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Abstract

The development of more and more complex dis-
tributed applications over large networks of com-
puters has raised the problem ofsemantic inter-
operability across autonomous applications. In
this paper we propose an algorithm, called CTX-
MATCH, for discovering semantic relations be-
tween concepts belonging to heterogeneous and
autonomously developed semantic schemas. The
most significant innovations of the algorithm,
which is theoretically founded on a well–known
theory of contextual reasoning in AI, are that (i) the
problem of finding relationships between concepts
in different schemas is encoded as a problem of
logical satisfiability (and so mappings have a well–
defined semantic); and (ii) the way linguistic and
domain knowledge is used to build the SAT prob-
lem. In this paper, we are mainly focused on the
first aspect. The algorithm has been implemented
as part of a peer-to-peer system for Distributed
Knowledge Management, and tested on significant
cases.

1 Introduction
The development of more and more complex distributed ap-
plications over large networks of computers has created a
whole new class of conceptual, technical, and organizational
problems. Among them, one of the most challenging one is
the problem ofsemantic interoperability, namely the problem
of allowing the exchange meaningful information/knowledge
across applications which (i) use autonomously developed
conceptualizations of their domain, and (ii) need to collab-
orate to achieve their users’ goals.

Two are the main approaches proposed for solving the
problem of semantic interoperability. The first is based on
the availability of shared semantic structures (e.g., ontolo-
gies, global schemas) onto which local representations can be
totally or partially mapped. The second is based on the cre-
ation of a global representation which integrates local repre-
sentations. Both approaches do not seem suitable in scenarios
where: (i) local representations are updated and changed very
frequently, (ii) each local representation is managed in full
autonomy w.r.t. the other ones, (iii) local representations may

appear and disappear at any time, (iv) the discovery of se-
mantic relation across different representations can be driven
by a user’s query, and thus cannot be computed beforehand
(runtime discovery) nor take advantage of human interven-
tion (automatic discovery).

In this paper we propose an algorithm for runtime and au-
tomatic discovery of semantic relations across local represen-
tations. The most significant innovations of the algorithm,
which is theoretically founded on a well–known theory of
contextual reasoning in AI[Ghidini and Giunchiglia, 2001;
Benerecettiet al., 2000], are that (i) the problem of finding re-
lationships between concepts in different schemas is encoded
as a problem of logical satisfiability (and therefore mappings
have a well–defined semantic); and (ii) the way linguistic and
domain knowledge is used to build the SAT problem.

First, we characterize the scenarios that motivate our ap-
proach to schema matching, and explain why we use the the-
ory of context as a theoretical background of the algorithm.
Then, we describe the macro-blocks of the algorithm, namely
semantic explicitation and context mapping via SAT. Finally,
we briefly compare our algorithm with some other proposals
in the literature.

2 Motivating scenarios
The work on the algorithm was originally motivated by a re-
search on Distributed Knowledge Management[Bonifacioet
al., 2002b], namely a distributed approach to managing cor-
porate knowledge in which users (or groups of users, e.g.
communities) are allowed to organize their knowledge us-
ing autonomously developed schemas (e.g., directories, tax-
onomies, corporate ontologies), and are then supported in
finding relevant knowledge in other local schemas available
in the corporate network.

In this scenario, the algorithm we present aims at solv-
ing the following problem. Lets (the source schema) andt (thetarget schema) be two autonomous schemas that differ-
ent users (or groups) use to organize and access a local body
of data. Given a conceptks in s, and a conceptkt in t, what is
the semantic relations betweenks andkt? For example, are
the two concepts equivalent? Or one is more (less) general
than the other one? In addressing this problem, it is assumed
that the basic elements of each schema are described using
words and phrases from natural language (e.g., English, Ital-
ian); this reflects the intuition that schemas encode a lot of
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Figure 1: Examples of concept hierarchies (source: Google and Yahoo)

implicit knowledge, which can be made explicit only if one
has access to the meaning of the words that people use to de-
note concepts in the schema.

Scenarios with similar features can be found in other im-
portant application domains, such as the semantic web (where
each site can have a semantic description of its contents and
services), marketplaces (where every participating company
may have a different catalog, and every marketplace may
adopt a different standard for cataloging products); search en-
gines (some of them , e.g. the Google and the Yahoo, provide
heterogeneous classifications of web pages in web directo-
ries); the file system on the PCs of different users (where
each user stores documents in different directory structures).
So the class of applications in which our algorithm can be
applied is quite broad.

3 Local schemas as contexts
In many interesting applications, schemas are directed
graphs, whose nodes and edges are labeled with terms or
phrases from natural language. A typical example is depicted
in Figure 1, whose structures are taken from the Google and
Yahoo directories. In this section, we briefly argue why we
interpret these schemas as contexts in the sense of[Benere-
cetti et al., 2000] (see[Ghidini and Giunchiglia, 2001] for a
formalization).

In schemas like the ones in the figure, the meaning of a
label depends not only on its linguistic meaning (what a dic-
tionary or thesaurus would say about that word or phrase),
but also on the context in which it occurs: first, it depends on
the position in the schema (e.g., the documents we as humans
expect to find under the concept labeledBaroque in the two
structures in Figure 1 are quite different, even if the label is
the same, and is used in the same linguistic sense); second,
it depends on background knowledge about the schema itself
(e.g., that there are chat and forums about literature helps in
understanding the implicit relation between these two con-
cepts in the left hand side schema). These contextual aspects
of meaning are distinct (though related) to purely linguistic
meaning, and we want to take them into account in our algo-
rithm.

To this end, the algorithm we present in this paper is ap-
plied to contexts rather than to schemas directly. In[Benere-
cettiet al., 2000], a context is viewed as a box, whose content
is an explicit (partial, approximate) representation of some
domain, and whose boundaries are defined by a collection
of assumptions which hold about the explicit representation.
The notion of context we use in this paper is an special case of
the notion above. A context is defined as a pair
 = hR
; A
i,
where:

1. R
 is a graph, whose nodes and edges can be labeled
with expressions from natural language;

2. A
 is a collection of explicit assumptions, namely
attributes (parameter/value pairs) that provide meta-
information about the content of the context.

In the current version of the algorithm, we restrict our-
selves to the case in whichR
 is a concept hierarchy (see
Def. 3.1), and the explicit assumptionsA
 are only three:
the id of the natural language in which labels are expressed
(e.g., English, Italian), the reference structureR
 of the ex-
plicit representation (the only accepted value, at the moment,
is “concept hierarchy”, but in general other values will be al-
lowed, e.g., taxonomy, ontology, semantic network, frame),
and the domain theory (see below for an explanation of this
parameter). Their role will become apparent in the descrip-
tion of the algorithm.

A concept hierarchy is defined as follows:
Definition 3.1 (Concept hierarchy). A concept hierarchyis
a tripleH = hK;E; li whereK is a finite set of nodes,E is
a set of arcs onK, such thathK;Ei is a rooted tree, andl is
a function fromK [ E to a setL of strings.
Definition 3.2 (Hierarchical classification). A hierarchical
classificationof a set of documentsD in a concept hierarchyH = hK;E; li is a function� : K ! 2D.� satisfies the followingspecificity principle: a user classi-
fies a documentd under a conceptk, if d is aboutk (according
to the user) and there isn’t a more specific conceptk 0 under
whichÆ could be classified1.

1See Yahoo instruction for “Finding an appropriate Category” at
http://docs.yahoo.com/info/suggest/appropriate.html.



Mappings between contexts are defined as follows:

Definition 3.3 (Mapping function). A mapping functionM
fromH = hK;E; li to H 0 = hK 0; E0; l0i is a functionM :K�K 0 ! rel, whererel is set of symbols, called thepossible
mappings.

The setrel of possible mappings we consider in this paper

contains the following:ks ��! kt, for ks is more general thankt; ks ��! kt for ks is less general thankt; ks ��! kt for ks
is compatible withkt; ks ?�! kt for ks is disjoint fromkt;ks ��! kt for ks is equivalent tokt. The formal semantics of
these expressions is given in terms of compatibility between
document classifications ofHs andHt:
Definition 3.4. A mapping functionM fromHs toHt is ex-
tensionally correctwith respect to two hierarchical classifica-
tions�s and�t of the same set of documentsD inHs andHt,
respectively, if the following conditions hold for anyks 2 Ks
andkt 2 Kt:ks ��! kt ) �s(ks#) � �t(kt#)ks ��! kt ) �s(ks#) � �t(kt#)ks ?�! kt ) �s(ks#) \ �t(kt#) = ;ks ��! kt ) �s(ks#) = �t(kt#)ks ��! kt ) �s(ks#) \ �t(kt#) 6= ;
where�(
 #) is the union of�(d) for any d in the subtree
rooted at
.

The semantics in Definition 3.4 is a particular case of re-
lation between contexts (i.e., compatibility relation) defined
in the Local Models Semantics of[Ghidini and Giunchiglia,
2001; Borgida and Serafini, 2002]. The algorithm we propose
can be viewed as a first attempt of automatically discovering
compatibility relations across contexts.

4 The Matching Algorithm
The algorithm has two main phases:

Semantic explicitation In the schema level, a lot of informa-
tion is implicit in the labels, and in the structure. The ob-
jective of this first phase is to make it as explicit as pos-
sible by associating to each node (and edge)k a logical
formulaw(k) that encodes this information. Intuitively,w(k) is an approximation of the human interpretation.

Semantic comparisonWe encode the problem of finding
mappings between two conceptsk andk 0, whose explicit
meaning isw(k) andw(k 0), into a problem of satisfia-
bility, which is then solved by a SAT solver in a logicW
(i.e., the logic in whichw(
) andw(
0) are expressed).
Domain knowledge is also encoded as a set of formulas
of W .

Since here we are mainly focussed on the second phase,
we only provide a short description of semantic explicitation
(details can be found in[Magnini et al., 2002a]), and then
move to the SAT encoding.

4.1 Semantic explicitation
The goal of the first phase is to make explicit all the semantic
information which can be fruitfully used to define the SAT
problem in a rich way. The main intuition is that any schema
is interpreted (by its users) using two main sources of infor-
mation: lexical information, which tells us that a word (or
a phrase) can have multiple senses, synonyms, and so on;
and a background theory, which provides extra-linguistic in-
formation about the concepts in the schema, and about their
relations. For example, lexical information about the word
“Arizona” tells us that it can mean “a state in southwestern
United States” or a “glossy snake”. The fact that snakes are
animals (reptiles), that snakes are poisonous, and so can be
very dangerous, and so on, are part of a background theory
which one has in mind when using the word “Arizona” to
mean a snake2. In the version of the algorithm we present
here, we use WORDNET as a source both of lexical and back-
ground information about the labels in the schema. However,
we’d like to stress the fact that the algorithm does not depend
on the choice of any particular dictionary or theory (i.e., does
not depend on WORDNET). Moreover, we do not assume
that the same dictionary and background theory are used to
explicit the semantic of the two contexts to be matched.

Semantic explicitation is made in two main steps:linguis-
tic interpretationandcontextualization.

Linguistic interpretation
LetH = hK;E; li be a concept hierarchy andLH the set of
labels associated to the nodes and edges of a hierarchyH by
the functionl. In this phase we associate to each labels 2 LH
a logical formula representing the interpretation of that label
w.r.t. the background theory we use.

Definition 4.1 (Label interpretation). Given a logicW , a
label interpretationin W is a functionI : LH ! wff(W ),
where wff(W ) is the set of well formed formulas ofW .

The choice ofW depends on the external assumptions
of the context containingH . For concept hierarchies, we
adopted a description logicW with t, u and:, whose prim-
itive concepts are the synsets of WORDNET that we associate
to each label (with a suitable interpretation of conjunctions,
disjunctions, multi-words, punctuation, and parenthesis). For
example, WORDNET provides 2 senses for the labelArizona
in Figure 1, denoted by#1 and#2; in this case, the out-
put of the linguistic analysis is the following formula inW :
Arizona#1 t Arizona#2
Contextualization
Linguistic analysis of labels is definitely not enough. The
phase of contextualization aims at pruning or enriching the
synsets associated to a label in the previous phase by using
the context in which this label occurs. In particular, we intro-
duce the concept offocusof a conceptk, namely the small-
est subset ofH which we need to consider to determine the

2We are not saying here that there is only one background theory.
On the contrary, theories tend to differ a lot from individual to in-
dividual, and this is part of the reason why communication can fail.
What we are saying is that, to understand what “Arizona” means in a
schema (such as the concept hierarchy in the left hand side of Figure
1), one must have a theory in mind.



meaning ofk. What is in the focus of a concept depends on
the structure of the explicit representation. For concept hier-
archies, we use the following definition:

Definition 4.2 (Focus). Thefocusof a conceptk 2 K in a
concept hierarchyH = hK;E; li, is a finite concept hierar-
chyf(k;H) = hK 0; E0; l0i such that:K 0 � K containsk,
its ancestors, and their direct descendants;E 0 � E is the set
of edges between the concepts ofK 0; l0 is the restriction ofl
onK 0.

Thecontextualizationof the interpretation of conceptk of
a context
 is formulaw(k), calledcontextualized interpre-
tation of k, which is computed by combining the linguistic
interpretations associated to each concepth in the focus ofk. The two main operations performed to computew(k) are
sense filtering and sense composition.

Sense filtering uses NL techniques to discard synsets that
are not likely to be correct for a label in a given focus. For
example, the sense ofArizona as a snake can be discarded as it
does not bear any explicit relation with the synsets of the other
labels in the focus (e.g., with the synsets ofUnited States),
whereas it bears a part-of relation withUnited States#1
(analogously, we can remove synsets ofUnited States).

Sense composition enriches the meaning of a concept in a
context by combining in linguistic interpretation with struc-
tural information and background theory. For concept hierar-
chies, we adopted the default rule that the contextual mean-
ing of a conceptk is formalized as the conjunction of the
senses associated to all its ancestors. Furthermore, some in-
teresting exceptions are handled. An example: in the Yahoo
Directory,Visual arts andPhotography are sibling nodes un-
der Arts & Humanities; since in WORDNET photography is
in a is–a relationship with visual art, the nodeVisual arts
is re-interpreted as visual arts minus photography, and is
then formalized in description logic as:visual art#1 t: photography#1

4.2 Computing relations between concepts via SAT
In the second phase of the algorithm, the problem of discov-
ering the relationship between a conceptk in a context
 and a
conceptk0 in a context
0 is reduced to the problem of check-
ing, via SAT, a set of logical relations between the formulasw(k) andw(k0) associated tok andk0. The SAT problem
is built in two steps. First, we select the portionT of the
background theory relevant to the contextualized interpreta-
tion w(k) andw(k0), then we compute the logical relation
betweenw(k) andw(k0) which are implied byT .

Definition 4.3. Let � = w(k) and = w(k 0) be the con-
textualized interpretation of two conceptsk and k 0 of two
contexts
 and 
0, respectively. LetB be a theory (= logi-
cally closed set of axioms) in the logic where� and are
expressed. Theportion ofB relevant to� and , is a subsetT of B such thatT contains all the axioms ofB containing
some concept occurring in� or  .

Clearly different contexts can be associated to different
background theories, which encodes general and domain spe-
cific information. This information is stored in the context
external assumptions under the field “domain”. Furthermore,
when we determine the mapping between two contexts
s and

WORDNET relation Domain axiom
t#k =w s#h t#k � s#h
t#k �w s#h t#k v s#h
t#k �w s#h t#k w s#h
t#k?ws#h :t#k v s#h

Table 1: Encoding WORDNET relations in T-Box axioms
t we can take the perspective (i.e., the background theory) of
the source or that of the target. The two perspectives indeed
might not coincide. This justify the introduction of direction-

ality in the mapping. I.e.
s ��! 
t means that
s is more
general than
t according to the target perspective; while the

relation
t ��! 
s represent the fact that
s is more general
that
t according to the source perspective.

In the first version of our matching algorithm we consider
one a background theoryB determined by transforming the
WORDNET relations in a set of axioms in description logic, as
shown in Table 1. In this table we introduce the notation�w,�w,�w, and?w to represent the following relation between
senses stored in WORDNET.

1. s#k �w t#h: s#k andt#h are synonyms (i.e., they
are in the same synset);

2. s#k �w t#h: s#k is either a hyponym or a meronym
of t#h;

3. s#k �w t#h: s#k is either a hypernym or a holonym
of t#h;

4. s#k?wt#h: s#k belongs to the set of opposite mean-
ings oft#h (if s#k andt#h are adjectives) or, in case
of nouns, thats#k andt#h are different hyponyms of
the same synset.

In the extraction of the theoryB from WORDNET we adopt a
certain heuristic which turns out to perform satisfactory (see
section on experimentation and evaluation). However, dif-
ferent sources as, specific domain ontologies, domain tax-
onomies, etc. and different heuristics can be used to build
the theoryB, from whichT is extracted.

Going back to how we build the theoryB, suppose, for
example, that we want to discover the relation between
Chat and Forum in the Google directory andChat and Forum
in the Yahoo directory in Figure 1. From WORDNET we can
extract the following relevant axioms:

art#1 v humanities#1

(the sense 1 of ‘art’ is an hyponym of the sense 1 of ‘human-
ities’), and

humanities#1 w literature#2

(the sense 1 of ‘humanities’ is an hyperonym of the sense 2
of ‘literature’).

The axioms extracted from WORDNET can now be used to
check what mapping (if any) exists betweenk andk 0 look-
ing at their contextualized interpretation. But which are the
logical relations ofw(k) andw(k 0) that encodes a mapping
function betweenk andk 0 as given in Definition 3.3? Again,



relation SAT Problemks ��! k0t Tt j= w(kt) v w(ks)ks ��! kt Tt j= w(ks) v w(kt)ks ?�! kt Tt j= w(ks) u w(kt) v ?ks ��! kt Tt j= w(kt) v w(ks) andTt j= w(ks) v w(kt)ks ��! kt w(ks) u w(kt) is consistent inTt
Table 2: Verifying relations as a SAT problem

the encoding of the mapping into a logical relation is a matter
of heuristics. Here we propose the translation described in Ta-
ble 2. In this tableTt is the portion of the background theory
of 
t relevant toks andkt. The idea under this translation is to
see WORDNET senses (contained inw(k) andw(k 0)) as sets
of documents. For instance the conceptart#i, correspond-
ing to the first WORDNET sense of art, is though as the set of
documents speaking about art in the first sense. Using the set
theoretic interpretation of mapping given in definition 3.4, we
have that mapping can be translated in terms of subsumption
ofw(k) andw(k0). Indeed subsumption relation semantically
corresponds to the subset relation.

So, the problem of checking whetherChat and Forum in
Google is, say, less general thanChat and Forum in Yahoo
amounts to a problem of satisfiability on the following for-
mula:

art#1 v humanities#1 (1)

humanities#1 w literature#2 (2)
(art#1 u literature#2 u
(chat#1 t forum#1)) (3)

(art#1 t humanities#1) u
humanities#1 u (chat#1 t forum#1) (4)

It is easy to see that from the above axioms we can infer (3)v (4).
To each relation it is possible to associate also a quantita-

tive measure. For instance the relation “
 is compatible withd” can be associated with a degree, representing the percent-
age of models that satisfy� u  on the models that satisfy� t  . Another example is the measure that can be associ-
ated to the relation “
 is more general thand” which is the
percentage of the models of that satisfy� on the models that
satisfy . This measure give a first estimation on how much is a generalization of�, the lower percentage, the higher
generalization.

4.3 Implementation and evaluation

The algorithm has been implemented and tested as part of a
peer-to-peer infrastructure for Distributed Knowledge Man-
agement. A detailed discussion of this aspect is described in
another paper submitted to this conference. Here we summa-
rize the main features and limitations of the current imple-
mentation, and the points that will be inserted in the future
version. The result of the matching algorithm on the two con-
texts shown in Figure 1 are reported in the following table:

nodes of the source and target context13, 14
possible relations 182 100%ks is equivalent tokt 4 2%ks is more general thankt 24 13%ks is more specific thankt 42 23%ks is compatible withkt 98 54%
Total # or relations 168 92%

Some of the more interesting relations discovered by the al-
gorithm are reported in Table 3.

5 Related work
Rahm and Bernstein[Rahm and Bernstein, 2001] suggest that
there are three general strategies for matching schemas:in-
stance based(using similarity between the objects (e.g., doc-
uments) associated to the schema to infer the relationship
between the concepts);schema–based(determining the re-
lationships between concepts analyzing the structure of a hi-
erarchy and the meanings of the labels); andhybrid (a combi-
nation of the two strategies above). Our algorithm falls in the
second group. In this section, we briefly compare our method
with some of the most promising schema–based methods re-
cently proposed, namely MOMIS[Bergamaschiet al., 1999]
a schema based semi automatic matcher, CUPID[Madha-
van et al., 2001; 2002] a schema based automatic matcher
and GLUE[Doanet al., 2002] an instance based automatich
matcher.

The MOMIS (Mediator envirOnment for Multiple Infor-
mation Sources)[Bergamaschiet al., 1999]) is a framework
to perform information extraction and integration from both
structured and semistructured data sources. It takes a global-
as-view approach by defining a global integrated schema
starting from a set of sources schema. In one of the first
phases of the integration, MOMIS supports the discovery of
overlapping (relations) between the different source schema.
This is done by exploiting the knowledge in a Common The-
saurus with a combination of clustering techniques and De-
scription Logics. The main differences between the matching
algorithm implemented in MOMIS and CTXMATCH, is the
fact that MOMIS, being an interactive process, which is a
step of an integration procedure, does not support run-time
generation of mappings.

More similar to CTXMATCH is the algorithm proposed in
[Madhavanet al., 2001], called CUPID. This is an algorithm
for generic schema matching, based on a weighted combina-
tion of names, data types, constraints and structural match-
ing. This algorithm exploits a limited amount of linguistic by
associating a thesaurus to each schema, but differently from
CTXMATCH does not uses the whole power of WORDNET.
Another deeper differences between CUPID and CTXMATCH
concerns the fact that CUPID can manage to discover the re-
lation between to schemasS andT only when theS and the
embedding ofS in T are structurally isomorphic. CUPID
seems not to deals in those cases wereS andT are equivalent
even if they have a completely different structure.

A different approach to ontology matching has been pro-
posed in[Doan et al., 2002]. Althought the aim of the
work (i.e. establishing mappings among concepts of over-
lapping ontologies) is in many respects similar to our goals,



Arts/Art history � Arts & Humanities/Art History
Arts/Art history/Organizations � Arts & Humanities/Art History/Organizations

Arts/Visual Art w Arts & Humanities/Visual Art
Arts/Visual Art/Photography v Arts & Humanities/Photography
Arts/Music/History/Baroque v Arts & Humanities/Art History

Arts/Art History w Arts & Humanities/Design Art/Architecture/History
Arts/Literature v Arts & Humanities/Humanities

Arts/Literature/Chat and forum v Arts & Humanities/Humanities/Chat and forum
Arts/Music/History/Baroque 6� Arts & Humanities/Design Art/Architecture/History/Baroque

Table 3: Some results of CTXMATCH applied to the contexts in Figure 1

the methodologies differ significantly. A major difference is
that the GLUE system builds mappings taking advantage of
information contained in instances, while our current version
of the CTXMATCH algorithm completely ignores them. This
makes CTXMATCH more appealing, since most of the on-
tologies currently available on the Semantic Web still do not
contain significant amount of instances. A second difference
concerns the use of domain-dependent constraints, which, in
case of the GLUE system, need to be provided manually by
domain experts, while in CTXMATCH they are automatically
extracted from an already existing resource (i.e. WordNet).
Finally, CTXMATCH attempts to provide a qualitative carac-
terization of the mapping in terms of the relation involved
among two concepts, a feature which is not considered in
GLUE. Although a strict comparison with the performances
reported in[Doanet al., 2002] is rather difficult, the accuracy
achieved by CTXMATCH could be roughly compared with
the accuracy of the GLUE module which uses less informa-
tion (i.e. the “name learner”).

The problem of the integration and of the interoperability
between different catalogs of overlapping domains is acquir-
ing high relevance, not only in a commercial perspective (i.e.
companies that want to exchange their products need to find
mappings among thair catalogs), but also on a scientific per-
spective[Schultenet al., 2001; Agrawal and Srikant, 2001]

6 Conclusions
In the paper, we presented a first version of an algorithm for
matching semantic schemas (viewed as contexts) via SAT. A
lot of work remains to be done, and in particular: generalizing
the types of structures we can match (beyond concept hierar-
chies); taking into account a larger collection of explicit as-
sumptions; going beyond WORDNET as a source of linguistic
and domain knowledge.

Finally, we are extensively testing the algorithm on large
datasets made of real schemas. The preliminary results are
described in a paper submitted to this conference. However,
we observe that at the moment there is not a generally ac-
cepted methodology for comparing the results of different
approaches to schema matching, and this makes it difficult
to say which algorithm performs better in a given scenario,
and to compare the results on the same examples.
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