge.”

� �(s.mem visit lounge)�(©s.mem visit lounge⇔ (s.mem visit lounge∨©s.lounge))

Initially, “lounge” has not been visited.

¬s.mem visit lounge

Fig. 3: Generation tree for “Go to the lounge.”

IV. FROM LINEAR TEMPORAL LOGIC TO CONTINUOUS
CONTROL WITH LTLMOP

This section discusses the construction of provably-correct
controllers from LTL specifications using the Linear Temporal
Logic MissiOn Planning (LTLMoP) toolkit.

A. Controller Synthesis and Execution

Given an LTL formula representing a task specification
and a description of the workspace topology, the efficient
synthesis algorithm introduced by Piterman et al. [19] is
used to construct an implementing automaton (if one exists).
In combination with lower-level continuous controllers, this
automaton is then used to form a hybrid controller that can be
deployed on physical robots or in simulation. Details of the
synthesis process and the resulting hybrid controller can be
found in Kress-Gazit et al. [17], Finucane et al. [11].

B. Specification Analysis

If an implementing automaton exists for a given LTL
formula, it is called realizable. Otherwise, the algorithm
presented in Raman and Kress-Gazit [22] is used to auto-
matically analyze the LTL formula and identify causes of
failure. The analysis also presents an interactive game for
exploring possible causes of unsynthesizability, in which the
user attempts to fulfill the robot’s task specification against
an adversarial environment. However, the granularity of the
feedback provided by this algorithm is relatively coarse. For
example, it identifies a contradiction within the system safety
conditions, but cannot pinpoint the exact safeties that are
contradicting. Section V describes algorithms for reducing the
problem to a minimal, core subset of the original specification.

Given a set of LTL subformulas that cause the specification
to be unsynthesizable, it remains to map this set back onto
the original specification. For example, in the case of the
structured English specifications supported by the LTLMoP
toolkit [11], this is done by highlighting the sentences that
produced the corresponding LTL [20]. The generation of
natural language feedback from the identified portions of the
LTL formula in SLURP is discussed in Section VI.

V. IDENTIFYING MINIMAL UNSATISFIABLE CORES IN LTL
SPECIFICATIONS

As mentioned in Section IV-B, when a specification does not
yield an implementing automaton, existing algorithms provide

feedback of a coarse granularity [22]. This section describes
techniques implemented in this work that provide fine-grained
feedback in certain cases by tracing the problem back to a
minimal explanation, and identifies the challenges that must
be overcome to extend these techniques to the remaining cases.

When controller synthesis fails the specification is called
unsynthesizable. Unsynthesizable specifications are either un-
satisfiable, in which case the robot cannot succeed no matter
what happens in the environment (e.g., if the task requires pa-
trolling a disconnected workspace), or unrealizable, in which
case there exists at least one environment that can prevent the
desired behavior (e.g., if in the above task, the environment
can disconnect an otherwise connected workspace, such as
by closing a door). More examples illustrating the differences
between the two cases can be found in [22].

In both cases, failure can occur in one of two ways: either
the robot ends up in a state from which it has no valid moves
(termed deadlock), or the robot is able to change its state
infinitely often but one of its goals is unreachable without
violating the specified safety requirements (termed livelock). In
the context of unsatisfiability, an example of deadlock is when
the system safety conditions contain a contradiction within
themselves. Similarly, unrealizable deadlock occurs when the
environment has at least one strategy for forcing the system
into a deadlocked state. Livelock occurs when there is no
deadlock, but one or more goals cannot be reached while still
following the robot safety conditions.

Previous work produced explanations of unsynthesizability
in terms of combinations of the specification components
(i.e., initial, safety and liveness conditions). However the true
conflict often lies in small subformulas of these components.

Specification 1 An example unsatisfiable specification
1) Don’t go to the kitchen (part of ϕt

s)
2) Visit the kitchen (part of ϕ

g
s )

3) Always activate your camera (part of ϕt
s)

Consider Specification 1. It is clear that the safety require-
ment in (1) conflicts with the goal in (2), since in order to
visit the kitchen one must in fact go there. However, the
safety requirement in (3) is irrelevant, and should be excluded
from any explanation of why this specification is unsatisfiable.
However, the algorithm presented by Raman and Kress-Gazit
[22] will return the entirely of ϕ t

s along with the goal of



visiting the kitchen, declaring that this goal is in conflict
with some subset of the safeties (but not identifying the exact
subset). Note that this is a case of livelock: the robot can
follow its safety conditions indefinitely by staying out of the
kitchen, but is prevented from ever reaching its goal of visiting
the kitchen.

As part of the system presented in this paper, unsatisfiable
components of the robot specification ϕs are further analysed
to narrow down the cause of unsatisfiability for both deadlock
and livelock. Extending these techniques to the environment
assumptions ϕe is straightforward.

A. Unsatisfiable Cores for Deadlock
Given a depth d and an LTL safety formula ϕ over propo-

sitions p ∈ AP, there exists a propositional formula ψ over⋃
1≤i≤d+1 APi, where pi ∈ APi represents the value of p ∈ AP

at time step i, constructed as:

ψ
d(ϕ) =

∧
1≤i≤d

ϕ[© p/pi+1][p/pi],

where ϕ[a/b] represents ϕ with all occurrences
of subformula a replaced with b. Formula ψd(ϕ)
is called the depth-d unrolling of ϕ . Consider
Specification 2. ψ1(ϕ t

s) = ¬s.kitchen1 ∧ s.camera2 and
ψ2(ϕ t

s) = ¬s.kitchen1 ∧ s.camera2 ∧¬s.kitchen2 ∧ s.camera3,
where proposition s.kitcheni represents the truth value of
s.kitchen at time step i.

When deadlock is identified [21, 22], a minimal unsatisfi-
able core is produced by incrementally creating unrollings of
the robot safety formula ϕ t

s , until a depth d is reached where
ψd

f romInit = ϕ i
s[p/p1]∧ψd(ϕ t

s) is unsatisfiable. In other words,
there is no valid sequence of actions that follow the safety
to d time steps starting from the initial condition. An off-
the-shelf satisfiability (SAT) solver can be used to determine
unsatisfiability of ψd

f romInit ; this work uses PicoSAT [2]. If
ψd

f romInit is unsatisfiable, the same SAT solver yields a minimal
unsatisfiable subformula, which is then mapped back to the
originating portions of the safety and initial formulas.

Specification 2 Core-finding example – unsatisfiable deadlock
1) Start in the kitchen (ϕ i

s):
s.kitchen

2) Avoid the kitchen (ϕ i
s, ϕt

s):
¬s.kitchen∧�¬s.kitchen

3) Always activate your camera (ϕt
s):

�©s.camera

In Specification 2, a deadlocked specification, the described
method begins at the initial state described by ϕ i

s (lines 1
and 2), and unrolls it to ψ1

f romInit = s.kitchen1∧¬s.kitchen1∧
¬s.kitchen1 ∧ s.camera2 above. Note that ψ1

f romInit is al-
ready unsatisfiable, and the core is given by the subformula
s.kitchen1 ∧¬s.kitchen1, which in turn maps back to lines 1
and 2. This is because the two statements combined require
the robot to both start in the kitchen and not start in the
kitchen. Section VII contains another example demonstrating
unsatisfiable core-finding for deadlocked specifications.

B. Unsatisfiable Cores for Livelock

In the case of livelock, a similar unrolling procedure can
be applied to determine the core set of clauses that prevent a
goal from being fulfilled. A propositional formula is generated
by unrolling the robot safety from the initial state for a pre-
determined number of time steps, with an additional clause
representing the goal being required to hold at the last time
step. Consider the livelocked Specification 3, referring to a
robot operating in the workspace depicted in Fig. 4.

Specification 3 Core-finding example – unsatisfiable livelock
1) Start in the kitchen (ϕ i

s):
s.kitchen

2) Avoid hall w (ϕ i
s, ϕt

s):
¬s.hall w∧�¬s.hall w

3) Always activate your camera (ϕt
s):

�©s.camera
4) Patrol r3 (ϕg

s ):
� �s.r3

Unrolling the robot safety to depth 5 results in:

ψ
5
f romInit = s.kitchen1∧

∧
1≤i≤5

¬s.hall wi

∧s.r35∧
∧

2≤i≤5

s.camerai∧
∧

1≤i≤5

ϕ
i
topo

where ϕ i
topo represents the topology constraints on the robot

at time i. Note that ψ5
f romInit is unsatisfiable, and the core is

given by the subformula:

s.kitchen1∧
∧

1≤i≤5

¬s.hall wi∧ s.r35∧
∧

1≤i≤5

ϕ
i
topo

which maps back to (1), (2) and (4). This is because the robot
cannot reach r3 without passing through hall w. Section VII
contains another example demonstrating unsatisfiable core-
finding for livelocked specifications.

In the case of deadlock, the propositional formula can be
built one step at a time until it is found to be unsatisfiable.
This gives us a sound and complete method for determining
the depth to which the safety must be unrolled in order to
identify an unsatisfiable core for deadlock. For livelock, on the
other hand, determining the shortest depth that will produce
a meaningful core is a much bigger challenge. Consider the
above example. For unroll depths less than or equal to 3,
the unsatisfiable core returned will include just the workspace
topology, since the robot cannot reach r3 from the kitchen in 3
steps or fewer, even if it is allowed into hall w; however, this
is not a meaningful core. Determining the shortest depth that
will produce a meaningful core is a future research challenge,
and for the purpose of this work, a fixed depth of 15 time
steps was used for the examples presented.

C. Identifying the Cause of Unrealizability

If the specification is unrealizable rather than unsatisfiable,
the above techniques do not apply directly to identify a core,
since all environment strategies must be considered when
unrolling the system safety relations, resulting in not one but



Deadlock Livelock

Unsat-
isfiable

Core (minimal subset of
safeties)

Core (minimal subset of
safeties, single goal)

Unreal-
izable

Entire safety formula;
interactive game

Entire safety formula, single
goal; interactive game

TABLE I: Summary of the types of feedback provided

exponentially many possible propositional formulas at each
time step. It is unclear what an unrealizable “core” would be
in this context, and future work will develop methods of nar-
rowing down the cause of unrealizability to a suitably-defined
core. At present, the feedback provided in the unrealizable
case is at the same granularity as that of Raman and Kress-
Gazit [21], Raman and Kress-Gazit [22]. However, unsatis-
fiable cores enable a useful enhancement to the interactive
visualization game, as described in Section VI-B.

Table I summarizes the feedback provided in cases of unre-
alizability and unsatisfiability, for both deadlock and livelock.

VI. PROVIDING USERS WITH FEEDBACK ON
SPECIFICATIONS

Once the guilty portions of the LTL formula generated
from a task specification have been identified, the cause of
failure must be presented to the user. This section describes
two modes of communicating the cause of unsynthesizability
deployed in the presented system.

A. Explaining Unsatisfiable Tasks

Giving users detailed feedback regarding why a task is
unachievable is essential to helping them correct it. While
better than simply reporting failure, returning the user a set
of LTL formulas responsible for unsatisfiability is not enough
to help them correct the natural language specification that
generated it. To provide actionable feedback to the user,
SLURP uses a combination of the user’s own natural language
along with structured language created during the LTL formula
generation process to explain problems with the specified task.

Consider the example given above where the combination
of the statements “Don’t go to the kitchen” and “Visit the
kitchen” results in an unsatisfiable specification. The minimal
unsatisfiable core of the specification is as follows:

�(¬s.kitchen)
�(©s.mem visit kitchen⇔

(s.mem visit kitchen∨©s.kitchen))
� �(s.mem visit kitchen)

To explain the conflict, the system lists the goal that cannot
be satisfied and natural language corresponding to the safety
formulas in the minimal core. The response is:

The problematic goal comes from the statement ‘Go to the
kitchen.’. The system cannot achieve the sub-goal “Visit
‘kitchen’.”.
The statements that cause the problem are:
• “Don’t go to the kitchen.” because of item(s): “Do

not go to ‘kitchen’.”.
• ‘Go to the kitchen.’ because of item(s): “Visit

‘kitchen’.”.
Additional examples of feedback are given in Section VII.

lounge
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Fig. 4: Map of hospital workspace (“c” is the closet)

B. Interactive Exploration of Unrealizable Tasks

Succinctly summarizing the cause of an unrealizable spec-
ification is challenging, sometimes even for a human, so
our system uses an interactive game (shown in Fig. 6) to
demonstrate an environment behavior that will cause the robot
to fail. This lets the user attempt to play as a robot against an
adversarial environment, and in the process gain insight into
the nature of the problem. An example of this tool in use is
given in Section VII-B.

At each discrete time step, the user is presented with the
current goal to pursue and the current state of the environment.
The user is then able to change the location of the robot
and the states of its actuators in response. By using the core-
finding analysis presented in this work, a specific explanation
is now given about what part of the original specification is
in conflict with any invalid moves. This is done by finding
the unsatisfiable core of a single-step satisfiability problem
involving the user’s current state, the desired next state, and
all of the robot’s specified safety conditions.

VII. HOSPITAL EXAMPLE

This section presents three examples that demonstrate vari-
ous features of this framework. All of the scenarios concern a
robot acting as an assistant in a small hospital (a map of the
workspace is shown in Fig. 4). The robot is able to detect the
location of the user, record video with its camera, and pick up
and deliver objects.

A. Unsatisfiability

Specification 4 Example of unsatisfiability (deadlock)
1) Don’t activate your camera in any restricted area.
2) Avoid the lounge.
3) Start in hall c.
4) Always activate your camera.

1) Deadlock: Unsatisfiable deadlock can arise when a robot
safety constraints are in direct conflict with one another. For
example, in Specification 4, the robot is given constraints to
respect privacy in Lines 1 and 2 (“restricted areas” are defined
as all rooms other than the lounge, closet, and kitchen), but is
also asked to do something in direct contradiction with these
constraints in Lines 3 and 4.

Even though the quantifier in Line 1 generates a large num-
ber of safety restrictions (one for each “restricted area”), the



Fig. 5: Screenshot of feedback for Specification 5.

core-finding component correctly narrows down the problem
as follows:

The statements that cause the problem are:
• “Always activate your camera.” because of item(s):

“Always activate ‘camera’.”.
• “Avoid the lounge.” because of item(s): “Do not go to

‘lounge’.”, “The robot does not begin in ‘lounge’.”.
• “Don’t activate your camera in any restricted area.”

because of item(s): “Never activate ‘camera’ in
‘hall c’.”, “Never activate ‘camera’ in ‘hall n’.”,
“Never activate ‘camera’ in ‘hall w’.”.

• “Start in hall c.” because of item(s): “The robot
begins in ‘hall c’.”.

We notice that, for example, if the robot were to start in the
closet this specification would in fact be achievable by just
staying in the closet and turning on the camera.

Specification 5 Example of unsatisfiability (livelock)
1) Start in the closet.
2) Carry meals from the kitchen to all patient rooms.
3) Don’t go into any public rooms.

2) Livelock: Unsatisfiable livelock is exhibited by the meal
delivery mission shown in Specification 5, in which the robot
is tasked with delivering meals to patients (in r1 to r6) while
avoiding the “public rooms” (defined as hall c and lounge):
because hall c is considered a public room, a semantic subset
of the safety requirement in Line 3 prevents the robot from
being able to deliver meals to all of the patients as requested.

In addition to sentential feedback such as that shown for
the previous example, the offending specification fragments
are highlighted for the user in the context of the semantic
LTL generation tree (see Fig. 5). Note that analysis always
addresses only a single goal at a time, in this case choosing
to highlight the reason that delivery to r1 is impossible.

}Game history

kitchen

Explanation of invalid move

Current goal

Environment state

Fig. 6: Screenshot of interactive visualization tool for Spec-
ification 6. The user is prevented from following the target
into the kitchen in the next step (denoted by the blacked out
region) due to the portion of the specification displayed.

B. Unrealizability

As introduced in Section VI-B, unrealizable specifications
can be analyzed using an interactive visualization tool (see
Fig. 6). For example, in the case of Specification 6, we
discover that the robot cannot achieve its goal of following
the user (Line 1) if the user enters the kitchen (which the
robot has been banned from entering in Line 2).

This conflict is presented to the user as follows: the en-
vironment sets its state to represent the target’s being in the
kitchen, and then, when the user attempts to enter the kitchen,
the tool explains that this move is in conflict with Line 2.

Specification 6 Example of unrealizability
1) Follow me.
2) Avoid the kitchen.

By simply removing the restriction in Line 2 (or, alterna-
tively, adding an assumption that the target will never enter
the kitchen) the specification can be made realizable. Future
work will automate the suggestion of such assumptions that
would make the specification realizable.

VIII. CONCLUSIONS

This paper presents an integrated system that allows non-
expert users to control robots performing high-level, reactive
tasks using a natural language interface. The components of
the proposed system are discussed in detail, and their contri-
butions to the system’s capabilities illustrated with examples
involving a robot assistant in a hospital. Informal instructions
to the robot are transformed into formal specifications, and
used to synthesize a hybrid controller when possible. For
unimplementable specifications, fine-grained analysis provides
the user with a concise explanation of the portions of the
specification that cause the failure; this is the first work
that provides the user with natural language feedback on
failed specifications. Future work will extend the core-finding
capabilities from unsatisfiable to unrealizable specifications,



and extend the natural language parsing and semantic analysis
to wider classes of specifications by considering a variety of
contexts for high-level robot control.
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