
Engineering Heap Overflow Exploits with JavaScript

Mark Daniel
Jake Honoroff
Charlie Miller

Independent Security Evaluators
www.securityevaluators.com

September 8, 2008

c© Independent Security Evaluators 2008. All rights reserved

A version of this paper first appeared in the Proceedings of the USENIX Workshop on Offensive Technolo-
gies 2008 (WOOT ’08).

Engineering Heap Overflow Exploits with JavaScript 1

Abstract

This paper presents a new technique for exploiting heap overflows in JavaScript interpreters. Briefly, given
a heap overflow, JavaScript commands can be used to insure that a function pointer is reliably present for
smashing, just after the overflown buffer. A case study serves to highlight the technique: the Safari exploit
that the authors used to win the 2008 CanSecWest Pwn2Own contest.

1 Introduction

Many buffer and integer overflow vulnerabilities allow for a somewhat arbitrary set of values to be written
at a relative offset to a pointer on the heap. Unfortunately for the attacker, often the data following the
pointer is unpredictable, making exploitation difficult and unreliable. The most ideal heap overflow, in
terms of full attacker control over the quantity and values of overflow bytes, can be virtually unexploitable
if nothing interesting and predictable is waiting to be overwritten.

Thanks to safe unlinking protections, the heap metadata structures are often no longer a viable target
for overflows. Currently, application specific data is usually needed as an overflow target, where normal
program flow results in the calling of a function pointer that has been overwritten with an attacker supplied
shellcode address. However, such exploits are in no way guaranteed to be reliable. It must be the case that
pointers yet to be accessed are sitting on the heap after the overflown buffer, and no other critical data or
unmapped memory lies in between, the smashing of which would result in a premature crash. Such ideal
circumstances can certainly be rare for an arbitrary application vulnerability.

However, given access to a client-side scripting language such as JavaScript, an attacker may be able
to create these ideal circumstances for vulnerabilities in applications like web browsers. In [2], Sotirov
describes how to use JavaScript allocations in Internet Explorer to allow for attacker control over the target
heap. In this paper we describe a new technique, inspired by his Heap Feng Shui, that can be used to reliably
position function pointers for later smashing with a heap overflow.

This paper contains a description of the technique followed by an account of its application to a WebKit
vulnerability discovered by the authors and used to win the 2008 CanSecWest Pwn2Own contest.

2 Technique

2.1 Context

Broadly, this technique can be used to develop client side exploits against web browsers that use JavaScript.
In this context, the attacker crafts a web page containing (among other things) JavaScript commands, and
induces the victim to browse the page. Using particular JavaScript commands, the attacker influences the
state of the heap in the victim’s browser process to arrange for a successful attack.

More specifically, the technique is applicable when one has a heap overflow in hand. In what follows,
we refer to the buffer that is overflown as the vulnerable buffer. This heap overflow must have the property
that both allocation of the vulnerable buffer and the overflow itself must be triggerable within the JavaScript
interpreter. In particular, this technique will not apply in situations where the vulnerable buffer has already
been allocated before the JavaScript interpreter has been instantiated.

We also assume that shellcode is available and a mechanism for loading it into memory has already
been found. This is trivial with JavaScript – just load it into a big string.

Engineering Heap Overflow Exploits with JavaScript 2

Figure 1: Fragmented heap.

Figure 2: Defragmented heap. Future allocations end up adjacent.

2.2 Overview

Keep in mind that the goal is to control a buffer in the heap immediately following the vulnerable buffer.
We accomplish this by arranging the heap so that all holes in it that are big enough to hold the vulnerable
buffer are surrounded by buffers that we control.

The technique consists of five steps.

1. Defragment the heap.

2. Make holes in the heap.

3. Prepare the blocks around the holes.

4. Trigger allocation and overflow.

5. Trigger the jump to shellcode.

These steps are described in more detail in the rest of this section.

Engineering Heap Overflow Exploits with JavaScript 3

2.3 Defragment

The state of a process’s heap depends on the history of allocations and deallocations that have occurred
during the process’s lifetime. Consequently, the state of the heap for a long running multithreaded process
(e.g. a web browser) is unpredictable. Generally, such a heap is fragmented in that it has many holes of
free memory. The presence of varying sized holes of free memory means that the addresses of successive
allocations of similarly sized buffers are unlikely to have any reliable relationship. Figure 1 shows how an
allocation in a fragmented heap might look. Since it is impossible to predict where these holes might occur
in a heap that has been in use for some time, it is impossible to predict where the next allocation will occur.

However, if we have some control over the target application, we may be able to force the application to
make many allocations of any given size. In particular, we can make many allocations that will essentially
fill in all the holes. Once the holes are filled up, i.e. the heap is defragmented, allocations of similar size
will, in general, be predictably close to each other, as in Figure 2.

Figure 3: Defragmented heap with many allocations. We see a long line of same-sized buffers that we
control.

Figure 4: Controlled heap with every other buffer freed. The allocation of the vulnerable buffer ends up in
one of the holes.

We emphasize that defragmentation is always with respect to a particular buffer size. In preparation
for the exploit, we must defragment the heap with respect to the size of the vulnerable buffer. The size of
this buffer will vary, but should be known. As shown in [2], arranging for defragmentation is simple in
JavaScript. For example,

var bigdummy = new Array(1000);
for(i=0; i<1000; i++){

bigdummy[i] = new Array(size);
}

Engineering Heap Overflow Exploits with JavaScript 4

In the code snippet above, each call to new Array(size) results in an allocation of 4*size+8 bytes
on the heap.1 This allocation corresponds to an ArrayStorage object consisting of an eight byte header
followed by an array of size pointers. Initially, the entire allocation is zeroed out. A value of size should
be chosen so that the resulting allocations are as close as in size as possible, and no smaller, than the size of
the vulnerable buffer. The value of 1000 used above was determined empirically.

2.4 Make Holes

Remember, our goal is to arrange for control of the buffer that follows the vulnerable buffer. Assuming
defragmentation worked, we should have a number of contiguous buffers at the end of the heap, all roughly
the same size as the (yet to be allocated) vulnerable buffer (Figure 3). The next step is to free every other of
these contiguous buffers, leaving alternating buffers and holes, all matching the size of the vulnerable
buffer. The first step in achieving this is

for(i=900; i<1000; i+=2){
delete(bigdummy[i]);

}

The lower limit in the for loop is based on the assumption that after 900 allocations in the defragment
stage, we have reached the point where all subsequent allocations are occurring contiguously at the end of
the heap.

Unfortunately, at this point, we have a problem. Simply deleting an object in JavaScript does not im-
mediately result in the object’s space on the heap being freed. Space on the heap is not relinquished until
garbage collection occurs. Internet Explorer provides a CollectGarbage() method that immediately
triggers garbage collection [2], but other implementations do not. In particular, WebKit does not. Accord-
ingly, we digress with a discussion of garbage collection in WebKit.

Our inspection of the WebKit source code turned up three main events that can trigger garbage collec-
tion. To understand these events, one must be familiar with the way WebKit’s JavaScript manages objects.

The implementation maintains two structures, primaryHeap and numberHeap, each of which is es-
sentially an array of pointers to CollectorBlock objects. A CollectorBlock is a fixed–sized array of
Cells and each Cell can hold a JSCell object (or derivative). Every JavaScript object occupies a Cell
in one of these heaps. Large objects (such as arrays and strings) occupy additional memory on the system
heap. We refer to this additional system heap memory as associated storage.

Each CollectorBlock maintains a linked list of those Cells that are free. When an allocation is
requested, and no free Cells are available in any existing CollectorBlocks, a new CollectorBlock
is allocated.

All JavaScript objects deriving from JSObject are allocated on the primaryHeap. The numberHeap
is reserved for NumberImp objects. Note that the latter do not correspond to JavaScript Number objects, but
instead are typically short lived number objects corresponding to intermediate arithmetic computations.

When garbage collection is triggered, both heaps are examined for objects with zero reference counts,
and such objects (and their associated storage if any) are freed.

We now return to the three events we found that trigger garbage collection. They are

1. Expiration of a dedicated garbage collection timer.

1Clearly, details such as this depend on the particular implementation of JavaScript. We used WebKit release 31114 for this investi-
gation.

Engineering Heap Overflow Exploits with JavaScript 5

ArrayStorage
VFTNumberInstance

. .
 .

. .
 .

. .
 .

_ZNK3KJS8JSObject4typeEv

overflow
before

_ZN3KJS14NumberInstanceD0EV

1

0

pNI pVFT pF[0]

pF[1]

pF[2]

_ZN3KJS14NumberInstanceD1EV

free block

free block

Figure 5: Details of an attacker controlled block just before the overflow is triggered.

2. An allocation request that occurs when all of the particular heap’s CollectorBlocks are full.

3. Allocation of an object with sufficiently large associated storage (or a number of such objects).

The first of these events is not very useful, because JavaScript has no sleep routine, and any kind of
sizeable delay in the script runs the risk of causing the “Slow Script” dialog to appear.

The last of these events depends on the number of objects in the primaryHeap and the sizes of their
associated storage. Experiments suggest that the state of the primaryHeap varies greatly with the number
of web pages open in the browser and the degree to which these pages use JavaScript. Consequently,
triggering reliable garbage collection with this event is difficult.

On the other hand, the numberHeap appears to be relatively insensitive to these variations. Heuris-
tically, the numberHeap maintains only one allocated CollectorBlock, even during significant web
browsing of pages with JavaScript. Since the numberHeap CollectorBlock has 4062 Cells, JavaScript
code that allocates at least this many NumberImps should trigger garbage collection. As an example, ma-
nipulation of doubles is one operation that results in a NumberImp allocation from the numberHeap, so
the following JavaScript code can be used for garbage collection triggering:

for(i=0; i<4100; i++){
a = .5;

}

With the completion of this code, the heap should appear as in Figure 4, and we are ready for the next step.

2.5 Prepare the Blocks

This step is straightforward. We use the following JavaScript.

Engineering Heap Overflow Exploits with JavaScript 6

. .
 .

ArrayStorage

. .
 .

. .
 .

NumberInstance
. .

 .
VFT

vulnerable

shellcode

0x52780278

0x52780278

0x52780278
overflow

1

0

after

pSled pVFT pF[0]

pF[1]

pF[2]

_ZN3KJS14NumberInstanceD1EV

_ZN3KJS14NumberInstanceD0EV

_ZNK3KJS8JSObject4typeEv

buffer

free block

Figure 6: Details of an attacker controlled block just after the overflow is triggered.

for(i=901; i<1000; i+=2){
bigdummy[i][0] = new Number(i);

}

The code bigdummy[i][0] = new Number(i), creates a new NumberInstance object, and stores a
pointer to this object in the ArrayStorage object corresponding to bigdummy[i]. Figure 5 depicts a
portion of the heap after this JavaScript runs.

2.6 Trigger Allocation and Overflow

Now it is time to allocate the vulnerable buffer. If the previous steps have gone as expected, the allocation
for the vulnerable buffer will end up in one of the holes that we created, and we are ready for the overflow.
The object of the overflow is to overwrite the pNI pointer in the ArrayStorage object that follows the
vulnerable buffer. The new value should be an address in the sled for the shellcode. Details about the sled
will be discussed below, but for now, note that a typical NOP sled is not appropriate here. After allocation
and overflow, the heap should look as depicted in Figure 6.

2.7 Trigger Jump to Shellcode

The jump to shellcode is executed by simply interacting with the Number objects created during prepa-
ration of the blocks above. More specifically, we need force a call to a virtual method of the underlying
NumberInstance object in the JavaScript implementation. For the blocks that were not overwritten, ex-
ecution is transferred to *((*pNI) + 4*k) where k is the index of the method in the virtual function table

Engineering Heap Overflow Exploits with JavaScript 7

that is invoked. For the block that immediately follows the vulnerable buffer, execution is transferred to
*((*pSled)+4*k). This double dereference of pSled is mildly irritating, but the case study that follows shows a
simple way of dealing with it.

The following JavaScript forces a virtual function call for each NumberInstance object, and thereby
triggers execution of the shellcode.

for(i=901; i<1000; i+=2){
document.write(bigdummy[i][0] + "
");

}

3 Case Study

Our research into reliable JavaScript heap exploitation was motivated by a vulnerability we found in We-
bKit’s PCRE (Perl-Compatible Regular Expression) parsing. It was an integer overflow that allowed for an
arbitrary overflow size past a buffer holding a compiled regular expression that could be allocated to be
any size up to 65535 bytes. However, the overflow occurred very soon after the buffer was allocated, such
that we often ran up against unallocated memory during the overflow. In other instances, we overwrote
important data, but what data was there changed between runs and seemed totally unpredictable. The
technique described in Section 2 solved these problems for us and allowed for reliable exploitation.

First we needed to defragment the heap for a target size of approximately 4000 bytes. The following de-
bugger output shows how the first several allocations are needed to defragment the heap (note the jumping
around of allocation addresses):

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$1 = 0x16278c78

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$2 = 0x50d000

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$3 = 0x510000

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$4 = 0x16155000

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$5 = 0x1647b000

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$6 = 0x1650f000

Engineering Heap Overflow Exploits with JavaScript 8

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$7 = 0x5ac000

By the time we’ve done almost 1000 allocations, the heap starts to look totally predictable, and all allocations
end up adjacent:

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$997 = 0x17164000

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$998 = 0x17165000

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$999 = 0x17166000

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$1000 = 0x17167000

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$1001 = 0x17168000

Breakpoint 3, 0x95850389 in
KJS::ArrayInstance::ArrayInstance ()
array buffer at$1002 = 0x17169000

After freeing up a bunch of holes at the end using the garbage collection technique described in Section 2.4,
we see the vulnerable buffer landing in the last hole at 0x17168000, right before data we control at
0x17169000.

Breakpoint 2, 0x95846748 in
jsRegExpCompile ()
regex buffer at$1004 = 0x17168000

So we will now overflow our regex buffer into the ArrayStorage data. The bytes of the overflow have
to be compiled regular expression bytes. Luckily, the regular expression character class construct allows
for virtually arbitrary bytes in compiled form, as it compiles to 33 bytes, the final 32 of which constitute
a 256-bit bit array where a bit being set to one means that that character is in the class. Thus we use the
character class [\x00\x59\x5c\x5e] and arrange for it to land at the beginning of the ArrayStorage
data, since the first 3 dwords of its compiled bit class are a non-zero dword, a zero dword, and an address
in our heap spray, namely:

0x00000001 0x00000000 0x52000000

Engineering Heap Overflow Exploits with JavaScript 9

Finally, we use a specially crafted heap spray using a large string of the dword 0x52780278 followed
by shellcode. We arrange the spray allocation so that this address is in the spray. This is so that it is
self-referential, i.e. the dereferencing that occurs down the chain from the object pointer through the VFT
stays in the spray. Then, when interpreted as instructions once execution begins, it becomes the conditional
jumps:

78 02: js +0x2
78 52: js +0x52

which are an effective NOP no matter what the jump condition value is: if the condition is true, a jump of
two is taken to the beginning of the next instruction, and if the condition is false, it is false for the jump
of 0x52 as well. This has the nice property of meaning the most significant byte when determining the
heap spray address is completely unused in the sledding, as well as being 4-byte aligned (a spray using the
unconditional jump opcode 0xeb is not, and this can be essential in some exploits).

4 Conclusions

The technique described in this paper allowed for reliable exploitation of a buffer overflow that initially had
no predictable and interesting data to overwrite. While some attacker control is necessary, such as allocation
size, overflow size, and overflow data, this technique should be applicable to other browser vulnerabilities
when the attacker has access to JavaScript. We suspect that similar techniques may be applicable given
access to other client-side scripting languages.

References

[1] Flake, H. Third Generation Exploitation. Blackhat Briefings Windows 2002.

[2] Sotirov, A. Heap Feng Shui in JavaScript. Blackhat Europe 2007.

Engineering Heap Overflow Exploits with JavaScript 10

