Computation of Hermite and Smith

Normal Forms of Matrices

Arne Storjohann

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 1994

(©Arne Storjohann 1994

Abstract

We study the problem of computing Hermite and Smith normal forms of ma-
trices over principal ideal domains. The main obstacle to efficient computation of
these forms is the potential for excessive growth of intermediate expressions. Most
of our work here focuses on the difficult case of polynomial matrices: matrices with

entries univariate polynomials having rational number coefficients.

One first result is a fast Las Vegas probabilistic algorithm to compute the Smith
normal form of a polynomial matrix for those cases where pre- and post-multipliers
are not also required. For computing Hermite normal forms of polynomial ma-
trices, and for computing pre- and post-multipliers for the Smith normal form,
we give a new sequential deterministic algorithm. We present our algorithms for
the special case of square, nonsingular input matrices. Generalizations to the
nonsquare and/or singular case are provided via a fast Las Vegas probabilistic

preconditioning algorithm that reduces to the square, nonsingular case.

In keeping with our main impetus, which is practical computation of these
normal forms, we show how to apply homomorphic imaging schemes to avoid
computation with large integers and polynomials. Bounds for the running times
of our algorithms are given that demonstrate significantly improved complexity

results over existing methods.

Acknowledgements

My first acknowledgment must go to my supervisor George Labahn. In addi-
tion to providing vision, funding, and encouragement, George gave me unlimited
freedom to explore new avenues for research, yet was always available to discuss
new ideas. My thanks also goes to the other members of the Symbolic Computa-

tion Group, who provided a relaxed and friendly working environment.

Second, T would like to thank the members of my examining committee, William

Gilbert and Jeffrey Shallit, for their time spent in reviewing this thesis.
Third, a heartfelt thanks to the friends T have gained through rowing: fellow

athletes as well as coaches and administrators. My involvement with this sport
during the research and writing of this thesis has kept me sane. Special thanks
goes to Don Mcl.ean for his friendship, advice on academic matters, and implicit
encouragement. Finally, my parents deserve much credit for the immeasurable

support they have provided for my studies throughout the years.

Contents

1 Introduction

2 Preliminaries

2.1
2.2
2.3

The Hermite Normal Form
The Smith Normal Form
Domains of Computation

2.3.1 The Extended Fuclidean Problem

3 Advanced Computational Techniques

3.1

3.2 Modular Methods

The Classical Algorithm and Tmprovements

3.2.1 HERMITEFORMWITHMULTIPLIERS for Rectangular Input

4 Polynomial Matrices

4.1
4.2

4.3

4.4

Intermediate Expression Swell over Q]
Previous Methods for HERMITEFORM over Q[z]
4.2.1 Kannan’s Algorithm o000
4.2.2 The KKS Linear System Solution
A Linear Systems Methodo
4.3.1 Preliminaries
4.3.2 A Bound for the Sizeof U
4.3.3 An Algorithm for HERMITEFORM over Flz]

Conclusions

5 A Fast Algorithm for SMITHFORM over Q[z]

5.1

Preliminaries and Previous Results

5.1.1 The KKS Probabilistic Algorithms

3

10
13
16
17

5.2 Fraction-Free Gaussian Elimination
5.2.1 Computing FFGE(A,r)over Z[x]

5.3 An Algorithm for SMITHFORM over Fla]

6 Homomorphisms for Lattice Bases over F[z]
6.1 Triangularizing Lo
6.2 Homomorphisms for HERMITEFORM over Q[z]
6.3 A Preconditioning for Rectangular Input

6.4 A General Algorithm for SMITHFORM over Flz]
7 Conclusions

Bibliography

64
69
70

79
79
83
85
90

95

99

Chapter 1

Introduction

A common theme in matrix algebra especially in a computational setting

is to transform an input matrix into an “equivalent” but simpler canonical form
while preserving key properties of the original matrix (e.g. the Gauss-Jordan form
of a matrix over a field). For input matrices over principal ideal domains, two
fundamental constructions in this regard are the Hermite normal form, a triangu-

larization, and the Smith normal form, a diagonalization.

Any nonsingular matrix A over a Fuclidean domain R can be transformed via
elementary row operations to an upper triangular matrix. Further row operations
can be used to reduce the size of entries above the diagonal in each column modulo
the diagonal entry and to ensure uniqueness of the diagonal entries; the resulting
upper triangular matrix is called the Hermite normal form of A (abbr. by HNF).
By applying elementary column as well as row operations, the matrix A can be
transformed to a diagonal matrix such that each diagonal entry divides the next
and is unique; the resulting diagonal matrix is called the Smith normal form of
A (abbr. by SNF). The Hermite and Smith normal forms are canonical forms for

maftrices over principal ideal domains they always exist and are unique.

Hermite first proved the existence of the HNF triangularization for integer
maftrices in a paper of 1851 [19]. Hermite gave a procedure for transforming an
integer input matrix into HNF using row operations, and although he did not
explicitly prove uniqueness of the form, it is fairly clear he knew of it. Smith gave
a construction for the SNF diagonalization in a paper of 1861 [33]. Definitions
for the HNF and SNF generalize readily to rectangular matrices of arbitrary rank

over any principal idea domain (cf. §2).

The study of matrices over rings is a huge field encompassing almost every
area of mathematics this is demonstrated by the numerous and diverse appli-

cations of the Hermite and Smith normal form. Applications involving integer

2 CHAPTER 1. INTRODUCTION

matrices include: solving systems of linear diophantine equations (cf. Blankinship
[6] or Tliopoulos [20]); diophantine analysis and integer programming (cf. Newman
[29]); computing the canonical structure of finitely represented abelian groups (cf.
Cannon and Havas [8] or Havas, Holt and Rees [18]). For matrix polynomials,
the HNF corresponds to computing a change of basis for modules over polynomial
domains. Examples of the use of HNF in such computations include computing
integral basis in Trager’s algorithm [34] for symbolic integration of algebraic func-
tions and finding matrix polynomial greatest common divisors. Both the HNF and
SNF are very useful in linear systems theory (cf. Kailath [22] or Ramachandran
30))

The existence and uniqueness of the SNF is regarded as one of the most impor-
tant result in all of elementary matrix theory. The SNF provides a constructive
proof of the basis theorem for finitely generated Abelian groups (cf. [17]), and a
fundamental result of matrix theory states that if A and B are square matrices
over a field, then A is similar to B if and only if their respective characteristic
matrices 2/ — A and 21 — B have the same SNF (cf. Gantmacher [13, §5, Theo-
rem 7]). Other applications of the SNF to matrices over fields include computing
the invariant factors, computing geometric multiplicities of the eigenvalues, and

finding the Frobenius (or rational canonical) form.

We proceed with an explicit example of the HNF for matrices over two differ-
ent domains the ring of integers Z and the ring Q[x] of univariate polynomials
with rational coefficients. Recall that an elementary row operation is one of: (el)
multiplying a row by an invertible element, (e2) adding a multiple of one row to
a different row, or (e3) interchanging two rows. To each elementary row opera-
tion there corresponds a nonsingular (hence invertible) elementary matriz and an
elementary row operation can be applied to a matrix by premultiplying by the
corresponding elementary matrix. Over the ring of integers only the units +1 are
invertible (compare this with Gauss-Jordan elimination over the field Q where

every nonzero element is invertible). Consider the matrix

2 -8 14 20

0 1 -6 -5
A= (1.1)
10 —39 70 131

2 —18 50 —90

Matrix A can be reduced to triangular form using a type of Gaussian elimination
that that applies only elementary (invertible over Z) row operations. (This al-
gorithm is given in §2.1.) For matrix A of (1.1) we can obtain a transformation

matrix I/ and a reduced matrix H where

U A H
9281 74 54 12 1[2 -8 14 201 [2 0 2 4]
—26 6 5 1 0 1 -6 -5 01 0 15
— (1.2)
47 119 2 10 —39 70 131 00 6 4
21 6 —4 —1]| 2 18 50 -90| [0 0 0 16 |

The matrix H is the HNF of A. The determinant of the transformation matrix
U is a unit in Z (in this case, det(U) = —1) and hence by Cramer’s rule U has an
integer inverse (U is said to be unimodular in this case). Matrix U is unimodular
precisely because it is the product of unimodular elementary matrices. Equation
(1.2) expresses the rows of H as integer linear combinations of the rows of A.

Conversely, U™"H expresses the rows of A as integer linear combinations of the

rows of H:
] U o H o A)
1 -8 2 8 2.0 2 4 2 =8 14 20
o 1 -1 -1 01 0 15 0 1 —6 =5
5 =39 10 41 006 4 - 10 =39 70 131
T =18 8 9 |0 00 16] [2 —18 50 —90 |

We conclude that the nonzero rows of H provide a basis for the lattice of A (the set
of all integer linear combinations of rows of A). While reduction to Gauss-Jordan
form over Q is useful for solving systems of linear equations, reduction to HNF
over Z can be used to solve systems of linear diophantine equations.

The size of an integer is given by its absolute value. In the Fuclidean domain
F[z], F a field, the size of a polynomial is given by its degree. A nonsingular
maftrix over Flz] is in HNF if it is upper triangular with diagonal elements monic
and elements above the diagonal in each column having smaller degree than the

diagonal entry. Consider the matrix

2 — 24 2% 4 2 24 2r 41 —x — 1
A= 1732z +152 - 852" — 8422 8522 1712 — 82 872+ 79 (1.3)

—Tx+T67T =552 — 8922 5622 —Tler—163 —21x+ 274+ 2>

Gaussian elimination using unimodular row operations can be used to reduce a
polynomial matrix to HNF. For the matrix A of (1.3) we obtain UA = H for U
unimodular and H in HNF where

4 CHAPTER 1. INTRODUCTION

5409
140

U= —31122 — 6315 — 631622+ 852 —36x —T73—T732°+ 2% —2x—2—9222

7279 31 589 2 .2 4 a1

34 2
tTr -5y 70 740 T T T

8523 — 6061 22 — 220602 — 12706 2% — 7022 —25ha — 147 —22° —Tx—4

and
H=10 22—22—3 0
0 0 22 —2r—3

The rows of matrix H provide a unique basis for the set of all linear combina-
tions (over Qz]) of the rows of matrix A. One application of reduction to HNF
for polynomial matrices is solving systems of polynomial diophantine equations.
Another application, which we expand upon now, is computing matrix greatest

common divisors.

For the following example, let P(z) and Q(z) be two nonsingular matrices in
Q[z]"*". (In general, let R™*™ denote the set of all n x m matrices over a ring R.)
In some computations found in linear control theory one works with the matrix
rational form P(z)Q(z) '. For these cases it is often necessary to have the rational
form in its simplest form. In particular, the matrix polynomials should have no
common divisors on the right. To effect this simplification, the greatest common
right divisor can be determined using a HNF computation and divided out. This

computation can be done as follows. et

belong to Q[z]*"*”. By computing the HNF of A(z) we can obtain unimodular
matrices U(z),V(z) € Q[z]**?" and a matrix N(z) € Q[z]"*" such that

U)V(z)=V()U(z) = I, (1.4)

and

U(2)A(z) = [V) | . (1.5)

Note that the matrix on the right hand side of (1.5) is the HNF of A(z) and that
V(z) =U(z)"". Write

Uni(z) Una(z)
Usn(z) Usa(z)

Vin(z) Via(z)
Vai(z) Vaa(z)

b

Ulz) = [] and V(z) =

where the individual blocks are all of size n x n. Then equations (1.4) and (1.5)
imply that

so that

and hence N(z) is a common divisor of P(z

(
(
) and @Q(z) on the right. In addition
equation (1.4) along with the partitioning (1) gives

Ui (2)Vir(2) + Ura(2)Var (2) = 1,

hence Vi1(z) and Va1(z) cannot have nontrivial (i.e. non-unimodular) divisors on

the right. Therefore N(z) is the largest right divisor as desired.

Consider again the integer matrix A of (1.1). By applying unimodular column
operations as well as unimodular row operations, we can reduce the matrix to
diagonal form. We obtain unimodular matrices U and V and a diagonal matrix S

that verify U AV = 5. For example,

U A v S
-5 0 1 0 2 -8 14 20 10 —110 —109 —956 1000

—10 0 2 —1 0O 1 -6 -5 1 —-31 —-31 —279 0200
—-26 3 5 2 10 -39 70 131 0O -5 -5 —46 0020
103 —10 —20 -3 2 —18 50 —90 0 1 1 9 00048

The matrix S of (1.6) is the SNF of A. In addition to being diagonal, an integer
matrix in SNF has the property that each diagonal element is nonnegative and
divides the next. Matrices U and V of (1.6) are unimodular since they are product
of unimodular matrices. (This follows directly from the algorithm used to find S
given in §2.2.) The usefulness of the SNF hinges on it being a canonical form; for
any integer matrix A, there exists a unique matrix S in SNF such that UAV = §
for some unimodular matrices U/ and V. The SNF, defined for matrices over a
principal ideal domain, is directly related to the existence of canonical decomposi-
tions for finitely generated modules over principal ideal domains. Next, we present
the key ideas of this relationship by considering considering the important case of
matrices over the integers.

There is a natural correspondence between Z-modules and abelian groups.

The fundamental theorem of finitely generated abelian groups classifies all such

groups up to isomorphism by giving a canonical decomposition. One version of

6 CHAPTER 1. INTRODUCTION

the theorem states that a finitely generated group GG has the (unique) direct de-
composition G =Gy Gy @ --- B G B Grgy B - Gy p where: (7 is a nontrivial
finite cyclic group of order s; for o+ = 1,...,7; (; is an infinite cyclic group for
i=r+1,....r+ f; and sq|sqo| - |s.. Fully knowing the structure and character-
istics of a finitely generated abelian group is tantamount to knowing its canonical

decomposition.

The results of some computations involving groups produce finitely generated
abelian groups let (G be one such group. For example, G may be known to
be a normal (hence abelian) subgroup of an unclassified group of large order, say
'. Knowing the structure of (G may lend insight into the structure of G'. One
possible (and desirable) representation for (G would be the unique integers r, f,
and sy,...,s, corresponding to the canonical decomposition for (G. Typically,

however, groups that arise during computations are specified via a more general

among the generators usually written as (g1, g2, -, gm| 27y Gijgi = 0,0 =
1,...,n). These relations can be expressed in matrix form as Ag = 0 where A
is an n X m matrix with a;; as the entry in the i-th row j-th column and ¢
is a vector of m generators. The column dimension of the matrix A implicitly
gives the number of generators. Hence, an n x m integer matrix A represents the
unique group G (up to isomorphism) that can generated by m generators, say
d=191,---,gm], that satisfy the relations Ag = 0 and such that all other relations
among the generators are contained in the lattice of A. For example, consider the

presentation given by the SNF matrix

Matrix S has column dimension 4 and so represents a group (G that can be gen-
erated by 4 generators, say § = [g1,¢2,03,94]- The relations Sg = 0 give the
presentation (g1, g2, g3, ga|g1, 292, 6¢g3). Fach relation involves only a single gener-
ator so G = G P Gy B Gz B G4 where, for 1 < k < 4, (G, is the cyclic group
generated by ¢gi. The relation ¢ = 0 implies (7; is the trivial group . Sim-
ilarly, Go = ('3 and (G5 = (g where (U} is the cyclic group consisting of & el-
ements. Since no relation involves g4, (G4 is the infinite cyclic group €. We
conclude that G has the canonical decomposition Cy & Cg & . In general, a
SNF matrix with diagonal [1,1,....1,dy,ds,...,d.,0,0,...,0] having f trailing

zeroes and dy > 1, d, # 0 will represent the group with canonical decomposition

f
Co, Cs, B---BCy, $CEHC FH---& C. Thus, a presentation in terms of a SNF

matrix is desirable since the canonical decomposition of the group in question can

be determined immediately from the diagonal entries.

Consider now a general n x m integer matrix A. Matrix A represents some
group H generated by m generators, say h = [h1,ha, ..., hy], subject to the rela-
tions Ah = 0. The group H can be recognized (its canonical decomposition found)
by computing the SNF of A. To see how this works, let /' and V' be some uni-
modular matrices of dimension n and m respectively and let § = [¢1, 92, - -, Gm]
be such that V—'h = g. Since V is unimodular, the group (G generated by g
subject to the relations A(VV*‘)E = (AV)g = 0 is isomorphic to H. Since U is
unimodular, matrix / AV has the same lattice as matrix AV. It follows that S,
the SNF of A, represents the same group (up to isomorphism) as A, since there

exist unimodular matrices /' and V such that UAV = S.

The purpose of this thesis is to develop efficient algorithms for computing Her-
mite and Smith normal forms over two fundamental domains: the integers and
the ring of univariate polynomials with coefficients from a field. As is often the
case in computer algebra problems, our main task will be to ensure good bounds
on the size of intermediate expressions. The different domains will give rise to
very different computational techniques and in the case of matrices with poly-
nomial entries we will need to draw on many classical results, including Chinese
remaindering and interpolation, resultants and Sylvester matrices, and fraction-
free Gaussian elimination (cf. Geddes, Czapor and Labahn [14]). The rest of this

thesis is organized as follows.

In chapter 2 the Hermite and Smith normal form are defined over a general
principal ideal domain and their basic properties are given. Chapter 3 deals with
previous methods for computing these forms for matrices over the integers and
discusses the problem of intermediate expression swell. A brief history of the
development of HNF algorithms is given with special attention being given to a

new class of algorithms which use modular arithmetic to control expression swell.

Chapter 4 introduces the problem of computing normal forms over polyno-
mial domains. An algorithm for computing the HNF of a polynomial matrix is
presented which converts the original problem over Flz], F a field, to that of tri-
angularizing a large linear system over F. From a theoretical point of view, the
new method eliminates the problem of expression swell described since Gaussian
elimination for linear systems over F = Q admits simple polynomial bounds on
the size of intermediate entries. Unfortunately, while providing simple worst-case

complexity bounds, the linear systems method doesn’t admit a practical imple-

8 CHAPTER 1. INTRODUCTION

mentation because the matrix describing the linear system over F turns out to be

very large.

Chapter 5 takes a broader perspective and considers randomized probabilistic
methods for computing normal forms of polynomial matrices. These methods will
not lead directly to sequential deterministic complexity results instead, we give
results in terms of expected number of bit operations. We successfully build on
some of the probabilistic results of Kaltofen, Krishnamoorthy and Saunders in
[23]. A new las Vegas probabilistic algorithm for computing the SNF of square
nonsingular matrices over Flz] is presented. The algorithm admits a practical
implementation and gives excellent results for SNF problems where unimodular
multiplier matrices U and V' are not required. In practice, the expected running
time of the algorithm is approximately that of finding the determinant of a matrix

of same dimension and similar size entries as the input matrix.

In chapter 6 we apply the results of chapter 4 and the theory developed in chap-
ter 5 to the construction of algorithms for determining bases for lattices generated
by the rows of polynomial matrices. The highlight of chapter 6 is a fast (practical)
preconditioning algorithm for rectangular input matrices: given an n x m matrix

A over Flz] with rank m and n > m, the algorithm returns an (m+1) x m matrix
A* with similar size entries as A and such that L(A*) = L(A).

Finally, chapter 7 concludes with a summary of our main results and mentions
some open problems with respect to computing matrix normal forms. In par-
ticular, there are many research topics that follow naturally from the techniques
and algorithms developed in chapter 5. These include developing a sequential
deterministic version of the probabilistic SNF algorithm of §5 and devising new

algorithms for computing similarity transforms of matrices over the rationals.

Chapter 2
Preliminaries

In this chapter the Hermite and Smith normal form are defined for matrices over
principal ideal domains. The principal ideal domain (abbr. PID) is the most
general type of ring for which the HNF and SNF exist. Any result given for a
general PID will apply to any of the possibly very different concrete rings over
which we may wish to compute such as the integers or univariate polynomials
over the rationals. Hence, the benefit of this more abstract approach is twofold:
the results are of a general nature and the discussion is not encumbered with

details about representation of ring elements or computation of ring operations.

Before making the notion of a HNF and SNF precise we recall some facts about
PIDs. A PID is a commutative ring with no zero divisors in which every ideal
is principal; that is, every ideal contains an elements which generates the ideal.
Throughout, we use R to indicate a PID) and F to indicate a field. Two elements
a and b of a PID R are said to be congruent modulo a third element ¢ € R if
¢ divides a — b. Congruence with respect to a fixed element ¢ is an equivalence
relation and a set consisting of distinct elements of R, one from each congruence

class, is called a complete set of residues.

For a PID R, a set of elements {ay,as,...,a,}, not all zero, have a greatest
common divisor (a gcd). Consider the ideal I = (a1, a9,...,a,). Anelementg € R
is a ged of the elements {ay, a2, ..., a,} ifand only if (g} = I. Since g € | we have
miay + moag + - - - + mya, = g for some elements my, mq,...,m, € R. Since geds
are unique up to associates, and associativity is an equivalence relation on R, we
can choose a unique representative for a ged. (Recall that ring elements @ and b
are associates if @ = eb for a ring unit e.) A complete set of non associates of R is
a subset of R consisting of exactly one element from each equivalence class with

respect to associativity.

For a PID R denote by R the set of all n by m matrices over R. A

10 CHAPTER 2. PRELIMINARIES

nonsingular matrix /' € R”*" is said to be unimodular if det({/) is a unit in R.

Note that the unimodular matrices are precisely those that have an inverse in

RTL Xn

2.1 The Hermite Normal Form

A fundamental notion for matrices over rings is left equivalence. Two matrices A
and B in R™™™ are said to be left equivalent (write A =5, B) if one is obtainable
from the other via a unimodular transformation (i.e. A = UB for some unimodular
matrix U/ over R). The key point here is that A = UB implies B = U "' A where
U~", being unimodular, is also over R. Tt follows that left equivalence is an
equivalence relation for matrices over R. The HNF provides a canonical form for

maftrices over R with respect to left equivalence.

Definition 1 Let R be a PID. A matriz H over R with full column rank is said
to be in Hermite normal form if: (1) H is upper triangular; (2) diagonal elements
of H belong to a given complete set of associates of R; (3) in each column of H
off-diagonal elements belong to a given complete sel of residues of the diagonal

element.

Uniqueness of the HNF will follow from the following lemma.

Lemma 1 et R be a PID. If G and H in R™™™ are in HNF and G =5, H then
G=H.

Proof: G =5, H implies H = UG and ¢ = V H for some unimodular matrices U/
and V. The last n — m rows of (G and H will be zero. Let G’ be the submatrix
obtained from (& be deleting the last n—m rows. Define H' similarly. Let /' and V'
be the submatrices obtained from U and V respectively by deleting the last n —m
rows and columns. Then we have the equations H' = U'G’ and ' = V'H’ where
each matrix has dimension m x m. We proceed to show that /' (and V’) is the
identity matrix. Since G/ and H’ are upper triangular with nonzero determinant
we must have U" and V'’ upper triangular. Furthermore, H' = U'G' = U'(V'H’)
which implies U' = V'~ whence U’ and V’ are unimodular. The diagonal entries
of U and V/ must be 1 since the the diagonal entries of G' and H' lie in the same
associate class of R. So far we have shown that the diagonal elements of G’ and
H' are identical. Assume, to arrive at a contradiction, that {J is not the identity
matrix. Then let 7 be the index of the first row of U with nonzero off-diagonal

element u;; with j > 7. Then entry h;; in the i-th row j-th column of H' can

2.1. THE HERMITE NORMAL FORM 11

be expressed as h;; = ¢ij + vi;9;; = gi; + wizh;;. Hence h;; is congruent to g;;
modulo the common diagonal element ¢;;. Since H' and ' are in HNF, h;; and
gi; belong to the same complete set of residues of g;; which implies h;; = g;;

a contradiction since we assumed u;; # 0. We conclude that U is the identity

matrix and G = H.]

Theorem 1 Let R be a PID and let A € R™™™ with full column rank. Then there
exists a unique matriz H € R"™ in HNF such that H =, A. That is, UA = H

for some unimodular matriz U € R"*".

The matrix H of Theorem 1 can be found by applying unimodular row oper-
ations to A. The method is similar to Gaussian row reduction over a field but
with division replaced by a new unimodular row operation that works to “zero
out” elements below the diagonal element in a particular column. Consider a pair
of entries a;; and a;; with ¢ > 7, not both zero, in column 7 of A. R a PID
implies there exists elements of R, say p and ¢, such that pa;; + ga;; = g where
g = gcd(agj,a:;). Define G = By(p,q,1,7) to be the n x n matrix, identical to I,
except with ¢;; = p, ;i = ¢, ¢si = a;;/g and g;; = —aj;/g. The determinant of G
ispa;i/g—(—qai;/g) = (paj; +qa;;)g = 1, whence & is unimodular. Furthermore,
(GA);; = g and (GA);; = 0. For example

]]
| b9 alg [|] [0]

shows the technique applied to a 2 x 1 matrix. We now have a list of four unimod-
ular row operations: (R1) multiplying a row by a unit, (R2) adding a multiple
of one row to another, (R3) interchanging two rows, and (R4) premultiplying by
a matrix of the type By as described above. Note that row operations R1, R2
and R3 are also applied to a matrix by premultiplying by a unimodular matrix

namely the elementary matrix corresponding to the elementary row operation.

We can now give a procedure in terms of unimodular row operations to reduce the

matrix A of Theorem 1 to HNF.

Procedure 2.1: We consider each column 7 of A in turn for 57 =1,2,...,m. When
7 1s first equal to k, the first & —1 columns of A will be in HNF. For j =1,2,....m
perform the following steps: (1) If the diagonal entry in the j-th column is zero,
use a row operation of type R3 to move a nonzero entry below the diagonal to the
diagonal position. (2) Use row operations of type R4 to zero out entries below the

diagonal in column j. (3) Use a row operation of type R1 to ensure the diagonal

12 CHAPTER 2. PRELIMINARIES

element in column 7 belongs to the given complete set of associates of R. (4) Use
row operations of type R2 to ensure off-diagonal elements in column 7 belong to

the given complete set of residues modulo the diagonal element.

With the help of Procedure 2.1 and Lemma 1, the proof of Theorem 1 is
straightforward.

Proof: (of Theorem 1) We prove by induction on ¢ = 1,2,... m that procedure
1 is correct. Since only unimodular operations are applied to A throughout the
procedure, A always has full column rank. 1In particular, at the start of the
procedure there exists a nonzero entry in the first column. After steps (1) through
(3) have been completed for column 7 = 1, the first column of A will be zero except
for a nonzero leading entry belonging to the given complete set of associates of A.
Assume that after completing steps (1) through (4) for columns 1 =1,2,.... k <
m, the first k& columns of A are in HNF. Now consider stage 7+ = k 4+ 1. Since
A has rank m and the first k& columns of A are upper triangular, there will exist
at least one entry either on or below the diagonal entry in column k& + 1 that is
nonzero. Now note that the row operations in step (2), (3) and (4) do not change
any entries in the first & columns of A. After steps (2), (3) and (4) are completed
for s =k 41, the first &+ 1 columns of the reduced matrix A will be in HNF. By
induction, procedure 1 is correct. The uniqueness of the HNF matrix found by

Procedure 1 follows from Lemma 1, for if G =;, A and H =, Athen G=;, H =

The existence of a matrix H in HNF left equivalent to a given matrix A was
first proved (constructively) by Hermite in 1851 [19] for the case R = Z. Tt is
worth noting that there is no one consistent definition of HNF that appears in
the literature. In particular, some authors restrict their definitions to the case
of square nonsingular matrices, or, instead of reducing a matrix via unimodular
row operations, all the definitions and procedure may alternatively be given in
terms of unimodular column operations with the unimodular multiplier matrix
acting as postmultiplier instead of a premultiplier. Also, the HNF matrix may be
defined to be lower instead of upper triangular. All these variations have the same
central ingredients: (1) triangularity, (2) diagonal elements belonging to a given
complete set of associates, and (3) off-diagonal elements in each column (or row,
as it were) belonging to a complete set of residues with respect to the diagonal
element. Algorithms or theorems using an alternative definition for HNF in terms
of column operations and/or lower triangularity are easily cast into the form of

Definition 1.

2.2. THE SMITH NORMAIL FORM 13

In one sense this section is complete; we have defined the HNF and proved that
it is a canonical form for matrices over PIDs. Furthermore, the proof of existence
is constructive (Procedure 2.1) and leads directly to a deterministic algorithm for
finding the HNF of an input matrix over a concrete domain such as the integers.
However, some cautionary remarks are in order. The reader who should now
be convinced of the uniqueness of the HNF and the correctness of Procedure 2.1

may be tempted to think of the HNF of an input matrix A as “the upper
triangular matrix H obtained from A by applying unimodular row operations to
zero out entries below and reduce entries above the diagonal”. However appealing
this “constructive” definition may be, there is a danger of becoming fixated on a
particular method of obtaining the HNF H of a given A. In particular, the fast
“practical” algorithms we present in §5 and §6 will depend on results obtained by
considering H in a more abstract sense as a particular “basis for the lattice of A”

rather than as a “unimodular triangularization” of A.

It is instructive to consider the rows of an n x n nonsingular matrix A over
R as a basis for the lattice L(A) = {#A : ¥ € R""}. Recall that L£(A) is the
set of all linear combinations of the rows of A. A basis for £(A) is any linearly
independent subset of L(A) which generates L(A). Let B be an n x n matrix with
L(B)=L(A). Then B generates the rows of A and vice versa whence K1 B = A
and KyA = B with Ky, Ky over R. But then A, B non-singular implies that
Ky = K,~'. This shows that any two bases for L(A) are related by a unimodular
transformation. In particular, every basis for £(A) is related via a unimodular

transformation to the unique basis satisfying the requirements of Definition 1

namely the HNF H of A.

2.2 The Smith Normal Form

The HNF deals only with row operations and the notion of left equivalence. An-
other equivalence relation for matrices over PIDs is possible if we allow both col-
umn and row operations. Two matrices A and B in R"*™ are said to be equivalent
(write A = B) if one is obtainable from the other via unimodular row and column
transformations (i.e. A = UBYV for some unimodular matrices U/ and V over R).
The key point here is that A = U BV implies B = U""AV~" where U~ and V',
being unimodular, are also over R. Tt follows that equivalence is an equivalence
relation for matrices over R. The SNF provides a canonical form for matrices over

R with respect to equivalence.

14 CHAPTER 2. PRELIMINARIES

Definition 2 let R be a PID. A maitriz S over R is said to be in Smith normal
form if: (1) S is diagonal; (2) each diagonal entry belongs to a given complete
set of nonassociates of R; (3) each diagonal entry (except for the last) divides the

next.

Note that if S € R is in SNF with rank =, then, as simple conse-
quence of the divisibility conditions on the diagonal entries, we have diag(S) =
[$1,82,...,5:,0,...,0], where s; £ 0 for 1 <37 <r.

Proving that a given matrix A € R™*™ is equivalent to a unique matrix in
SNF will require some facts about matrices over PIDs. Let (7 denote the set of
all 7 element subsequences of [1,2,...,r]. For a matrix A € R"*™ and [€ C7,
J e C", let A ; denote the 7 x © matrix formed by the intersection of rows I and
columns .J of A; we refer to a matrix so defined as an 7 x 2 minor of A. The 2-th
determinantal divisor of A, denoted by s*(A,7) for 1 < < min(n,m), is the ged
of the determinants of all 2 x 72 minors of A. Let B = U AV for any, not necessarily
unimodular, square matrices /' € R and V€ R”7*” over R. Then, for any
2 x 1 minor of B, say Brjy where I € C and J € (", the Cauchy-Binet formula
[13, §1.2.4] states that

det(B[’]) = Z det(Uf’p) det(%\f(’p) det(VK’J)

KeCr LeCr

which expresses det(By ;) as a linear combination of the determinants of ¢ x i
minors of A. Tt follows that s*(A,) divides s*(B,7). Now, if we have A = WBX

as well as B = UAV for square matrices U, V. W, X over R, then we must have
s*(B,i) | s*(A,1) as well as s*(A,7) | s*(B,i) whence s*(A,1) = s*(B,1).

Lemma 2 [et R be a PID. If T and S are matrices over R, both in SNF, such
that T'= S, then T'= 5.

Proof: Assume that S and T are in R™™. let U and V be unimodular ma-
trices such that UTV = S and T = U7'SV~'. U and V unimodular implies
that 7" and S have the same rank r. Let S = diag[s,sq,...,5,,0,0,...,0] and
T = diag[ty, t9,...,1,.,0,0,...,0]. Since S = UTV and T'= U'SV~" we have
s*(5,1) = &(T,7) for 1 <7 < r. Note that s*(5,7) = [Ti<;<;si- It follows that
(S, 1) ~ 51 and s; ~ $*(S,4)/s*(5,0 — 1) for 2 < < r. Similarly, s*(T,1) ~
and t; ~ s*(T,1)/s*(T,i — 1) for 2 < 7 < r and we conclude that s, ~ ¢, for
1 < < r. Since s; and t; are chosen to belong to the same complete set of

associates of R we have s; = ¢, for 1 <1 <.

2.2. THE SMITH NORMAIL FORM 15

Theorem 2 et R be a PID and A an element of R"*™. Then there exists a
unique matriz S € R™™ in SNF such that A = S. That is, there exist unimodular
matrices U € R and V. € R™*™ such that S = UAV.

The existence of a matrix S in SNF equivalent to a given matrix A was was first
proved by Smith in [33]. For the HNF reduction procedure, a new row operation
was defined in terms of a unimodular matrix By that worked to zero out an entry
below the diagonal in a given column. For reduction to SNF, we will need a
corresponding unimodular column operation to zero out entries to the right of the
diagonal in a given row. For a pair of entries a;; and «a,; with 7 > 7, not both zero,
in row 7 of A, let p and ¢ be such that ¢ = pa;;+qga,;; where g = ged(az;, a;;). Define
G = By(p,q,i,7) to be the m x m matrix, identical to [,,, except with ¢; = p,
9ii = q, gi; = —a;j/g and ¢;; = a;;/g. Then G is unimodular and (AG); = ¢ and
(AG);; = 0. A procedure similar to the HNF reduction method given earlier can
be used to reduce a matrix to SNF. We require four unimodular column operations
analogous to the four unimodular row operations R1, R2, R3 and R4 used for the
HNF reduction these are: (C1) multiplying a column by a unit, (C2) adding
a multiple of one column to another, (C3) interchanging two columns, or (C4)
postmultiplying by a matrix of the type By as described above. We can now give

a procedure to reduce the matrix A of Theorem 2 to SNF.

Procedure 2: Say A € R™™ is of rank r. Fach diagonal entry s; of the reduced
matrix is found in succession for 2 = 1,...,r. At stage 17 of the reduction the

matrix has the form

0 A*

The reduction proceeds on matrix A*. The leading entry in the first row and first
column of A* is called the pivot. 1f A* is the zero matrix then the reduction is
finished. If not, permute the rows and columns of A so that the pivot is nonzero.
Perform the following steps: (1a) Apply column operations of type C2 to zero out
all off-diagonal entries in the pivot row that are divisible by the pivot. (1b) Apply
column operations of type C4 to zero out any remaining nonzero off-diagonal
entries in the pivot row. (2a) Apply row operations of type R2 to zero out all off-
diagonal entries in the pivot column that are divisible by the pivot. (2b) Apply

row operations of type R4 to zero out any remaining nonzero off-diagonal entries

16 CHAPTER 2. PRELIMINARIES

in the pivot column. (3) Step 2b may have introduced new nonzero entries in the
pivot row. If so, return to step la, otherwise go to step 4. (4) At this point, all
entries in the pivot row and column except for the pivot are zero. If there exists
an entry in A* that is not divisible by the pivot, then add the row containing such
an entry to the pivot row and return to step la. Otherwise go to step 5. (5) If
necessary, use row operation of type R1 to ensure that the pivot entry belongs to

the given complete set of associates of R.

Proof: (of Theorem 2) We prove first that algorithm 2 is correct. First we show
that steps 1 through 5 successfully zero out all entries in the pivot row and column
of A* except for the pivot entry. It is clear that steps la and 1b will zero out all
entries to the right of the pivot in row 1. Similarly, steps 2a and 2b will zero out
all entries below the pivot in column 1. The algorithm may jump back to step 1a
at step 3 or step 4 so it remains to show that step 5 is reached. Let p; be the value
of the pivot entry of A* when step la is restarted for the i-th time. We claim that
a sequence of three equal pivots such as p, = pr_1 = pr_o for some k& > 2 cannot
occur. If pp = pr_y then neither column nor row operations of type C2 and R2
were applied on pass & — 1, and this, together with p,_1 = pp_o implies that step
4 in pass k — 2 must not have introduced a new entry into row 1 not divisible by
the pivot and step 5 would have been reached a contradiction. Next, assume,
to arrive at a contradiction, that the algorithm does not terminate. Consider
the ascending chain of ideals (p1) C (p2) C ---. There cannot exist an infinite
chain of ideals, each properly contained in the next, in a PID., so there exists a
k such that (p1) C (p2) C ---{pr) = (prs1) = (Pr42) = ---. In particular, there
must exist a sequence of three equal pivots which implies step 5 would have been
reached. Lastly, consider stage 7 of the reduction for some 1 <7 <r —1. Diagonal
element s;, found during stage 7 — 1, divides all entries in A*. Any row or columns
operations applies to A* will produce new entries that are linear combinations of
entries divisible by s; hence any new entries arising in A* will be divisible by

s;. This shows that each diagonal element found will divide the next.

2.3 Domains of Computation

Although we have defined the HNF and SNF for matrices over R a general PID,
the most interesting domains from an applications point of view are R = Z and
R = F[z] where F is a field. The field F should be computable we need to be
able to represent elements of F and compute field operations. Typically, F will be

the rationals Q or a finite field GF(p), p prime. The special relationship between

2.3. DOMAINS OF COMPUTATION 17

matrices over the integers and finitely presented Abelian groups has already been
noted. Polynomial matrices, especially over Q[z], play an important role in linear

systems theory.

2.3.1 The Extended Euclidean Problem

A common characteristic of the PID’s Z and F[x] is that they are FEuclidean.
A key step in the procedure we gave for HNF reduction is solving the extended
Fuclidean problem: given a,b € R, find elements p,q,g € R such that ¢ is the
ged of @ and b and

pa 4+ gb=g. (2.1)

R being a PID guarantees that equation (2.1) has a solution for p and ¢. When
R is also a Fuclidean domain we can apply the extended Fuclidean algorithm to
compute a solution to (2.1), whereas for R a PID no general method exists. The
need for solving the extended FEuclidean problem is not particular to Procedure 2.1
given in section 2.1 for HNF reduction; rather, the Euclidean problem is funda-
mental to the HNF reduction problem. Solving the extended Fuclidean problem
of (2.1) can be cast into the problem of finding the HNF of a 2 x 2 matrix. Define
the matrix

U I N o L

] o]

H the HNF of A implies that H = U A for some unimodular matrix /. A nonsin-
gular implies {/ is unique. Solving the equation UA = H for U yields

(2.2)

I — { (hn - hmb)/(l s -I
| b/hn b |

where each entry is integral. Set p = (hy1 — h12b)/a and ¢ = hys. Then U
unimodular implies det(U/) = p(a/hy1) + ¢(b/h11) = +1 whence hqy is the ged of a
and b.

Recall the basic feature of a Fuclidean domain R: a valuation (or size) function
v: R\ {0} = IN, where IN is the set of nonnegative integers. For all a,b € R
with b # 0, the function v has the property: (1) v(ab) > v(a), and (2) there
exist elements ¢, € R such that @ = bg 4+ r where either r = 0 or v(r) < v(b).
The Fuclidean algorithm to find the ged of a and b, b # 0, works by computing
a remainder sequence: first r is found such that ¢« = bg + r and v(r) < v(b),
then rqy is found such that b = g1 4+ ry and v(ry) < o(r), then ry is found such
that ¢1 = ¢ar1 4 r2, and so on. The last nonzero remainder will be the ged of a

and b. The idea of the Euclidean algorithm is applied implicitly in the following

18 CHAPTER 2. PRELIMINARIES

procedure which reduces an integer matrix to SNF with only elementary row and

column operations.

Procedure 3: Assume A is an integer matrix with rank r. The reduction proceeds
in stages for 2+ = 1,...,r. At the end of stage 7, the 7 x 7 principal minor of A is
in SNF. The reduction for a general stage can be understood by considering the
first stage when 2 = 1. If A is the zero matrix then the reduction is finished. If
not, permute the rows of A using operation R3 to obtain a nonzero entry in the
first row first column (the pivot) . If there exists an off-diagonal nonzero entry
in the first row (column) use an operation of type C2 (R2) to reduce the size
of the off-diagonal element to be less than the size of the pivot. If the reduced
entry is nonzero then make it the new pivot. By applying elementary row (and
symmetrically column) operations in this manner, A is transformed to a matrix
with all entries in the pivot row and column zero except for the pivot entry. If the
pivot does not divide all other entries in A, add a row which contains an entry
not divisible by the pivot to the first row and continue zeroing out elements in
the first row and column. Since the size of the pivot is monotonically decreasing
this process terminates. Finally, use a row operation of type R1 to ensure the last

nonzero pivot belongs the the proscribed complete set of associates.

Chapter 3

Advanced Computational

Techniques

Up until now we have used the general expression computing the HNF or computing
the SNF to refer to the actual computational problem that is the focus of this
thesis. Before proceeding with a survey of computational methods we need to
define more precisely the problems to be solved. In particular, the theory of Smith
normal forms leads to two problems that from a computational perspective need

to be distinguished (one will be seen to be much more difficult than the other).

[et A be an input matrix over a principal ideal domain R. The first problem is
to compute the Smith normal form S of A. Henceforth, let SMITHFORM over R be
the problem of computing Smith normal forms over R. Recall that S is the Smith
normal form of A (rather than just a matrix in Smith normal form) precisely
because there exist unimodular matrices U and V' (of appropriate dimensions)
such that U AV = 5 these are sometimes sometimes referred to as pre- and post-
multipliers for the Smith form. Henceforth, let SMITHFORMWITHMULTIPLIERS
be the problem of computing candidates for these pre- and post-multipliers. In the
case of Hermite normal forms, let HERMITEFORM over R be the problem of com-
puting Hermite normal forms over R and let HERMITEFORMWITHMULTIPLIERS
be the problem of computing a candidate for a pre-multiplier for the HNF.

The problem HERMITEFORMWITHMULTIPLIERS reduces to solving
HERMITEFORM, an adjoint computation, and a matrix multiplication. Tf A is
square nonsingular, then U/ < 1/ det(A)H A*Y expresses U/ in terms of the adjoint
of input matrix A and the HNF H of A found by solving HERMITEFORM. Now
consider the case where A € R"™™ of rank m with m strictly less than n. Let U,
be an n x n unimodular matrix such that U, A consists of a permutation of the

rows of A with the first m rows of U/, A linearly independent. Let A, be the m xm

19

20 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES

matrix consisting of the first m rows of U, A and let Ay consist of the last (n—m)

rows. Then the n X n matrix

A:[m 0 |
“a e |

obtained by permuting the rows of A and augmenting with 7, _,,, is non-singular.
Now solve HERMITEFORMWITHMULTIPLIERS to find the nxn unimodular matrix
U such that UA; = H,isthe HNF of A;. Let (UU,)A = H. Then H consists of the
first m columns of H,. Take H to be the Hermite normal form of A. Uniqueness

of H, implies uniqueness of H.

Knowing the Smith normal form S of A does not help at all in general to find
candidates for pre- and post-multipliers. Also, HERMITEFORM and SMITHFORM
admit unique solutions for SMITHFORMWITHMUILTIPLIERS this is very far

from being the case. Consider the following example.

—147 84 532 —44 1 0 0 0
111 —78 —470 120 0 2 0 0
A= has SNF S =
—607 382 2362 —392 00 4 0
—2436 1528 9456 —1544 00 0 8
and
[—8 11 20 —4 —-19 -6 16 4
-1 4 13 =3 9 &8 —15 —4
S = A (3.1)
-2 3 =3 1 -7 =3 7 2
L0 0 4 1 4 13
1979 92568 4288 832 149 53784 51084 51452
—3699 4725 7700 —1480 152 H0hK2 48039 48382
= A (3.2)
—13474 17833 30659 —6014 —70 —23961 —22757 —22920
| 42176 —55108 —92976 18111 —31 —10587 —10055 —10127

In a computer algebra setting, we will be much happier to have the pre- and
post-multipliers of equation (3.1) especially when subsequent computations

will depend on them rather than those of (3.2).

3.1 The Classical Algorithm and Improvements

The classical algorithm for HERMITEFORM provides a starting point for many
other HERMITEFORM algorithms. In particular, the modulo determinant algo-

3.1. THE CLASSICAL ALGORITHM AND IMPROVEMENTS 21

rithms of §3.2 can be described as a modification of the classical algorithm; for
this reason, it is useful to present here detailed pseudocode for a version of the

classical algorithm.

Assume for this section that A is an n x m rank m integral matrix with HNF
H. The classical algorithm to compute H from A can be described succinctly as
Gaussian row reduction with division replaced by the extended Fuclidean algo-
rithm (EEA). For each pair of entries a;; and a;; with 7 > j, the algorithm uses
EEA to compute integers p and ¢, such that ¢ = pa;; +qa;; where g = ged(aj;, a;;).
Define G = Bii(p,q,1,7) to be the n xn matrix, identical to I,,, except with ¢;; = p,
i = q, ¢ii = —aj;/g and g;; = aj;/g. 1t is easily verified that G is unimodular.
Furthermore, (GA);; = g and (GA);; = 0. As an example of this technique, let

14 3 6
A=118 5 13
3 2 4
and consider the pair of entries a;; = 14 and a9 = 18. We want a unimodular

matrix ¢ such that (GA)y; = 0 and (GA)11 = g where g = ged(14,18). Using the
EEA we obtain g =2 and 2 =4 x 144 (—3) x 18 whence p = 4 and ¢ = —3. Then
G = Bu(p,q,2,1) is such that

4 -3 0 4 -3 0 14 3 6 2 -3 —15
G=19 -7 0|, and 9 =7 0 18 5 13| =10 =8 =37
0 0 1 0 0 1 3 2 4 3 2 4

as desired. Note that det(G) =4-(—7) —9-(—3) = —1 whence G is unimodular.
The first stage of the algorithm, termed ClassicTriangularize, computes an

upper triangular matrix 7" obtained from A by a unimodular transformation U.

ClassicTriangularize
Initialize 7" and U.
0T :=A;
1 U:=1,;
Set 1;; to be ged(l, tipij, tns).
2 for 7:=1 to m do
Zero out entries below diagonal entry ?;;.
for 1:=74+1 to n do
find g :=gcd(l;;,1;;) and p,q such that g =pi;; + gty
G = Gi(p,q,1,7);
T:=GT,
U:.=UG,

~N O 01 bW

22 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES

8 od;
9 od;

Remarks:

(1) As already mentioned, line 4 is accomplished using the extended Fuclidean
algorithm.

(2) In practice, lines 6 and 7 would be accomplished by performing on T and
U/ the row operations indicated by matrix (¢ rather than performing the matrix
multiplication.

(3) Note that lines 1 and 7 are performed only if computation of the unimodular

multiplier matrix is desired.

The second stage of the classical algorithm, termed ClassicReduce, continues
with the upper triangular matrix 7" and reduces the entries #;; above the diagonal

entry modulo the diagonal entry 7;;.

ClassicReduce
Consider diagonal entry 7,;.
0 for 7:=1 to m do
Reduce modulo #;; entries above diagonal.
for 1:=1 to 7—1 do
p = (ti — mod(tij,155)) /13
set ROW(i,T) = ROW(:,7) — pROW(4, T);
od;

[© 2 I" N ¢ VI o B

od;

For clarity, the triangularization and reduction phases have been described
separately first ClassicTriangularize and then ClassicReduce are used in
succession. In an actual implementation, however, these operations are usually
interleaved. l.et ClassicTriangularize(y) and ClassicReduce(y) perform sim-
ilar operations as the original routines but restricted to column j. The complete

algorithm can now be written as:

Algorithm ClassicHermite

Input(A) # an n X m rank m integral matrix

Output(U,H) # an n X n unimodular matrix U/ together with UA = H,
the Hermite normal form of A

Initialize the work matrices [/ and F.

0 U :=1,;

1 B:= A;

2 for 7:=1 to m do

3.1. THE CLASSICAL ALGORITHM AND IMPROVEMENTS 23

Perform row operations on matrices [/ and B.

3 ClassicTriangularize(y);
4 ClassicReduce(7);

5 od;

6 H:=BR;

ClassicHermite requires O(n?) arithmetic operations: each off-diagonal entry
position in A is modified using two O(n) row operations in ClassicTriangularize
(for positions below diagonal) and using one row operation in ClassicReduce (for
positions above diagonal). To bound the number of bit operations we need also to
bound the size of integers occurring during the computation. Consider the case
of an n x n rank n matrix A with HNF H. Then H triangular implies |det(A)| =
trace(H), ensuring that the largest diagonal entry in H is at most |det(A)|. Since

entries h;; above the diagonal are less than h;;, we conclude that the largest entry

FFR)
in H will be at most |det(A)|. The usual Hadamard bound [28, Chapter 11, §4.1.7]
gives | det(A)| < n"2||A||" where || A|| is the largest magnitude coefficient of A

integers of this magnitude can be represented using [n((log, n)/2+1log(||A|]))] +1

bits. Unfortunately, this nice bound on the size of entries of the final output

matrix H does not ensure good behavior during the course of the algorithm.

The algorithm ClassicHermite is impractical because entries in the matrix
under computation can grow exceedingly large. In [16], Hafner and McCurley give
an example of a 20 x 20 matrix A with positive entries chosen from {0,1,..., 10}.
After completing ClassicTriangularize with input A, the resulting triangular
matrix 7' contains an entry larger than 10°°'" even though |det(A)| < 10%°. Tn an-
other example, Domich, Kannan and Trotter [11] use a version of ClassicHermite
on an 8 x 8 matrix with entries having magnitude less than 2'%; intermediate com-

putations involved numbers larger in magnitude than 2432,

We give here a worked example showing the type of expression swell that can

occur. Consider the following 8 x 5 randomly generated integral matrix.

24 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES

G = (3.3)

We compute the HNF of (7 using a procedure described by ClassicHermite
and examine the results of intermediate computations. Denote by B;, 1 <1 <6,
the state of matrix B (the work matrix) after the correct form of columns 1,2,..., 5

has been computed. Then By = (G and

(1 —937 217 941 17 7
8747 —1322 57711 711
79700 18408 79950 10042
—46862 10832 47081 5824

= —85314 19686 85672 10589
88161 —20484 —88431 —11082
—49576 11550 49951 6218
—80552 18742 80998 10128 |
T10 29056587 —32365850 71025654]
1 31010 —34543 75801
427376 — 476050 1044674
. 1453201452 — 1618706985 3552192286
, =

2645606826 —2946915830 6466897103
—2733893094 3045256992 —6682703043
1537363310 —1712453817 3757916594
2497936262 —2782426738 6105932280 |

3.1. THE CLASSICAL ALGORITHM AND IMPROVEMENTS 25

F10 1 —3894548241929407974350 4839209651505280436435 T
10 —4156370641142457043 5164539677620032386
9 268066471534500 —333088660278617
8700810 10811278
Fs = 536132943474305 —666177321060854
366432537630561611628492 —455314394012718248788542
906057778989151562051317 256039142644703834587729
i 334806479936211949446238 416017121485484319687107 |
1010 —18376609178566059176568112182999160283677900228302465]
100 —19612030492065843359514869894528011638779778516656
20 1264884262629195766961856490960008462774464383
1 4T185ATO65541562489662839409094
Pa = 98375990
11796367663853906224157082426498
972293328381272933761167250141489411131870330949889069
I —1579800133427312912106981124086461701228582712121601265 |
101007
1000
200
10
By =
1

Remark: Note that Bs is the HNF of .

It remains on open question whether ClassicHermite (or a variation of it)
has an exponential lower bound on the number of digits in intermediate com-
putations. (Such a bound could be expressed in terms of the dimensions of the
input matrix and the size in bits of the largest entry.) However, as the examples
given above show, experience indicates that ClassicHermite is impractical even

for moderately sized matrices.

Various modifications and improvements of ClassicHermite appear in [5, 7,4,
12, 26, 10], although this list is not exhaustive. An algorithm for triangulating an
integer matrix is given by Blankinship in [5]. This article appeared in 1966 before
the use of arbitrary precision integer arithmetic was widespread. Referring to an
input matrix A € Z"*" of rank m, Blankinship writes, “Overflow is generally

dependent upon the magnitude of the greatest common divisor of all r x r minors

26 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES

contained in A, as this number, or a large divisor of it will appear in the r-th row of
the work matrix”. However, the 8 X 5 integer matrix of (3.3) has magnitude of the
greatest common divisor of all 5 x 5 minors equal to 2; intermediate expressions
are guaranteed to be larger than this since the original matrix has entries two

digits in length.
Bradley gives an algorithm in [7] that find the complete HNF but he also

doesn’t give bounds on the size of intermediate integers. Bradley writes, “The
possible increase in the magnitude of the elements of the matrix as the algorithm

proceeds is a serious computational consideration ...”.

In [26], Kannan and Bachem present a modification of ClassicHermite that
works by computing for j = 1,2,...,m, the HNF of the j x 7 principal submatrix
of an m x m rank m input matrix. (The classical algorithm determines the correct
form for the columns j = 1,...,m rather than for principal submatrices.) Kannan
and Bachem were able to prove a polynomial running time for their algorithm.
However, in [11], Domich, Kannan and Trotter present experimental evidence that

the Kannan/Bachem algorithm still suffers from intermediate expression swell.

There is one overriding reason that has motivated the search for a better HNF
algorithm: The integers in the output matrix H are small compared to the input
matrix A. In particular, we have good a priori bounds on the size of integers in
H. Tt A€ Z"" has rank m and d is the ged of a subset of determinants of m x m
minors of A (not all singular), then entries in H will be bounded in magnitude by
d. Tn the next section, an algorithm for HERMITEFORM is presented that bounds

the magnitude of all intermediate integers occurring during the reduction by d.

3.2 Modular Methods

In [11, 21, 16], algorithms for HERMITEFORM are presented which perform all
calculation modulo d where d is a multiple of the ged of all m x m minors of
an input matrix A € Z"*"™ with rank m. The class of modulo determinant
algorithms are an important improvement over the ClassicHermite algorithm
from a practical viewpoint. In [21], Tliopoulos presents a modulo d algorithm
together with a worst-case complexity bound (for bit operations) which improves
by a factor of O(s*) (for any € > 0 where s is the size of input matrix in bits)
the best known non-modulo algorithm (given by Chou and Collins in [10]).

We require the notion of the determinant of the lattice £(A) denoted by
det(L(A)). In general, det(L(A)) = |det(B)| where B is a basis matrix for L(A).

Note that B a basis for L(A) implies B is square and non-singular since A isn xm

3.2. MODULAR METHODS 27

with rank m. In particular, if A is square and non-singular, then det(L(A)) =
|det(A)] = det(H). For an n x m rank m matrix A, we can choose B to be the
first m rows of H, the HNF of A. Another useful fact is: det(L(A)) equals the

ged of all the determinants of m x m submatrices of A.

We have already noted that for n x n rank n matrices A, the entries in the HNF
H of A are bounded in magnitude by |det(A)|. In general, entries in H are bounded
by det(L(A)). Modular algorithms given in [11, 21, 16] require as input a positive
integer d a multiple of det(L(A)). In general, modulo determinant algorithms
require three steps: (1) computing a suitable modulant d; (2) computing the
HNF; (3) computing a unimodular multiplier matrix. Note that step (3) may be
omitted if a transformation matrix is not required. We consider first the actual

computation of the HNF and leave steps (1) and (3) until later.

Theorem 3 and Corollary 1 will suffice to motivate our first modulo determinant
algorithm. Theorem 3 restates for rectangular matrices a result given for square

non-singular matrices by Domich, Kannan and Trotter in [11, prop. 2.5 and cor.

2.6).

Theorem 3 let A be an n x m rank m integer matriz with HNF H = [h;;]. Let
d be a positive integral multiple of det(L(A)). Define dy = d and d;41 = d;/hj;
forg=1.2,....m — 1. Let e; denote the j-th unit vector. Then d;je; € L(A) for
I<j<m.

Proof: Let Hy be the m x m submatrix of H consisting of the first m rows of H.
Then H; is a basis matrix for L(A). By Cramer’s rule, d; (= d) a multiple of
det(Hy) implies d4 H, " is an integral matrix whence dy H, ' H, = dI,, has rows in
L(A). Next, let Hy be the (m —1) x (m — 1) submatrix of Hy consisting of the last
m rows and columns of H. Then, det(Hy) = det(Hy)/hyy implies dy is a multiple
of det(Hy). Then, by Cramer’s rule, do H, ' is integral whence do Hy ' Hy = dyl,, 1.
It follows that dyey € L(A). Continuing in this fashion for j = 3.4,...,m yields

the desired result.]

Corollary 1 For the augmented matriz

w-|] a4

o |

we have L(A") = L(A) whence the HNF A" equals

R
[0]

28 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES

Proof: A generates L(A) and L(dI,,) C L(A). [|

Our initial modulo determinant algorithm wuses a modification of
ClassicHermite with the (n4m) x m input matrix A" of (3.4). ClassicHermite
initializes a work matrix B to be A’ and computes the correct form for columns j
of Bfor 7 =1,2,...,m. Since column k of A’ has zero entries below the (n 4+ k)th
row, algorithm ClassicHermite will not change rows (n+k),n+k+1,....(n+m)
of the work matrix B until ClassicTriangularize(j) is called with 7 = k.
Thus, after ClassicHermite has completed for columns 7 = 1,2,... (k — 1),
the rows (n + k),n + k4 1,....(n + m) of B still correspond to the vectors
depiy,depys, ... de,. Recall that a valid elementary row operation is that of
adding a multiple of one row to another; this row operation can be used with the
appropriate de; row to reduce the result of all computations, as they occur, to
within d in magnitude. The original ClassicHermite algorithm augmented to
use modulo d arithmetic as suggested constitutes a complete algorithm; for conve-
nience, call this modification of the original algorithm AugmentHermite. The algo-
rithm AugmentHermite was first given for square non-singular matrices by Domich,
Kannan and Trotter in [11]; they mention also that the method of AugmentHermite

was independently discovered by A. Schrijver in 1985.

AugmentHermite runs in polynomial time since we perform O((n +m)?) arith-
metic operations on integers not exceeding d in magnitude. It still remains to
demonstrate a method of obtaining d a multiple of det(L£(A)) this we defer

until later.

We continue with Theorem 4 and 5 which gives us a method of using modulo
d reduction without having to resort to an augmented matrix such as A’. TLet
d and dy,dy,...,d, be as in Theorem 3. Let ModTriangularize be identical to
ClassicTriangularize except that all computations are performed using mod d

arithmetic.

Theorem 4 [et A be an n x m rank m integral matriz with HNF H = [h;;]. Let
T = [ti] be any n x m upper triangular matriz with rows in L(A) and diagonal

1 <3 <m. Then the HNF of T is H.

entries satisfying t;; = hy;,
Proof: The rows of T in L(A) implies that any integral linear combination of
the rows of T are in L(A). In particular, Hy, the HNF of T') has rows in L(A).
It follows that LH = Hp for an n x n integral matrix .. Moreover, since the
diagonal entries of Hy and H are identical, we can choose I unimodular. But
then L(H) = L(Hy) from which it follows from the uniqueness of the HNF that
H = Hy. []

3.2. MODULAR METHODS 29

Theorem 5 let A be an n x m rank m integral matriz with HNF H = [h;;]. Let
T = [t;;] be the upper triangular matriz obtained by applying ModTriangularize
to A. Then hj;; = ged(d;, t;;) for 1 <j <m where d; is as in Theorem 3.

Proof: We omit the proof of Theorem 5 although not very long or difficult, it is
also not very illuminating. For a proof in the case of square matrices, the reader

is referred to [11, prop. 2.7 and cor. 2.8].

We require one more fact which follows as a corollary of Theorem 3: If r € L(A)
withr = (0,0,...,0,7%, 7611, ...,) and pis any integer, then the vector obtained
from r by multiplying by p and reducing all entries mod dy is in L(A). To see
this note that the mod dj, reductions can be effected by adding to r appropriate
integral multiples of the vectors d;e; for y = k, k+1,...,m. More generally, for r =
(ri,r2, ..., 1m) € L(A) we can conclude that (r; mod dy,r, mod dy, ..., 1, mod
d,) € L(A). The algorithm ClassicHermite works by computing the correct
form for the successive columns 7 = 1,2,...,m. When 5 = k. k+1,...,m,
columns 1,2,...,k—1 are no longer changed. It follows from the above discussion
that at stage 7 = k of the algorithm we can perform all computations using mod

dr reduction and still keep all rows in L(A).

We can now give a modulo determinant algorithm that doesn’t require an
augmented matrix. l.et ModTriangularize(j) and ModReduce(j) be identical to
the corresponding CLASSIC versions except that all computations be performed

using modulo d arithmetic.

Algorithm ModHermite
Input(A,d) # an n X m rank m integral matrix and d,
a positive integral multiple of det(L(A))
Output (H) # the Hermite normal form of A
Initialize work matrix B.
0 B:=A;
1 for j:=1 to m do

Perform row operations on B using mod d (= d;)

arithmetic.
2 ModTriangularize(y);
Reconstruct diagonal entry b;;.
3 find p,q such that hj;; = pb;; + qd;;
set ROW(j, B) = pROW(j, B);
5 reduce entries in ROW(y, B) mod d;;

Perform row operations on B using mod d (= d;)

30 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES

arithmetic.
6 ModReduce(}) ;
Set d equal to d;;; for next pass.
7 d:=d/hj;
8 od;
9 H:=B8;

Algorithm ModHermite, coupled with a method of obtaining d, provides a
complete solution for HERMITEFORM over Z. TLet M(t) be an upper bound
on the number of bit operations for multiplying two numbers with length ¢
bits and let ||A]| be largest magnitude of any coefficient of A . Currently, the
best known running time for a HERMITEFORM algorithm is given by Hafner
and McCurley in [16]. They demonstrate an asymptotic running time of
O(m*nM (mlog(m||A|])) log(m log(m||A]|))) bit operations for both ModHermite

and for the determination of a suitable modulant d [16, cor. 2.2].

Actually, determination of d is not the bottleneck in the Hermite normal form
computation. Bareiss’s fraction-Free GGaussian elimination can be used to trian-
gularize an n x m rank m matrix in O(m?*n M (mlog || A||)) bit operations (see [21,

Theorem 1.3]) and can be used to obtain a suitable multiple of det(L(A)).

The algorithm ModHermite, together with a determination procedure for d,
was implemented in Maple V. When the input matrix A is square nonsingular we
set. d « det(A). In general, Bareiss’s fraction-free Gaussian elimination is used
to obtain a triangularization of the input matrix with the property that the i-th
pivot (the i-th diagonal entry of the triangularization) will be a determinant of an
7 X 2 minor of the input matrix. In particular, for a square input matrix, the last
nonzero pivot will be the determinant. (For a discussion of fraction-free Gaussian
elimination algorithms see [14] or the original articles by Bareiss [2, 3].) When the
input matrix is rectangular, say A € Z "™ with rank m, then we can set d to be
the determinant of a nonsingular m x m minor of A. For example, consider the

matrix G of (3.3). Applying the fraction-free Gaussian elimination procedure to

3.2. MODULAR METHODS 31

zero out entries below the diagonal in the first 4 columns of (¢ yields the matrix

-85 —55 —37 —35 97
0 —2660 —3032 6730 —8578
0 0 51696 —274200 395524
0 0 0 —3967680 3468824
' 0 0 0 0 983759900
0 0 0 0 — 1768625948
0 0 0 0 —458519312
0 0 0 0 336004550 |

The last nonzero pivot, a determinant of a 5 x 5 minor of A, is T55 =
98375900. Note however that the trailing entries in rows 6 through 8 of T
are determinants of 5 x 5 minors as well. As such, a better choice for d is
gcd(983759900, — 1768625948, —458519312, 336004550); this yields d = 2. The
Bareiss method works very well in practice; for rectangular input matrices, the
d found by computing the ged of the trailing entries in the last reduction row is
typically much smaller than the absolute value of a determinant of a single m xm

minor of A.

At the end of §3.1, we gave an example computation using a non modular
algorithm involving the 8 x 5 matrix 7 of (3.3). For comparison, we repeat com-
putation but using the new algorithm ModHermite. Denote by B!, 1 <i <6, the

state of matrix B’ (the work matrix in the routine ModHermite) after the correct

form of columns 1,2,....7 has been computed. Then

REREREERE (1010 0] (1010 0]
0000 1T 011 T 0 1 1

T 0 11 000 200

B — 0010 o 010 Cp 10
0001 001 0 1

T 010 001 01

0010 010 10

000 0 I 00 0 I 0 0|

32 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES

(1010 0] (1010 0]
1000 1000
200 200
10 10
By = B

1 1

1

0
L 0] L |

Remark: The entries in the intermediate work matrices By, BS, ..., Bl are all single

digits because computations are being performed modulo d, which was computed

to he 2.

3.2.1 HERMITEFORMWITHMULTIPLIERS for Rectangular In-

put

In many applications, a unimodular multiplier matrix [/ with UA = H is desired.
When A is square nonsingular, then U/ will be the unique matrix 1/det(A)H A,
this can be found using standard techniques. More complicated is the case when
the input matrix in strictly rectangular. The matrix equation U A = H will not
admit a unique solution for U/ in this case. Note that we could apply the standard
linear systems techniques which apply to matrices with coefficients from a field

to find a particular solution for UU; unfortunately, this method will almost

certainly find a U that contains non-integer entries or is non-unimodular.

The only solution that we are aware of that is offered in the literature is the
technique mentioned at the beginning of this chapter. If A is n x m rank m with
m < n, then Hafner and McCurley [16] suggest reducing to the square nonsingular

case by forming the n x n matrix

As—{j; [0 } (3.5)

by permuting the rows of A such that Ay is non-singular and augmenting with
I m- Although this method for finding U works, it can computationally expensive
when A is nonsquare. For example, consider the case of a km x m rank m matrix
A where k is some positive integer. If only H is required then the reduction
proceeds on a km x m matrix. If a candidate for U is also required, then we must

apply the reduction on the square matrix A, € Z *"**™ described by (3.5) and set

3.2. MODULAR METHODS 33

U+ 1/det(A,)HA»i This seems exceedingly expensive since the matrix A, is k
times as large as A. Although the last m(k —1) columns of Ag have only m(k —1)
nonzero entries, the algorithm ModHermite tends to fill in entries of these latter
columns while reducing columns 1 through m. As an example, consider the case
of a generic 9 x 3 matrix A. The matrix A, will be 9 x 9. Let B; be the state of
the work matrix B of algorithm ModHermite after the reduction for column 7 is

complete. Then

* ok ok
* ok ok
* ok ok

By = x ok % *
ok % *
ok % *
ok % *
ok % *

ok
ok
x k%

By = x ok k%
x k% *
x k% *
x k% *
x k% *

*
* ok
By = * ok ok

34 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES

*
By = * %
ok ok

Remark: All entries that may be nonzero are denoted by *.

Note how the process of putting the j-th column in correct form tends to
fill in the entries in column m + j of the work matrix. In particular, the last 6
columns of Bz still remain to be triangularized. In general, when the input is of
size n X m, after the first m columns have been triangularized, the work matrix
will still contain a submatrix of size (n —m) x (n —m) that remains to be put into
triangular form. A slight modification of algorithm ModHermite works to preserve
the upper triangularity of the last n — m columns and row of A. As presented,
state 7 of algorithm ModHermite zeroes out subdiagonal entries in column j of
the work matrix. In particular, the entry in i-th row j-th column of the work
maftrix is transformed to zero for 1 = 7+ 1,7+ 2,....n. If, instead, the entry in
the i-th row j-th column is zeroed with the row index being chosen in the order
=g+ 1,74+2,....m,n,n—1,....,n —m+ 1, then the upper triangularity of
the last n — m columns of the work matrix is preserved. Reworking the previous

example with the new reduction order yields:

* ok ok
* ok ok
* ok ok

By = x ok % *
ok % *
ok % *
ok % *

3.2. MODULAR METHODS 35

By = * % x ok ok ok %
* ok ok k%
* ok ok ok
* ok * ok
* ok *

By = * ¥ k% k%
* % ok ok ok
* % k%
* * ok
* *

By = x ok %k & ok

kook ok
ko ok
*

After the HNF H, of A, has been found, it remains to find the unimodular
multiplier matrix U such that UA, = H,. Write

H:[N v and U:{U‘ Us |
o P | Uy Uy |

Then, we need to solve the matrix equation

(o s][A 0] [N oM

[0y Uy || A Lo | |0 P
for Uy, Uy, Uy and Uy. This yields,

36 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES

U, = P,
1 ad
Uy = — (A, A7),
1 . .
U, = E(NA?(’“—M(AQA?(“))

where d = det(A;) (= det(Aq)).

Chapter 4

Polynomial Matrices

This chapter introduces the problem of computing normal forms of matrices over
polynomial domains F[z]|, F a field. Our focus will be the HNF. As with matrices
over the integers, our main task will be to control the growth in the size of the
matrix entries during intermediate computations. We face a double challenge
when F is a field of characteristic zero; in this case not only degrees but also size
of coefficients of intermediate polynomials will need to be controlled. Despite the
importance of the HNF and SNF in linear systems theory and hence interest
in being able to compute these forms significant results have been forthcoming
only very recently. For example, the fact that SMITHFORMWITHMULTIPLIERS
over Q[z] isin P the class of problems that can be solved in polynomial time

by a sequential deterministic algorithm was first shown by Villard in a paper

presented at ISSAC 93 [35].

On a more practical note, a problem with respect to HERMITEFORM over Q]
that remained unanswered until recently was to establish good a priori bounds
on the size in bits required to represent the rational coefficients of the matrices U
and H corresponding to an input matrix A. Such a bound could be expressed in
terms the dimension and size of entries of the input matrix A. The bulk of this
chapter will be devoted to obtaining such a bound. Our approach is to develop a
sequential deterministic solution for HERMITEFORM over Q[z] that converts the
problem to that of solving a large linear system over Q; this novel solution method
will lead to fast method (given in §4.3.2) for obtaining size bounds on the length
of coefficients in the premultiplier /' and the HNF H for a given input matrix
A. The careful analysis of §4.3 will prove very useful in §6.4 where a modular
algorithm for HERMITEFORM over Q[z] is developed that require as input bounds
for the size of coefficients appearing in U/ and H.

Recall some basic facts about the Fuclidean domain Fl[z]. A matrix U €

37

38 CHAPTER 4. POLYNOMIAL MATRICES

Flz]"" is unimodular if det({/) € F \ {0}. The ged of set of polynomi-
als {pi1,p2,-..,p}, not all zero, is the unique monic polynomial ¢ such that
{(g) = (p1,p2,---,pr)- The main results of chapter 2 which gave the basic
properties of the HNF over a general PID R are summarized here for the
special case R = F[z].

Hermite normal form. Let H be an n by m matrix over F[z] with rank m.
H is in Hermite normal form if it is upper triangular, has monic diagonal entries,

and in each column entries proceeding the diagonal entry are of lower degree.

(T) To every n by m matrix A over F[z] with rank m there exists a unique n by
m matrix H in Hermite normal form such that /A = H for some unimodular
matrix /. We call H the Hermite normal form of A. If n = m (i.e. A is square

nonsingular) then the unimodular matrix U/ is unique.

The main topic of chapter 3 was a class of algorithms for computing the HNF
that perform all computations modulo the determinant of the input matrix (or
determinant of the lattice thereof). These modular methods control the problem of
coefficient growth when the normal form is computed over the domain of integers.
The size of an integer (in the Fuclidean sense) is its magnitude; the number of hits
required to represent an integer is proportional to the logarithm of its magnitude.
The size of a polynomial in F[z] (in the Fuclidean sense) is its degree; the number
of bits required to represent a polynomial will depend not only on the degree but
also on the size (in bits) required to represent the individual coefficients from F.
The idea of working modulo the determinant of the input matrix can be applied
also to HERMITEFORM over F[z] and serves to bound the degrees of intermediate
polynomial entries. In particular, the results of §3.2 depend only on properties of
lattices over PIDs and not on special properties of integers. As such, algorithm
ModHermite of §3.2 provides a solution for HERMITEFORM over F[x]. Thus, when
the coefficient field F is a finite field such as GF(p), a priori bounds exist for
the size in bits required to represent the coefficients from F and the problem of
expression swell has been solved. However, when F is a field of characteristic 0,
excessive coefficient growth is still a problem; working mod the determinant only

controls the growth of the degrees of the entries, not the growth of the coefficients

from F.

The remainder of this chapter focuses on the more difficult case when F = Q;
specifically, we tackle the problem HERMITEFORM over Q[z]. Section §4.1 points
out the problem of intermediate expression swell. Section §4.2 mentions some
previous results that have motivated our work in §4.3 where we present a sequential

deterministic solution for HERMITEFORM over Q[z]. Section §4.4 concludes with

4.1. INTERMEDIATE EXPRESSION SWELL OVER Q[X] 39

a criticism of the algorithm given in §4.3 and summarizes the main results of the

chapter.

4.1 Intermediate Expression Swell over Q[z]

A key operation in the algorithm ModHermite of §3.2 is to solve the extended
Fuclidean problem: given elements f7, fo € R, find s, € R such that

sfi+tfo=g

where ¢ is the ged of f; and f;. When R = Z we have good bounds on the size
in bits of s and ; in particular, we can choose |s| < |f2]| and [t| < |fi]. When
R = Q[z] we can choose deg (s) < deg (f2) and deg (1) < deg (f1). For example,

for the polynomials

fi =852 — 552t —372% — 3522 + 972 + 50

fo=192" +562" +492" + 6322 + 572 — 59

we obtain
B 325290923548154096 ‘g 260765584444025981 4
5 36343806350461423445 g 36343806350461423445 g
44784265674001653 2 53160964862220324
7268761270092284689 g 7268761270092284689 g
n 209029679900820952
36343806350461423445
; 69999312662261008 iy 51788020069512915
Fo= T T
7268761270092284689 7268761270092284689
N 174186164625775568 N 144940739882558651
36343806350461423445 g 36343806350461423445 g
R7770584255662291
7268761270092284689
such that
sfii+tfa=1

For an input matrix A that has entries in the first column comparable in size
to fi and f,, the above example shows the amount coefficient growth that can be
expected in the work matrix of algorithm ClassicHermite after the correct form of

column 1 has been found. In particular, the work matrix would be premultiplied by

40 CHAPTER 4. POLYNOMIAL MATRICES

a unimodular matrix that contained the entries s and t. A straightforward analysis
of coefficient growth during the course of algorithm ClassicHermite when applied
to an input matrix over Q[z] leads to an exponential upper bound on the size in

bits of intermediate coefficients (cf. Kannan [25]).

While the potential for intermediate expression swell is great, another fact that
must not be overlooked is that the end result of a HNF computation can itself
typically be very large. For a coefficient ¢ € F, the term length of ¢ is used to
indicate the number of bits required to represent ¢ in binary. Note that if ¢ is an
integer, then the length of ¢ will be proportional to the number of digits in the
usual base 10 representation of ¢. Given an input matrix A € Q[z]"*" with degrees
of entries bounded by d and coefficients in Q bounded in length by [, a fundamental
question is: what is a bound for the length of the rational coefficients appearing
in H, the HNF of A, and in U, the unimodular matrix such that UA = H? Of
course, we could answer the question by actually finding the HNF H, but what

is desired here is an a priori bound in terms of the input matrix parameters n, d

and [.

Example 1 et

—85 2% — 552 —37 35224972+ 50 T92%>+562+49
452> —82x—93 922> +43x—62 TT2>+ 662+ Hh4

6322+ 572 —59
—5x%2 4992 — 61

A=
502> —122—18 312> —26x— 62 27 — 472 — 91 —47 2% — 612+ 41
58z —90x+53 —2>4+942r4+83 —86x274+23x—84 1922 —50x+ 88
Then,
[[5,49] [5,49] [5,49] [5,49] |
[5,49] [5,49] [5,49] [5,49]
U=
[5,49] [5,49] [5,49] [5,49]
[6,8] [6,8] [6,8] [6,8]
and
[[0,1] 0 0 [7,50] |
0 [0,1] 0 [7,50]
H =
0 0 [0,1] [7,50]
0 0 0 [8,9]

where [a,b] indicates a polynomial of degree a over Qx| with numerators and
denominators of coefficients over Q bounded in length by b. (Note: in this example,

the length of an integer is the number of digits in the base 10 representation.) For

4.2. PREVIOUS METHODS FOR HERMITEFORM OVER Q[X] 41

example,

407642292521650157116714665510743814432509291672
4419322434108641622821976294314080763736861084663

[]1’1 -

116759998011328345350359970967423103549419058498
- T
147310747803621387427399209810469358791228 7028221

225335628582191023692057522747064056012349481915
4419322434108641622821976294314080763736861084663

91400256121828896348246884762310598649553795 4
35929450683810094494487612148894965553336 268981

n 23115093462387663354353169070606668536573925270
T
1473107478036213874273992098104693587912287028221

101353303875215124418092902309880305001187027085
4419322434108641622821976294314080763736861084663

To summarize results it will be useful to define some notation. For a matrix
A € Flz]"*™ with entries degree at most d — 1 polynomials having coefficients
from F representable in [bits, we will use the parameter s as a measure of the
size of A, where s is defined as s = n+m +d+1. We write Size(A) to indicate the
number of bits required to represent A in binary. We may now write, for example,
Size(A) = O(nmdl). For brevity, it will be convenient to use the parameter s. For

example: O(n*md 4+ nm?d + nmd*) = O(s?).

4.2 Previous Methods for HERMITEFORM over

Ql

In discussing previous results or presenting new ones, our task will be greatly sim-
plified if we restrict our attention to square nonsingular matrices over Z [z]. This
corresponds to a preconditioning of the input and does not effect the generality of
the results. To see this, let A € Q[z]"*™ with rank m be a general input matrix.
Let D € Z"™" be a diagonal matrix with i-th diagonal entry equal to the least
common multiple of the denominators of all rational coefficients of all polynomial
entries in row 7 of A. Then the matrix A* = DA is over Z [x] and has the same
HNF as A. Now apply the technique given in §3 (pp. 19) to construct a square
nonsingular matrix A% from A* such that the first m columns of the HNF of A%
comprise the HNF of A.

42 CHAPTER 4. POLYNOMIAL MATRICES

In what follows and for the remainder of this chapter let A be ann x n
nonsingular input matrix over Z [z] with degrees of entries bounded by d, let H

be the HNF of A, and let UU the unique unimodular matrix such that UA = H.
We write || A]] to denote the largest magnitude of all integer coefficients of A.

4.2.1 Kannan’s Algorithm

The first proof that HERMITEFORM over Q[x] is in P was based on a varia-
tion of the classical algorithm by Kannan in [25]. Kannan gives an algorithm for
HERMITEFORM over Q[z] that works by finding the HNF of the i-th principal
minor of A for i = 1,2,....n. (The classical algorithm finds the correct form
of columns ¢ = 1,2,...,n.) Kannan bounds the degrees of intermediate polyno-
mials occurring when his algorithm operates on A by 2n?d and the magnitudes
of the numerators and denominators of rational coefficients of these polynomials
by (4nd|| A|[)*""'*" These bounds lead to a polynomial bound on the length of
intermediate rational coefficients based on the size in bits of the input matrix but
they are astronomical from a practical point of view. Kannan mentions that these
astronomical bounds are due in part to liberties taken during the analysis of his

algorithm since he was primarily after a theoretical result (i.e. showing inclusion

in P).

4.2.2 The KKS Linear System Solution

The idea of converting HERMITEFORM over F[z] to that of solving linear systems
over F appears to have first been used by Kaltofen, Krishnamoorthy and Saunders
in [23] where they prove HERMITEFORM is in the parallel complexity class NC?.
Their approach involves O(n?d) linear systems each of size O(n*d) x O(n*d) with
magnitudes of entries bounded by || A||. The key to their approach is the following
lemma. (Note: For a matrix A € F[2]"*", a; . indicates the coefficient of 2* of

entry a; ;.)

Lemma 3 /23, Lemma 2.1] Given the n by n nonsingular matriz A over F|x]
with entry degrees less than d, and the vector (dy,---,d,) of nonnegative integers,

consider the system T'A = (&, where G is upper triangular, and more specifically,

o 1;; are polynomials of degree less than nd + maxi<,<, d; whose coefficients

are unknmnns;

o g;; are monic of degree d; with lower order coefficients unknowns, and fori <

7, gi; are polynomials of degree less than d; with unknowns as coefficients.

4.2. PREVIOUS METHODS FOR HERMITEFORM OVER Q[X] 43

This is a system of linear equations over ¥ in the unknown t; ;. and g; ;5 for which

the following statements hold.

(1) The system has at least one solution, if and only if each d; is no less than

the degree of the i-th diagonal entry of a Hermite normal form of A.

(2) If each d; is exactly the degree of the i-th diagonal entry of a Hermite normal
form of A, then the system has a unique solution, hence (G is the unique

Hermite normal form of A and T is unimodular.

Their method can be described briefly as follows. A bhound for deg det(A) is
given by nd. In particular, the degrees of the diagonal entries in the HNF of A
will be bounded by nd. 1f the dy,d,, ..., d, of Lemma 3 are each bounded by nd
then the linear system will consist of O(n?d) equations and O(n*d) unknowns. Set
di =ndforis=1,2,....k—1,k+1,...n. Then, for each value of d; between ()
and nd, the linear system of Lemma 3 is consistent if and only if the degree of the
k-th diagonal entry of the HNF of A is not greater than dj. Hence, the correct
degree of the k-th diagonal entry can be found by solving at most O(nd) linear
systems each of size O(n’d) x O(n*d). The degrees of all diagonal entries can be
found by solving O(n - nd) linear systems. Finally, solving the linear system of

Lemma 3 for the correct diagonal degrees (dy,...,d,) yields the matrices U and

H.

Example 2 et

[.7:—] 3m+2]

A:[m—] 2.7:—]—3J

Say, for the purposes of this example, that the correct degrees of the diagonal
entries in the HNF of A have already been found and are (dy,dy) = (1,1). Then
n=2,d=1, and Lemma 3 bounds the degrees of entries in'T' by nd4+maxi<;<, =
3. The system we want to solve is

T A €
{f113973+f112972+f111T+f110 f123973+f122m2+f12197+f110}{T/*1 3T+2}:{T/+g110 g120 }
to13 2% + 1212 2% + o171 &+ ta10 t223 70 + #2220 2% 4 fa01 2 + fa10 r—1 2r+3 0 7+ g220

for the coefficients {t; ;r,qiix}. We can write the above as a linear system of
constraints in the coefficients {t; 1, @i jx, gijx} by expressing the polynomial mul-
tiplications as convolution products over Q and equating coefficients on the left

44 CHAPTER 4. POLYNOMIAL MATRICES

and right hand side.

T -1 0 0 0 32000
o1 —1 0 0 03200
o o0 1 —1 0 00320
t11s f112 T tiio |f123 t1o2 f121 Ti20 00 0 1 -100032 _
t213 t212 211 t210 |f223 t200 t221 f220 1 10 0 0 23000/|
01 -1 0 0 23000
00 1 -1 0 00230
Lo o 0 1 —-1000 2 3|

0001g7700000g720

0000 0 0001 gas

Converting the above system to standard form (i.e. AT = b where A and b are
known, ¥ is unknown) yields:

o o ©
I
—
—
o o ©
o o o ©
1
1
o
1

o o ©°

[115]
112
111
110
t123
t122
t121
t120
213
t212 | =
t211
210
t223
t229
t221
t220
giio
g120

L 9220 |

W
o o o
=
I
—
=
o

[\
W
NWw O
w o o o
w
w
[\
o o o
|
—_
o ©o© o o ©o © © ©o ©

w
[\
o o o o o © © ©o ©o ©

o o o o o © © ©o ©o ©

[\

w
o o o o o o o o o o ©

o o o o o o o o o o ©

—_

o o o o o o o O o o ©o ©
—_

o o o o o o o O o o ©o ©

I
=
-

o o © o © © ©© o o © © ©o ©
|
—_
—_

o o © o © © ©© o o © © ©o ©

=
I
—
—
I
—
-

I

—
[
—
o o ©
o o
o |

-
[
-

o
o o o
[\
[\
o

o o ©°
w
w
o

o o ©°

o o ©°
o o o © © © ©© o o o © © o ©

|
—_
o o o o o o o o o O O oo o o ©o ©o ©o o o©

—_

o o o o © © o o o © ©o o ©

o o o o o © o O o o ©Oo ©

o o o o ©o © o o o o ©O©

o o o o o © o o o ©

o o o o © © o o o © ©o o ©

o o o o © © o o o © ©o o ©

o o o o ©o © o o o o ©O©

o o o o o © o o o ©

o o o ©o © o o o o o O O o o ©
o o o o o © o o o ©

I
-
o

4.3. A LINEAR SYSTEMS METHOD 45

Solving the above system yields the unique solution

t11s | 0
ti19 0
ti11 0
t110 —2
t123 0
t129 0
t191 0
t120 3
to13 0
tors | = | 0
tory 0
ta10 1
to93 0
t999 0
ta91 0
ta90 —1
gi1o —1
9120 5

L 9220 —1

which corresponds to

U A H
-2 3 z—1 3x+2 Tz — 1 5

1 —1 z—1 2x2+3 0 z— 1
||

The goal of the authors of [23] was to establish a parallel complexity result.
From a theoretical perspective, the number of systems and size of each linear sys-
tem does not effect their main result: namely, that HERMITEFORM over Q[z] is in
NC?. From a sequential point of view, the number and size of each system makes
their approach impractical. In the next section, we reexamine their approach but

with the view of obtaining a more efficient sequential solution.

4.3 A Linear Systems Method

We present here a sequential deterministic solution for HERMITEFORM over Fz]
that works by reducing the problem to that of solving a single linear system over F
of size O(n*d) x O(n*d). The method is novel in that the linear system constructed
does not involve unknown coefficients of H, the HNF of A, but rather only the
coefficients of the unimodular multiplier matrix /. H can then found by effecting

the multiplication H + U A.

46 CHAPTER 4. POLYNOMIAL MATRICES

4.3.1 Preliminaries

We require some notation: for a matrix A € Flz]"*", let A;; or a;; denote the
entry in the i-th row, j-th column of A, a; ;. the coefficient of z* of a;;, and
row(A,) the i-th row vector of A. We write deg A to mean the maximum of the
degrees of all entries in the matrix A and deg a; ; for the degree of polynomial a; ;.

The degree of the zero polynomial is —oc.

Let L(A) denote the lattice of all F[z]-linear combinations of the rows of A.
Then L(A) will have rank n (= rank(A)). The n rows of H the HNF of A
provide the unique basis for L£(A) which satisfy the definition of HNF. One
of the advantages of the triangular HNF basis for £(A) is that we can determine
immediately that certain vectors cannot belong to £(A). This is made precise by

the following lemma.

Lemma 4 Let A € F[x|"*" be nonsingular with HNI' H. Let d; be the degree of
the i-th diagonal entry of H. Let ¥ = (0,...,0, 05, Vgy1,...,0,) be a row vector
over Fx] with v; = 0 for 1 <=1 < k and deg (vy) < d;. If ¥ is in L(A) then
vp = 0. Conversely, if v, # 0 then & & L(A).

Proof: v € L(A) = L(H) = ¥ = pirow(H,1) + --- 4+ p,row(H,n) for some
p, € Flz],1 <1 < n. Since v; = 0 for 1 <7 < k implies p; = 0 for 1 <
i < k, we must have v = pyrow(H, k) + --- + p,row(H,n). The only vector in
{row(H,k),...,row(H n)} with k-th entry non zero is row(H, k), so vy # 0 iff
pr 7 0. But deg (vy) < d; = pr. = 0 whence v, = 0. [

We continue with a stronger version of the Lemma 3 given in §4.2.2. Lemma
3 constructed a linear system from the polynomial identity TA = (G having as
unknowns the coefficients of the polynomial entries in T" and (. The following
lemma makes the key observation that results analogous to those of Lemma 3 still
hold when we express the linear system independently of the unknown coefficients
of (. The benefit of this approach is that the dimension of linear system is reduced
by a factor of n from O(n*d) to O(n*d) (we show this carefully later).

Lemma 5 Let A be a given n by n nonsingular matriz over F[x] with degrees of
entries bounded by d. Let (dyi,...d,) be a given vector of nonnegative integers.
Let T be an n by n matriz having as entries univariate polynomials in x with
unknowns as coefficients and degrees bounded by Dy = (n — 1)d — deg det(A) +
maxi<i<n d;. Consider the linear system of equations over F in the unknowns t; ;

with constrainis

(TA)i,i,r],; = ICOT’ 1 S 7 S n

4.3. A LINEAR SYSTEMS METHOD A7

(TA)iix = 0fork>d;
(TA)ij = 0fori#j,k>d;

Let (hy,...,h,) be the degrees of the diagonal entries of the Hermite normal form
of A. The following statements about the above system hold:

(1) The system has at least one solution if d; > h;, 1 <i <n.

(2) If there exists a nonnegative integer b < n such that d; = h; for 1 <i <b

and dy, < h; then the system has no solution.

(3) If d; = h; for 1 <i < mn, then the system has a unique solution T with T A

equal to the Hermite normal form of A.

Proof: L.et H be the HNF form of A and let I/ be the unique unimodular matrix
such that UA = H. To show (1), let D = diag(x® " ... 2% ") and consider
the equality DUA = DH. et H* be the HNF of DH and U* a unimodular matrix
such that U*DUA = H*. We claim that we can take as our solution T'= U*DU.
Firstly, the particular choice of D together with the definition of H* ensure that
the constraints for the linear system are satisfied. Tt remains to show that entries
in T have degrees bounded by (n—1)d—deg det(A)+max <<, d;. To see this note
that TA = H* = det(A)T = H* A = deg T < deg H*+deg A*Y — deg det(A) <
maxi<i<n di + (n — 1)d — deg det(A).

To prove (2), assume by contradiction that there exists a nonnegative inte-
ger b < n and a solution for T such that deg ((T'A);;) = h; for T < i < b
and deg ((TA)pp) < h,. In particular, we are assuming that row(T'A,b) =
(TApay. o, (TA),) isin L(A). Since deg ((T1A)p1) < h1 we can use Lemma 4
to assert that (T'A),; = 0. By induction assume (T'A),; = 0 for + < 7 < k. Then
by Lemma 4 we must have (T'A)y . = 0 since deg ((T'A)px) < hyg. In particular
we have (T'A),, = 0 which is a contradiction since the constraints specify that

(T'A)pp be monic.
If the conditions of (3) hold then by (1) there exists at least one solution for

T. We can use an induction proof similar to that used in the proof of (2) to show
that elements below the diagonal in T'A are zero (i.e. that (T'A);; =0 for ¢ > 7).
By the uniqueness of HNF we must have TA = H. []

Remark: Note that the constraints of the linear system specify precisely that
the matrix T'A should be in HNF with degrees of diagonal entries given by
(di,do,....d,).

48 CHAPTER 4. POLYNOMIAL MATRICES

Example 3 et
z—1 4o+ 2 0
A= 21) 2x
z—1 224+3 x+2

Say, for the purposes of this example, that we know the correct degrees of the
diagonal entries in the HNF of A to be (dy,da,ds3) = (1,0,1). Then n = 3,d =
1,deg det(A) = 2, and Lemma 5 bounds the degrees of entries in T by Dy = 1.
The system we want to solve is

T A G
{f111m+f110 tio0® + 1191 f13017+f131-| Irl‘*1 4r+2 0 -| {m+.0110 0 gi30 -|

tor11 41210 Tas0® + 1221 Taz0® + fo34 r—1 D 2% 0 1T g2an
[f31117+f310 tzo0® + 1321 f33017+f331J [1‘*1 2243 Jf+2J [0 0 1‘+!]330J

for the coefficients {t; ;r}. Writing the above as a linear system of constraints in
the coefficients {t; ; k@i, Gijxt yields

Alin
11 04200007
T 01 —1]042(000 G

[f111 t110 [T120 ti21 [fiso 7‘/1.'«;1-| 1T -1 0[050[200 [0 1 9110]0 0 0]0 0 (]130-|
ta11 ta10|f220 221 |t230 fa31 =100 0 |00 1{0 0 ga30
[f311 t310 |t320 %321 |%330 f331J 0 1 —1[005]020 [00 0100 0]01 (]330J

11 0230120

L0 1 1[0 23[0 1 2]

By Lemma 5, we can neglect those constraints that involve unknown coefficients
{gijr} to obtain

A]*in
F1 =T[4 2 0[]0 07
e 0 1104 2[00 Gr
[f111 t110 [$120 T121 [f130 7‘/1.'«;1-| 11105020 [0 110 0 0]0 O-I
to11 210 |T220 ta21 [f230 Tos ={0 000 1|00,
[f311 ts10 |T320 T321 330 f331J 0 _1]005]02 [000000 1J
1 71|2 3 0|1 2

0 102301

a linear system with a unique solution for Ty,. Solving the system yields

4 fﬁ‘ 4 _3|_8 7
7 7 7 7 7 7
Tiw=]0 1]0 1]0 -2
22 ‘72 1 ‘ 4 3
7 7 7 7 7 7
Finally, note that
T A G
%m—? %m—? —;.174—776 r—1 4x4+2 0 zr—10 %
1 1 —2 r— 1 5 2x = 0 1 —4 ,
—Zr+2 —Zx4+1 222 r—12243 z+4+2 0 0ax-—2%

4.3. A LINEAR SYSTEMS METHOD 49

the correct Hermite normal form of A.

We now determine bounds on the dimension of the linear system of Lemma 5.
First, consider the general matrix identity TA = (& where A is known and T and
(¢ are unknown. The following elementary result should be obvious after perusing

the worked example above.

Lemma 6 Let A € F[z]"*" be a given matriz with degrees of entries bounded
by d. Let T € F[x]™*" have entries bounded in degree by Dy with unknowns as
coefficients. Let G € Flx]"*™ have degrees of entries bounded by deg T A = Dy+d.
The matriz identity TA = G can be written as a linear system in the matriz

coefficients {t; jx, @i jr, Giir}t a5 TinAin = Giin over F where:

rowdim(Tyin) = n;

coldim(Tyin) = n(Dr+1);
coldim(Ay,) = n(Dr+d+1)

Now consider the linear system of Lemma 5. FEach entry of matrix T is a
polynomial with Dy 4+ 1 unknown coefficients contributing to a total of n(DT +])
unknown coefficients in each of the n rows of T'. In particular, all the unknowns of
the linear system of Lemma 5 can be written as an n x n(Dy 4+ 1) matrix Ty, (as
in Lemma 6). All the constraints of the system deal with specifying the values of
coefficients of entries in the polynomial matrix T'A, which has degrees of entries
bounded by Dy + d. Consider the constraints that are limited to a single column
of T'A, say column j. Note that there is a constraint precisely for all coefficients
(T'A)sjr where d; < k < Dp+4+d+ 1. In other words, precisely d; constraints,
namely the constraints for coefficients of z¥ with 0 < k < d;, are not included.
Over all columns, 37 <<, d; constraints will be ignored. This leads to the following

result.

Corollary 2 The linear system of Lemma 5 can be expressed as a matriz equation

Tin A5, = GY,, over F owhere:

rowdim(Tyi,) = n;

coldim(Tin) = n(Dr+1);
coldim(Ay,) = n(Dr+d+4+1)— Z d;;

where T, A, G, Dy, (dy,....d,) are as in Lemma 5 and 6.

50 CHAPTER 4. POLYNOMIAL MATRICES

Remarks:
(1) The n rows of G}, will have all zero entries except for a single entry 1 in each
row. This corresponds to the constraint that the diagonal entries of matrix T'A

be monic.

(2) The matrices A;, and Gy, are submatrices, respectively, of Ay, and Gy, of

lLemma 6.

3) Note that the dimensions of the system in Example 3 are consistent with that
y p

given by Corollary 2.

4.3.2 A Bound for the Size of U

Now that we have size bounds for the dimension of the linear system, we can
obtain bounds for the lengths of rational entries in the solution matrix Tj;,. In
particular, we are interested in the case F = Q and when Tj;, corresponds the the
unique unimodular matrix U such that UA = H. The following result gives an «a

priori bound on the size in bits of the solution I/ and H.

Theorem 6 let A be a given n by n nonsingular matriz over Z [x] with degrees of
entries bounded by d (> 0) and mazimum magnitude of integer coefficients || Al|.
Let U be the unique unimodular matriz U € Q[x]"*" such that UA = H, the HNF
of A. Then, the degrees of entries in U are bounded by (n — 1)d. Furthermore,
there exists a positive number By < (n\Vd||A|)"? such that

1 The numerators and denominators of rational coefficients of the polynomial

entries of U are bounded in magnitude by 5.

2 There exits a nonzero integer o < [y such o is the least common multiple

of all denominators of rational coefficients in U; that is, ol € Z [x]"*".

3 The numerators and denominators of rational coefficients of the polynomial

entries of H are bounded in magnitude by 8 = n(d 4+ 1)||A||Br = O(Br).

Proof: Tn Lemma 5, choose (dq,...,d,) to be the correct degrees of the diagonal
entries in H, the HNF of A. Then we have deg H < deg det(A) < nd and
degU = deg T < Dy = (n — 1)d — deg det(A) + maxicicnd; < (n — 1)d. By

Corollary 2, there exists a linear system with Tj;, A

i, = G, that admits a unique

solution for T, (corresponding to the rational coefficients of polynomial entries of

*

7). Since the solution is unique, the matrix A, has full row rank. In particular,

there must exists a subset of columns of A},

say ¢, such that the submatrix of

4.3. A LINEAR SYSTEMS METHOD 51

Ay, restricted to the columns ¢, call it A}, is square nonsingular. (In fact, any

subset ¢ with this property will do.) Let G}, be the submatrix of Gy, restricted
= (¢

5 :
Iin

iin
solution for Ty, namely Ty, = G5 (As)21/ det(A7). The dimension of A% s

Iin Iin

n(Dr+1) = n((n—1)d+1) < n?d (the last inequality is correct if we assume d > 0).

to the columns ¢. Then, the restricted system Ty, A also admits a unique

The coefficients of A® are comprised of the coefficients of the polynomial entries of
A these are integers bounded in magnitude by || A||. The usual hadamard bound
gives || det(As || < (nV/d||Al])”*?. This shows that (2) holds. Entries in (Ag)24
are determinants of minors of A% these will be bounded by (nV/d||A|[)”? as
well. To see that (1) holds for U, note that matrix G}, has precisely one nonzero
entry (the integer 1) in each row, from which it follows that Ty, = G, (A%,)* is
a submatrix of (A3)*3. To see that (1) holds for H, note that each entry of H
will be the dot product of a row vector in U/ and a column vector in A. Note that
if f and g are polynomials over Z | and deg f < d, then ||fg|| < (d +])||f||||q||
In particular, ||aH|| = [|[aUA]] < n(d +])||A||i|(yU|| < an(d 4+ DAy = apf.

Computational experience with dense matrices of dense polynomials indicates
that the length of the coefficients in U tend to grow quadratically with respect to n
and linearly with respect to d, and, although we have not shown it, we hypothesize
that the bound given for Gy in Theorem 6 is in fact an asymptotic lower bound.
That is, there exists a positive constant ¢ such that for any positive n, d and M,
there exists a nonsingular input matrix A € Z [2]"*" with deg (A) <d, [|A||< M
and such that the corresponding matrix UU contains a rational coefficient with

either numerator or denominator having magnitude larger than ¢(n/d|| Al|).

In practice, matrices may be far from the worst case. In particular, Theorem
6 does not take into account that the matrix may be sparse with entries sparse
polynomials and that deg (A) and || A]] may not be indicative of the size of typical
entries in A. However, the proof of Theorem 6 immediately suggests an algorithm
to quickly determine a better candidate for Br;. The number G was chosen to be
an upper bound for the determinant of any nonsingular submatrix of the matrix
A

Iin

of Corollary 2; Rather than appeal to an a priori bound as we did in the

proof of Theorem 6, a better method is to construct such a bound directly from

the linear system A . In particular, the Hadamard bound for the determinant
of a square integer matrix is given by the product of the Fuclidean norms of all
columns. This leads to the following. (Recall that the Fuclidean norm of a vector

is the square root of the sum of the squares of the elements.)

52 CHAPTER 4. POLYNOMIAL MATRICES

Fact 1 Let A be an n X n matriz over Z . Denote by |col(A, 7)| the Fuclidean

norm of column j. For any square submatriz A® of A of dimension n, we have

| det(A”)] < max { H |C0](Aa.ji)|}

V<X
< <ja<-<jn<n 1<k<n

If the degrees of the diagonal entries of H are known, then choose Gy to be the

* ; otherwise take the product

product of the n largest column norms of matrix A} ;

*

of the n largest column norms of matrix Ay,. Note that the matrix Ay, or A},

does not need to be written down explicitly only the column norms need to be

found.

Example 4 For the input matriz A of Frample 1, we have n =4, d =2, ||A|| =
94, and the largest numerator or denominator in U or H can be written with 50
decimal digits. The candidate for 5 given by Theorem 6 has length [log,on(d +
DIAl|(nV/d]| A" = 91 decimal digits. On the other hand, the candidate for 3

given by Fact 1 requires only 66 decimal digits.

We end this section with a result that summarizes some size bounds for the
matrices /' and H corresponding to a given input matrix A. For comparison, we

give also the size of A,

Corollary 3 et A, H and U be the matrices of Theorem 6. Then Size(A) =
O(n2dlog || A]]) and Size(A*1) = O~(n*dlog ||A|]). Furthermore,

Size(H) = O~ (n"d*log || A]])

and

Size(U7) = O~ (n*d log || Al]).

4.3.3 An Algorithm for HERMITEFORM over F[r]

At the start of this section, we claimed that HERMITEFORM over F[z] reduces to
solving a single linear system over F of size O(n*d). One way could demonstrate
this is by giving a procedure that finds the correct degrees of the diagonal entries
in the HNF of H within the cost required to solve the linear system Tii Ay, = G5,

Iin“ 'lin

of Corollary 2.

Finding the correct degrees of the diagonal entries in H is tantamount to de-

*

termining the correct submatrix A}, of the matrix Ay, of Lemma 6. In fact, we

4.3. A LINEAR SYSTEMS METHOD 53

have developed an approach that builds the system A}, while solving it. This
technique involves considering, in turn, the j-th column constraint of matrix Ay,
for 3 = 1,2,..., and neglecting certain column constraints because of linear depen-
dencies that arise during the reduction. For various reasons, though, we have no
interest in giving a rigorous exposition of this algorithm. First, we have already
seen that HERMITEFORM over F[z] in in P. Second, in chapter 6 we we give
an algorithm for HERMITEFORM over Q[z] that, compared to the linear systems
method, is dramatically superior in terms of space requirements and expected
number of bit operations. (Consider alone that a worst case bound for the size in

bits required to represent the triangularized system Ag is O~ (n°d*log|| A||) bits.)

Instead, we give here an example of the exceedingly elegant linear systems

method for HERMITEFORM presented by Labhalla, L.ombardi and Marlin [27].

2%
Iin

Note that the typical method to solve the system Ty, A
A*

Iin

= G}, 1s to reduce to
via column operations to column echelon form. In our case, we have devised
a method that forms the correct system A} during a column echelon reduction
of matrix Ay,. A better solution is given by Labhalla, LLombardi and Marlin who
developed their linear systems method based on the theory of subresultants and
Sylvester matrices. The following is a restatement of their result that uses the

notation that we have defined previously.

Theorem 7 ([27]) Let Ay be the rational matriz of Lemma 6 with Dy = (n—1)d.
The row vectors of the HNF of A are computed by a triangularization of the matrix
Atin, using row operations only, followed by the reduction of the off-diagonal entries

by row operations.

Example 5 et

z—1 4o +2 0
A= -1 5 2x
z—1 22 +3 x+2

Say, for the purposes of this example, that we know that degrees of entries in U
are bounded by Dy = 1. Then we have

Alin
11 04200007
T 0 1 —1]042(000 G

[f111 t110 [T120 ti21 [fiso 7‘/1.'«;1-| T =1 0[050[200 91100 0 010 0 .(]130-|
1211 Ta10|T220 Tom1 [f230 fom = 0 100 1100 gas0 {»
[f311 t310 |t320 %321 |%330 f331J 0 1 —1[005]020 0 100 0[01 !]330J

1 =1 0]230[120

L0 1 1[0 23[01 2

54 CHAPTER 4. POLYNOMIAL MATRICES

Reducing the matriz Ay, to Gauss-Jordan form using row operations yields

1o —1joo o 2 o 2

7

01 =1jo ool o o 2

00 o010 o0f-1/20 -1
Myin =

00 ofo 1ol o o -%

00 ofoo 1| 0o 0o -4

00 oo ool 0o 1 —6/7]

The last nonzero row in each column block will correspond to the respective diagonal

entry in the HNF of A. We obtain

xr—1 0 %
H = 0 1 —4 \
0 0 x—6/7
the correct HNF of A. []

4.4 Conclusions

The problem of intermediate expression swell is ubiquitous in computer algebra.
Much work has been devoted to coming up with computational techniques that
abdicate this problem and allow basic ring operations to be computed faster. For
polynomials over Z [z], these include: (1) modular homomorphisms and Chinese
remaindering; (2) evaluation homomorphisms and interpolation; (3) efficient ged
computation; (4) fast polynomial multiplication. All these methods exploit the

structure that is inherent to polynomial domains.

A serious drawback of the linear systems solution for HERMITEFORM given
in §4.3.3 is that the structure inherent in the polynomial domain is lost. While
converting the problem from the domain Flz] to F facilitated the derivation of
simple size bounds for intermediate coefficients, the cost of solving the linear
system is too expensive (both in terms of space and time) to allow a practical
implementation.

Nonetheless, this chapter has made considerable progress towards a practical
solution for HERMITEFORM over Q[z]. Our most important result is the size

bounds given by Theorem 6 for the coefficients appearing in the unimodular mul-

tiplier matrix [/ and the HNF H. This will be very useful in chapter 6 where

4.4. CONCLUSIONS 55

a modular algorithm for HERMITEFORM over Q[z] is presented. Also, we can
now make some general comments on the difficulty of HERMITEFORM over Q[z].
In particular, a fundamental lower bound for the bit complexity (number of bit
operations) required to solve a problem is given by the size in bits of the re-
sult. Corollary 3 gives a useful comparison in this regard between Size(H) and
Size(A,

Finding the adjoint of A is by no means a trivial computation, but good meth-
ods exists to solve this problem. In particular, a worst case complexity bound for
computing A*M is O~ (n"dlog || A|]) (disallowing fast matrix multiplication), which
is at most O~(n) larger than an asymptotic lower bound for Size(A*%). Now con-
sider the matrix H. Although the length of the coefficients from Q appearing in
H will be O~ (nd) times as large as those appearing in A4 there are O(n) times
as many coefficients appearing in A2, In practice, the adjoint of a matrix is typ-
ically dense with dense polynomials of degree O(nd) (a similar observation holds
for 7). Thus, for many cases, we can expect Size(H) ~ dSize(A*Y). Similarly, we

can expect Size(U) &2 nSize(H).

56

CHAPTER 4. POLYNOMIAL MATRICES

Chapter 5

A Fast Algorithm for SMITHFORM

over Q]

This chapter considers the problem SMITHFORM over F[z], F a field. We give
a fast sequential algorithm for computing the SNF of polynomial matrices over
finite fields or the field of rationals. The algorithm we give is probabilistic in
the Las Vegas sense an incorrect result will never be returned but with small
probability the algorithm may fail and require repetition. Previous probabilistic
algorithms for SMITHFORM have been given by Kaltofen, Krishnamoorthy and
Saunders [23, 24]. In particular, in [23] the authors give a parallel algorithm
for SMITHFORM over F[x] that reduces the problem to matrix multiplication and
determinant and ged computations. Their algorithm leads to an efficient sequential
solution for SMITHFORM but is probabilistic in the Monte Carlo sense with
small probability an incorrect solution may be returned. Our contribution is a
method for quickly verifying that the result of the KKS Monte Carlo algorithm
is correct. Consequently, we provide a fast Las Vegas SMITHFORM algorithm
in §5.3. The qualification fast is justified on two fronts. First, we demonstrate
a complexity for the algorithm in terms of expected number of bit operations
that improves dramatically on any previously published results. Secondly, the
algorithm is eminently practical, admitting a very simple implementation (in a

computer algebra language), and outperforms any previously known method.

Without loss of generality, we assume that an input matrix A € Q[x]"*™ has
integer coefficients. Complexity results will be given in terms of n, m, d, and || A]|
where d — 1 is a bound on the degrees of entries in A and ||A|| denotes maximum
magnitude of all coefficients of all entries of A € Z[z]"*™. We will use the
nxn

parameter s = n+m+d-+logl|| A|| as a measure of the size of matrix A € Z [7]

(Note that this is distinct from Size(A), which indicates the total size in bits of

57

58 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

matrix A. In particular, Size(A) = O(s*).) We use P(d) to indicate the number of
field operations in F required to multiply two polynomials of degree d — 1 in F[z].
Similarly, M (1) shall denote the number of bit operations required to multiply two
t bit integers. Using fast integer and polynomial multiplication (the Schonhage-
Strassen algorithm) we can take P(d) = dlog dloglog d and M(t) = tlogtloglogt.
However, for SMITHFORM over Q[z] we give a solution that uses a homomorphic
imaging scheme that avoids almost all computation with large integers and large
degree polynomials for this algorithm we also give a complexity result in terms

of standard integer and polynomial multiplication: P(d) = d* and M(t) = %

Before embarking on a discussion of previous results, we make some qualifying
remarks about probabilistic algorithms. Let A be an algorithm that requires
O(p(M)) bit operations for a single pass where M is the size of the input in
bits. In general, a single pass of an algorithm returns either a result (correct or
incorrect) or FAIL. Fix a positive constant ¢ such that 0 < ¢ < 1. Algorithm A
is said to be Monte Carlo probabilistic if it requires O(p(M)) bit operations to
produce a result that will be incorrect with probability less than e. Algorithm A
is said to be Las Vegas probabilistic if requires O(p(M)) bit operations to return
a result, which is guaranteed correct, except when FAII is returned, and this
happens with probability less than e. The key point here is that the probability ¢
is valid for every possible input. That is, there does not exist some pathological
input that will a priori cause bad behavior of the algorithm. Consequently, for a
Las Vegas algorithm we can a priori give an expected cost in terms of number of

bit operations to produce a correct result.

The first proof that SMITHFORM over Q[z] is in P was given by Kaltofen, Kr-
ishnamoorthy and Saunders in [23]. Their algorithm uses the fact, a consequence
of Kannan (cf. [25]), that SMITHFORM over GF(p)[z] is in P. Given a nonsingu-
lar matrix A € Z [2]"*", the algorithm computes the SNF of A mod p for various
primes p and uses Chinese remaindering to reconstruct the SNF of A over Q[z].
A drawback of this method is the large number of primes needed to guarantee

correctness; their approach calls for ©(n’dlog nd|| A]|) image solutions.

The authors of [23] take an alternative approach and in the same paper present
a parallel Monte Carlo probabilistic algorithm for SMITHFORM over F[z] for the
case of square nonsingular input. This algorithm is appealing in that it admits
very fast sequential solution for SMITHFORM over Q[z]. In practice, the main
cost of the algorithm is triangularizing via fraction-free Gaussian elimination a
polynomial matrix of same dimension and with similar size entries as the input
matrix. However, this SMITHFORM algorithm has the drawback that it may return

an incorrect result which is not easily detected. In a subsequent paper, the same

59

authors give a Las Vegas algorithm for SMITHFORMWITHMULTIPLIERS over F[z]
[24]. This KKS Las Vegas algorithm is based on column echelon form computation
and has expected cost at least that of HERMITEFORMWITHMULTIPLIERS.

We have made a distinction between the problem of computing pre- and
post-multipliers (SMITHFORMWITHMULTIPLIERS) and computing only the SNF
(SMITHFORM). This is because over the input domain Q[z], SMITHFORMWITH-
MULTIPLIERS is inherently a more difficult problem than SMITHFORM. The com-
plexity of SMITHFORMWITHMUILTIPLIERS compared to SMITHFORM is analogous

to the complexity of the extended Euclidean problem over Z [z] compared to a
gcd computation. Consider the matrix A € Z []
U
1%

2x1,
A S
U1 Uq2 11 S11
V11 ==
U1 U2 21 0

Finding the SMITHFORM of A is equivalent of finding s11 < ged(aq1,a21). A host

of powerful techniques have developed to find ged’s over Z [x] that abdicate the
problem of expression swell; Hensel lifing, modular homomorphisms follows by
Chinese remaindering, and heuristic methods based on single point interpolation
(cf. [14]). Tn particular, the original heuristic ged algorithm of Char, Geddes
and Gonnet [9] can be made Las Vegas probabilistic (cf. Schonhage [31]) and
requires O~ (d(d + || A]])) bit operations. On the other hand, finding candidates
for the entries of U/ is equivalent to solving the extended Euclidean problem: find

polynomials wy; and w9 such that

Ur1a17 + U201 = S1q (5.1)

where sq7 is ged of ayq and agr. This problem is much more difficult (in terms of
bit complexity) because of the size of the coefficients of uyy and w2 (cf. §4.1). In
particular, solving the extended Fuclidean problem is far too much work if only

the ged is required.

This brings us to the second reason for distinguishing SMITHFORM and SMITH-
FORMWITHMULTIPLIERS; namely, the entries in pre- and post-multipliers for
a given matrix A over Q[x] are typically large compared to entries in A or S.
Consider a nonsingular input matrix A € Z[z]"*". Let U and V be pre- and
post-multipliers for A such that UAV = S. The diagonal entries of S are factors
of det(A) and hence the sum of the degrees of all entries of S are bounded by nd
and the length of the rational coefficients of entries of S are bounded by ON(n(d—l—
log ||A]])) bits this leads to Size(S) = O~(n%d(d + log||A|]) bits. To get an
idea of the size of matrices U and V', we can look at the problem HERMITEFORM

considered in the previous chapter. Theorem 6 bounds the degrees of polynomials

60 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

in HNF pre-multiplier matrix U by (n — 1)d and the length of rational coefficients
in U by O(n?*dlognd||A]|) bits. Corollary 3 gives Size(U) = O~ (n’d*log ||A]]).
This suggests Size(U) & O~ (s*)Size(5).

The majority of algorithms found in the literature for SMITHFORM over F[z] or
Z are based on HERMITEFORMWITHMULTIPLIERS and by virtue of this actually
solve the more difficult problem SMITHFORMWITHMULTIPLIERS (cf. [24, 35, 25,
21]). Specifically, these algorithms produce pre- and post-multipliers U and V
such that U AV = S is in SNF within the same asymptotic complexity as required
to produce S alone. One reason for producing multipliers is to verify correctness.
In particular, the KKS Monte Carlo SMITHFORM algorithm does not produce
pre- and post-multipliers and may return an incorrect result which cannot be
detected easily. Our algorithm differs from these methods in that we are able
to completely avoid the need for solving computationally expensive polynomial

diophantine equations such as (5.1) and hence obtain a better complexity result.

5.1 Preliminaries and Previous Results

In this section we recall some basic facts about the Smith and Hermite normal
forms and review the Monte Carlo and Tas Vegas probabilistic SNF algorithms of
Kaltofen, Krishnamoorthy and Saunders [23, 24]. As well, the algorithms of the
next section will depend on some elementary facts about lattices over principal

ideal domains.

We require some notation. For an n x m matrix A, let minor(A,) denote the
i-th principal minor of A for 1 <7 < min(n,m). In general, a minor of A is a

square submatrix of A. If A is square, then A*¥ will denote its adjoint.

Let A € F[z]"*™ be of rank r with SNF S. Let A, ; or a;; denote the entry in
the i-th row j-th column of A. Let s*(A,7) or s7 denote the ged of the determinants
of all 7 by s minors of A for 1 <7 <rand let s(A,7) or s; be the i-th diagonal entry
of the SNF of A. By convention, define s*(A,0) = 1. The diagonal entry s; is called
the i-th invariant factor of A while each s7 is called the i-th determinantal divisor
of A. The invariant factors and determinantal divisors are related by s; = s7/sF |
for 1 < < r. We have some similar facts for diagonal entries of the HNF. First
assume that r = m so A is of full column rank and let H be the HNF of A. Let
h*(A,0) =1 and let h*(A,7) or hF denote the ged of the determinants of all 7 by
i minors of the first ¢ columns of A. Let h(A,i) or h; be the i-th diagonal entry
of the HNF of A. Then we have h; = hX/h? | for 1 < i < m. These facts hold

in general for matrices over principal ideal domains (cf. [29]). Recall that for the

5.1. PRELIMINARIES AND PREVIOUS RESULTS 61

invariant factors of A we have s;|s;, for 1 <1 < r. The following fact follows from

the divisibility properties of the invariant factors and determinantal divisors.

Fact 2 For a principal ideal domain R, let g5, g7, ..., q: be elements from R with
gy = 1. Then, there exists a matriz in R™*™ of rank r having, for 1 <1 <r, 1-th

determinantal divisor an associate of g=, if and only if

*2| % * .
9; |.Q7771.Q7I+17 IT<:<r—1

It will be convenient sometimes to express the output of the algorithms we
present as a list s7,...,s* of determinantal divisors of the input matrix. Clearly,
the SNF of a matrix A is easily determined from its determinantal divisors and
vice versa. Note that Fact 2 provides a necessary (but not sufficient) condition for
correctness on the output of an algorithm that returns a list of candidates for the

determinantal divisors of an input matrix.

Fact 3 Let A and B in F[z]™*" be nonsingular with T = UA upper triangular.

Then, the following statements are equivalent:

(1) U is unimodular;
(2) det(T) ~ det(A);

(3) T;; = h*(A0) for 1 <i<n;

5.1.1 The KKS Probabilistic Algorithms

A possible algorithm for finding sf is to compute the determinants of all 7 x 1
minors of A and set s7 to be their ged. Unfortunately, the number of minors
increases exponentially with respect to the matrix dimension. The Monte Carlo
SMITHFORM algorithm of [23] overcomes this problem by preconditioning the
input matrix using certain random unimodular pre- and post-multipliers with
entries chosen from a subset of the coefficient field. With high probability, each

s¥ can be determined by taking the ged of only two minors.

Algorithm: KKS Monte Carlo SMITHFORM
Input: A nonsingular matrix A € Flz]"™".

62 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

Output: [s7,5,...,%], the determinantal divisors of A.

(1) Let Uy, Uy, Vi, Vo be random matrices from F7*".
(2) Set B =1U1AV;, C = U2 AV%.

(3) Set s* = ged(det(minor(B, 1)), det(minor(C,1))) for 1 <i < n.

The entries of the matrices in step (1) can be chosen from a subset of F (cf.
[23]). With high probability, the entries of U3, Uy, Vi, V3 do not form a root of a
polynomial of large degree and the s* will be correct [23, Lemma 3.2]. The authors
of [23] also mention that U/; may be chosen upper triangular, V; may be chosen

lower triangular, and that ' need not be randomized.

Example 6 (KKS Monte Carlo SMITHFORM) Consider the matriz

z—1 3x+2
A=
z—1 2x+3

We choose random unimodular matrices Uy, Vi, Uy and V5 and set

B U, A v
4o +1 342 1 0 r—1 3x+2 1 0
3042 2243 o 1 ||le-1 200311 1
and
: U, A v,
r—1 3xz4+2 1 0 r—1 3xz4+2 1 0
e 1 22230 o1 lls-1 202301

The determinants of the principal minors of B are by =42 +1, by = —22+22 — 1

and for C arec; = x —1, cg = —2? 4+ 22 — 1. As candidates for the determinental
divisors of A we obtain s*(A,1) = ged(br,er) = 1 and s*(A,2) = ged(by, c2) =
x> — 22+ 1. The candidate for the SNF of A is

S:ﬁ 0 |

[0 22— 2r+1 J

Consider the computation again but this time with a different choice for the random

unimodular multiplier matrices Uy and Vi. The new choice gives

B U, A Vi
29 —2 hxr4+5H 1 0 r—1 3242 1 0

z—1 2x4+3 1 1 z—1 2x+3 0 1

5.1. PRELIMINARIES AND PREVIOUS RESULTS 63

For the new choice of B, candidates for the determinental divisors turn out to be
s*(A, 1) =2 —1 and s*(A,2) = 2> — 2z + 1. This leads to the following (incorrect)
candidate for the SNF of A:

(21 0 |

S:[0 m—]J'

In a later paper a Las Vegas SMITHFORM algorithm is offered [24]. For conve-

nience, we give here a version restricted square nonsingular input.

Algorithm: KKS Las Vegas SMITHFORM

Input: A nonsingular matrix A € Flz]"™".

Output: [sT,s5,...,57], the determinantal divisors of A.

(1) Let V4 be a random unit lower triangular matrix in F»*".
(2) A"+ AV;.

(3) Ay « HNF of A"

(4) Ay + HNF of transpose(Ay).

(5) Tf Ay is in SNF then output Ay otherwise fail.

The typical algorithm for SMITHFORM involves iterating HERMITEFORM along
the diagonal of the input matrix just as in steps (3) and (4) of KKS Las Vegas
SMITHFORM. While in theory the number of number of iterations is bounded
by O(n?), in practice two iterations almost always suffice; the KKS Tas Vegas
SMITHFORM ensures that with high probability this will be the case.

Example 7 (KKS Las Vegas SMITHFORM) Consider again the matriz

z—1 3x+2
A=
z—1 2x+3

We choose a random unit lower triangular matriz Vi and set

Al A v
4a+1 3242 z—1 3x+2 1 0
30492 2243 a1 2020311 1

In step (3) we obtain
I /52 46/5
A] -
0 22—22+1

64 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

the HNF of A’. In step (4) we obtain

1 0
A2:)
0 22 —22+1

the HNF of Ay. Since Ay is in SNF we output Ay as the SNF of A. Consider
the computation again but this time neglecting to randomize the matriz A" (i.e. we

choose Vi =T in step (1) whence A" = A). Then we obtain

r— 1 5 T 1/52—1/5
and Ay =
0 xz— 1 0 22—2x+1

A

Since Ay is not in SNF the algorithm returns FATL. []

5.2 Fraction-Free Gaussian Elimination

The number fields we work with in a computational setting are typically quotient
fields of principal ideal domains (e.g. the rationals Q or the field of rational poly-
nomials F(2)). For problems over these domains, it advantageous to be able to do
as much computation within the simpler principal ideal domain before moving to
the quotient field. For triangularizing matrices over fields, an algorithm that has
proven useful in this regard is fraction-free Gaussian elimination. For a thorough
discussion of fraction-free Gaussian elimination see [14] or the original articles by

Bareiss [2, 3].
For R a principal ideal domain, let A € R"™™ and a positive integer r <

min(m,n) be given. A key step in the algorithm we present in the next section
is to compute a partial triangularization of A over the quotient field of R that is
expressible entirely within R. This will correspond to finding a lower triangular
matrix /7 € R"™" such that F'A has zero entries below the diagonal in columns
1,2,...,r. In other words, if A’ is the submatrix of A comprised of the first r
columns of A, then FFA” € R™™" will be in upper echelon form (with respect to
the quotient field of R).

5.2. FRACTION-FREE GAUSSIAN ELIMINATION

Example 8 The matrix

11

10
18
12

14

19
11
20
19

18 7 57
4 20 T8
3 12 73
12 0 11
9 5 55
7 16 103
6 14 71

43
2
18
24
23
30
26

65

has rank 4. Triangularizing A using fraction-free Gaussian elimination and record-

ing row operations in a bordering identily matrixz yields the matrices F and T such

that FA =T

60
—918
—15822
—33156

| 30564

0
11
—83
2415
14904
2829
—13524

F = FFGE(A,4)

0
0
—18
—488
—30618
—33398
—1652

o o o o o o

o o o O

—594 36018 0

0 0
0 0
0 0
694 0
36130 0
3275H8 0
14 18
—18 —64
0 694
0 0
0 0
0 0
0 0

360
0

T
7

178
—1456
36018

0
0
0

o o o o o

18 0

36018 |

a7
516
—4368

1080564 36018

0
0
0

43
50
—68

0
0
0

10
18
12

14

19

20
19

a7
78
73
11
LY
103
71

43
28
18
24
23
30
26

Remark: Since F'is non unimodular, we must have £(7T) # L(A). However, the

point that will concern us is that since I is over Z , we must have L(T') C L(A).

The matrices I and T found using fraction-free Gaussian elimination have the

property that all entries are associates of determinants of particular minors of A.

Not only does this fact ensure good a priori bounds for the size of intermediate

expressions occurring during the triangulation, but the structure and nature of

66 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

the entries of F and T will prove very useful in lattice basis problems over PIDs
(cf. next section and next chapter). For the remainder of this section, we give
an explicit characterization of the matrices I/ and T and consider the problem of

their computation.

First we need to recall some basic definitions and facts from linear algebra.
Let A € R"™ be nonsingular. The minor M, ; of entry a;; is defined to be
the determinant of the submatrix obtained by deleting the the i-th row and j-th
column of A. The cofactor (;; is given by C;; = (— 1) M.

Fact 4 Let A be an n X n matriz over R with adjoint A*Y. Then, the entries in
A gre given by A?;h = C,; for 1 <i,5 <mn. Also, det(A) is given by the i-th
row erpansion,

det(A) = Z ainCin + ainCio+ -+ a;nCipy

j=1

or the j-th column expansion

det(A) =Y a1;C1j + aziCj + -+ + an;Coj.

=1

Note that the last row of A*Y will consist entirely of associates of (n—1)x(n—1)
minors of the first n — 1 columns of A. In particular, each entry of of the last
row of A*Y will be divisible by h*(A,7 — 1). Now consider the lower triangular
matrix F € R™" with [u;q1,u;2,...,u;;] equal to the last row of the adjoint of
minor(A,i) for 1 < ¢ < n. Then Fis lower triangular with: (1) Fy; = 1 and
F;; = det(minor(A,i — 1)) for 2 < i < n; (2) each entry to the left of the diagonal
in row 7 of F equal to an associate of an (i — 1) x (¢ — 1) minor of the first 7 — 1
columns of A for 2 < ¢ < n. Furthermore, F'A will be upper triangular with:
(1) (FA);; = det(minor(A,1)) for 1 <1 < n; (2) each entry to the right of the

diagonal in row 7 of F'A equal to the determinant of an 2 x 7 minor of A. The

following lemma generalizes this idea to rectangular matrices.

Lemma 7 Let A € R"™™ and a positive integer r < min(m,n) be given. Let

e R™*"™ be lower triangular with:

(1) F,; equal to the cofactor of the element in the j-th row, i-th column of the
1-th principal minor of A for1 <3 <1<,

(2) F,; equal to the cofactor of the element in the j-th row, r-th column of the
submatriz of A formed from rows [1,2,...,r — 1,1] and columns [1,2,..., 7]

of Aforr4+1<i<n, 1<j<r,

5.2. FRACTION-FREE GAUSSIAN ELIMINATION 67

(3) Fij=0forr+2<i<n,r+1<j<i,

(4) Fi; = det(minor(A,r)) forr+1 <7 <n.
Then, the matriz T = F A will have:

(1) T;; = det(minor(A,i)) for 1 <i <r;

(2) T;; equal to the determinant of the © X 1 submatriz of A formed from rows
1,2,....1] and columns [1,2,....1 — 1.7 for 1 <1< n,1<7<m;
? ? ? ? ? ? 7.7 o K] K

(3)) 71’7:0][‘07“] S]Srfj_l_] S?SW,

(4) T;; equal to the determinant of the (r + 1) x (r + 1) submatriz of A formed

from rows [1,2,....r,1] and columns [1,2,...,r, j]

Remark: When r > rank(A), matrix 7" will be upper triangular.

Proof: Follows from Fact 4 by noting that the entries of F'A are the claimed
entries for T which are determinants of submatrices of A written according

according to their cofactor expansion.]

In what follows we use FFGE(A,r) to denote the matrix F of Lemma 7.
FFGE(A,r) can be found in O(nmr) ring operations by recording row operations
in a companion matrix while reducing A to upper echelon form (columns 1,...,r)
using a variation of the Bareiss single-step fraction-free Gaussian elimination
scheme that avoids row switching. The usual Gaussian elimination method zeroes
out entries below the diagonal element in the k-th column of A for k=1,2,... r.
When working on column k, the first step is to switch rows (if necessary) to en-
sure that the pivot entry (the diagonal entry in column k) is nonzero. Switching of
rows will not be necessary only if, for k£ = 1,...,r, the initial diagonal entry in the
k-th column of the matrix being reduced is nonzero after columns 1,...,k—1 have
been reduced. This will happen precisely when minor(A, r) is definite (minor(A, 1)
nonsingular for 7 = 1,2,...,r). For our purposes, we may assume that minor(A, r)
is definite and when computing FFGE(A, r) return FATL if a zero pivot is encoun-
tered. Hence, for nonsingular definite input A € Flz]"*" with degrees of entries
bounded by d — 1, FFGE(A,n) can be computed using O(n”P(nd)) field oper-
ations with using fraction free Gaussian elimination. Assuming fast polynomial

multiplication yields a cost of O(n*dlog ndloglog nd) or O~ (n*d) field operations.

However, it is desirable to be able to compute FFGE(A,r) even when
minor(A, r) is not definite. When R is a polynomial domain, say Q[z], then an
efficient method to compute FFGE(A,r) is based on modular/evaluation homo-

morphisms and computation of FFGE(A, r) in the image domain (integers modulo

68 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

a prime) followed by interpolation and Chinese remaindering. It may happen that
det(minor(A, 7)) maps to zero in the image domain for some 1 <17 < r even when
minor(A, r) is definite over Q[z]. Clearly, though, the matrices /" and T of Lemma
7 are well defined even when this situation occurs, and a simple modification of
the Bareiss method obviates the problem of zero pivots. To illustrate, we offer
here an algorithm that finds FFGE(A,n) for any square matrix of size n. Let
BAREISS(A,7) denote a procedure that returns the 3-tuple (£, T;, k;) where F;
and T;, matrices such that F; A = T;, are found by applying ordinary fraction-free
Gaussian elimination to A, but with row switches (used to choose nonzero pivots)
limited to the first 7 rows of A, and where k; is the maximal column index for

which the reduction can proceed (i.e. for which a nonzero pivot can be chosen.)

Algorithm: FFGE
Input(A) # an n x n matrix over R
Output(F,T) # the matrix F' = FFGE(A,n) and T'= F'A

1 for2=1ton do

2 (F;, Ti,k;) < BAREISS(A,i);
3 ik >1—1 then
4 row(F, 1) < row(F;, 1)
5 else
6 row(F,i) < [0,0,...,0];
7 od;
8 T+ FA
Remarks:

(1) Tn line 2, F; and T; can be computed by continuing the Bareiss method on
matrices F;_y and T;_4.

(2) BAREISS is called n times, but on pass i, only k; — k;_1 columns of A have
entries below the diagonal zeroed. In total, 3°,c;, ki — ki1 < n columns will
have entries below the diagonal zeroed. This shows the cost of algorithm FFGE is

same as for BAREISS(A,n).

Consider again the problem of computing F' = FFGE(A, n) for a square nonsin-

gular matrix A over F[z]™*"

, but now assuming standard polynomial multiplica-
tion: P(d) = d*. Using algorithm FFGE we can apply an evaluation/interpolation
schemeto find I'and T" = F' A without concern about “bad” homomorphisms. The
procedure can be described as follows: (1) Find the matrices Al,—; fori =0,...,nd

at a cost of O(n?-nd-d) field operations; (2) Find F|,=; and T,—; fori =10,...,nd

5.2. FRACTION-FREE GAUSSIAN ELIMINATION 69

at a cost of O(nd-n?) field operations; (3) Use Chinese remaindering to reconstruct
the 2n? degree nd polynomials in matrices F' and 7' from their images at a cost of
O(n*(nd)?) field operations. Combining the above yields a total cost of O(n*d?)
field operations using standard polynomial arithmetic to compute FFGE(A, n).

5.2.1 Computing FFGE(A.r) over Z [r]

Let A € Z[x]"*™ have degree bounded by d — 1 . Recall that ||A|| denotes the
largest magnitude of all coefficients of all entries of A. The purpose of this section
is demonstrate that F' =FFGE(A,r) (and T'= F A) can be found in O~ (s*) bit
operations using standard integer and polynomial multiplication. (Recall that
s=mn+m-+d+log||All.) To find FF =FFGE(A,r), we find F, = Fmodp €
GF(p)[x]"*" for sufficiently many primes p to allow recovery of F' via the Chinese
remainder algorithm. Determinants of r x r minors of A (and hence entries of F
and T') will be polynomials bounded in degree by rd and have coefficients hounded
in magnitude by B = (y/rd||A||)". The following lemma from Giesbrecht shows
that we can choose all our primes to be [= 6 4 loglog B bits in length.

Lemma 8 (Giesbrecht [15]) et @ > 3 and [= 6 4+ loglog x. Then there exist
at least 2[[logy(22)] /(I —1)] primes p such that 27" < p < 2!

We need to find F, for ¢ = [(2B + 1)/2"""] = O(rlogrd||A]|/]) primes
(pi)i<i<q that are each [bits in length. F and F'A will contain at most 2nm
nonzero entries bounded in degree by rd. Hence, the Chinese remainder algorithm
will need to be used to reconstruct at most 2nm(rd + 1)) integers log B bits in
length from their images modulo a set of ¢ primes bounded in length by [bits.
This yields O(nmrdM(log B)loglog B) = O~ (nmr3dlog® || A]|) bit operations us-
ing standard integer arithmetic to recover F' and T. The images (F,,,T,,) over
GF(p)[x] can be computed using an evaluation /interpolation scheme: (1) Find the
images (A,)i<i<g; (2) For 1 <1 < gand 0 <j < rd, compute (F), Y m:j)
over GF(p)[z] at a cost of O(q - nmr((P(d)logd + rd)M(l)) bit operations; (3)
For 1 < i < g, interpolate the O(nm) nonzero entries of (F,,,T,,) at a cost of
O(q - nmP(rd)(logrd)M (1)) bit operations. The cost of step (1) will be bounded

by the cost of Chinese remaindering. Combining steps (2) and (3) together with

the cost of Chinese remaindering gives the following result.

Theorem 8 let A € Z[x]"*™ with degrees bounded by d—1 and a positive integer
r < min(m,n) be given. The matrices ' =FFGE(A,r) and T = FA can be
found in O~ (nmr*d(d + log ||A||) log ||A||) bit operations using standard integer

and polynomial arithmetic.

70 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

Corollary 4 F =FFGFE(A,min(m,n)) and T' = FA can be found in O~(s%) bit

operations using standard integer and polynomial arithmetic.

5.3 An Algorithm for SMITHFORM over F|z]

In this section we give an extension of the KKS Monte Carlo SMITHFORM algo-
rithm given in §5.1.1 that verifies correctness of the determinantal divisors found.
Given a nonsingular input matrix A in F[2]"*", the first step of the algorithm is
to precondition A with random pre- and post-multipliers to obtain a new matrix
A" that has the same SNF as A. Using fraction free Gaussian elimination, a lower
triangular matrix Ur in F[2]™*" is found such that T'= Ur A’ is upper triangular
with 7}, being the determinant of the i-th principal minor of A’. The algorithm
then computes ¢, the ged of det(A) and the determinant of the -th minor of
A’. With high probability, ¢ will equal the i-th determinantal divisor of A. The
remainder of the algorithm performs O(n?) divisibility checks which all hold if and
only if all the ¢g* are indeed the desired determinantal divisors. In this section we

restrict our attentions to square nonsingular input.

To bound the probability of failure by a constant e, where 0 < ¢ < 1, we
require that #F > 6n’d/c. The SNF of of A over IK[z] (where IK < 6n”d/¢) can
be found by computing over an algebraic extension F of IK having the required
number of elements; the SNF is an entirely rational form and will not change if
we compute over an extension field F O IK of the coefficient field. In any case,
our main motivation is the case when the coefficient field F has characteristic
zero. As discussed in the introduction, SMITHFORM over F[z] can be especially
difficult for the case when F has characteristic zero because of the potential for
intermediate expression swell experienced by the coefficients from F. Algorithm
SquareSmithForm that follows works particularly well for coefficient fields F that
are the quotient fields of a non finite integral domains. In particular, Q is the
quotient field of Z . Without loss of generality, we assume that an input matrix A €
Q[z]"*™ has all integer coefficients; in this case the algorithm finds associates of
the determinantal divisors of A while keeping all computations within the simpler
domain Z [z]. More importantly, we can obtain very good bounds on the size of

integers occurring as intermediate expressions.

Algorithm: SquareSmithForm
Input: A nonsingular matrix A € F[z]”*” and an upper bound 0 < ¢ < 1 on the
probability of failing.

*

Output: [s7,5,...,%], the determinantal divisors of A.

5.3. AN ALGORITHM FOR SMITHFORM OVER F[X] 71

(1) [Randomize:]
Let d — 1 bound the degrees of entries of A and let C' be a subset of F with
#C = [6n°d/c].
Ur < a unit upper triangular matrix with off diagonal elements chosen at
random from (';
Vr + a unit lower triangular matrix with off diagonal elements chosen at

random from (';

Al — []RAVR;

(2) [Triangularize:]
Ur « FFGE(A' n);
T « UpA’;

(3) [Find probable determinantal divisors of A:]
d* + det(A)?;
fors=1ton do

g* + an associate of ged(d*, T;,);

(4) [Check divisibility properties of ¢7’s:]
9o = 1
foro =1ton —1do

if gx* does not divide 91 gy then FATL;

(5) [Assay that g = h*(A’)7) for 1 <i < n:]
for 2 =2 ton do

for ;=1to1—1do
if g7, does not divide Uy, ; then FATL;
(6) [Assay that g = s*(A’)7) for 1 <1 < n]
foro =1ton —1do
for 7 =72+1ton do
if g© does not divides T ; then FATL;

(7) [Output:]

[s%,85,...,5°] with s* the monic associate of ¢ for 1 <7 < n;
Remarks:
(1) Note that det(A) has already been computed when step (3) is reached since
T = det(A).

(2) Tn step (3), we may choose d* < det(A) rather than d* < det(A)%.

Entries of Uy and T found in step (2) are associates of determinants of minors of
A’ these have degrees bounded by nd. This leads to a bound of 2nd on degrees of

all polynomials occurring in the algorithm. The n ged computations in step (3) will

72 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

require at most O(nP(nd)lognd) field operations. Using fraction free Gaussian
elimination, the matrices Uy and T' can be found in O(n® P(nd)) field operations.
The matrix multiplications in step (1) and the remaining n multiplications and
n? — 1 trial divisions in steps (4), (5) and (6) can be accomplished in O(n?P(nd))
field operations. Overall we obtain O(n?d(n* + log d) log ndlog log nd) or O~ (n*d)
field operations using fast polynomial arithmetic: P(d) = dlogdloglogd. In
practice, we would use the evaluation/interpolation scheme discussed in §5.2 to
recover Uy and T° this leads to a bound of O(n*d?) field operations for algorithm
SquareSmithForm using standard polynomial arithmetic: P(d) = d°.

We now consider the special case when F = Q and the input matrix A € Q][]
has all integer coefficients. For this case, we derive a complexity result in terms
of n, d and § where 3 is a bound for both ||Ur|| and ||T|| where Ur and T
are the matrices found in step (2). Note that in step (1) we can choose C' =
{0,...,[6n%d/e]} so that [[A/]] < n-[6n?d/e]-||A]] whence 3 < (y/nd||A']])" <
(v/nd[6n?d/e]||A]])" or, asymptotically, log 3 = O(nlog nd|| Al|).

There is a natural duality between the integers and univariate polynomials with
integer coefficients. The integer coefficients (represented in binary) of a degree
d — 1 polynomial f € Z [z] having coefficients bounded in magnitude by 2¥~1 —1
(k € Z) can be written as a binary lineup to obtain the dk bit integer f|,—ox.
This corresponds to the B-adic expansion of an integer; choosing B a power of 2
allows the conversion to and from polynomial representation to be accomplished
in linear time. Thus, we can find Ur and T in O(n*M(ndk)) bit operations by
applying fraction-free Gaussian elimination to the n x n integer matrix A’|,_sx
where k = [1+1log(G+1)]. By a result of Schonhage [31], the n ged computations
in step 3 require O~ (n-nd(nd 4+ nlognd|| Al])) bit operations.

The remaining O(n?) trial divisions in steps (4), (5) and (6) and the O(n)
polynomial multiplications in step (3) will require at most O(n?>M(nd - (nd +
nlognd||A|]))) bit operations. Overall this yields O~ (n?d(d + n*log||Al])) =

O~ (s7) bit operations using fast polynomial and integer arithmetic.

In practice, the dominant cost of the algorithm will almost certainly be finding
the triangulation 7" and transition matrix Ur in step (2). (This would not be
true, for example, if the input matrix were of dimension 2 x 1, in which case the
computation reduces to a ged computation over Z [].) Since the size of intermedi-
ate expressions occurring in the algorithm admit very good bounds, a complexity
result in terms of fast polynomial and integer arithmetic will not be interesting
for many practical examples. By employing the homomorphic imaging scheme

discussed in §5.2.1 we also have the following result as a corollary of Theorem 8.

5.3. AN ALGORITHM FOR SMITHFORM OVER F[X] 73

Corollary 5 let A’ € Z [x]"*" be nonsingular with degrees bounded by d — 1.
Then, there exists a sequential deterministic algorithm that finds the matrices Uy
and T = Ur A" in step 2 of SquareSmithForm in O~ (n’d(d+log || A’|]) log || A'|]) =

O™~ (s®) bit operations using standard integer and polynomial arithmetic.

To show that algorithm SquareSmithFormis a correct Las Vegas algorithm for
SMITHFORM over F[z] will require some lemmas. Some of the following results
are more general than we require here but they will be called upon in the next

chapter.

Lemma 9 Let A € F[z]™" be square nonsingular and let U and U be matri-
ces in Flz]"*™ and g5, g5, ..., polynomials in ¥[x]. Then, if

(1) T =UMA and T® = U A are upper triangular matrices in Flz]**";

2) g~ 1 and g* ~ gcd(TD, 7P or 1 <i1<m;
-q() .Qz g 3 - K

(‘?) q: = det(%\),

(4) g divides each entry in row i+ 1 of UMD and U for 1 <1<n —1;

then g* ~ h*(A1) for 1 <i <mn.

Proof: Tet A, U U?) be matrices and ¢, g7, ...,q5 polynomials that satisfy
the conditions of the lemma. A nonsingular implies ¢& # 0. Condition (4) im-
plies g5 | gcd(UMAY;, (TP A),) = gcd(ﬂ(:),ﬂ(?)) ~ gf for 1 < i < n whence
aslar| -+ lgs # 0 which shows ¢F # 0 for 1 < 7 < n. We show by construc-
tion that there exists a matrix U € F[z]"*" such that UA has i-th diagonal
entry ¢*/g* ,; the desired result will then follow by Fact 3 and the fact the
det(UA) =TI, 97 /g7, = g- ~ det(A). Condition (2) implies that there ex-

ists a solution (a;,b;) to the polynomial diophantine equation
T+ 6T =g

Let F/ and F' be diagonal matrices in Flz]"*" such that for 1 < < n, (F;;, F;,)
is such solution for (a;,b;). Let G € F[x]"*" be diagonal with G;; = ¢, for

1 <3 <n. Now consider the matrix

U=rGTUY L PG,

74 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

Condition (3) implies that U/ is in Flz]"*" (not just F(a)"*"). Then UA is also
over F[z]:
UA = (EGT'U0 £ FGT'U®)A
— GY(ETY 4 FT®)

gi T1(,12) + by T1(,22) a4 T1(,13) + by T1(,23) g T1(,177? + by T1(,277?
0 9> (1/2712(,13) + 52T2(,23) e (1/273(,172 + by Ty
_ (771
= 0 0
0 0 .. 0 g

The last equations shows that U A is upper triangular with (UA),; = ¢~ /g7 ,. =

Lemma 10 Let T' € Flz]"*™ be of rank v with minor(T,r) upper triangular and
with rows r+1,....n having all zero entries. Lel t; denote the i-th diagonal entry
of T'. If t; divides all off-diagonal entries of row 1 of T for 1 <1 <r —1, then
there exists a unimodular matriz V€ Flz]"*™ such that TV is diagonal with

(TV)i=ti; fori=1.2,....0r —1 and (S7V),, ~ ged(T, o1, Trviay oo, Tom).

Proof: Without loss of generality, we assume that 7' has row dimension r (since
the last m — r rows have all zero entries they will not be modified by column

operations). Then we can write T in block form as

T T
T = 1 2
0o T,
t1 t1,2 T t1,7’71 t1,7’ t1,7’+1 T t1,m,
0 t? T t2,7’71 t?,r t2,7’+1 T t?,m,
0 T tr71,7’71 tr71,r tr71,7’+1 T tr71,m,
0 tr tr,r+1 T tr,m,

Define D to be a square diagonal matrix of size r — 1 with 2-th diagonal entry #;,
and let V; € F[z] be a unimodular matrix of size m —r 4+ 1 such that S, = T4V, is
in SNF. Then, the matrix (D~ 'T}) will be unimodular over F[z] and .Sy will have

a single nonzero entry, namely (S4)11 ~ gcd(T, o1, Trvyay .oy Trm). We set

(DT (D' T)'Ty
0 Vi

V —

5.3. AN ALGORITHM FOR SMITHFORM OVER F[X] 75

To complete the proof, note that V' is unimodular and that

o | T (07T (DT,
0o T 0 I
[y —mo 4
B 0 Tyl
[poo
N 0 ASY4

Theorem 9 Algorithm SquareSmithForm is correct and fails with probability less
than €. The expected cost of finding the SNF of a nonsingular input matriz A €
F(z] with degrees of entries bounded by d — 1 is O~ (n*d) field operations. When
A € Z[x]"*", finding the SNF of A over Q[x] requires an expected number of
O~ (s7) bit operations.

Proof: First we show correctness. Let ¢ for 1 < ¢ < n be as found in step (3).
We show that the algorithm does not return FATL if and only if ¢ is an associate
of s*(A, 1) over Q[z] (¢ ~ s*(A,7)) for 1 < <n.

(Ifz) Assume that g ~ s*(A,7) for 1 < i < n. By Fact 2, step (4) will not
abort. By construction, A’ is equivalent to and hence has the same determinantal
divisors as A. By construction of Ur in step (2), Up,; for i > 1,1 <7 <iis an
associate of an (i — 1) x (7 — 1) minor of A’. Similarly, T} ; is an ¢ X i minor of A’
for 1T <12 < j < n. Since, by assumption, g’ is the ged of all 7+ x 7 minors of A
(and of A’), neither steps (5) nor (6) abort.

(Only if:) Assume that the algorithm does not rveturn FAIL. Set /(D =
d*adjoint(A’) and U®) = U where d* = det(A)? as in step (3). Then, the ma-
trices UM 72| A" and polynomials ¢¥, g5, ..., g* satisfy conditions of Lemma 9.

We conclude the existence of a unimodular matrix / in F[z]"*" such that

UA" = (EGT'UD + FGT'UM A
= GYETW 4 FT®)

g7 b T1(,22) by T1(,23) e by T1(,2w?]
0 g b - 6T
= G710 0 :

76 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

where T T (¢ and the a;,b; are as in Lemma 9. Note that /A’ has i-th
diagonal entry ¢7/g-,. The success of step (6) implies that UA satisfies the
conditions of Lemma 10 and we conclude that there exists a unimodular matrix V
such that U AV is diagonal with i-th diagonal entry ¢*/g: , for 1 <i < n. Finally,
the success of step (4) together with Fact 3 gives the desired result.

It remains to show that the probability of failure is less than €. To do this, we
show that g ~ s for 1 <1 < n provided the entries of Ur above the diagonal
and Vi below the diagonal do not form the root of a certain polynomial = with
degree hounded by 4n*d. Then, our choice of entries for /s and Vx allows us
to apply a result of Schwartz [32] to bound the probability of failure by e. By
Lemma 12, the matrix AVi will be such that A*(AVg, i) = s*(A,2) for 1 <i <n
unless the entries of Vi below the diagonal form a root of a polynomial mg with
degree bounded by 2n’d. Similarly, gcd(det(minor(A’,7),det(A)) = h*(AVg,1)
for 1T <1 < n if the entries of Ur above the diagonal do not form a root of a
polynomial my = mymy--- 7,1 where each m;, bounded in degree by 4ndi, is as
in Lemma 13. 7 will be bounded in degree by 4n’d. Tet m# = ngmy. Then 7 is

bounded in degree by 6n?d.]

Lemma 11 ([24, Lemma 3.5]) Let fi,..., f; be polynomials in Flp,z], p is a
list of new wvariables, with det f; < e. Then for some e < 2e, there exists an
e x e determinant A in F[p], whose entries are coefficients of fi, such that for any

evaluation p — r a list of corresponding field elements that are not a root of A,

ged(fi(p)s---5 filp)) = (ged(frs-- -, [))(p)-

Lemma 12 ([24, Lemma 3.7]) Let A be a matriz in Fx]"*™ of rank r and with
the degrees of the entries bounded by d, and let i € {1,...,r — 1}. Then there is

a polynomial m; in m(m — 1)/2 variables such that if

(1) Vg in Fla]™*™ is unit lower triangular,

(2) A is the submatriz of AR comprised of the first r columns.

then Ag has rank r, and s*(A,1) = h*(As, 1), unless the m(m — 1)/2 entries below

the diagonal in Vg form a root of m;. The degree of m; is not more than 2:%*d +i.

Lemma 13 Let A be a matriz in Flz]"*™ of rank m and with the degrees of the

entries bounded by d, and let i € {1,...,m —1}. Then there is a polynomial m; in
n(n — 1)/2 variables such that if

(1) Ur € Flz]"*" is unil upper triangular,

5.3. AN ALGORITHM FOR SMITHFORM OVER F[X] 7

(2) d* is a polynomial with degree less than 2md and such that h*(A,1) | d*.

then h*(A,7) = ged(d*, det(minor(UrA, 1)), unless the n(n — 1)/2 entries above
the diagonal in Ug together with the 2md coefficients of d* form a root of m;. The
degree of m; is bounded 4mds.

Proof: First consider that case where the matrix Ugr contains indeterminants as
entries, say (Ugr)i; = pi; for 7 > 1 where p = (pi;)i<i<n,j>i 19 a list of indeter-
minants. By a result of Kaltofen, Krishnamoorthy and Saunders, [24, l.emma
3.6], we have det(minor(UrA,i)) = h*(A,1)p, where p is an irreducible polyno-
mial in Fa, p] \ F[z] or is 1. Since d* is independant of the indeterminants p,
we must have h*(A,i) = ged(d*, det(minor(UrA,1))) as required. An applica-
tion of Lemma 11 yields the existence of a 4md x 4md determinant A, whose
entries are coefficients of 2 of det(minor(UrA,7)) and d* such that for any eval-
uation p — r, where r is a list of corresponding field elements that are not a
root of A, ged(d*, det(minor(UrA,i))) = h*(A,1). Tt remains to establish a degree
bound for A. Coefficients of = of UrA are of degree 1 whence coefficients of = of
det(minor(UrA, 1)) will have total degrees bounded by 7. This leads to a bound
on the total degree of A of 4mdi. Finally, set m; = A to complete the proof. []

78 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]

Chapter 6

Homomorphisms for Lattice

Bases over F|z]

This chapter is the culmination of our work with matrix polynomial normal forms.
Here, we bring together many of the results from previous chapters and construct
algorithms for obtaining bases for the lattices generated by the rows of matrices
over Flz]. Each section in this chapter presents a new algorithm. In general, sub-
sequent sections will depend on results from the previous sections but we present

the algorithms separately because we feel each to be useful in its own right.

Section §6.1 gives an algorithm for finding a unimodular triangularization (but
not necessarily the unique HNF) of a square nonsingular input matrix. Section §6.2
shows how to apply homomorphisms to the problem HERMITEFORM over Q]
in order to avoid computation with large integers and we give an asymptotically
fast sequential deterministic algorithm for HERMITEFORM over Q[x] that assumes
fast polynomial and integer multiplication. On the other hand, the homomorphism
method of §6.2 is also the most practical method for HERMITEFORM that we know
of. Section §6.3 shows how to handle rectangular input via a pre-conditioning
algorithm that reduces the problem to the square nonsingular case. Finally, §6.4
gives a generalization of the algorithm SquareSmithForm of §5.3 that works for

rectangular and/or singular input.

6.1 Triangularizing

A common themein linear algebra problemsis that of triangularizing matrices. For
matrices over PIDs we are interested especially in unimodular triangularizations:
given A € Flz]”™ with rank m, find a unimodular matrix [/ € F[z]"*" and an

upper triangular matrix T° € F[z]"*™ such that UA = T. We require U to be

79

80 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASES

unimodular so that the nonzero rows of T" will not just be contained in but will
also span the lattice generated by rows of A (denoted by L(A)). In particular,
the HNF H of A provides a unique triangular basis for L£(A). Fact 3 tells us
that for any two unimodular triangularizations of A, say Ty and Ty, we must
have (T1);; ~ (Ty);; for 1 < i < m; that is, the respective diagonal entries are
associates. The HNF H gains its uniqueness by enforcing that diagonal entries
be monic and that off diagonal entries have degree strictly less than the diagonal

entry in the same column.

For some applications, the degree condition on the off-diagonal entries need not
hold and it may be cheaper to compute a generic triangularization rather than the
unique HNF. For example, algorithm SquareSmithForm of §5.3 worked by finding
a construction for a unimodular triangularization T' of a pre-conditioned input
matrix A” € Flz]"*" and verifying that certain divisibility conditions held. Finding
explicitly the off-diagonal entries of HNF of A" would be prohibitively expensive
in this case. In general, the problem HERMITEFORM seems to be more difficult
than triangularization. Hafner and McCurley show in [16] how to apply fast matrix
multiplication techniques to the problem of finding a unimodular triangularization
T of an input matrix A over a principal ideal domain R. When R is a Fuclidean
domain such as Z, the HNF of A can be found easily from T by reducing off
diagonal entries in each column but they are unable to accomplish this within a
constant factor of the the number of bit operations required to find T' to begin

with.

Our first result is a fast method for triangularizing matrices over F[x]; this is
similar to the Hafner and McCurley result for triangularizing integer matrices in
that we do not produce the unique HNF. For their algorithm they used fast matrix
multiplication techniques to obtain a good result in terms of the number of ring
operations. In our case, we are working over the ring F[x]| and give our results in

terms of the number of field operations over F.

Algorithm: Triangularize
Input: A square nonsingular matrix A € F[z]™*".

Output: An upper triangular matrix 7" € F[2]"*" and a unimodular matrix

U € Flz]"*" such that UA =T

(1) [Randomize:]
Let d — 1 bound the degrees of entries of A.
Uy, Uy < unit upper triangular matrices in F**" with off diagonal entries

chosen at random from a subset of F with [4m®d/¢] elements;

B U, A;

6.1. TRIANGULARIZING 81

O Uy A;

(2) [Triangularize:]
Ug + FFGE(B,n);
Uc + FFGE(C,n);
Tg « UgB;
Te +— UcCh

(3) [Find probable value g7 for h*(A,7), 1 <i < n:]

forz =1 ton do
g < gcd((Tr)ii, (Te)ii);
(4) [Check that gF = h*(A,7) for 1 <i <n.]
forz =2 ton do
for ;=1to1—1do
if g& , does not divide (Ug), ; or (Ug);; then FATL;

¥

If U and T not required explicitly then output Ug,Uq,Tg, T and

97,75, ---,g] and terminate otherwise continue.

(5) [Solve extended Fuclidean problems:]
(b, cn) < (1,0);
foro =1ton —1do
(bi, ;) + a solution to: b)(Ug)ii + ci(Uc)ii = g7
(6) [Construct U and T:]
Dp + diag(by,ba, ..., b,)
)
G+ diag(gs, 975 - -2 g5 1) € Flz]™7;
U« G '(DgUg + DcUp);
T G DTy + DoTe);

€ Fla]™;
c F]nxn;

Do + diag(er, ea, ..., E:

(7) [Output:] U and T.

Remark: Tn step (1), matrix Uy can be chosen to be a permutation matrix in F»*"

such that PA has nonsingular principal minors.

Matrices U; and P have entries constant polynomials whence matrices B and
C' will have degrees bounded by d — 1. This leads to a bound on the degrees of
entries in Ug, Ug, Tg and Te of nd. Finding Ug and Ty will require O(n*d?) field
operations using an evaluation /interpolation scheme. Similarly, the matrix T can
be found together with P and Up using ordinary fraction-free Gaussian elimination
(with row pivoting) in O(n'*d*) field operations. The extended Fuclidean algorithm

will need to be used n times in step (5) to obtain suitable polynomials by, by, ..., b,

82 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASES

and ¢y, ¢y, ..., ¢, that are bounded in degree by nd; the cost of this is O(n - (nd)?)
field operations. Finally, since matrices Dg, Do and & are diagonal, the matrix
multiplications in step (6) will require at most O(n*d?) field operations, and yield

matrices U and T with entries bounded in degree by 2nd.

It is important to note that the above complexity analysis assumes standard
polynomial arithmetic: P(d) = d?. The main cost of the algorithm is computing
the triangularizations Tg and Te. In our case, these triangularizations are actually
over the quotient field F(x) and can be computed using a homomorphic imaging
scheme in O(n*d?*) field operations. Other algorithms that compute unimodular
triangularizations depend upon solving diophantine equations over the polynomial
domain (either explicitly or implicitly) during the triangularization phase (i.e. al-
gorithm ModTriangularize of §3.2). (In particular, information about the degrees
of intermediate polynomial entries in the matrix being reduced is required; this
is not readily available when the polynomial is represented as list of residues.)
As such, these methods are not suscesptable to a evaluation /interpolation homo-
morphism scheme and assuming standard polynomial and matrix arithmetic

require O(n® - P(nd)) = O(n°d?) field operations. Of course, we could use fast
polynomial multiplication to achieve a complexity of O~ (n*d) field operations
an improvement of about O(d) but this is an asymptotic bound. In practice, d

would have to be inordinately large before a speedup was achieved.

Theorem 10 Algorithm Triangularize is correct and fails with probability less

X"

than €. Given a nonsingular input matriz A € F[z] with degrees of entries

bounded by d — 1, a unimodular matriz U and an upper triangular matriz T in

F(z]"*" such that UA = T can be found in an expected number of O(n*d*) field

operations using standard polyomial multiplication.

Proof: First we show correctness. Let ¢ for 1 < i < n be as found in step (3).
We show that the algorithm does not return FATIL if and only if ¢= ~ h*(A, 1) for
1< <n.

[f: Assume that gF ~ h*(A,7) for 1 <i <n. U; unimodular implies B has the
same determinantal divisors as A. Similarly, (' will have the same determinantal
divisors as A. By construction of Ug and Ug in step (2) entries on and before the
diagonal in row 7 of Ug and Ug are associates of (1 — 1) x (4 — 1) minors of B and
C respectively. Since, by assumption, g7 is the ged of all # x ¢ minors of A (and
hence of B and ('), step (3) will not return FATL.

Only if: Assume that the algorithm does not return FAILL. Then, an application
of Lemma 9 with U = Ugl/;, U® = Us P and ¢& = 1 will give the desired result.

Note that the four conditions of Lemma 9 are verified: construction of Ug and Uq

6.2. HOMOMORPHISMS FOR HERMITEFORM OVER Q[X] 83

verifies conditions 1 and 2; (Tg)n.n = (Tc)nn = det(A) verifies 3; and success of
step (4) verifies condition 4. Lastly, observe that the matrix I/ and T' constructed
in step (6) verify UA =T and that the definition of I/ matches the construction

of the matrix with the same name in LLemma 9.

It remains to show that the probability of failure is less than e. The proof
for this is analogous to that found in the proof of Theorem 9 for algorithm

SquareSmithForm and follows from Lemmas 12 and 13.]

6.2 Homomorphisms for HERMITEFORM over Q|z]

For this section we assume F = Q and that we have a nonsingular input matrix
A€ Z[x]"*". Let U denote the unique unimodular matrix such that U A = H, the
HNF of A over Q[x]. For a prime p, let U, denote the unimoduar matrix over Z ,
(the finite field with p elements) such that U,(A mod p) = H,, the HNF of A mod p
over Z ,[x]. Note that while for many primes p we will have H, = H mod p, there
may exist primes such that H, # H mod p. We say two images H, and H,, are
“consistent” if the degrees of the corresponding diagonal entries in the HNFs H,,

and H,, are identical. An algorithm to find /' and H is now easily described.

(1) Find a number g such that:

(a) Numerators and denominators of rational coefficients in U and H are

integers bounded in magnitude by [3;

(b) There exists a positive integer oo < 3 such that H, = H mod p provided
that p does not divide a.

(2) Choose alist of primes {py, p2,...,py} such that [Ti<;c, pi > B(8°+1). Find
(U,, H,) for p = p1,p1,...,p,- Choose a subset of primes {p;,,pi,,...,pi, }
with consistent images and such that [Tic,cp pi, = 1> 82 4+ 1.

(3) Chinese remainder these images together to obtain the matrices U’ = U mod

1T and H' = H mod II.

(4) Perform a rational reconstruction on each of the integer coefficients of poly-

nomial entries of U/ and H’ to obtain the corresponding matrices /' and H

over Q[z].

In step (1), the bound 3 is chosen to be the number with the same name given
in Theorem 6, namely 3 = (n(d + D)||A|)(nVd||A])™?. That condition (a) is

satisfied follows directly from Theorem 6. Theorem 6 also gives the existence of

84 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASES

a number a < such that ol € Z [z]. Hence, we have the identity (al/)A =
(aH), where all;, A and aH are over Z[z]. For any prime p not dividing o

the leading coefficient of all diagonal entries in (aH) we must have U, =
o '(all mod p) mod p and H, = a '(aH mod p) mod p (this follows from the
uniqueness of the HNF). This shows that condition (b) holds. Note that an actual
implementation would choose the candidate for 3 given by the construction in

Fact 1.

Now consider step (2). An application of Lemma 8 shows that we choose all our

primes to be [bits in length where [= [6+loglog+/B(6%2 4+ 1)) = O(logn+logd+
loglog || Al]). Tn particular, there are at least ¢ = 2[[log(24/3(82+ 1)]/(I—1)] =
O((log 3)/1) primes hetween 2!~' and 2'; the product of these is greater than
B(3?+1). Since the product of all primes for which H, # (H mod p) is bounded by
B, there must exist a subset {p;,, pi,, ..., pi, } of primes with the desired properties.

The image solutions (U,,, H,,)i=1..., are found as follows: (a) find (A,,)=1,, at
a cost of O(n*dM (lq)log q) bit operations (cf. [1, Theorem 8.9]); (b) find U, and
H, fori=1,...,q using the HERMITEFORM algorithm of Tlliopoulos at a cost of
O(q-n*(n +lognd)P(nd)M (1)) bit operations (cf. [21, Algorithm 4.2, Proposition
4.3]). (Note that for some primes p we may have A, = A mod p be a singular
matrix. Such a prime is accounted for among the bad primes and can be discarded.
The Tiopoulos HERMITEFORM algorithm can be trivially modified to return FATI,
in this case.) In step (3), the Chinese remainder algorithm will need to be applied
with ¢ primes of length [bits to construct at most n*(nd+1)+n(nd+1) = O(n*d)
integers, each bounded in magnitude by 3. The cost of this is O(n*dM (lq)log q)
bit operations (cf. [1, Theorem 8.5]). In step (4), rational reconstruction will need
to be applied to O(n’d) integers bounded in magnitude by TT = O(3) to obtain a
corresponding list of rational numbers with numerators and denominators bounded
by 3. The cost of this is O(n*dM (log (3) log log 3) bit operations. Combining these

results and assuming fast polynomial and integer arithmetic gives the following.

Theorem 11 let A be a nonsingular input in Z [x|"*" with degrees of entries
bounded by d and largest magnitude of integer coefficients bounded by ||Al||. The
sequential deterministic algorithm described above computes the Hermite normal
form H of A (over Q[x]) and the unimodular matriz U such that UA = H in
O~ (n°d*log || Al]) or O~ (s?) bit operations.

A fundamental characteristic of the HERMITEFORMWITHMULTIPLIERS prob-
lem for matrices over Qz] is that the resulting matrices U and H are dispro-

portionately large compared to the size of the input matrix A. In Corollary

3 we bounded the size of I by O~ (n°d*log||A||) or O~(s%); the size of A is

6.3. A PRECONDITIONING FOR RECTANGULAR INPUT 85

only O(n?dlog||A]]) or O(s*). Furthermore, we hypothesized that this bound for
Size(U) was tight. In light of this, we hypothesize that the complexity result
of Theorem 11 which is only O~(s) larger than our bound for Size(U) is
optimal (up to log terms) unless a method is devised for applying fast matrix

multiplication techniques to the problemm of HERMITEFORM over Flz].

The best previous method for HERMITEFORM over Q[z] is the linear systems
method of Labhalla, Lombardi and Marlin (cf. §4.3.3). In particular, a worst case
size bound for the total size in bits of the triangular form of matrix Ay, the
coefficient matrix of the linear systems method for HERMITEFORM given in §4.3.3

is O~ (nSd*log || A]]) = O~(s'%) bits. Actually triangularizing the order O(n?d)

matrix Ay, would be prohibitively expensive.

6.3 A Preconditioning for Rectangular Input

Algorithm Triangularize of §6.1 and the method for HERMITEFORM given in
§6.2 were presented only for square nonsingular input. In practice, matrices that
arises during computations are typically rectangular sometimes very rectan-

2 x n arise during some algebraic

gular. In particular, matrices with dimension n
integration problems, and in §1 we gave an example of computing matrix poly-
nomial gcd’s by solving HERMITEFORM for a rectangular input matrix. We have
already seen how the rectangular case can be reduced to the square nonsingular
case by permuting the rows of A and augmenting with an identity matrix (cf. §3
pp- 19); in practice, this method can be extremely wasteful. Consider the 12 x 3

matrix

86

CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASES

4 r?_—92r -9 24 2x 41 —x — 1
—352% — 3422+ 732 +52 3527 —Tlz— 32 37z +29
4 r?_—92r -9 24 2x 41 —x — 1
~85 2% — 8427 + 1732+ 152 —852? — 171z — 82 87x+ 79
2?9229 22 L9241 —x — 1
9723 + 15022 —50x — 1103 9622+ 1462+ 250 22+ 2 — 400
4= 4 r?_—92r -9 24 2x 41 —x — 1
4527 + 4622 — 872 — 108 4522 + 89 2 4+ 48 —43 2 — 51
—82% — 9827 — 2692+ 1681 —92? +79x — 284 x? — 180 x + 563
9923 + 4122 — 387+ 891 9822 +261x —81 22232+ 264
~55x? —89x? — Tx 4767 562" —Tlx— 163 27— 2124274
~5a? — 42 +132 -8 ~hx?—1x—2 To—1

Since rank(A) = r = 3, a basis for L(A) will contain only 3 rows (ie. a matrix
with 9 entries). Applying the preconditioning discussed above requires finding
the HNF of a 12 x 12 nonsingular input matrix (a matrix with 144 entries); this
is much too expensive in light of the cost of HERMITEFORM over Q[z]. Instead,
algorithm Reduce that follows finds a matrix A* of dimension 4 x 3 that has similar
size entries as A and such that L(A*) = L(A). The HNF of A can then be found
by finding the HNF of a 4 x 4 matrix. For example, a trial run of an algorithm
described by Reduce produced

17723 = 5722 — 11762 + 4218 1692 +628 2 — 573 822 — 709 x + 1347

33527 4+ 3827 — 16812+ 5036 32722 + 10072 — 604 8z? — 993 = + 1567
A* =

211 2% — 16422 — 17122 + 6823 20022 + 8522 — 980 1122 — 1049 2 + 2204

17323 + 2927 — 898 2 + 2606 1652” + 530> — 307 82? — 525z + 811

We draw attention to the fact that the matrix A* produced will be of dimension
(m + 1) x m as opposed to m x m. Allowing an extra row in the output matrix
A* allows us to keep the size of rational number coefficients small. For example,
the size of rational number coefficients appearing in a basis for £L(A) a matrix
left equivalent to A but with only m nonzero rows (e.g. the HNF of A) will
typically be much larger than the rational number coefficients appearing in the

input matrix A.

Let A be an input matrix in Q[#]”*™ with n > m + 1. An invariant of L(A) is
the quantity h*(A, m), defined to be the ged of the determinant of all m xm minors

6.3. A PRECONDITIONING FOR RECTANGULAR INPUT 87

of A. The algorithm Reduce that follows works by preconditioning the input
matrix A with a certain random unimodular matrix Ug. With high probability,
the ged of the determinant of the of the two m x m minors of Ur A comprised of
rows [1,2,...,m] (i.e. the principal m-th minor) and the rows [1,2,...,m—1,m+1]
will be equal to h*(A,m). This fact is sufficient to gaurantee that Hermite(A) =
Hermite(A*) where A* is the matrix comprised of the first m 4+ 1 rows of UrA.

Algorithm: Reduce

Input: A matrix A € F[z]”*™ with full column rank and n > m + 1. An upper
bound () < ¢ < 1 on the probability of failing.

Output: A matrix A* € F[z]"*™ with all zero entries in the last m—n-+1 rows and
such that Hermite(A*) = Hermite(A). Optionally, a unimodular transformation
matrix / € Flz]"*" such that H* = UH.

(1) [Randomize:]
Let d bound the degrees of entries of A and let ' be a subset of F\ {1} with
[2m?d/e] elements.
Uy + a strictly upper triangular matrix in F”7*” with entries chosen at
random from (';
Uy < a matrix in F™*("=7) with entries chosen at random from ('

7’],777’],)

a « a row vector in F1x(with entries chosen at random from ' except

for ay = 0;

(n—m)

¥ < a row vector in F'~ with entries chosen at random from ' except

for 4, = 0;
U | U,
0| a
Up + = = + 7I,.
0179
0|0

B « [UrA|é]l € F*("+1) where € is an n x 1 column vector with all entries

0 excepts for the m-th entry, which is 1.

(2) [Triangularize:]

V « FFGE(B,m);

W « FFGE(B,m + 1);
R [vr 0]
| Vi | W' doT |
is upper triangular, V' W’ € F[z](v=m+x(n+) and dy,d, € F[z]. With
probability less than e, both d; and dy may be zero in this case the

Note: V = and W = where Ur € F[m](m+1)x(m+1)

algorithm returns FATIL..

88 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASES

(3) [Find probable value for h*(A, m):]
gy, ged(di, ds);

(4) [Check that g, = h*(A,m).]
if g© does not divide all entries of V' and W’ then FAIIL;

(5) [Construct A*:]

PO R Y
0 0

If U not required then output A* and terminate otherwise continue.

(6) [Solve extended Fuclidean problem:]
(a,b) «+ a solution to: ady + bdy = ¢7-;

(7) [Construct unimodular multiplier:]
v | e !
[qa, vl ‘I’ GL*WI [nfm,—l—1

*
gm

J[]R;

(8) [Output:] U and A*.

Remarks:
(1) Tn step (1), choosing C to be a subset of F\ {1} instead of F ensures that the
randomizing premultiplier matrix Ug is unimodular (ie. nonsingular).

(2) In step (2), FFGE(B,m 4 1) can be found at the same time as FFGE(B, m)

by continuing fraction free Gaussian elimination for one more column.

The proof of correctness for algorithm Reduce is nearly identical to that of
algorithm Triangularize of section §6.1 and can be sketched briefly as follows.
If step (4) does not fail then the algorithm goes on to to construct a matrix U
and A* such that UA = A*. Clearly, U/ is unimodular by construction whence
Hermite(A*) = Hermite(A). By construction, entries of V' and W’ are associates
of determinants m x m minors of A’, whence ¢, = h*(A’;m) (= h*(A,m)) if and
only if the divisibility checks in step (4) are satisfied. This shows that an incorrect
result will never be returned. The challenge lies in proving that algorithm Reduce
is a correct Las Vegas algorithm. In particular, we desire that in step (3) that
the identity g2, = h*(A’,m) holds with high probability so that repetition of
the algorithm will almost never be necessary. The following lemma assures us
that ¢° will be correct provided that the entries in Uz do not form a root of a
certain polynomial bounded in degree by 2m?d; by a result of Schwartz [32], the
probability of this happening is 2m?d/#C (ie. less than ¢).

6.3. A PRECONDITIONING FOR RECTANGULAR INPUT 89

Lemma 14 Let A be a matriz in Flz]™™, n > m + 1, of rank m and with the
degrees of entries bounded by d. Then there is a polynomial © in (2n(m + 1) —
m(m + 3))/2 variables such that if

(1) Ug in F"HX" has the form

U, | U,
Us=1| 0| a
0|79

where Uy € FmX0=m) (1 is unit upper triangular in F"*™ and & and

(n—m)

5 are row vectors in F'* with @ = [1, a9, a3,...,0,] and 7 =

[717 1 s Y3y - 77771*7)7:];

(2) dy is the determinant of the principal m-th minor of UgA;

(3) dy is the determinant of the m x m minor formed by rows [1,2,...,m —

I,m+1] of URA.

then ged(dy,dy) = h*(A,;m), unless the (2n(m + 1) — m(m3))/2 entries in Uy, @,
~ and above the diagonal in Uy form a root of . The degree of m is no more than

2m2d.

Proof: First consider the case when UUnp contains indeterminant entries. In
particular, let the entry in the i-th row k-th column of [U;|Us] be p;ir where
p = (pik)i<i<mic<k<n 18 a vector of indeterminants and let o = (a2, 0, ..., 04 p)
and v = (91,73, -+, Vo—m). By a result of Kaltofen, Krishnamoorthy and Saun-
ders [24, Lemma 3.6] we must have d; = h*(A, m)p;, where p; € Flx, p, a] either
is an irreducible polynomial in F[p,a, 2] \ F[x] or is 1. Similarly, we must have
dy = h*(A,m)py, where py € Flx,p,v] either is an irreducible polynomial in
Flp,v, 2]\ F[2] or is 1. Hence, we must have ged(dq, dy) = h*(A,m) if py is not
an associate of pg; to show this it will be sufficient to demonstrate that either py
depends on a or py depends on 7. Let A, be the submatrix comprised of the last
n —m + 1 rows of A and let (; ; denote the cofactor of the entry in the i-th row
j-th column of the principal m-th minor of UgrA. Then, we can express d; and ds

according to their m-th row cofactor expansion (cf. Fact 4) as

Cm,J

d T g s -+ Con,
L @z s Grom gy | 2 (6.1)
Yool v Yaom

90 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASES

q
: g2
@ @ Tt Oy,
= B g (6.2)
Yool v Yaom
L qnim’ .

Now, the C,, » in (6.1) will be independant of («,) since they are associates of
determinant of minors of the first m—1 rows of Ur A. In particular, the polynomials
g« in (6.2) will depend only on (p,) and not on (e, 7). Since di and dy are nonzero
(A has rank m), their must exists a smallest integer 7, 1 <7 < n — m such that
g; 1s nonzero. If ¢+ = 1, then dy depends on ~y; if + = 2, then d; depends on
ag; if 3 <1 < n — m then dy depends on «; and dy depends on 4;. This shows
that ged(dy, dy) = h*(A,m) as required. An application of Lemma 11 yields the
existence of a 2md x 2md determinant A, whose entries are coefficients of = of
dy and dy, such that for any evaluation (p,a,y) — (p,4,%) where (p, &, %) is a
corresponding list of field elements that are not a root of A, ged(dy, day) = h*(A, 7).
It remains to establish a degree hound for A. Coefficients of = of Ur A are of degree
1 whence coefficients of @ of d; and dy will have total degrees bounded by m. This
leads to a bound on the total degree of A of 2m?d. Finally, set 7 = A to complete
the proof. []

Theorem 12 Algorithm Reduce is correct and requires repitition with probability

less than e.

6.4 A General Algorithm for SMITHFORM over

The algorithm we give here depends on the result of the previous section. In
particular, for an input matrix A € Q[z]"*™ with rank r < n—1, algorithm Reduce
should first be used to construct a matrix A* with at most r + 1 nonzero rows.

Algorithm SmithForm can then be used to compute the determinental divisors of

A* which will be those of A.

b

Algorithm 3.1: SmithForm
Input: A matrix A € Flz]”*" with rank r = n or r = n — 1 and a constant
0 < ¢ < 1 bounding the probability of failure.

Output: [s},s5,...,s"] such that s’ is an associate of the i-th determinantal

divisors of A.

6.4. A GENERAL ALGORITHM FOR SMITHFORM OVER F[X] 91

(1) [Randomize:]
Let d bound the degrees of entries of A and let (' be a subset of size [5n*d/¢|
of F.
Ur < a unit upper triangular matrix with off diagonal elements chosen at
random from (';
Vr + a unit lower triangular matrix with off diagonal elements chosen at

random from (';

Al — []RAVR;

(2) [Triangularizee:]
Ur « FFGE(A' n);
T « UpA’;

(3) [Find probable values for h*(AL,), ..., h*(A, r) where A} € F[2]™" is com-
prised of the first r columns of A’/]
ifr =mn—1 then d* < gcd(Ur)n1, (Ur)nzy -y (Ur)um)
else * < T, ,;
if =0 then return FAIIL;
fors=1tor do
g: < an associate of ged((d*)%, T;,);
(4) [Assay that ¢= for 1 <i <r is an associate of h*(A},7):]
fors =2 ton do
for 7 =1 to do
if &, does not divide (Ur);; then FATL;
(5) [Verify condition of Lemma 10:]
foro =1tor—1do
for 7 =7+1tom do
if g7 does not divide T} ; then FATL;

(6) [Find probable values for s*(A,4)’s and verify divisibility properties:]

S5 1;
fore=1tor —1do
Rt

5%+ an associate of ged(¢5, Trrt, Trvazy ooy T);
fori=1tor —1do

if 57 does not divide 57487 then FATL;

(7) [Output:] [s7,s5,...,8%];

Y

Proof: First we show correctness. Let ¢~ for 1 <1 <r be as found in step 3. We
show that ¢ is an associate of s*(A, 1) over Q[z] (gF ~ s*(A,1)) for 1 <i<r —1
if and only if the algorithm does not return FATIL..

92 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASES

Only if: Assume that ¢& ~ s*(Ai) for 1 <7 < r — 1. By Fact 2, step (4)
will not abort. By construction of Ur in step (2), Ur;; for 1 < j <4 < mnis an
associate of an (¢ — 1) x (¢« — 1) minor of A’, which by construction has the same
determinantal divisors as A. Similarly, T;; for 1 <7 < 7 < nis an 1 X 1 minor

of A”. By assumption, ¢’ is an associate of the ged of all 7 x 7 minors of A (and

hence of A’) and neither steps (5) nor (6) will abort.

[f: Assume that the algorithm does not abort. The success of step (4) together
with Lemma 9 will provide the existence of a unimodular matrix U € F[z]"*" such
that Sp = UA’ is upper triangular with Sr,;; = ¢/g;, for 1 < < r. To see
this, let [A}]AY] = A" with AL € Fl2]"™" and AL € Flz]"*™ ™. If r = n then
set B = Al Tfr = n — 1 there exists a column vector ¢ € F[z]"*" such that
d* = (Ur)paer + (Ur)paes + -+ (Ur)unen; set B = [A}]e] in this case. Then
B € Flz]|"*" with det(B) = d*. Recall that h*(B’,7) is the ged of all 7 x ¢ minors
of B. In particular d* as defined in step (3) will be an associate of h*(B,r) (and
also h*(B,n)) for both the case r = n and r = n — 1. Set U = @*B*_ Then
T =R = (d*)?1, is upper triangular. Set U® = Ur. Then T® = UR)IB is
upper triangular. An application of Lemma 9 (with ¢& = d* if r = n — 1) shows
that ¢- = h*(B,1) for 1 <7 <n. Furthermore, Lemma 9 provides a construction
for a matrix U such that such that UB is upper triangular with -th diagonal
entry g°/gr, for 1 < i < r. Since det(URB) = det(B) we have U unimodular.
Now consider the matrix Sp = UA” = U[A}]|A}. The first r columns of St will be
those of the upper triangular matrix UB, since B = [A]]¢], whence if r = n — 1
then row n of S7 must have all zero entries. We claim that the i-th diagonal
entry of Sy, namely ¢/g* |, divides each off-diagonal entry in row 7 of Sy for
1 <2 <r—1. By the construction of U/ in Lemma 9, the entry in the i-th row j-th
column of Sy will be 1/¢* (a;R;; + b;T; ;) where R = UM A, By construction,
each row or (V) is divisible by d* whence R; ; is divisible by g*. Similarly, since
step (5) was successful, T;; is divisible by ¢*. Tt follows that ¢7/g¢ , divides
Vg (a;R; ; + b;T; ;). We may now apply Lemma 10 with matrix S7 to obtain a
unimodular matrix V' such that S7V is diagonal with i-th diagonal entry ¢*/¢* ,
for 1 <7<y —1and

,(]:,1 (*qu)r,r ~ ng((]:a (*qT)r,r—l—h (*qT)r,r—l—Qa ey (*qT)r,m,)
ng ((]:7 a, Rr,r+1 + brTr,r+1 NRIPIRR ¢ 7 Rr,m, + brTr,m,)
ged(gr, 0. T gy 0.1) (6.3)

12

12

So far, we have shown the existence of a unimodular [/ and V such
that UA'V = SpV is a diagonal matrix with i-th diagonal entry an as-
sociate ¢g*/gs, for 1 < 1+ < r — 1 and r-th diagonal entry given by

6.4. A GENERAL ALGORITHM FOR SMITHFORM OVER F[X] 93

(6.3). This implies s*(A",r) = s*(S7Vir) = (S7V),, [Ti<i<r g lg =
ged(gs, 0. T viry .. 0.1) = ged(gr, Trvgr, ... 0, T,) where the last equality
holds because s*(S7V,r) divides all r x r minors of A’. Finally, the success of
step 6, together with Fact 2 and the uniqueness of the SNF, ensures that S;yV
must be the SNF of A whence s¥ = s*(A,7) for 1 <1 <r.

It remains to show that the probability of failure is less than e. The proof
for this is analogous to that found in the proof of Theorem 9 for algorithm

SquareSmithForm and follows from Lemmas 12 and 13.]

94

CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASES

Chapter 7

Conclusions

This thesis has considered the problem of computing Hermite and Smith normal
forms of matrices over two fundamental domains: the ring of integers Z and the
ring F[x] of univariate polynomials with coefficients from a field. The main chal-
lenge in devising efficient algorithms for computing these forms is to control the
growth of intermediate expressions. We have presented the classical algorithm for
Hermite and Smith normal form a variation of GGaussian elimination with the
extended Fuclidean algorithm replacing division and demonstrated the bad be-
haviour of the classical technique with respect to intermediate expression swell for
both the case of matrices over the integers and matrices over polynomial domains.
In the case of matrices over the integers we have discussed a new class of normal
form algorithms (that have appeared recently in the literature) that perform all
intermediate computations modulo the determinant of the input matrix. The bulk
of this thesis, however, has been devoted to presenting new algorithms that we
have developed for computing Hermite and Smith normal forms of matrices over
F[z], F a field. Our emphasis has been the special case F = Q this case poses
a double challenge since we must control not only the degrees of intermediate

polynomials but also the size of the rational number coefficients.

For the following summaries, let A be an n x m matrix over F[z], F a field,
with rank r and with degrees of entries bounded by d. We give our results in
terms of the input matrix parameters n, m, and d. When F = Q, we use ||A|| to
denotes the largest integer coefficient appearing in A. To summarize complexity
results, we use the parameter s = n +m + d + log || A|| as a measure of the size of

an input matrix over Z [z].

95

96 CHAPTER 7. CONCLUSIONS

Hermite Normal Form

Let F = Q and let the input matrix A have n = m = r and have all coefficients
integers (i.e. A € Z[x]”*™ is nonsingular). Let H denote Hermite normal form of
A (over Qz]) and let U denote unique unimodular matrix such that UA = H.
We have given a sequential deterministic algorithm that finds the matrices U and
H (over Q[z]) in O~(n®d*log ||A]]) or O~(s?) bit operations. This complexity
result is asymptotic and assumes both fast polynomial and integer arithmetic. In
practice, the dominant cost of the algorithm will be O(n?d) applications of the
Chinese remainder algorithm to construct integers representable in O(n?dlog || Al|)
bits. We have established that the size in bits required to represent the matrices
U and H is O~ (n°d* log||A|]) or O~ (s®) and have hypothesized that this bound is
tight in the worst case. In light of this, we hypothesize that the complexity result
of 0~(s”) for computing U and H is optimal (up to log terms) unless methods
for applying fast matrix multiplication techniques to the problem of computing

Hermite normal forms over F[z], F a finite field, are discovered.

Smith Normal Form

Let A be an input matrix over Flz], F a field, with n = m = r. We have
presented a Las Vegas probabilistic algorithm that finds the matrix S, the Smith
normal form of A, in an expected number of O~ (n*d) field operations. This
complexity result, however, assumes fast polynomial multiplication and will not
be interesting in most practical cases. An important feature of the techniques used
in this algorithm is that they are susceptable to a simple homomorphic imaging
scheme. In particular, we can achieve a complexity of O~(n*d*) using standard
polynomial multiplication.

Next, let F = Q and let the input matrix A have all coefficients integers (i.e.
A€ Z[x]"*"). We have presented a Las Vegas probabilistic algorithm that finds
the matrix S, the Smith normal form of A over Qlz], in an expected number of
ON(ngd(d—l— n?log |

fast integer multiplication. In practice, the main cost of the algorithm is triangu-

Al])) = O~(s7) bit operations. This complexity result assumes

larizing via fraction-free Gaussian elimination a matrix with similar size entries as
A. Again, we are able to emply a homomorphicimaging scheme to accomplish this
triangulation step in O™ (s®) bit operations using standard integer and polynomial

arithmetic.

In practice, matrices for which the Hermite and Smith normal form are de-

sired are often nonsquare and/or singular. In light of this, we have presented

97

generalizations of our Hermite and Smith algorithms that work for rectangular
input. The results we have given above for computing Hermite and Smith normal
forms depend on properties of square nonsingular matrices and do not generalize
readily to the rectangular case. To handle the rectangular case, we have devised
a Las Vegas probabilistic algorithm that takes as input a matrix A € Q[z]"*™
with r = m < n 4+ 1 and with entry degrees bounded by d and returns a ma-
trix A* € Q[z]™+*™ such that Hermite(A) = Hermite(A*). Furthermore, the
matrix A* will have entries bounded in degree d and have rational number coef-
ficients only slightly larger than those appearing in A. The cost of finding A* is
that of triangularizing A via fraction-free Gaussian elimination. This reduction
method for rectangular lattices should prove useful for other problems as well

we mention some possible applications below.

The computation of Hermite and Smith normal forms is a fundamental op-
eration in a computer algebra systems the fast algorithms we have presented
should prove useful in this regard. In particular, the methods we have employed
in our algorithms have two important features: (1) they control the growth of
intermediate and/or final expressions very well; and (2) they are susceptible to
homomorphic imaging schemes and thus have practical implementations. Qur fo-
cus in this thesis has been on the actual computation of Hermite and Smith normal
form over polynomial domains. A natural topic for further study is to consider ap-
plications of these constructions within the context of a computer algebra system.
For example, there are a number of applications that follow immediately from the
algorithms we have presented: (1) A fast Las Vegas algorithm O~ (n”log || A]|)
expected bit operations for computing the Frobenius normal form of an integer
input matrix A € Z"*"; and (2) A fast method for finding the smallest degree
polynomial d such that the system of polynomial diophantine equations A7 = db
admits a solution. Less immediately, the algorithm we have given for reducing
rectangular lattices over Q[z] to the nearly square case suggests a fast method for
computing matrix polynomial geds. From a theoretical perspective, we hope to de-
vise a sequential deterministic version of our fast L.as Vegas Smith form algorithm

for matrices over Q[z].

98

CHAPTER 7. CONCLUSIONS

Bibliography

1]

[10]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

E. H. Bareiss. Sylvester’s identity and multistep integer-preserving (Gaussian

elimination. Mathematics of Computation, 22(103):565 578, 1968.

E. H. Bareiss. Computational solution of matrix problems over an integral

domain. Phil. Trans. Roy. Soc. London, 10:68 104, 1972.

S. Barnette and 1. S. Pace. Efficient algorithms for linear system calculation;

part T Smith form and common divisor of polynomial matrices. Internat.

J. of Systems Sei., 5:403 411, 1974.

W. A. Blankinship. Algorithm 287, matrix triangulation with integer arith-
metic. Communications of the ACM, 9(7):513, July 1966.

W. A. Blankinship. Algorithm 288, solution of simultaneous linear diophan-
tine equations. Communications of the ACM, 9(7):514, July 1966.

G. H. Bradley. Algorithms for Hermite and Smith normal form matrices and
linear diophantine equations. Mathematics of Computation, 25(116):897 907,
Oct. 1971.

J. Cannon and G. Havas. Algorithms for groups. Australian Computer Jour-

nal, 24(2):51 58, May 1992.

B. W. Char, K. O. Geddes, and G. H. Gonnet. GCDHEU: Heuristic poly-
nomial GCD algorithm based on integer GCD computations. Journal of
Symbolic Computation, 7(1):31 48, Jan. 1989.

T.-W. J. Chou and G. E. Collins. Algorithms for the solutions of systems of
linear diophantine equations. STAM Journal of Computing, 11:687 708, 1982.

99

100

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

P. D. Domich, R. Kannan, and I.. E. Trotter, Jr. Hermite normal form com-

putation using modulo determinant arithmetic. Mathematics of Operations

Research, 12(1):50 59, Feh. 1987.

M. A. Frumkin. An application of modular arithmetic to the constuction

of algorithms for solving systems of linear equations. Soviet Math. Dokl.,

17:1165 1168, 1976.

F. R. Gantmacher. Matriz Theory, volume 1. Chelsea Publishing Company,
1960.

K. O. Geddes, 5. R. Czapor, and G. Labahn. Algorithms for Computer Al-
gebra. Kluwer, Boston, M A, 1992.

M. Giesbrecht. Fast algorithms for rational forms of integer matrices. In
M. Giesbrecht, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Compu-
tation: ISSAC "94, pages 305 311, 1994.

J. .. Hafner and K. S. McCurley. Asymptotically fast triangularization of
matrices over rings. SIAM Journal of Computing, 20(6):1068 1083, Dec.
1991.

B. Hartley and T. O. Hawkes. Rings, Modules, and Linear Algebra. Chapman
and Hall, 1970.

G. Havas, D). F. Holt, and S. Rees. Recognizing badly presented 7Z-modules.
Linear Algebra and its Applications, 192:137 163, 1993.

C. Hermite. Sur l'introduction des variables continues dans la théorie des

nombres. J. Reine Angew. Math., 41:191 216, 1851.

C. S. Tliopoulos. Worst-case complexity bounds on algorithms for computing
the canonical structure of infinite abelian groups and solving systems of linear
diophantine equations. STAM Journal of Computing, 18(4):670 678, Aug.
1989.

C. S. Tliopoulos. Worst-case complexity bounds on algorithms for computing
the canonical structure of finite abelian groups and the Hermite and Smith
normal forms of an integer matrix. STAM Journal of Computing, 18(4):658
669, Aug. 1989.

T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, N.J.; 1980.

BIBLIOGRAPHY 101

23]

[24]

[25]

[26]

[28]

[29]

[30]

[33]

[34]

[35]

E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Fast parallel com-
putation of Hermite and Smith forms of polynomial matrices. STAM Journal

of Algebraic and Discrete Methods, 8:683 690, 1987.

E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Parallel algorithms
for matrix normal forms. Linear Algebra and its Applications, 136:189 208,
1990.

R. Kannan. Polynomial-time algorithms for solving systems of linear equa-

tions over polynomials. Theoretical Computer Science, 39:69 88, 1985.

R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of and integer matrix. STAM Journal of Comput-

ing, 8(4):499 507, Nov. 1979.

S. Labhalla, H. Lombardi, and R. Marlin. Algorithmes de calcul de la
réduction d’Hermite d'une matrice a coefficients polynomiaux. In Comptes-

Rendus de MEGA92, Nice, France. Birkhauser, 1992.

M. Marcus and H. Minc. A Survey of Matrixz Theory and Matriz Inequal-
ities. Prindle, Weber & Schmidt, Incorporated, 53 State Street, Boston,
Massachusetts, 1964.

M. Newman. Integral Matrices. Academic Press, 1972.

V. Ramachandran. Exact recuction of a polynomial matrix to the Smith
normal form. TEFFE Transactions on Automatic Control, AC-24(4):638 641,
Aug. 1979.

A. Schonhage. Probabilistic computation of integer polynomial GCD’s. Jour-
nal of Algorithms, 9:365 371, 1988.

J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial

identities. J. ACM, 27:701 717, 1980.

H.J.S. Smith. On systems of linear indeterminate equations and congruences.

Phil. Trans. Roy. Soc. London, 151:293 326, 1861.

B. Trager. [Integration of Algebraic Functions. PhD thesis, Dept. of EECS,
M.LT., 1984.

G. Villard. Computation of the Smith normal form of polynomial matri-
ces. In M. Bronstein, editor, Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: 1SSAC 93, pages 208 217. ACM Press, 1993.

