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AbstractWe study the problem of computing Hermite and Smith normal forms of ma-trices over principal ideal domains. The main obstacle to e�cient computation ofthese forms is the potential for excessive growth of intermediate expressions. Mostof our work here focuses on the di�cult case of polynomial matrices: matrices withentries univariate polynomials having rational number coe�cients.One �rst result is a fast Las Vegas probabilistic algorithm to compute the Smithnormal form of a polynomial matrix for those cases where pre- and post-multipliersare not also required. For computing Hermite normal forms of polynomial ma-trices, and for computing pre- and post-multipliers for the Smith normal form,we give a new sequential deterministic algorithm. We present our algorithms forthe special case of square, nonsingular input matrices. Generalizations to thenonsquare and/or singular case are provided via a fast Las Vegas probabilisticpreconditioning algorithm that reduces to the square, nonsingular case.In keeping with our main impetus, which is practical computation of thesenormal forms, we show how to apply homomorphic imaging schemes to avoidcomputation with large integers and polynomials. Bounds for the running timesof our algorithms are given that demonstrate signi�cantly improved complexityresults over existing methods.
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Chapter 1IntroductionA common theme in matrix algebra | especially in a computational setting |is to transform an input matrix into an \equivalent" but simpler canonical formwhile preserving key properties of the original matrix (e.g. the Gauss-Jordan formof a matrix over a �eld). For input matrices over principal ideal domains, twofundamental constructions in this regard are the Hermite normal form, a triangu-larization, and the Smith normal form, a diagonalization.Any nonsingular matrix A over a Euclidean domain R can be transformed viaelementary row operations to an upper triangular matrix. Further row operationscan be used to reduce the size of entries above the diagonal in each column modulothe diagonal entry and to ensure uniqueness of the diagonal entries; the resultingupper triangular matrix is called the Hermite normal form of A (abbr. by HNF).By applying elementary column as well as row operations, the matrix A can betransformed to a diagonal matrix such that each diagonal entry divides the nextand is unique; the resulting diagonal matrix is called the Smith normal form ofA (abbr. by SNF). The Hermite and Smith normal forms are canonical forms formatrices over principal ideal domains | they always exist and are unique.Hermite �rst proved the existence of the HNF triangularization for integermatrices in a paper of 1851 [19]. Hermite gave a procedure for transforming aninteger input matrix into HNF using row operations, and although he did notexplicitly prove uniqueness of the form, it is fairly clear he knew of it. Smith gavea construction for the SNF diagonalization in a paper of 1861 [33]. De�nitionsfor the HNF and SNF generalize readily to rectangular matrices of arbitrary rankover any principal idea domain (cf. x2).The study of matrices over rings is a huge �eld encompassing almost everyarea of mathematics | this is demonstrated by the numerous and diverse appli-cations of the Hermite and Smith normal form. Applications involving integer1



2 CHAPTER 1. INTRODUCTIONmatrices include: solving systems of linear diophantine equations (cf. Blankinship[6] or Iliopoulos [20]); diophantine analysis and integer programming (cf. Newman[29]); computing the canonical structure of �nitely represented abelian groups (cf.Cannon and Havas [8] or Havas, Holt and Rees [18]). For matrix polynomials,the HNF corresponds to computing a change of basis for modules over polynomialdomains. Examples of the use of HNF in such computations include computingintegral basis in Trager's algorithm [34] for symbolic integration of algebraic func-tions and �nding matrix polynomial greatest common divisors. Both the HNF andSNF are very useful in linear systems theory (cf. Kailath [22] or Ramachandran[30]).The existence and uniqueness of the SNF is regarded as one of the most impor-tant result in all of elementary matrix theory. The SNF provides a constructiveproof of the basis theorem for �nitely generated Abelian groups (cf. [17]), and afundamental result of matrix theory states that if A and B are square matricesover a �eld, then A is similar to B if and only if their respective characteristicmatrices xI � A and xI � B have the same SNF (cf. Gantmacher [13, x5, Theo-rem 7]). Other applications of the SNF to matrices over �elds include computingthe invariant factors, computing geometric multiplicities of the eigenvalues, and�nding the Frobenius (or rational canonical) form.We proceed with an explicit example of the HNF for matrices over two di�er-ent domains | the ring of integers ZZ and the ring Q[x] of univariate polynomialswith rational coe�cients. Recall that an elementary row operation is one of: (e1)multiplying a row by an invertible element, (e2) adding a multiple of one row toa di�erent row, or (e3) interchanging two rows. To each elementary row opera-tion there corresponds a nonsingular (hence invertible) elementary matrix and anelementary row operation can be applied to a matrix by premultiplying by thecorresponding elementary matrix. Over the ring of integers only the units �1 areinvertible (compare this with Gauss-Jordan elimination over the �eld Q whereevery nonzero element is invertible). Consider the matrixA = 2666666664 2 �8 14 200 1 �6 �510 �39 70 1312 �18 50 �90 3777777775 (1.1)Matrix A can be reduced to triangular form using a type of Gaussian eliminationthat that applies only elementary (invertible over ZZ ) row operations. (This al-gorithm is given in x2.1.) For matrix A of (1.1) we can obtain a transformationmatrix U and a reduced matrix H where



3U2666666664 �281 74 54 12�26 6 5 1�47 11 9 221 �6 �4 �1 3777777775 A2666666664 2 �8 14 200 1 �6 �510 �39 70 1312 �18 50 �90 3777777775= H2666666664 2 0 2 40 1 0 150 0 6 40 0 0 16 3777777775 (1.2)The matrixH is the HNF of A. The determinant of the transformation matrixU is a unit in ZZ (in this case, det(U) = �1) and hence by Cramer's rule U has aninteger inverse (U is said to be unimodular in this case). Matrix U is unimodularprecisely because it is the product of unimodular elementary matrices. Equation(1.2) expresses the rows of H as integer linear combinations of the rows of A.Conversely, U�1H expresses the rows of A as integer linear combinations of therows of H: U�12666666664 1 �8 2 80 1 �1 �15 �39 10 411 �18 8 9 3777777775 H2666666664 2 0 2 40 1 0 150 0 6 40 0 0 16 3777777775= A2666666664 2 �8 14 200 1 �6 �510 �39 70 1312 �18 50 �90 3777777775We conclude that the nonzero rows ofH provide a basis for the lattice of A (the setof all integer linear combinations of rows of A). While reduction to Gauss-Jordanform over Q is useful for solving systems of linear equations, reduction to HNFover ZZ can be used to solve systems of linear diophantine equations.The size of an integer is given by its absolute value. In the Euclidean domainF[x], F a �eld, the size of a polynomial is given by its degree. A nonsingularmatrix over F[x] is in HNF if it is upper triangular with diagonal elements monicand elements above the diagonal in each column having smaller degree than thediagonal entry. Consider the matrixA = 26664 �2x� 2 + x3 + x2 x2 + 2x+ 1 �x � 1173x+ 152� 85x3 � 84x2 �85x2 � 171x� 82 87x+ 79�7x+ 767� 55x3 � 89x2 �56x2 � 71x� 163 �21x+ 274+ x2 37775 (1.3)Gaussian elimination using unimodular row operations can be used to reduce apolynomial matrix to HNF. For the matrix A of (1.3) we obtain UA = H for Uunimodular and H in HNF where



4 CHAPTER 1. INTRODUCTIONU = 26664 5409140 + 347 x2 � 727920 x 3170 � 589140 x+ 235 x2 � 435 x+ 170�3112x� 6315� 6316x2+ 85x3 �36x� 73� 73x2 + x3 �x � 2� 2x285x3 � 6061x2 � 22060x� 12706 x3 � 70x2 � 255x� 147 �2x2 � 7x� 4 37775and H = 266664 1 27140 x� 1140 � 19140 x+ 371400 x2 � 2x � 3 00 0 x2 � 2x� 3 377775 :The rows of matrix H provide a unique basis for the set of all linear combina-tions (over Q[x]) of the rows of matrix A. One application of reduction to HNFfor polynomial matrices is solving systems of polynomial diophantine equations.Another application, which we expand upon now, is computing matrix greatestcommon divisors.For the following example, let P (z) and Q(z) be two nonsingular matrices inQ[z]n�n. (In general, let Rn�m denote the set of all n�m matrices over a ring R.)In some computations found in linear control theory one works with the matrixrational form P (z)Q(z)�1. For these cases it is often necessary to have the rationalform in its simplest form. In particular, the matrix polynomials should have nocommon divisors on the right. To e�ect this simpli�cation, the greatest commonright divisor can be determined using a HNF computation and divided out. Thiscomputation can be done as follows. LetA(z) = 24 P (z)Q(z) 35belong to Q[z]2n�n. By computing the HNF of A(z) we can obtain unimodularmatrices U(z); V (z) 2 Q[z]2n�2n and a matrix N(z) 2 Q[z]n�n such thatU(z)V (z) = V (z)U(z) = I2n (1.4)and U(z)A(z) = 24 N(z)0 35 : (1.5)Note that the matrix on the right hand side of (1.5) is the HNF of A(z) and thatV (z) = U(z)�1. WriteU(z) = 24 U11(z) U12(z)U21(z) U22(z) 35 and V (z) = 24 V11(z) V12(z)V21(z) V22(z) 35 ;



5where the individual blocks are all of size n � n. Then equations (1.4) and (1.5)imply that A(z) = V (z)24 N(z)0 35so that 24 P (z)Q(z) 35 = 24 V11(z)N(z)V21(z)N(z) 35and hence N(z) is a common divisor of P (z) and Q(z) on the right. In additionequation (1.4) along with the partitioning (1) givesU11(z)V11(z) + U12(z)V21(z) = Inhence V11(z) and V21(z) cannot have nontrivial (i.e. non-unimodular) divisors onthe right. Therefore N(z) is the largest right divisor | as desired.Consider again the integer matrix A of (1.1). By applying unimodular columnoperations as well as unimodular row operations, we can reduce the matrix todiagonal form. We obtain unimodular matrices U and V and a diagonal matrix Sthat verify UAV = S. For example,U2666664 �5 0 1 0�10 0 2 �1�26 3 5 2103 �10 �20 �3 3777775 A2666664 2 �8 14 200 1 �6 �510 �39 70 1312 �18 50 �90 3777775 V2666664 10 �110 �109 �9561 �31 �31 �2790 �5 �5 �460 1 1 9 3777775= S2666664 1 0 0 00 2 0 00 0 2 00 0 0 48 3777775The matrix S of (1.6) is the SNF of A. In addition to being diagonal, an integermatrix in SNF has the property that each diagonal element is nonnegative anddivides the next. Matrices U and V of (1.6) are unimodular since they are productof unimodular matrices. (This follows directly from the algorithm used to �nd Sgiven in x2.2.) The usefulness of the SNF hinges on it being a canonical form; forany integer matrix A, there exists a unique matrix S in SNF such that UAV = Sfor some unimodular matrices U and V . The SNF, de�ned for matrices over aprincipal ideal domain, is directly related to the existence of canonical decomposi-tions for �nitely generated modules over principal ideal domains. Next, we presentthe key ideas of this relationship by considering considering the important case ofmatrices over the integers.There is a natural correspondence between ZZ -modules and abelian groups.The fundamental theorem of �nitely generated abelian groups classi�es all suchgroups up to isomorphism by giving a canonical decomposition. One version of



6 CHAPTER 1. INTRODUCTIONthe theorem states that a �nitely generated group G has the (unique) direct de-composition G �= G1 �G2 � � � � �Gr �Gr+1 � � � �Gr+f where: Gi is a nontrivial�nite cyclic group of order si for i = 1; : : : ; r; Gi is an in�nite cyclic group fori = r + 1; : : : ; r + f ; and s1js2j � � � jsr. Fully knowing the structure and character-istics of a �nitely generated abelian group is tantamount to knowing its canonicaldecomposition.The results of some computations involving groups produce �nitely generatedabelian groups | let G be one such group. For example, G may be known tobe a normal (hence abelian) subgroup of an unclassi�ed group of large order, sayG0. Knowing the structure of G may lend insight into the structure of G0. Onepossible (and desirable) representation for G would be the unique integers r, f ,and s1; : : : ; sr corresponding to the canonical decomposition for G. Typically,however, groups that arise during computations are speci�ed via a more generalpresentation. A presentation for G is a set ofm generators together with n relationsamong the generators | usually written as hg1; g2; : : : ; gmjPmj=1 ai;jgi = 0; i =1; : : : ; ni. These relations can be expressed in matrix form as A~g = 0 where Ais an n � m matrix with ai;j as the entry in the i-th row j-th column and ~gis a vector of m generators. The column dimension of the matrix A implicitlygives the number of generators. Hence, an n�m integer matrix A represents theunique group G (up to isomorphism) that can generated by m generators, say~g = [g1; : : : ; gm], that satisfy the relations A~g = 0 and such that all other relationsamong the generators are contained in the lattice of A. For example, consider thepresentation given by the SNF matrixS = 2666664 1 2 6 0 3777775 : (1.6)Matrix S has column dimension 4 and so represents a group G that can be gen-erated by 4 generators, say ~g = [g1; g2; g3; g4]. The relations S~g = 0 give thepresentation hg1; g2; g3; g4jg1; 2g2; 6g3i. Each relation involves only a single gener-ator so G �= G1 � G2 � G3 � G4 where, for 1 � k � 4, Gk is the cyclic groupgenerated by gk. The relation g1 = 0 implies G1 is the trivial group C1. Sim-ilarly, G2 �= C2 and G3 �= C6 where Ck is the cyclic group consisting of k el-ements. Since no relation involves g4, G4 is the in�nite cyclic group C. Weconclude that G has the canonical decomposition C2 � C6 � C. In general, aSNF matrix with diagonal [1; 1; : : : ; 1; d1; d2; : : : ; dr; 0; 0; : : : ; 0] having f trailingzeroes and d1 > 1, dr 6= 0 will represent the group with canonical decomposition



7Cd1 �Cd2 � � � � �Cdr � fz }| {C � C � � � � � C. Thus, a presentation in terms of a SNFmatrix is desirable since the canonical decomposition of the group in question canbe determined immediately from the diagonal entries.Consider now a general n � m integer matrix A. Matrix A represents somegroup H generated by m generators, say ~h = [h1; h2; : : : ; hm], subject to the rela-tions A~h = 0. The group H can be recognized (its canonical decomposition found)by computing the SNF of A. To see how this works, let U and V be some uni-modular matrices of dimension n and m respectively and let ~g = [g1; g2; : : : ; gm]be such that V �1~h = ~g. Since V is unimodular, the group G generated by ~gsubject to the relations A(V V �1)~h = (AV )~g = 0 is isomorphic to H. Since U isunimodular, matrix UAV has the same lattice as matrix AV . It follows that S,the SNF of A, represents the same group (up to isomorphism) as A, since thereexist unimodular matrices U and V such that UAV = S.The purpose of this thesis is to develop e�cient algorithms for computing Her-mite and Smith normal forms over two fundamental domains: the integers andthe ring of univariate polynomials with coe�cients from a �eld. As is often thecase in computer algebra problems, our main task will be to ensure good boundson the size of intermediate expressions. The di�erent domains will give rise tovery di�erent computational techniques and in the case of matrices with poly-nomial entries we will need to draw on many classical results, including Chineseremaindering and interpolation, resultants and Sylvester matrices, and fraction-free Gaussian elimination (cf. Geddes, Czapor and Labahn [14]). The rest of thisthesis is organized as follows.In chapter 2 the Hermite and Smith normal form are de�ned over a generalprincipal ideal domain and their basic properties are given. Chapter 3 deals withprevious methods for computing these forms for matrices over the integers anddiscusses the problem of intermediate expression swell. A brief history of thedevelopment of HNF algorithms is given with special attention being given to anew class of algorithms which use modular arithmetic to control expression swell.Chapter 4 introduces the problem of computing normal forms over polyno-mial domains. An algorithm for computing the HNF of a polynomial matrix ispresented which converts the original problem over F[x], F a �eld, to that of tri-angularizing a large linear system over F. From a theoretical point of view, thenew method eliminates the problem of expression swell described since Gaussianelimination for linear systems over F = Q admits simple polynomial bounds onthe size of intermediate entries. Unfortunately, while providing simple worst-casecomplexity bounds, the linear systems method doesn't admit a practical imple-



8 CHAPTER 1. INTRODUCTIONmentation because the matrix describing the linear system over F turns out to bevery large.Chapter 5 takes a broader perspective and considers randomized probabilisticmethods for computing normal forms of polynomial matrices. These methods willnot lead directly to sequential deterministic complexity results | instead, we giveresults in terms of expected number of bit operations. We successfully build onsome of the probabilistic results of Kaltofen, Krishnamoorthy and Saunders in[23]. A new Las Vegas probabilistic algorithm for computing the SNF of squarenonsingular matrices over F[x] is presented. The algorithm admits a practicalimplementation and gives excellent results for SNF problems where unimodularmultiplier matrices U and V are not required. In practice, the expected runningtime of the algorithm is approximately that of �nding the determinant of a matrixof same dimension and similar size entries as the input matrix.In chapter 6 we apply the results of chapter 4 and the theory developed in chap-ter 5 to the construction of algorithms for determining bases for lattices generatedby the rows of polynomial matrices. The highlight of chapter 6 is a fast (practical)preconditioning algorithm for rectangular input matrices: given an n �m matrixA over F[x] with rank m and n > m, the algorithm returns an (m+1)�mmatrixA� with similar size entries as A and such that L(A�) = L(A).Finally, chapter 7 concludes with a summary of our main results and mentionssome open problems with respect to computing matrix normal forms. In par-ticular, there are many research topics that follow naturally from the techniquesand algorithms developed in chapter 5. These include developing a sequentialdeterministic version of the probabilistic SNF algorithm of x5 and devising newalgorithms for computing similarity transforms of matrices over the rationals.



Chapter 2PreliminariesIn this chapter the Hermite and Smith normal form are de�ned for matrices overprincipal ideal domains. The principal ideal domain (abbr. PID) is the mostgeneral type of ring for which the HNF and SNF exist. Any result given for ageneral PID will apply to any of the possibly very di�erent concrete rings overwhich we may wish to compute | such as the integers or univariate polynomialsover the rationals. Hence, the bene�t of this more abstract approach is twofold:the results are of a general nature and the discussion is not encumbered withdetails about representation of ring elements or computation of ring operations.Before making the notion of a HNF and SNF precise we recall some facts aboutPIDs. A PID is a commutative ring with no zero divisors in which every idealis principal; that is, every ideal contains an elements which generates the ideal.Throughout, we use R to indicate a PID and F to indicate a �eld. Two elementsa and b of a PID R are said to be congruent modulo a third element c 2 R ifc divides a � b. Congruence with respect to a �xed element c is an equivalencerelation and a set consisting of distinct elements of R, one from each congruenceclass, is called a complete set of residues.For a PID R, a set of elements fa1; a2; : : : ; ang, not all zero, have a greatestcommon divisor (a gcd). Consider the ideal I = ha1; a2; : : : ; ani. An element g 2 Ris a gcd of the elements fa1; a2; : : : ; ang if and only if hgi = I. Since g 2 I we havem1a1+m2a2+ � � �+mnan = g for some elementsm1;m2; : : : ;mn 2 R. Since gcdsare unique up to associates, and associativity is an equivalence relation on R, wecan choose a unique representative for a gcd. (Recall that ring elements a and bare associates if a = eb for a ring unit e.) A complete set of non associates of R isa subset of R consisting of exactly one element from each equivalence class withrespect to associativity.For a PID R denote by Rn�m the set of all n by m matrices over R. A9



10 CHAPTER 2. PRELIMINARIESnonsingular matrix U 2 Rn�n is said to be unimodular if det(U) is a unit in R.Note that the unimodular matrices are precisely those that have an inverse inRn�n.2.1 The Hermite Normal FormA fundamental notion for matrices over rings is left equivalence. Two matrices Aand B in Rn�m are said to be left equivalent (write A �L B) if one is obtainablefrom the other via a unimodular transformation (i.e.A = UB for some unimodularmatrix U over R). The key point here is that A = UB implies B = U�1A whereU�1, being unimodular, is also over R. It follows that left equivalence is anequivalence relation for matrices over R. The HNF provides a canonical form formatrices over R with respect to left equivalence.De�nition 1 Let R be a PID. A matrix H over R with full column rank is saidto be in Hermite normal form if: (1) H is upper triangular; (2) diagonal elementsof H belong to a given complete set of associates of R; (3) in each column of Ho�-diagonal elements belong to a given complete set of residues of the diagonalelement.Uniqueness of the HNF will follow from the following lemma.Lemma 1 Let R be a PID. If G and H in Rn�m are in HNF and G �L H thenG = H.Proof: G �L H implies H = UG and G = V H for some unimodular matrices Uand V . The last n �m rows of G and H will be zero. Let G0 be the submatrixobtained fromG be deleting the last n�m rows. De�neH 0 similarly. Let U 0 and V 0be the submatrices obtained from U and V respectively by deleting the last n�mrows and columns. Then we have the equations H 0 = U 0G0 and G0 = V 0H 0 whereeach matrix has dimension m �m. We proceed to show that U 0 (and V 0) is theidentity matrix. Since G0 and H 0 are upper triangular with nonzero determinantwe must have U 0 and V 0 upper triangular. Furthermore, H 0 = U 0G0 = U 0(V 0H 0)which implies U 0 = V 0�1 whence U 0 and V 0 are unimodular. The diagonal entriesof U 0 and V 0 must be 1 since the the diagonal entries of G0 and H 0 lie in the sameassociate class of R. So far we have shown that the diagonal elements of G0 andH 0 are identical. Assume, to arrive at a contradiction, that U is not the identitymatrix. Then let i be the index of the �rst row of U with nonzero o�-diagonalelement uij with j > i. Then entry hij in the i-th row j-th column of H 0 can



2.1. THE HERMITE NORMAL FORM 11be expressed as hij = gij + uijgjj = gij + uijhjj. Hence hij is congruent to gijmodulo the common diagonal element gjj. Since H 0 and G0 are in HNF, hij andgij belong to the same complete set of residues of gjj which implies hij = gij |a contradiction since we assumed uij 6= 0. We conclude that U is the identitymatrix and G = H.Theorem 1 Let R be a PID and let A 2 Rn�m with full column rank. Then thereexists a unique matrix H 2 Rn�m in HNF such that H �L A. That is, UA = Hfor some unimodular matrix U 2 Rn�n.The matrix H of Theorem 1 can be found by applying unimodular row oper-ations to A. The method is similar to Gaussian row reduction over a �eld butwith division replaced by a new unimodular row operation that works to \zeroout" elements below the diagonal element in a particular column. Consider a pairof entries ajj and aij with i > j, not both zero, in column j of A. R a PIDimplies there exists elements of R, say p and q, such that pajj + qaij = g whereg = gcd(ajj; aij). De�ne G = BU (p; q; i; j) to be the n� n matrix, identical to In,except with gjj = p; gji = q; gii = ajj=g and gij = �aji=g. The determinant of Gis pajj=g� (�qaij=g) = (pajj+ qaij)g = 1, whence G is unimodular. Furthermore,(GA)jj = g and (GA)ij = 0. For exampleG24 p q�b=g a=g 35 A24 ab 35= H24 g0 35shows the technique applied to a 2�1 matrix. We now have a list of four unimod-ular row operations: (R1) multiplying a row by a unit, (R2) adding a multipleof one row to another, (R3) interchanging two rows, and (R4) premultiplying bya matrix of the type BU as described above. Note that row operations R1, R2and R3 are also applied to a matrix by premultiplying by a unimodular matrix| namely the elementary matrix corresponding to the elementary row operation.We can now give a procedure in terms of unimodular row operations to reduce thematrix A of Theorem 1 to HNF.Procedure 2.1: We consider each column j of A in turn for j = 1; 2; : : : ;m. Whenj is �rst equal to k, the �rst k�1 columns of A will be in HNF. For j = 1; 2; : : : ;mperform the following steps: (1) If the diagonal entry in the j-th column is zero,use a row operation of type R3 to move a nonzero entry below the diagonal to thediagonal position. (2) Use row operations of type R4 to zero out entries below thediagonal in column j. (3) Use a row operation of type R1 to ensure the diagonal



12 CHAPTER 2. PRELIMINARIESelement in column i belongs to the given complete set of associates of R. (4) Userow operations of type R2 to ensure o�-diagonal elements in column i belong tothe given complete set of residues modulo the diagonal element.With the help of Procedure 2.1 and Lemma 1, the proof of Theorem 1 isstraightforward.Proof: (of Theorem 1) We prove by induction on i = 1; 2; : : : ;m that procedure1 is correct. Since only unimodular operations are applied to A throughout theprocedure, A always has full column rank. In particular, at the start of theprocedure there exists a nonzero entry in the �rst column. After steps (1) through(3) have been completed for column i = 1, the �rst column of A will be zero exceptfor a nonzero leading entry belonging to the given complete set of associates of A.Assume that after completing steps (1) through (4) for columns i = 1; 2; : : : ; k <m, the �rst k columns of A are in HNF. Now consider stage i = k + 1. SinceA has rank m and the �rst k columns of A are upper triangular, there will existat least one entry either on or below the diagonal entry in column k + 1 that isnonzero. Now note that the row operations in step (2), (3) and (4) do not changeany entries in the �rst k columns of A. After steps (2), (3) and (4) are completedfor i = k + 1, the �rst k + 1 columns of the reduced matrix A will be in HNF. Byinduction, procedure 1 is correct. The uniqueness of the HNF matrix found byProcedure 1 follows from Lemma 1, for if G �L A and H �L A then G �L HThe existence of a matrix H in HNF left equivalent to a given matrix A was�rst proved (constructively) by Hermite in 1851 [19] for the case R = ZZ . It isworth noting that there is no one consistent de�nition of HNF that appears inthe literature. In particular, some authors restrict their de�nitions to the caseof square nonsingular matrices, or, instead of reducing a matrix via unimodularrow operations, all the de�nitions and procedure may alternatively be given interms of unimodular column operations with the unimodular multiplier matrixacting as postmultiplier instead of a premultiplier. Also, the HNF matrix may bede�ned to be lower instead of upper triangular. All these variations have the samecentral ingredients: (1) triangularity, (2) diagonal elements belonging to a givencomplete set of associates, and (3) o�-diagonal elements in each column (or row,as it were) belonging to a complete set of residues with respect to the diagonalelement. Algorithms or theorems using an alternative de�nition for HNF in termsof column operations and/or lower triangularity are easily cast into the form ofDe�nition 1.



2.2. THE SMITH NORMAL FORM 13In one sense this section is complete; we have de�ned the HNF and proved thatit is a canonical form for matrices over PIDs. Furthermore, the proof of existenceis constructive (Procedure 2.1) and leads directly to a deterministic algorithm for�nding the HNF of an input matrix over a concrete domain such as the integers.However, some cautionary remarks are in order. The reader | who should nowbe convinced of the uniqueness of the HNF and the correctness of Procedure 2.1| may be tempted to think of the HNF of an input matrix A as \the uppertriangular matrix H obtained from A by applying unimodular row operations tozero out entries below and reduce entries above the diagonal". However appealingthis \constructive" de�nition may be, there is a danger of becoming �xated on aparticular method of obtaining the HNF H of a given A. In particular, the fast\practical" algorithms we present in x5 and x6 will depend on results obtained byconsidering H in a more abstract sense as a particular \basis for the lattice of A"rather than as a \unimodular triangularization" of A.It is instructive to consider the rows of an n � n nonsingular matrix A overR as a basis for the lattice L(A) = f~xA : ~x 2 R1�ng. Recall that L(A) is theset of all linear combinations of the rows of A. A basis for L(A) is any linearlyindependent subset of L(A) which generates L(A). Let B be an n�n matrix withL(B) = L(A). Then B generates the rows of A and vice versa whence K1B = Aand K2A = B with K1;K2 over R. But then A;B non-singular implies thatK2 = K1�1. This shows that any two bases for L(A) are related by a unimodulartransformation. In particular, every basis for L(A) is related via a unimodulartransformation to the unique basis satisfying the requirements of De�nition 1 |namely the HNF H of A.2.2 The Smith Normal FormThe HNF deals only with row operations and the notion of left equivalence. An-other equivalence relation for matrices over PIDs is possible if we allow both col-umn and row operations. Two matricesA and B in Rn�m are said to be equivalent(write A � B) if one is obtainable from the other via unimodular row and columntransformations (i.e. A = UBV for some unimodular matrices U and V over R).The key point here is that A = UBV implies B = U�1AV �1 where U�1 and V �1,being unimodular, are also over R. It follows that equivalence is an equivalencerelation for matrices overR. The SNF provides a canonical form for matrices overR with respect to equivalence.



14 CHAPTER 2. PRELIMINARIESDe�nition 2 Let R be a PID. A matrix S over R is said to be in Smith normalform if: (1) S is diagonal; (2) each diagonal entry belongs to a given completeset of nonassociates of R; (3) each diagonal entry (except for the last) divides thenext.Note that if S 2 Rn�m is in SNF with rank r, then, as simple conse-quence of the divisibility conditions on the diagonal entries, we have diag(S) =[s1; s2; : : : ; sr; 0; : : : ; 0], where si 6= 0 for 1 � i � r.Proving that a given matrix A 2 Rn�m is equivalent to a unique matrix inSNF will require some facts about matrices over PIDs. Let Cri denote the set ofall i element subsequences of [1; 2; : : : ; r]. For a matrix A 2 Rn�m and I 2 Cni ,J 2 Cmi , let AI;J denote the i� i matrix formed by the intersection of rows I andcolumns J of A; we refer to a matrix so de�ned as an i� i minor of A. The i-thdeterminantal divisor of A, denoted by s�(A; i) for 1 � i � min(n;m), is the gcdof the determinants of all i� iminors of A. Let B = UAV for any, not necessarilyunimodular, square matrices U 2 Rn�n and V 2 Rm�m over R. Then, for anyi� i minor of B, say BI;J where I 2 Cni and J 2 Cmi , the Cauchy-Binet formula[13, x1.2.4] states thatdet(BI;J) = XK2Cni ;L2Cmi det(UI;L) det(AK;L) det(VK;J )which expresses det(BI;J ) as a linear combination of the determinants of i � iminors of A. It follows that s�(A; i) divides s�(B; i). Now, if we have A =WBXas well as B = UAV for square matrices U; V;W;X over R, then we must haves�(B; i) j s�(A; i) as well as s�(A; i) j s�(B; i) whence s�(A; i) = s�(B; i).Lemma 2 Let R be a PID. If T and S are matrices over R, both in SNF, suchthat T � S, then T = S.Proof: Assume that S and T are in Rn�m. Let U and V be unimodular ma-trices such that UTV = S and T = U�1SV �1. U and V unimodular impliesthat T and S have the same rank r. Let S = diag[s1; s2; : : : ; sr; 0; 0; : : : ; 0] andT = diag[t1; t2; : : : ; tr; 0; 0; : : : ; 0]. Since S = UTV and T = U�1SV �1 we haves�(S; i) = s�(T; i) for 1 � i � r. Note that s�(S; i) = Q1�i�i si. It follows thats�(S; 1) ' s1 and si ' s�(S; i)=s�(S; i � 1) for 2 � i � r. Similarly, s�(T; 1) ' t1and ti ' s�(T; i)=s�(T; i � 1) for 2 � i � r and we conclude that si ' ti for1 � i � r. Since si and ti are chosen to belong to the same complete set ofassociates of R we have si = ti for 1 � i � r.



2.2. THE SMITH NORMAL FORM 15Theorem 2 Let R be a PID and A an element of Rn�m. Then there exists aunique matrix S 2 Rn�m in SNF such that A � S. That is, there exist unimodularmatrices U 2 Rn�n and V 2 Rm�m such that S = UAV .The existence of a matrix S in SNF equivalent to a given matrixA was was �rstproved by Smith in [33]. For the HNF reduction procedure, a new row operationwas de�ned in terms of a unimodular matrix BU that worked to zero out an entrybelow the diagonal in a given column. For reduction to SNF, we will need acorresponding unimodular column operation to zero out entries to the right of thediagonal in a given row. For a pair of entries aii and aij with j > i, not both zero,in row i of A, let p and q be such that g = paii+qaij where g = gcd(aii; aij). De�neG = BV (p; q; i; j) to be the m �m matrix, identical to Im, except with gii = p;gji = q; gij = �aij=g and gjj = aii=g. Then G is unimodular and (AG)ii = g and(AG)ij = 0. A procedure similar to the HNF reduction method given earlier canbe used to reduce a matrix to SNF. We require four unimodular column operationsanalogous to the four unimodular row operations R1, R2, R3 and R4 used for theHNF reduction | these are: (C1) multiplying a column by a unit, (C2) addinga multiple of one column to another, (C3) interchanging two columns, or (C4)postmultiplying by a matrix of the type BV as described above. We can now givea procedure to reduce the matrix A of Theorem 2 to SNF.Procedure 2: Say A 2 Rn�m is of rank r. Each diagonal entry si of the reducedmatrix is found in succession for i = 1; : : : ; r. At stage i of the reduction thematrix has the form 26666664 s1 . . . si 00 A? 37777775The reduction proceeds on matrix A?. The leading entry in the �rst row and �rstcolumn of A? is called the pivot. If A? is the zero matrix then the reduction is�nished. If not, permute the rows and columns of A so that the pivot is nonzero.Perform the following steps: (1a) Apply column operations of type C2 to zero outall o�-diagonal entries in the pivot row that are divisible by the pivot. (1b) Applycolumn operations of type C4 to zero out any remaining nonzero o�-diagonalentries in the pivot row. (2a) Apply row operations of type R2 to zero out all o�-diagonal entries in the pivot column that are divisible by the pivot. (2b) Applyrow operations of type R4 to zero out any remaining nonzero o�-diagonal entries



16 CHAPTER 2. PRELIMINARIESin the pivot column. (3) Step 2b may have introduced new nonzero entries in thepivot row. If so, return to step 1a, otherwise go to step 4. (4) At this point, allentries in the pivot row and column except for the pivot are zero. If there existsan entry in A? that is not divisible by the pivot, then add the row containing suchan entry to the pivot row and return to step 1a. Otherwise go to step 5. (5) Ifnecessary, use row operation of type R1 to ensure that the pivot entry belongs tothe given complete set of associates of R.Proof: (of Theorem 2) We prove �rst that algorithm 2 is correct. First we showthat steps 1 through 5 successfully zero out all entries in the pivot row and columnof A? except for the pivot entry. It is clear that steps 1a and 1b will zero out allentries to the right of the pivot in row 1. Similarly, steps 2a and 2b will zero outall entries below the pivot in column 1. The algorithm may jump back to step 1aat step 3 or step 4 so it remains to show that step 5 is reached. Let pi be the valueof the pivot entry of A? when step 1a is restarted for the i-th time. We claim thata sequence of three equal pivots such as pk = pk�1 = pk�2 for some k > 2 cannotoccur. If pk = pk�1 then neither column nor row operations of type C2 and R2were applied on pass k � 1, and this, together with pk�1 = pk�2 implies that step4 in pass k � 2 must not have introduced a new entry into row 1 not divisible bythe pivot and step 5 would have been reached | a contradiction. Next, assume,to arrive at a contradiction, that the algorithm does not terminate. Considerthe ascending chain of ideals hp1i � hp2i � � � �. There cannot exist an in�nitechain of ideals, each properly contained in the next, in a PID, so there exists ak such that hp1i � hp2i � � � � hpki = hpk+1i = hpk+2i = � � �. In particular, theremust exist a sequence of three equal pivots which implies step 5 would have beenreached. Lastly, consider stage i of the reduction for some 1 � i � r�1. Diagonalelement si, found during stage i�1, divides all entries in A?. Any row or columnsoperations applies to A? will produce new entries that are linear combinations ofentries divisible by si | hence any new entries arising in A? will be divisible bysi. This shows that each diagonal element found will divide the next.2.3 Domains of ComputationAlthough we have de�ned the HNF and SNF for matrices over R a general PID,the most interesting domains from an applications point of view are R = ZZ andR = F[x] where F is a �eld. The �eld F should be computable | we need to beable to represent elements of F and compute �eld operations. Typically, F will bethe rationals Q or a �nite �eld GF(p), p prime. The special relationship between



2.3. DOMAINS OF COMPUTATION 17matrices over the integers and �nitely presented Abelian groups has already beennoted. Polynomial matrices, especially over Q[x], play an important role in linearsystems theory.2.3.1 The Extended Euclidean ProblemA common characteristic of the PID's ZZ and F[x] is that they are Euclidean.A key step in the procedure we gave for HNF reduction is solving the extendedEuclidean problem: given a; b 2 R, �nd elements p; q; g 2 R such that g is thegcd of a and b and pa+ qb = g: (2.1)R being a PID guarantees that equation (2.1) has a solution for p and q. WhenR is also a Euclidean domain we can apply the extended Euclidean algorithm tocompute a solution to (2.1), whereas for R a PID no general method exists. Theneed for solving the extended Euclidean problem is not particular to Procedure 2.1given in section 2.1 for HNF reduction; rather, the Euclidean problem is funda-mental to the HNF reduction problem. Solving the extended Euclidean problemof (2.1) can be cast into the problem of �nding the HNF of a 2� 2 matrix. De�nethe matrix A = 24 a 0b 1 35 with HNF H = 24 h11 h120 h22 35 : (2.2)H the HNF of A implies that H = UA for some unimodular matrix U . A nonsin-gular implies U is unique. Solving the equation UA = H for U yieldsU = 24 (h11 � h12b)=a h12�b=h11 h22 35where each entry is integral. Set p = (h11 � h12b)=a and q = h12. Then Uunimodular implies det(U) = p(a=h11)+ q(b=h11) = �1 whence h11 is the gcd of aand b.Recall the basic feature of a Euclidean domainR: a valuation (or size) functionv : R n f0g ! IN , where IN is the set of nonnegative integers. For all a; b 2 Rwith b 6= 0, the function v has the property: (1) v(ab) � v(a), and (2) thereexist elements q; r 2 R such that a = bq + r where either r = 0 or v(r) < v(b).The Euclidean algorithm to �nd the gcd of a and b, b 6= 0, works by computinga remainder sequence: �rst r is found such that a = bq + r and v(r) < v(b),then r1 is found such that b = q1r + r1 and v(r1) < v(r), then r2 is found suchthat q1 = q2r1 + r2, and so on. The last nonzero remainder will be the gcd of aand b. The idea of the Euclidean algorithm is applied implicitly in the following



18 CHAPTER 2. PRELIMINARIESprocedure which reduces an integer matrix to SNF with only elementary row andcolumn operations.Procedure 3: Assume A is an integer matrix with rank r. The reduction proceedsin stages for i = 1; : : : ; r. At the end of stage i, the i� i principal minor of A isin SNF. The reduction for a general stage can be understood by considering the�rst stage when i = 1. If A is the zero matrix then the reduction is �nished. Ifnot, permute the rows of A using operation R3 to obtain a nonzero entry in the�rst row �rst column (the pivot) . If there exists an o�-diagonal nonzero entryin the �rst row (column) use an operation of type C2 (R2) to reduce the sizeof the o�-diagonal element to be less than the size of the pivot. If the reducedentry is nonzero then make it the new pivot. By applying elementary row (andsymmetrically column) operations in this manner, A is transformed to a matrixwith all entries in the pivot row and column zero except for the pivot entry. If thepivot does not divide all other entries in A, add a row which contains an entrynot divisible by the pivot to the �rst row and continue zeroing out elements inthe �rst row and column. Since the size of the pivot is monotonically decreasingthis process terminates. Finally, use a row operation of type R1 to ensure the lastnonzero pivot belongs the the proscribed complete set of associates.



Chapter 3Advanced ComputationalTechniquesUp until now we have used the general expression computing the HNF or computingthe SNF to refer to the actual computational problem that is the focus of thisthesis. Before proceeding with a survey of computational methods we need tode�ne more precisely the problems to be solved. In particular, the theory of Smithnormal forms leads to two problems that from a computational perspective needto be distinguished (one will be seen to be much more di�cult than the other).Let A be an input matrix over a principal ideal domainR. The �rst problem isto compute the Smith normal form S of A. Henceforth, let SmithForm overR bethe problem of computing Smith normal forms over R. Recall that S is the Smithnormal form of A (rather than just a matrix in Smith normal form) preciselybecause there exist unimodular matrices U and V (of appropriate dimensions)such that UAV = S; these are sometimes sometimes referred to as pre- and post-multipliers for the Smith form. Henceforth, let SmithFormWithMultipliersbe the problem of computing candidates for these pre- and post-multipliers. In thecase of Hermite normal forms, let HermiteForm over R be the problem of com-puting Hermite normal forms over R and let HermiteFormWithMultipliersbe the problem of computing a candidate for a pre-multiplier for the HNF.The problem HermiteFormWithMultipliers reduces to solvingHermiteForm, an adjoint computation, and a matrix multiplication. If A issquare nonsingular, then U  1=det(A)HAadj expresses U in terms of the adjointof input matrix A and the HNF H of A found by solving HermiteForm. Nowconsider the case where A 2 Rn�m of rank m with m strictly less than n. Let Upbe an n � n unimodular matrix such that UpA consists of a permutation of therows of A with the �rst m rows of UpA linearly independent. Let A1 be the m�m19



20 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUESmatrix consisting of the �rst m rows of UpA and let A2 consist of the last (n�m)rows. Then the n� n matrix As = 24 A1 0A2 In�m 35 ;obtained by permuting the rows of A and augmenting with In�m, is non-singular.Now solveHermiteFormWithMultipliers to �nd the n�n unimodular matrixU such that UAs = Hs is the HNF of As. Let (UUp)A = H. ThenH consists of the�rst m columns of Hs. Take H to be the Hermite normal form of A. Uniquenessof Hs implies uniqueness of H.Knowing the Smith normal form S of A does not help at all in general to �ndcandidates for pre- and post-multipliers. Also, HermiteForm and SmithFormadmit unique solutions | for SmithFormWithMultipliers this is very farfrom being the case. Consider the following example.A = 2666666664 �147 84 532 �44111 �78 �470 120�607 382 2362 �392�2436 1528 9456 �1544 3777777775 has SNF S = 2666666664 1 0 0 00 2 0 00 0 4 00 0 0 8 3777777775and S = 26666664 �8 11 20 �4�1 4 13 �3�2 3 �3 10 0 �4 1 37777775A26666664 �19 �6 16 49 8 �15 �4�7 �3 7 2�4 �1 3 1 37777775 (3.1)= 26666664 1979 �2568 �4288 832�3699 4725 7700 �1480�13474 17833 30659 �601442176 �55108 �92976 18111 37777775A26666664 �149 �53784 �51084 �51452152 50582 48039 48382�70 �23961 �22757 �22920�31 �10587 �10055 �10127 37777775 (3.2)In a computer algebra setting, we will be much happier to have the pre- andpost-multipliers of equation (3.1) | especially when subsequent computationswill depend on them | rather than those of (3.2).3.1 The Classical Algorithm and ImprovementsThe classical algorithm for HermiteForm provides a starting point for manyother HermiteForm algorithms. In particular, the modulo determinant algo-



3.1. THE CLASSICAL ALGORITHM AND IMPROVEMENTS 21rithms of x3.2 can be described as a modi�cation of the classical algorithm; forthis reason, it is useful to present here detailed pseudocode for a version of theclassical algorithm.Assume for this section that A is an n�m rank m integral matrix with HNFH. The classical algorithm to compute H from A can be described succinctly asGaussian row reduction with division replaced by the extended Euclidean algo-rithm (EEA). For each pair of entries ajj and aij with i > j, the algorithm usesEEA to compute integers p and q, such that g = pajj+qaij where g = gcd(ajj; aij).De�neG = BU (p; q; i; j) to be the n�nmatrix, identical to In, except with gjj = p;gji = q; gii = �ajj=g and gij = aji=g. It is easily veri�ed that G is unimodular.Furthermore, (GA)jj = g and (GA)ij = 0. As an example of this technique, letA = 2664 14 3 618 5 133 2 4 3775and consider the pair of entries a11 = 14 and a21 = 18. We want a unimodularmatrix G such that (GA)21 = 0 and (GA)11 = g where g = gcd(14; 18). Using theEEA we obtain g = 2 and 2 = 4�14+(�3)�18 whence p = 4 and q = �3. ThenG = BU(p; q; 2; 1) is such thatG = 2664 4 �3 09 �7 00 0 1 3775 ; and 2664 4 �3 09 �7 00 0 1 37752664 14 3 618 5 133 2 4 3775 = 2664 2 �3 �150 �8 �373 2 4 3775as desired. Note that det(G) = 4 � (�7)� 9 � (�3) = �1 whence G is unimodular.The �rst stage of the algorithm, termed ClassicTriangularize, computes anupper triangular matrix T obtained from A by a unimodular transformation U .ClassicTriangularize# Initialize T and U.0 T := A;1 U := In;# Set tjj to be gcd(tjj; tj+1 j ; � � � ; tnj).2 for j := 1 to m do# Zero out entries below diagonal entry tjj.3 for i := j + 1 to n do4 find g := gcd(tjj; tij) and p; q such that g = ptjj + qtij;5 G := G1(p; q; i; j);6 T := GT ;7 U := UG;



22 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES8 od;9 od;Remarks:(1) As already mentioned, line 4 is accomplished using the extended Euclideanalgorithm.(2) In practice, lines 6 and 7 would be accomplished by performing on T andU the row operations indicated by matrix G rather than performing the matrixmultiplication.(3) Note that lines 1 and 7 are performed only if computation of the unimodularmultiplier matrix is desired.The second stage of the classical algorithm, termed ClassicReduce, continueswith the upper triangular matrix T and reduces the entries tij above the diagonalentry modulo the diagonal entry tjj.ClassicReduce# Consider diagonal entry tjj.0 for j := 1 to m do# Reduce modulo tjj entries above diagonal.1 for i := 1 to j � 1 do2 p := (tij � mod(tij; tjj))=tjj ;3 set ROW(i; T ) = ROW(i; T )� pROW(j; T );4 od;5 od;For clarity, the triangularization and reduction phases have been describedseparately | �rst ClassicTriangularize and then ClassicReduce are used insuccession. In an actual implementation, however, these operations are usuallyinterleaved. Let ClassicTriangularize(j) and ClassicReduce(j) perform sim-ilar operations as the original routines but restricted to column j. The completealgorithm can now be written as:Algorithm ClassicHermiteInput(A) # an n�m rank m integral matrixOutput(U,H) # an n� n unimodular matrix U together with UA = H,the Hermite normal form of A# Initialize the work matrices U and B.0 U := Im;1 B := A;2 for j := 1 to m do



3.1. THE CLASSICAL ALGORITHM AND IMPROVEMENTS 23# Perform row operations on matrices U and B.3 ClassicTriangularize(j);4 ClassicReduce(j);5 od;6 H := B;
ClassicHermite requires O(n3) arithmetic operations: each o�-diagonal entryposition inA is modi�ed using twoO(n) row operations in ClassicTriangularize(for positions below diagonal) and using one row operation in ClassicReduce (forpositions above diagonal). To bound the number of bit operations we need also tobound the size of integers occurring during the computation. Consider the caseof an n� n rank n matrix A with HNF H. Then H triangular implies jdet(A)j =trace(H), ensuring that the largest diagonal entry in H is at most jdet(A)j. Sinceentries hij above the diagonal are less than hjj , we conclude that the largest entryin H will be at most jdet(A)j. The usual Hadamard bound [28, Chapter II, x4.1.7]gives jdet(A)j � nn=2jjAjjn where jjAjj is the largest magnitude coe�cient of A |integers of this magnitude can be represented using dn((log2 n)=2+log(jjAjj))e+1bits. Unfortunately, this nice bound on the size of entries of the �nal outputmatrix H does not ensure good behavior during the course of the algorithm.The algorithm ClassicHermite is impractical because entries in the matrixunder computation can grow exceedingly large. In [16], Hafner and McCurley givean example of a 20� 20 matrix A with positive entries chosen from f0; 1; : : : ; 10g.After completing ClassicTriangularize with input A, the resulting triangularmatrix T contains an entry larger than 105011 even though jdet(A)j < 1020. In an-other example, Domich, Kannan and Trotter [11] use a version of ClassicHermiteon an 8�8 matrix with entries having magnitude less than 216; intermediate com-putations involved numbers larger in magnitude than 2432.We give here a worked example showing the type of expression swell that canoccur. Consider the following 8� 5 randomly generated integral matrix.



24 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUES
G = 26666666666666666666666664

�85 �55 �37 �35 9749 63 57 �59 4543 �62 77 66 54�50 �12 �18 31 �26�91 �47 �61 41 �5894 83 �86 23 �84�53 85 49 78 17�86 30 80 72 66
37777777777777777777777775 (3.3)

We compute the HNF of G using a procedure described by ClassicHermiteand examine the results of intermediate computations. Denote by Bj ; 1 � i � 6,the state of matrixB (the work matrix) after the correct form of columns 1; 2; : : : ; jhas been computed. Then B0 = G andB1 = 266666666666666664 1 �937 217 941 1175747 �1322 �5771 �71179700 18408 79950 10042�46862 10832 47081 5824�85314 19686 85672 1058988161 �20484 �88431 �11082�49576 11550 49951 6218�80552 18742 80998 10128
377777777777777775B2 = 266666666666666664 1 0 29056587 �32365850 710256541 31010 �34543 75801427376 �476050 10446741453201452 �1618706985 35521922862645606826 �2946915830 6466897103�2733893094 3045256992 �66827030431537363310 �1712453817 37579165942497936262 �2782426738 6105932280

377777777777777775



3.1. THE CLASSICAL ALGORITHM AND IMPROVEMENTS 25B3 = 266666666666666664 1 0 1 �3894548241929407974350 48392096515052804364351 0 �4156370641142457043 51645396776200323862 268066471534500 �3330886602786178700810 �10811278536132943474305 �666177321060854366432537630561611628492 �455314394012718248788542�206057778989151562051317 256039142644703834587729�334806479936211949446238 416017121485484319687107
377777777777777775B4 = 266666666666666664 1 0 1 0 �183766091785660591765681121829991602836779002283024651 0 0 �196120304920658433595148698945280116387797785166562 0 12648842626291957669618564909600084627744643831 �4718547065541562489662839409094�9837599011796367663853906224157082426498�972293328381272933761167250141489411131870330949889069�1579800133427312912106981124086461701228582712121601265

377777777777777775B5 = 266666666666666664 1 0 1 0 01 0 0 02 0 01 01 377777777777777775 :Remark: Note that B5 is the HNF of G.It remains on open question whether ClassicHermite (or a variation of it)has an exponential lower bound on the number of digits in intermediate com-putations. (Such a bound could be expressed in terms of the dimensions of theinput matrix and the size in bits of the largest entry.) However, as the examplesgiven above show, experience indicates that ClassicHermite is impractical evenfor moderately sized matrices.Various modi�cations and improvements of ClassicHermite appear in [5, 7, 4,12, 26, 10], although this list is not exhaustive. An algorithm for triangulating aninteger matrix is given by Blankinship in [5]. This article appeared in 1966 beforethe use of arbitrary precision integer arithmetic was widespread. Referring to aninput matrix A 2 ZZ n�m of rank m, Blankinship writes, \Overow is generallydependent upon the magnitude of the greatest common divisor of all r� r minors



26 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUEScontained in A, as this number, or a large divisor of it will appear in the r-th row ofthe work matrix". However, the 8�5 integer matrix of (3.3) has magnitude of thegreatest common divisor of all 5 � 5 minors equal to 2; intermediate expressionsare guaranteed to be larger than this since the original matrix has entries twodigits in length.Bradley gives an algorithm in [7] that �nd the complete HNF but he alsodoesn't give bounds on the size of intermediate integers. Bradley writes, \Thepossible increase in the magnitude of the elements of the matrix as the algorithmproceeds is a serious computational consideration ...".In [26], Kannan and Bachem present a modi�cation of ClassicHermite thatworks by computing for j = 1; 2; : : : ;m, the HNF of the j� j principal submatrixof an m�m rank m input matrix. (The classical algorithm determines the correctform for the columns j = 1; : : : ;m rather than for principal submatrices.) Kannanand Bachem were able to prove a polynomial running time for their algorithm.However, in [11], Domich, Kannan and Trotter present experimental evidence thatthe Kannan/Bachem algorithm still su�ers from intermediate expression swell.There is one overriding reason that has motivated the search for a better HNFalgorithm: The integers in the output matrix H are small compared to the inputmatrix A. In particular, we have good a priori bounds on the size of integers inH. If A 2 ZZ n�m has rank m and d is the gcd of a subset of determinants of m�mminors of A (not all singular), then entries in H will be bounded in magnitude byd. In the next section, an algorithm for HermiteForm is presented that boundsthe magnitude of all intermediate integers occurring during the reduction by d.3.2 Modular MethodsIn [11, 21, 16], algorithms for HermiteForm are presented which perform allcalculation modulo d where d is a multiple of the gcd of all m � m minors ofan input matrix A 2 ZZ n�m with rank m. The class of modulo determinantalgorithms are an important improvement over the ClassicHermite algorithmfrom a practical viewpoint. In [21], Iliopoulos presents a modulo d algorithmtogether with a worst-case complexity bound (for bit operations) which improvesby a factor of O(s3��) (for any � > 0 where s is the size of input matrix in bits)the best known non-modulo algorithm (given by Chou and Collins in [10]).We require the notion of the determinant of the lattice L(A) | denoted bydet(L(A)). In general, det(L(A)) = jdet(B)j where B is a basis matrix for L(A).Note that B a basis for L(A) impliesB is square and non-singular since A is n�m



3.2. MODULAR METHODS 27with rank m. In particular, if A is square and non-singular, then det(L(A)) =jdet(A)j = det(H). For an n �m rank m matrix A, we can choose B to be the�rst m rows of H, the HNF of A. Another useful fact is: det(L(A)) equals thegcd of all the determinants of m�m submatrices of A.We have already noted that for n�n rank nmatricesA, the entries in the HNFH of A are bounded in magnitude by jdet(A)j. In general, entries inH are boundedby det(L(A)). Modular algorithms given in [11, 21, 16] require as input a positiveinteger d | a multiple of det(L(A)). In general, modulo determinant algorithmsrequire three steps: (1) computing a suitable modulant d; (2) computing theHNF; (3) computing a unimodular multiplier matrix. Note that step (3) may beomitted if a transformation matrix is not required. We consider �rst the actualcomputation of the HNF and leave steps (1) and (3) until later.Theorem 3 and Corollary 1 will su�ce to motivate our �rst modulo determinantalgorithm. Theorem 3 restates for rectangular matrices a result given for squarenon-singular matrices by Domich, Kannan and Trotter in [11, prop. 2.5 and cor.2.6].Theorem 3 Let A be an n �m rank m integer matrix with HNF H = [hij]. Letd be a positive integral multiple of det(L(A)). De�ne d1 = d and dj+1 = dj=hjjfor j = 1; 2; : : : ;m� 1. Let ej denote the j-th unit vector. Then djej 2 L(A) for1 � j � m.Proof: Let H1 be the m�m submatrix of H consisting of the �rst m rows of H.Then H1 is a basis matrix for L(A). By Cramer's rule, d1 (= d) a multiple ofdet(H1) implies d1H�11 is an integral matrix whence d1H�11 H1 = dIm has rows inL(A). Next, let H2 be the (m�1)� (m�1) submatrix of H1 consisting of the lastm rows and columns of H. Then, det(H2) = det(H1)=h11 implies d2 is a multipleof det(H2). Then, by Cramer's rule, d2H�12 is integral whence d2H�12 H2 = d2Im�1.It follows that d2e2 2 L(A). Continuing in this fashion for j = 3; 4; : : : ;m yieldsthe desired result.Corollary 1 For the augmented matrixA0 = 24 AdIm 35 (3.4)we have L(A0) = L(A) whence the HNF A0 equals24 HO 35



28 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUESProof: A generates L(A) and L(dIm) � L(A).Our initial modulo determinant algorithm uses a modi�cation ofClassicHermite with the (n+m)�m input matrix A0 of (3.4). ClassicHermiteinitializes a work matrix B to be A0 and computes the correct form for columns jof B for j = 1; 2; : : : ;m. Since column k of A0 has zero entries below the (n+k)throw, algorithm ClassicHermitewill not change rows (n+k); n+k+1; :::; (n+m)of the work matrix B until ClassicTriangularize(j) is called with j = k.Thus, after ClassicHermite has completed for columns j = 1; 2; : : : ; (k � 1),the rows (n + k); n + k + 1; : : : ; (n + m) of B still correspond to the vectorsdek+1; dek+2; : : : ; dem. Recall that a valid elementary row operation is that ofadding a multiple of one row to another; this row operation can be used with theappropriate dej row to reduce the result of all computations, as they occur, towithin d in magnitude. The original ClassicHermite algorithm augmented touse modulo d arithmetic as suggested constitutes a complete algorithm; for conve-nience, call this modi�cation of the original algorithm AugmentHermite. The algo-rithm AugmentHermitewas �rst given for square non-singular matrices by Domich,Kannan and Trotter in [11]; they mention also that the method of AugmentHermitewas independently discovered by A. Schrijver in 1985.AugmentHermite runs in polynomial time since we perform O((n+m)3) arith-metic operations on integers not exceeding d in magnitude. It still remains todemonstrate a method of obtaining d | a multiple of det(L(A)) | this we deferuntil later.We continue with Theorem 4 and 5 which gives us a method of using modulod reduction without having to resort to an augmented matrix such as A0. Letd and d1; d2; : : : ; dm be as in Theorem 3. Let ModTriangularize be identical toClassicTriangularize except that all computations are performed using mod darithmetic.Theorem 4 Let A be an n�m rank m integral matrix with HNF H = [hij]. LetT = [tij] be any n �m upper triangular matrix with rows in L(A) and diagonalentries satisfying tjj = hjj ; 1 � j � m. Then the HNF of T is H.Proof: The rows of T in L(A) implies that any integral linear combination ofthe rows of T are in L(A). In particular, HT , the HNF of T , has rows in L(A).It follows that LH = HT for an n � n integral matrix L. Moreover, since thediagonal entries of H1 and H are identical, we can choose L unimodular. Butthen L(H) = L(HT ) from which it follows from the uniqueness of the HNF thatH = HT .



3.2. MODULAR METHODS 29Theorem 5 Let A be an n�m rank m integral matrix with HNF H = [hij]. LetT = [tij] be the upper triangular matrix obtained by applying ModTriangularizeto A. Then hjj = gcd(dj; tjj) for 1 � j � m where dj is as in Theorem 3.Proof: We omit the proof of Theorem 5 | although not very long or di�cult, it isalso not very illuminating. For a proof in the case of square matrices, the readeris referred to [11, prop. 2.7 and cor. 2.8].We require one more fact which follows as a corollary of Theorem 3: If r 2 L(A)with r = (0; 0; : : : ; 0; rk; rk+1; : : : ; rm) and p is any integer, then the vector obtainedfrom r by multiplying by p and reducing all entries mod dk is in L(A). To seethis note that the mod dk reductions can be e�ected by adding to r appropriateintegral multiples of the vectors djej for j = k; k+1; : : : ;m. More generally, for r =(r1; r2; : : : ; rm) 2 L(A) we can conclude that (r1 mod d1; r2 mod d2; : : : ; rm moddm) 2 L(A). The algorithm ClassicHermite works by computing the correctform for the successive columns j = 1; 2; : : : ;m. When j = k; k + 1; : : : ;m,columns 1; 2; : : : ; k�1 are no longer changed. It follows from the above discussionthat at stage j = k of the algorithm we can perform all computations using moddk reduction and still keep all rows in L(A).We can now give a modulo determinant algorithm that doesn't require anaugmented matrix. Let ModTriangularize(j) and ModReduce(j) be identical tothe corresponding CLASSIC versions except that all computations be performedusing modulo d arithmetic.Algorithm ModHermiteInput(A,d) # an n�m rank m integral matrix and d,a positive integral multiple of det(L(A))Output(H) # the Hermite normal form of A# Initialize work matrix B.0 B := A;1 for j := 1 to m do# Perform row operations on B using mod d (= dj)arithmetic.2 ModTriangularize(j);# Reconstruct diagonal entry bjj.3 find p; q such that hjj = pbjj + qdj;4 set ROW(j;B) = pROW(j;B);5 reduce entries in ROW(j;B) mod dj ;# Perform row operations on B using mod d (= dj)



30 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUESarithmetic.6 ModReduce(j);# Set d equal to dj+1 for next pass.7 d := d=hjj ;8 od;9 H := B;
Algorithm ModHermite, coupled with a method of obtaining d, provides acomplete solution for HermiteForm over ZZ . Let M(t) be an upper boundon the number of bit operations for multiplying two numbers with length tbits and let jjAjj be largest magnitude of any coe�cient of A . Currently, thebest known running time for a HermiteForm algorithm is given by Hafnerand McCurley in [16]. They demonstrate an asymptotic running time ofO(m2nM(m log(mjjAjj)) log(m log(mjjAjj))) bit operations for both ModHermiteand for the determination of a suitable modulant d [16, cor. 2.2].Actually, determination of d is not the bottleneck in the Hermite normal formcomputation. Bareiss's fraction-Free Gaussian elimination can be used to trian-gularize an n�m rank m matrix in O(m2nM(m log jjAjj)) bit operations (see [21,Theorem 1.3]) and can be used to obtain a suitable multiple of det(L(A)).The algorithm ModHermite, together with a determination procedure for d,was implemented in Maple V. When the input matrix A is square nonsingular weset d  det(A). In general, Bareiss's fraction-free Gaussian elimination is usedto obtain a triangularization of the input matrix with the property that the i-thpivot (the i-th diagonal entry of the triangularization) will be a determinant of ani� i minor of the input matrix. In particular, for a square input matrix, the lastnonzero pivot will be the determinant. (For a discussion of fraction-free Gaussianelimination algorithms see [14] or the original articles by Bareiss [2, 3].) When theinput matrix is rectangular, say A 2 ZZ n�m with rank m, then we can set d to bethe determinant of a nonsingular m � m minor of A. For example, consider thematrix G of (3.3). Applying the fraction-free Gaussian elimination procedure to



3.2. MODULAR METHODS 31zero out entries below the diagonal in the �rst 4 columns of G yields the matrixT = 26666666666666666666666664
�85 �55 �37 �35 970 �2660 �3032 6730 �85780 0 51696 �274200 3955240 0 0 �3967680 34688240 0 0 0 9837599000 0 0 0 �17686259480 0 0 0 �4585193120 0 0 0 336004550

37777777777777777777777775The last nonzero pivot, a determinant of a 5 � 5 minor of A, is T5;5 =98375900. Note however that the trailing entries in rows 6 through 8 of Tare determinants of 5 � 5 minors as well. As such, a better choice for d isgcd(983759900;�1768625948;�458519312; 336004550); this yields d = 2. TheBareiss method works very well in practice; for rectangular input matrices, thed found by computing the gcd of the trailing entries in the last reduction row istypically much smaller than the absolute value of a determinant of a single m�mminor of A.At the end of x3.1, we gave an example computation using a non modularalgorithm involving the 8� 5 matrix G of (3.3). For comparison, we repeat com-putation but using the new algorithm ModHermite. Denote by B 0j ; 1 � i � 6, thestate of matrix B 0 (the work matrix in the routine ModHermite) after the correctform of columns 1; 2; : : : ; j has been computed. Then
B01 = 26666666666666666666666664

1 1 1 1 10 0 0 01 0 1 10 0 1 00 0 0 11 0 1 00 0 1 00 0 0 0
37777777777777777777777775 ; B 02 = 26666666666666666666666664

1 0 1 0 01 0 1 10 0 00 1 00 0 10 0 10 1 00 0 0
37777777777777777777777775 ; B 03 = 26666666666666666666666664

1 0 1 0 01 0 1 12 0 01 00 10 11 00 0
37777777777777777777777775



32 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUESB04 = 26666666666666666666666664
1 0 1 0 01 0 0 02 0 01 01100

37777777777777777777777775 ; B 05 26666666666666666666666664
1 0 1 0 01 0 0 02 0 01 01 37777777777777777777777775Remark: The entries in the intermediatework matricesB 01; B 02; : : : ; B 05 are all singledigits because computations are being performed modulo d, which was computedto be 2.3.2.1 HermiteFormWithMultipliers for Rectangular In-putIn many applications, a unimodular multiplier matrix U with UA = H is desired.When A is square nonsingular, then U will be the unique matrix 1=det(A)HAadj;this can be found using standard techniques. More complicated is the case whenthe input matrix in strictly rectangular. The matrix equation UA = H will notadmit a unique solution for U in this case. Note that we could apply the standardlinear systems techniques | which apply to matrices with coe�cients from a �eld| to �nd a particular solution for U ; unfortunately, this method will almostcertainly �nd a U that contains non-integer entries or is non-unimodular.The only solution that we are aware of that is o�ered in the literature is thetechnique mentioned at the beginning of this chapter. If A is n�m rank m withm < n, then Hafner and McCurley [16] suggest reducing to the square nonsingularcase by forming the n� n matrixAs = 24 A1 0A2 In�m 35 (3.5)by permuting the rows of A such that A1 is non-singular and augmenting withIn�m. Although this method for �nding U works, it can computationally expensivewhen A is nonsquare. For example, consider the case of a km�m rank m matrixA where k is some positive integer. If only H is required then the reductionproceeds on a km�m matrix. If a candidate for U is also required, then we mustapply the reduction on the square matrixAs 2 ZZ km�km described by (3.5) and set



3.2. MODULAR METHODS 33U  1=det(As)HAadjs . This seems exceedingly expensive since the matrix As is ktimes as large as A. Although the last m(k�1) columns of As have only m(k�1)nonzero entries, the algorithm ModHermite tends to �ll in entries of these lattercolumns while reducing columns 1 through m. As an example, consider the caseof a generic 9 � 3 matrix A. The matrix As will be 9 � 9. Let Bi be the state ofthe work matrix B of algorithm ModHermite after the reduction for column i iscomplete. Then
B0 = 2666666666666666666664

� � �� � �� � �� � � �� � � �� � � �� � � �� � � �� � � �
3777777777777777777775B1 = 2666666666666666666664

� � � � � � � � �� �� �� � �� � � �� � � �� � � �� � � �� � � �
3777777777777777777775B2 = 2666666666666666666664

� � � � � � � � �� � � � � � � ��� �� � �� � � �� � � �� � � �� � � �
3777777777777777777775



34 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUESB3 = 2666666666666666666664
� � � � � � � � �� � � � � � � �� � � � � � ��� �� � �� � � �� � � �� � � �

3777777777777777777775Remark: All entries that may be nonzero are denoted by �.Note how the process of putting the j-th column in correct form tends to�ll in the entries in column m + j of the work matrix. In particular, the last 6columns of B3 still remain to be triangularized. In general, when the input is ofsize n �m, after the �rst m columns have been triangularized, the work matrixwill still contain a submatrix of size (n�m)� (n�m) that remains to be put intotriangular form. A slight modi�cation of algorithm ModHermite works to preservethe upper triangularity of the last n �m columns and row of A. As presented,state j of algorithm ModHermite zeroes out subdiagonal entries in column j ofthe work matrix. In particular, the entry in i-th row j-th column of the workmatrix is transformed to zero for i = j + 1; j + 2; : : : ; n. If, instead, the entry inthe i-th row j-th column is zeroed with the row index being chosen in the orderi = j + 1; j + 2; : : : ;m; n; n � 1; : : : ; n � m + 1, then the upper triangularity ofthe last n �m columns of the work matrix is preserved. Reworking the previousexample with the new reduction order yields:
B0 = 2666666666666666666664

� � �� � �� � �� � � �� � � �� � � �� � � �� � � �� � � �
3777777777777777777775



3.2. MODULAR METHODS 35B1 = 2666666666666666666664
� � � � � � � � �� �� �� � � � � � � �� � � � � � �� � � � � �� � � � �� � � �� � �

3777777777777777777775B2 = 2666666666666666666664
� � � � � � � � �� � � � � � � ��� � � � � � �� � � � � �� � � � �� � � �� � �� �

3777777777777777777775B3 = 2666666666666666666664
� � � � � � � � �� � � � � � � �� � � � � � �� � � � � �� � � � �� � � �� � �� ��

3777777777777777777775After the HNF Hs of As has been found, it remains to �nd the unimodularmultiplier matrix U such that UAs = Hs. WriteHs = 24 N M0 P 35 and U = 24 U1 U3U2 U4 35Then, we need to solve the matrix equation24 U1 U3U2 U4 3524 A1 0A2 In�m 35 = 24 N M0 P 35for U1, U2, U3 and U4. This yields,U3 = M;



36 CHAPTER 3. ADVANCED COMPUTATIONAL TECHNIQUESU4 = P;U2 = �1dP (A2Aadj1 );U1 = 1d(NAadj1 �M(A2Aadj1 ))where d = det(As) (= det(A1)).



Chapter 4Polynomial MatricesThis chapter introduces the problem of computing normal forms of matrices overpolynomial domains F[x], F a �eld. Our focus will be the HNF. As with matricesover the integers, our main task will be to control the growth in the size of thematrix entries during intermediate computations. We face a double challengewhen F is a �eld of characteristic zero; in this case not only degrees but also sizeof coe�cients of intermediate polynomials will need to be controlled. Despite theimportance of the HNF and SNF in linear systems theory | and hence interestin being able to compute these forms | signi�cant results have been forthcomingonly very recently. For example, the fact that SmithFormWithMultipliersover Q[x] is in P | the class of problems that can be solved in polynomial timeby a sequential deterministic algorithm | was �rst shown by Villard in a paperpresented at ISSAC 93 [35].On a more practical note, a problem with respect to HermiteForm overQ[x]that remained unanswered until recently was to establish good a priori boundson the size in bits required to represent the rational coe�cients of the matrices Uand H corresponding to an input matrix A. Such a bound could be expressed interms the dimension and size of entries of the input matrix A. The bulk of thischapter will be devoted to obtaining such a bound. Our approach is to develop asequential deterministic solution for HermiteForm over Q[x] that converts theproblem to that of solving a large linear system overQ; this novel solution methodwill lead to fast method (given in x4.3.2) for obtaining size bounds on the lengthof coe�cients in the premultiplier U and the HNF H for a given input matrixA. The careful analysis of x4.3 will prove very useful in x6.4 where a modularalgorithm for HermiteForm overQ[x] is developed that require as input boundsfor the size of coe�cients appearing in U and H.Recall some basic facts about the Euclidean domain F[x]. A matrix U 237



38 CHAPTER 4. POLYNOMIAL MATRICESF[x]n�n is unimodular if det(U) 2 F n f0g. The gcd of set of polynomi-als fp1; p2; : : : ; pkg, not all zero, is the unique monic polynomial g such thathgi = hp1; p2; : : : ; pki. The main results of chapter 2 | which gave the basicproperties of the HNF over a general PID R | are summarized here for thespecial case R = F[x].Hermite normal form. Let H be an n by m matrix over F[x] with rank m.H is in Hermite normal form if it is upper triangular, has monic diagonal entries,and in each column entries proceeding the diagonal entry are of lower degree.(I) To every n by m matrix A over F [x] with rank m there exists a unique n bym matrix H in Hermite normal form such that UA = H for some unimodularmatrix U . We call H the Hermite normal form of A. If n = m (i.e. A is squarenonsingular) then the unimodular matrix U is unique.The main topic of chapter 3 was a class of algorithms for computing the HNFthat perform all computations modulo the determinant of the input matrix (ordeterminant of the lattice thereof). These modular methods control the problem ofcoe�cient growth when the normal form is computed over the domain of integers.The size of an integer (in the Euclidean sense) is its magnitude; the number of bitsrequired to represent an integer is proportional to the logarithm of its magnitude.The size of a polynomial in F[x] (in the Euclidean sense) is its degree; the numberof bits required to represent a polynomial will depend not only on the degree butalso on the size (in bits) required to represent the individual coe�cients from F.The idea of working modulo the determinant of the input matrix can be appliedalso to HermiteForm over F[x] and serves to bound the degrees of intermediatepolynomial entries. In particular, the results of x3.2 depend only on properties oflattices over PIDs and not on special properties of integers. As such, algorithmModHermite of x3.2 provides a solution for HermiteForm over F[x]. Thus, whenthe coe�cient �eld F is a �nite �eld such as GF(p), a priori bounds exist forthe size in bits required to represent the coe�cients from F and the problem ofexpression swell has been solved. However, when F is a �eld of characteristic 0,excessive coe�cient growth is still a problem; working mod the determinant onlycontrols the growth of the degrees of the entries, not the growth of the coe�cientsfrom F.The remainder of this chapter focuses on the more di�cult case when F = Q;speci�cally, we tackle the problem HermiteForm over Q[x]. Section x4.1 pointsout the problem of intermediate expression swell. Section x4.2 mentions someprevious results that have motivated our work in x4.3 where we present a sequentialdeterministic solution for HermiteForm over Q[x]. Section x4.4 concludes with



4.1. INTERMEDIATE EXPRESSION SWELL OVER Q[X] 39a criticism of the algorithm given in x4.3 and summarizes the main results of thechapter.4.1 Intermediate Expression Swell over Q[x]A key operation in the algorithm ModHermite of x3.2 is to solve the extendedEuclidean problem: given elements f1; f2 2 R, �nd s; t 2 R such thatsf1 + tf2 = gwhere g is the gcd of f1 and f2. When R = ZZ we have good bounds on the sizein bits of s and t; in particular, we can choose jsj < jf2j and jtj < jf1j. WhenR = Q[x] we can choose deg (s) < deg (f2) and deg (t) < deg (f1). For example,for the polynomialsf1 = �85x5 � 55x4 � 37x3 � 35x2 + 97x + 50f2 = 79x5 + 56x4 + 49x3 + 63x2 + 57x � 59we obtains = 32529092354815409636343806350461423445 x4 + 26076558444402598136343806350461423445 x3+ 447842656740016537268761270092284689 x2 + 531609648622203247268761270092284689 x+ 20902967990082095236343806350461423445t = 699993126622610087268761270092284689 x4 + 517880200695129157268761270092284689 x3+ 17418616462577556836343806350461423445 x2 + 14494073988255865136343806350461423445 x� 877705842556622917268761270092284689such that sf1 + tf2 = 1For an input matrix A that has entries in the �rst column comparable in sizeto f1 and f2, the above example shows the amount coe�cient growth that can beexpected in the work matrix of algorithm ClassicHermite after the correct form ofcolumn 1 has been found. In particular, the work matrix would be premultiplied by



40 CHAPTER 4. POLYNOMIAL MATRICESa unimodular matrix that contained the entries s and t. A straightforward analysisof coe�cient growth during the course of algorithm ClassicHermitewhen appliedto an input matrix over Q[x] leads to an exponential upper bound on the size inbits of intermediate coe�cients (cf. Kannan [25]).While the potential for intermediate expression swell is great, another fact thatmust not be overlooked is that the end result of a HNF computation can itselftypically be very large. For a coe�cient c 2 F, the term length of c is used toindicate the number of bits required to represent c in binary. Note that if c is aninteger, then the length of c will be proportional to the number of digits in theusual base 10 representation of c. Given an input matrixA 2 Q[x]n�n with degreesof entries bounded by d and coe�cients inQ bounded in length by l, a fundamentalquestion is: what is a bound for the length of the rational coe�cients appearingin H, the HNF of A, and in U , the unimodular matrix such that UA = H? Ofcourse, we could answer the question by actually �nding the HNF H, but whatis desired here is an a priori bound in terms of the input matrix parameters n, dand l.Example 1 LetA = 266664 �85x2 � 55x� 37 �35x2 + 97x+ 50 79x2 + 56x+ 49 63x2 + 57x� 5945x2 � 8x� 93 92x2 + 43x� 62 77x2 + 66x+ 54 �5x2 + 99x� 61�50x2 � 12x� 18 31x2 � 26x� 62 x2 � 47x� 91 �47x2 � 61x+ 41�58x2 � 90x+ 53 �x2 + 94x+ 83 �86x2 + 23x� 84 19x2 � 50x+ 88 377775 :Then, U = 2666666664 [5; 49] [5; 49] [5; 49] [5; 49][5; 49] [5; 49] [5; 49] [5; 49][5; 49] [5; 49] [5; 49] [5; 49][6; 8] [6; 8] [6; 8] [6; 8] 3777777775and H = 2666666664 [0; 1] 0 0 [7; 50]0 [0; 1] 0 [7; 50]0 0 [0; 1] [7; 50]0 0 0 [8; 9] 3777777775where [a; b] indicates a polynomial of degree a over Q[x] with numerators anddenominators of coe�cients over Q bounded in length by b. (Note: in this example,the length of an integer is the number of digits in the base 10 representation.) For



4.2. PREVIOUS METHODS FOR HERMITEFORM OVER Q[X] 41example,U1;1 = � 4076422925216501571167146655107438144325092916724419322434108641622821976294314080763736861084663� 1167599980113283453503599709674231035494190584981473107478036213874273992098104693587912287028221 x� 2253356285821910236920575227470640560123494819154419322434108641622821976294314080763736861084663 x2+ 9140025612182889634824688476231059864955379535929450683810094494487612148894965558836268981 x3+ 231150934623876633543531690706066685365739252701473107478036213874273992098104693587912287028221 x4� 1013533038752151244180929023098803050011870270854419322434108641622821976294314080763736861084663 x5To summarize results it will be useful to de�ne some notation. For a matrixA 2 F[x]n�m with entries degree at most d � 1 polynomials having coe�cientsfrom F representable in l bits, we will use the parameter s as a measure of thesize of A, where s is de�ned as s = n+m+d+ l. We write Size(A) to indicate thenumber of bits required to represent A in binary. We may now write, for example,Size(A) = O(nmdl). For brevity, it will be convenient to use the parameter s. Forexample: O(n2md+ nm2d+ nmd2) = O(s3).4.2 Previous Methods for HermiteForm overQ[x]In discussing previous results or presenting new ones, our task will be greatly sim-pli�ed if we restrict our attention to square nonsingular matrices over ZZ [x]. Thiscorresponds to a preconditioning of the input and does not e�ect the generality ofthe results. To see this, let A 2 Q[x]n�m with rank m be a general input matrix.Let D 2 ZZ n�n be a diagonal matrix with i-th diagonal entry equal to the leastcommon multiple of the denominators of all rational coe�cients of all polynomialentries in row i of A. Then the matrix A� = DA is over ZZ [x] and has the sameHNF as A. Now apply the technique given in x3 (pp. 19) to construct a squarenonsingular matrix A�s from A� such that the �rst m columns of the HNF of A�scomprise the HNF of A.



42 CHAPTER 4. POLYNOMIAL MATRICESIn what follows | and for the remainder of this chapter | let A be an n� nnonsingular input matrix over ZZ [x] with degrees of entries bounded by d, let Hbe the HNF of A, and let U the unique unimodular matrix such that UA = H.We write jjAjj to denote the largest magnitude of all integer coe�cients of A.4.2.1 Kannan's AlgorithmThe �rst proof that HermiteForm over Q[x] is in P was based on a varia-tion of the classical algorithm by Kannan in [25]. Kannan gives an algorithm forHermiteForm over Q[x] that works by �nding the HNF of the i-th principalminor of A for i = 1; 2; : : : ; n. (The classical algorithm �nds the correct formof columns i = 1; 2; : : : ; n.) Kannan bounds the degrees of intermediate polyno-mials occurring when his algorithm operates on A by 2n3d and the magnitudesof the numerators and denominators of rational coe�cients of these polynomialsby (4ndjjAjj)400n11d4 . These bounds lead to a polynomial bound on the length ofintermediate rational coe�cients based on the size in bits of the input matrix butthey are astronomical from a practical point of view. Kannan mentions that theseastronomical bounds are due in part to liberties taken during the analysis of hisalgorithm since he was primarily after a theoretical result (i.e. showing inclusionin P).4.2.2 The KKS Linear System SolutionThe idea of converting HermiteForm over F[x] to that of solving linear systemsover F appears to have �rst been used by Kaltofen, Krishnamoorthy and Saundersin [23] where they prove HermiteForm is in the parallel complexity class NC2.Their approach involves O(n2d) linear systems each of size O(n3d)�O(n3d) withmagnitudes of entries bounded by jjAjj. The key to their approach is the followinglemma. (Note: For a matrix A 2 F[x]n�n, ai;j;k indicates the coe�cient of xk ofentry ai;j.)Lemma 3 [23, Lemma 2.1] Given the n by n nonsingular matrix A over F[x]with entry degrees less than d, and the vector (d1; � � � ; dn) of nonnegative integers,consider the system TA = G, where G is upper triangular, and more speci�cally,� ti;j are polynomials of degree less than nd + max1�i�n di whose coe�cientsare unknowns;� gi;j are monic of degree di with lower order coe�cients unknowns, and for i <j, gi;j are polynomials of degree less than dj with unknowns as coe�cients.



4.2. PREVIOUS METHODS FOR HERMITEFORM OVER Q[X] 43This is a system of linear equations over F in the unknown ti;j;k and gi;j;k for whichthe following statements hold.(1) The system has at least one solution, if and only if each di is no less thanthe degree of the i-th diagonal entry of a Hermite normal form of A.(2) If each di is exactly the degree of the i-th diagonal entry of a Hermite normalform of A, then the system has a unique solution, hence G is the uniqueHermite normal form of A and T is unimodular.Their method can be described briey as follows. A bound for deg det(A) isgiven by nd. In particular, the degrees of the diagonal entries in the HNF of Awill be bounded by nd. If the d1; d2; : : : ; dn of Lemma 3 are each bounded by ndthen the linear system will consist of O(n3d) equations and O(n3d) unknowns. Setdi = nd for i = 1; 2; : : : ; k � 1; k + 1; : : : n. Then, for each value of dk between 0and nd, the linear system of Lemma 3 is consistent if and only if the degree of thek-th diagonal entry of the HNF of A is not greater than dk. Hence, the correctdegree of the k-th diagonal entry can be found by solving at most O(nd) linearsystems each of size O(n3d) �O(n3d). The degrees of all diagonal entries can befound by solving O(n � nd) linear systems. Finally, solving the linear system ofLemma 3 for the correct diagonal degrees (d1; : : : ; dn) yields the matrices U andH.Example 2 Let A = 24 x� 1 3x+ 2x� 1 2x+ 3 35Say, for the purposes of this example, that the correct degrees of the diagonalentries in the HNF of A have already been found and are (d1; d2) = (1; 1). Thenn = 2, d = 1, and Lemma 3 bounds the degrees of entries in T by nd+max1�i�n =3. The system we want to solve isTh t113 x3 + t112 x2 + t111 x+ t110 t123 x3 + t122 x2 + t121 x+ t110t213 x3 + t212 x2 + t211 x+ t210 t223 x3 + t222 x2 + t221 x+ t210 i Ah x� 1 3x+ 2x� 1 2x+ 3 i= Gh x+ g110 g1200 x+ g220 ifor the coe�cients fti;j;k; gi;j;kg. We can write the above as a linear system ofconstraints in the coe�cients fti;j;k; ai;j;k; gi;j;kg by expressing the polynomial mul-tiplications as convolution products over Q and equating coe�cients on the left



44 CHAPTER 4. POLYNOMIAL MATRICESand right hand side.h t113 t112 t111 t110 t123 t122 t121 t120t213 t212 t211 t210 t223 t222 t221 t220 i266666666666664 1 �1 0 0 0 3 2 0 0 00 1 �1 0 0 0 3 2 0 00 0 1 �1 0 0 0 3 2 00 0 0 1 �1 0 0 0 3 21 �1 0 0 0 2 3 0 0 00 1 �1 0 0 2 3 0 0 00 0 1 �1 0 0 0 2 3 00 0 0 1 �1 0 0 0 2 3 377777777777775 =� 0 0 0 1 g110 0 0 0 0 g1200 0 0 0 0 0 0 0 1 g220 �Converting the above system to standard form (i.e. A~x = ~b where A and ~b areknown, ~x is unknown) yields:266666666666666666666666666666666666666666664
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0�1 1 0 0 �1 1 0 0 0 0 0 0 0 0 0 0 0 0 00 �1 1 0 0 �1 1 0 0 0 0 0 0 0 0 0 0 0 00 0 �1 1 0 0 �1 1 0 0 0 0 0 0 0 0 0 0 00 0 0 �1 0 0 0 �1 0 0 0 0 0 0 0 0 �1 0 03 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 02 3 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 00 2 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 00 0 2 3 0 0 3 2 0 0 0 0 0 0 0 0 0 0 00 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 �1 00 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 �1 1 0 0 �1 1 0 0 0 0 00 0 0 0 0 0 0 0 0 �1 1 0 0 �1 1 0 0 0 00 0 0 0 0 0 0 0 0 0 �1 1 0 0 �1 1 0 0 00 0 0 0 0 0 0 0 0 0 0 �1 0 0 0 �1 0 0 00 0 0 0 0 0 0 0 3 0 0 0 2 2 0 0 0 0 00 0 0 0 0 0 0 0 2 3 0 0 3 3 0 0 0 0 00 0 0 0 0 0 0 0 0 2 3 0 0 0 2 0 0 0 00 0 0 0 0 0 0 0 0 0 2 3 0 0 3 2 0 0 00 0 0 0 0 0 0 0 0 0 0 2 0 0 0 3 0 0 �1

377777777777777777777777777777777777777777775
2666666666666666666666664
t113t112t111t110t123t122t121t120t213t212t211t210t223t222t221t220g110g120g220

3777777777777777777777775 =
266666666666666666666666666666666666666666664
00010000000000000010
377777777777777777777777777777777777777777775



4.3. A LINEAR SYSTEMS METHOD 45Solving the above system yields the unique solution26666666666666666666666666666666666666664
t113t112t111t110t123t122t121t120t213t212t211t210t223t222t221t220g110g120g220

37777777777777777777777777777777777777775 =
26666666666666666666666666666666666666664

000�200030001000�1�15�1
37777777777777777777777777777777777777775which corresponds toU264 �2 31 �1 375 A264 x� 1 3x + 2x� 1 2x + 3 375= H264 x� 1 50 x� 1 375 :The goal of the authors of [23] was to establish a parallel complexity result.From a theoretical perspective, the number of systems and size of each linear sys-tem does not e�ect their main result: namely, that HermiteForm overQ[x] is inNC2. From a sequential point of view, the number and size of each system makestheir approach impractical. In the next section, we reexamine their approach butwith the view of obtaining a more e�cient sequential solution.4.3 A Linear Systems MethodWe present here a sequential deterministic solution for HermiteForm over F[x]that works by reducing the problem to that of solving a single linear system over Fof sizeO(n2d)�O(n2d). The method is novel in that the linear system constructeddoes not involve unknown coe�cients of H, the HNF of A, but rather only thecoe�cients of the unimodular multiplier matrix U . H can then found by e�ectingthe multiplication H  UA.



46 CHAPTER 4. POLYNOMIAL MATRICES4.3.1 PreliminariesWe require some notation: for a matrix A 2 F[x]n�n, let Ai;j or ai;j denote theentry in the i-th row, j-th column of A, ai;j;k the coe�cient of xk of ai;j, androw(A; i) the i-th row vector of A. We write deg A to mean the maximum of thedegrees of all entries in the matrix A and deg ai;j for the degree of polynomial ai;j.The degree of the zero polynomial is �1.Let L(A) denote the lattice of all F[x]-linear combinations of the rows of A.Then L(A) will have rank n (= rank(A)). The n rows of H | the HNF of A| provide the unique basis for L(A) which satisfy the de�nition of HNF. Oneof the advantages of the triangular HNF basis for L(A) is that we can determineimmediately that certain vectors cannot belong to L(A). This is made precise bythe following lemma.Lemma 4 Let A 2 F[x]n�n be nonsingular with HNF H. Let di be the degree ofthe i-th diagonal entry of H. Let ~v = (0; : : : ; 0; vk; vk+1; : : : ; vn) be a row vectorover F[x] with vi = 0 for 1 <= i < k and deg (vk) < di. If ~v is in L(A) thenvk = 0. Conversely, if vk 6= 0 then ~v 62 L(A).Proof: ~v 2 L(A) = L(H) ) ~v = p1row(H; 1) + � � � + pnrow(H;n) for somepi 2 F[x]; 1 � i � n. Since vi = 0 for 1 � i < k implies pi = 0 for 1 �i < k, we must have ~v = pkrow(H; k) + � � � + pnrow(H;n). The only vector infrow(H; k); : : : ; row(H;n)g with k-th entry non zero is row(H; k), so vk 6= 0 i�pk 6= 0. But deg (vk) < di ) pk = 0 whence vk = 0.We continue with a stronger version of the Lemma 3 given in x4.2.2. Lemma3 constructed a linear system from the polynomial identity TA = G having asunknowns the coe�cients of the polynomial entries in T and G. The followinglemma makes the key observation that results analogous to those of Lemma 3 stillhold when we express the linear system independently of the unknown coe�cientsof G. The bene�t of this approach is that the dimension of linear system is reducedby a factor of n from O(n3d) to O(n2d) (we show this carefully later).Lemma 5 Let A be a given n by n nonsingular matrix over F[x] with degrees ofentries bounded by d. Let (d1; : : : dn) be a given vector of nonnegative integers.Let T be an n by n matrix having as entries univariate polynomials in x withunknowns as coe�cients and degrees bounded by DT = (n � 1)d � deg det(A) +max1�i�n di. Consider the linear system of equations over F in the unknowns ti;j;kwith constraints (TA)i;i;di = 1 for 1 � i � n



4.3. A LINEAR SYSTEMS METHOD 47(TA)i;i;k = 0 for k > di(TA)i;j;k = 0 for i 6= j; k � diLet (h1; : : : ; hn) be the degrees of the diagonal entries of the Hermite normal formof A. The following statements about the above system hold:(1) The system has at least one solution if di � hi; 1 � i � n.(2) If there exists a nonnegative integer b � n such that di = hi for 1 � i < band db < hi then the system has no solution.(3) If di = hi for 1 � i � n, then the system has a unique solution T with TAequal to the Hermite normal form of A.Proof: Let H be the HNF form of A and let U be the unique unimodular matrixsuch that UA = H. To show (1), let D = diag(xd1�h1 ; : : : ; xdn�hn) and considerthe equalityDUA = DH. LetH� be the HNF ofDH and U� a unimodular matrixsuch that U�DUA = H�. We claim that we can take as our solution T = U�DU .Firstly, the particular choice of D together with the de�nition of H� ensure thatthe constraints for the linear system are satis�ed. It remains to show that entriesin T have degrees bounded by (n�1)d�deg det(A)+max1�i�n di. To see this notethat TA = H� ) det(A)T = H�Aadj) deg T � deg H�+deg Aadj�deg det(A) �max1�i�n di + (n � 1)d � deg det(A).To prove (2), assume by contradiction that there exists a nonnegative inte-ger b � n and a solution for T such that deg ((TA)i;i) = hi for 1 � i < band deg ((TA)b;b) < hi. In particular, we are assuming that row(TA; b) =((TA)b;1; : : : ; (TA)b;n) is in L(A). Since deg ((T1A)b;1) < h1 we can use Lemma 4to assert that (TA)b;1 = 0. By induction assume (TA)b;j = 0 for i � j < k. Thenby Lemma 4 we must have (TA)b;k = 0 since deg ((TA)b;k) < hk. In particularwe have (TA)b;b = 0 which is a contradiction since the constraints specify that(TA)b;b be monic.If the conditions of (3) hold then by (1) there exists at least one solution forT . We can use an induction proof similar to that used in the proof of (2) to showthat elements below the diagonal in TA are zero (i.e. that (TA)i;j = 0 for i > j).By the uniqueness of HNF we must have TA = H.Remark: Note that the constraints of the linear system specify precisely thatthe matrix TA should be in HNF with degrees of diagonal entries given by(d1; d2; : : : ; dn).



48 CHAPTER 4. POLYNOMIAL MATRICESExample 3 Let A = 2664 x� 1 4x+ 2 0x� 1 5 2xx� 1 2x+ 3 x+ 2 3775 :Say, for the purposes of this example, that we know the correct degrees of thediagonal entries in the HNF of A to be (d1; d2; d3) = (1; 0; 1). Then n = 3; d =1;deg det(A) = 2, and Lemma 5 bounds the degrees of entries in T by DT = 1.The system we want to solve isT24 t111x+ t110 t120x+ t121 t130 x+ t131t211 x+ t210 t220x+ t221 t230 x+ t231t311 x+ t310 t320x+ t321 t330 x+ t331 35 A24 x� 1 4x+ 2 0x� 1 5 2xx� 1 2x+ 3 x+ 2 35= G24 x+ g110 0 g1300 1 g2300 0 x+ g330 35for the coe�cients fti;j;kg. Writing the above as a linear system of constraints inthe coe�cients fti;j;k; ai;j;k; gi;j;kg yieldsTlin24 t111 t110 t120 t121 t130 t131t211 t210 t220 t221 t230 t231t311 t310 t320 t321 t330 t331 35 Alin266666666664 1 �1 0 4 2 0 0 0 00 1 �1 0 4 2 0 0 01 �1 0 0 5 0 2 0 00 1 �1 0 0 5 0 2 01 �1 0 2 3 0 1 2 00 1 �1 0 2 3 0 1 2 377777777775= Glin24 0 1 g110 0 0 0 0 0 g1300 0 0 0 0 1 0 0 g2300 0 0 0 0 0 0 1 g330 35;By Lemma 5, we can neglect those constraints that involve unknown coe�cientsfgi;j;kg to obtain Tlin24 t111 t110 t120 t121 t130 t131t211 t210 t220 t221 t230 t231t311 t310 t320 t321 t330 t331 35 A�lin266666666664 1 �1 4 2 0 0 00 1 0 4 2 0 01 �1 0 5 0 2 00 1 0 0 5 0 21 �1 2 3 0 1 20 1 0 2 3 0 1 377777777775= G�lin24 0 1 0 0 0 0 00 0 0 0 1 0 00 0 0 0 0 0 1 35;a linear system with a unique solution for Tlin. Solving the system yieldsTlin = 266664 47 �397 47 �307 �87 7670 1 0 1 0 �2�27 27 �27 17 47 �37 377775 :Finally, note that T2664 47 x� 397 47 x� 307 �87 x+ 7671 1 �2�27 x+ 27 �27 x+ 17 47 x� 37 3775 A264 x� 1 4x+ 2 0x� 1 5 2xx� 1 2x+ 3 x+ 2 375= G2664 x� 1 0 15270 1 �40 0 x� 67 3775;



4.3. A LINEAR SYSTEMS METHOD 49the correct Hermite normal form of A.We now determine bounds on the dimension of the linear system of Lemma 5.First, consider the general matrix identity TA = G where A is known and T andG are unknown. The following elementary result should be obvious after perusingthe worked example above.Lemma 6 Let A 2 F[x]n�n be a given matrix with degrees of entries boundedby d. Let T 2 F[x]n�n have entries bounded in degree by DT with unknowns ascoe�cients. Let G 2 F[x]n�n have degrees of entries bounded by deg TA = DT+d.The matrix identity TA = G can be written as a linear system in the matrixcoe�cients fti;j;k; ai;j;k; gi;j;kg as TlinAlin = Glin over F where:rowdim(Tlin) = n;coldim(Tlin) = n(DT + 1);coldim(Alin) = n(DT + d + 1)Now consider the linear system of Lemma 5. Each entry of matrix T is apolynomial with DT +1 unknown coe�cients contributing to a total of n(DT +1)unknown coe�cients in each of the n rows of T . In particular, all the unknowns ofthe linear system of Lemma 5 can be written as an n� n(DT + 1) matrix Tlin (asin Lemma 6). All the constraints of the system deal with specifying the values ofcoe�cients of entries in the polynomial matrix TA, which has degrees of entriesbounded by DT + d. Consider the constraints that are limited to a single columnof TA, say column j. Note that there is a constraint precisely for all coe�cients(TA)�;j;k where dj � k � DT + d + 1. In other words, precisely dj constraints,namely the constraints for coe�cients of xk with 0 � k < dj , are not included.Over all columns,P1�j�n dj constraints will be ignored. This leads to the followingresult.Corollary 2 The linear system of Lemma 5 can be expressed as a matrix equationTlinA�lin = G�lin over F where:rowdim(Tlin) = n;coldim(Tlin) = n(DT + 1);coldim(A�lin) = n(DT + d+ 1) � X1�i�j di;where T;A;G;DT ; (d1; : : : ; dn) are as in Lemma 5 and 6.



50 CHAPTER 4. POLYNOMIAL MATRICESRemarks:(1) The n rows of G�lin will have all zero entries except for a single entry 1 in eachrow. This corresponds to the constraint that the diagonal entries of matrix TAbe monic.(2) The matrices A�lin and G�lin are submatrices, respectively, of Alin and Glin ofLemma 6.(3) Note that the dimensions of the system in Example 3 are consistent with thatgiven by Corollary 2.4.3.2 A Bound for the Size of UNow that we have size bounds for the dimension of the linear system, we canobtain bounds for the lengths of rational entries in the solution matrix Tlin. Inparticular, we are interested in the case F = Q and when Tlin corresponds the theunique unimodular matrix U such that UA = H. The following result gives an apriori bound on the size in bits of the solution U and H.Theorem 6 Let A be a given n by n nonsingular matrix over ZZ [x] with degrees ofentries bounded by d (> 0) and maximum magnitude of integer coe�cients jjAjj.Let U be the unique unimodular matrix U 2 Q[x]n�n such that UA = H, the HNFof A. Then, the degrees of entries in U are bounded by (n � 1)d. Furthermore,there exists a positive number �U � (npdjjAjj)n2d such that1 The numerators and denominators of rational coe�cients of the polynomialentries of U are bounded in magnitude by �U .2 There exits a nonzero integer � � �U such � is the least common multipleof all denominators of rational coe�cients in U ; that is, �U 2 ZZ [x]n�n.3 The numerators and denominators of rational coe�cients of the polynomialentries of H are bounded in magnitude by � = n(d + 1)jjAjj�U = O(�U ).Proof: In Lemma 5, choose (d1; : : : ; dn) to be the correct degrees of the diagonalentries in H, the HNF of A. Then we have deg H � deg det(A) � nd anddeg U = deg T � DT = (n � 1)d � deg det(A) + max1�i�n di � (n � 1)d. ByCorollary 2, there exists a linear system with TlinA�lin = G�lin that admits a uniquesolution for Tlin (corresponding to the rational coe�cients of polynomial entries ofU). Since the solution is unique, the matrix A�lin has full row rank. In particular,there must exists a subset of columns of A�lin, say �, such that the submatrix of



4.3. A LINEAR SYSTEMS METHOD 51A�lin restricted to the columns �, call it Aslin, is square nonsingular. (In fact, anysubset � with this property will do.) Let Gslin be the submatrix of G�lin restrictedto the columns �. Then, the restricted system TlinAslin = Gslin also admits a uniquesolution for Tlin, namely Tlin = Gslin(Aslin)adj1=det(Aslin). The dimension of Aslin isn(DT+1) = n((n�1)d+1) � n2d (the last inequality is correct if we assume d > 0).The coe�cients of As are comprised of the coe�cients of the polynomial entries ofA| these are integers bounded in magnitude by jjAjj. The usual hadamard boundgives jjdet(Aslin)jj � (npdjjAjj)n2d. This shows that (2) holds. Entries in (Aslin)adjare determinants of minors of Aslin | these will be bounded by (npdjjAjj)n2d aswell. To see that (1) holds for U , note that matrix Gslin has precisely one nonzeroentry (the integer 1) in each row, from which it follows that Tlin = Gslin(Aslin)adj isa submatrix of (Aslin)adj. To see that (1) holds for H, note that each entry of Hwill be the dot product of a row vector in U and a column vector in A. Note thatif f and g are polynomials over ZZ , and deg f � d, then jjfgjj � (d + 1)jjf jj_jjgjj.In particular, jj�Hjj = jj�UAjj � n(d + 1)jjAjj_jj�U jj � �n(d + 1)jjAjj�U = ��.Computational experience with dense matrices of dense polynomials indicatesthat the length of the coe�cients in U tend to grow quadratically with respect to nand linearly with respect to d, and, although we have not shown it, we hypothesizethat the bound given for �U in Theorem 6 is in fact an asymptotic lower bound.That is, there exists a positive constant c such that for any positive n, d and M ,there exists a nonsingular input matrix A 2 ZZ [x]n�n with deg (A) � d, jjAjj �Mand such that the corresponding matrix U contains a rational coe�cient witheither numerator or denominator having magnitude larger than c(npdjjAjj)n2d.In practice, matrices may be far from the worst case. In particular, Theorem6 does not take into account that the matrix may be sparse with entries sparsepolynomials and that deg (A) and jjAjj may not be indicative of the size of typicalentries in A. However, the proof of Theorem 6 immediately suggests an algorithmto quickly determine a better candidate for �U . The number �U was chosen to bean upper bound for the determinant of any nonsingular submatrix of the matrixA�lin of Corollary 2; Rather than appeal to an a priori bound as we did in theproof of Theorem 6, a better method is to construct such a bound directly fromthe linear system A�lin. In particular, the Hadamard bound for the determinantof a square integer matrix is given by the product of the Euclidean norms of allcolumns. This leads to the following. (Recall that the Euclidean norm of a vectoris the square root of the sum of the squares of the elements.)



52 CHAPTER 4. POLYNOMIAL MATRICESFact 1 Let A be an n � n matrix over ZZ . Denote by jcol(A; j)j the Euclideannorm of column j. For any square submatrix As of A of dimension n, we havejdet(As)j � max1�j1<j2<���<jn�n8<: Y1�k�n jcol(A; ji)j9=;If the degrees of the diagonal entries of H are known, then choose �U to be theproduct of the n largest column norms of matrix A�lin; otherwise take the productof the n largest column norms of matrix Alin. Note that the matrix Alin or A�lindoes not need to be written down explicitly | only the column norms need to befound.Example 4 For the input matrix A of Example 1, we have n = 4, d = 2, jjAjj =94, and the largest numerator or denominator in U or H can be written with 50decimal digits. The candidate for � given by Theorem 6 has length dlog10 n(d +1)jjAjj(npdjjAjj)n2de = 91 decimal digits. On the other hand, the candidate for �given by Fact 1 requires only 66 decimal digits.We end this section with a result that summarizes some size bounds for thematrices U and H corresponding to a given input matrix A. For comparison, wegive also the size of Aadj.Corollary 3 Let A, H and U be the matrices of Theorem 6. Then Size(A) =O(n2d log jjAjj) and Size(Aadj) = O�(n4d log jjAjj). Furthermore,Size(H) = O�(n4d2 log jjAjj)and Size(U) = O�(n5d2 log jjAjj):4.3.3 An Algorithm for HermiteForm over F[x]At the start of this section, we claimed that HermiteForm over F[x] reduces tosolving a single linear system over F of size O(n2d). One way could demonstratethis is by giving a procedure that �nds the correct degrees of the diagonal entriesin the HNF of H within the cost required to solve the linear system T �linA�lin = G�linof Corollary 2.Finding the correct degrees of the diagonal entries in H is tantamount to de-termining the correct submatrix A�lin of the matrix Alin of Lemma 6. In fact, we



4.3. A LINEAR SYSTEMS METHOD 53have developed an approach that builds the system A�lin while solving it. Thistechnique involves considering, in turn, the j-th column constraint of matrix Alinfor j = 1; 2; : : :, and neglecting certain column constraints because of linear depen-dencies that arise during the reduction. For various reasons, though, we have nointerest in giving a rigorous exposition of this algorithm. First, we have alreadyseen that HermiteForm over F[x] in in P. Second, in chapter 6 we we givean algorithm for HermiteForm over Q[x] that, compared to the linear systemsmethod, is dramatically superior in terms of space requirements and expectednumber of bit operations. (Consider alone that a worst case bound for the size inbits required to represent the triangularized system A�lin is O�(n6d3 log jjAjj) bits.)Instead, we give here an example of the exceedingly elegant linear systemsmethod for HermiteForm presented by Labhalla, Lombardi and Marlin [27].Note that the typical method to solve the system TlinA�lin = G�lin is to reduce toA�lin via column operations to column echelon form. In our case, we have deviseda method that forms the correct system A�lin during a column echelon reductionof matrix Alin. A better solution is given by Labhalla, Lombardi and Marlin whodeveloped their linear systems method based on the theory of subresultants andSylvester matrices. The following is a restatement of their result that uses thenotation that we have de�ned previously.Theorem 7 ([27]) Let Alin be the rational matrix of Lemma 6 with DT = (n�1)d.The row vectors of the HNF of A are computed by a triangularization of the matrixAlin, using row operations only, followed by the reduction of the o�-diagonal entriesby row operations.Example 5 Let A = 2664 x� 1 4x + 2 0x� 1 5 2xx� 1 2x + 3 x+ 2 3775 :Say, for the purposes of this example, that we know that degrees of entries in Uare bounded by DT = 1. Then we haveTlin24 t111 t110 t120 t121 t130 t131t211 t210 t220 t221 t230 t231t311 t310 t320 t321 t330 t331 35 Alin266666666664 1 �1 0 4 2 0 0 0 00 1 �1 0 4 2 0 0 01 �1 0 0 5 0 2 0 00 1 �1 0 0 5 0 2 01 �1 0 2 3 0 1 2 00 1 �1 0 2 3 0 1 2 377777777775= Glin24 0 1 g110 0 0 0 0 0 g1300 0 0 0 0 1 0 0 g2300 0 0 0 0 0 0 1 g330 35;



54 CHAPTER 4. POLYNOMIAL MATRICESReducing the matrix Alin to Gauss-Jordan form using row operations yieldsHlin = 266666666666664 1 0 �1 0 0 0 2 0 27270 1 �1 0 0 0 0 0 15270 0 0 1 0 0 �1=2 0 �1870 0 0 0 1 0 0 0 �2470 0 0 0 0 1 0 0 �40 0 0 0 0 0 0 1 �6=7 377777777777775The last nonzero row in each column block will correspond to the respective diagonalentry in the HNF of A. We obtainH = 266664 x� 1 0 15270 1 �40 0 x� 6=7 377775 ;the correct HNF of A.4.4 ConclusionsThe problem of intermediate expression swell is ubiquitous in computer algebra.Much work has been devoted to coming up with computational techniques thatabdicate this problem and allow basic ring operations to be computed faster. Forpolynomials over ZZ [x], these include: (1) modular homomorphisms and Chineseremaindering; (2) evaluation homomorphisms and interpolation; (3) e�cient gcdcomputation; (4) fast polynomial multiplication. All these methods exploit thestructure that is inherent to polynomial domains.A serious drawback of the linear systems solution for HermiteForm givenin x4.3.3 is that the structure inherent in the polynomial domain is lost. Whileconverting the problem from the domain F[x] to F facilitated the derivation ofsimple size bounds for intermediate coe�cients, the cost of solving the linearsystem is too expensive (both in terms of space and time) to allow a practicalimplementation.Nonetheless, this chapter has made considerable progress towards a practicalsolution for HermiteForm over Q[x]. Our most important result is the sizebounds given by Theorem 6 for the coe�cients appearing in the unimodular mul-tiplier matrix U and the HNF H. This will be very useful in chapter 6 where



4.4. CONCLUSIONS 55a modular algorithm for HermiteForm over Q[x] is presented. Also, we cannow make some general comments on the di�culty of HermiteForm over Q[x].In particular, a fundamental lower bound for the bit complexity (number of bitoperations) required to solve a problem is given by the size in bits of the re-sult. Corollary 3 gives a useful comparison in this regard between Size(H) andSize(Aadj).Finding the adjoint of A is by no means a trivial computation, but good meth-ods exists to solve this problem. In particular, a worst case complexity bound forcomputing Aadj is O�(n5d log jjAjj) (disallowing fast matrix multiplication), whichis at most O�(n) larger than an asymptotic lower bound for Size(Aadj). Now con-sider the matrix H. Although the length of the coe�cients from Q appearing inH will be O�(nd) times as large as those appearing in Aadj, there are O(n) timesas many coe�cients appearing in Aadj. In practice, the adjoint of a matrix is typ-ically dense with dense polynomials of degree O(nd) (a similar observation holdsfor U). Thus, for many cases, we can expect Size(H) � dSize(Aadj). Similarly, wecan expect Size(U) � nSize(H).



56 CHAPTER 4. POLYNOMIAL MATRICES



Chapter 5A Fast Algorithm for SmithFormover Q[x]This chapter considers the problem SmithForm over F[x], F a �eld. We givea fast sequential algorithm for computing the SNF of polynomial matrices over�nite �elds or the �eld of rationals. The algorithm we give is probabilistic inthe Las Vegas sense | an incorrect result will never be returned but with smallprobability the algorithm may fail and require repetition. Previous probabilisticalgorithms for SmithForm have been given by Kaltofen, Krishnamoorthy andSaunders [23, 24]. In particular, in [23] the authors give a parallel algorithmfor SmithForm over F[x] that reduces the problem to matrix multiplication anddeterminant and gcd computations. Their algorithm leads to an e�cient sequentialsolution for SmithForm but is probabilistic in the Monte Carlo sense | withsmall probability an incorrect solution may be returned. Our contribution is amethod for quickly verifying that the result of the KKS Monte Carlo algorithmis correct. Consequently, we provide a fast Las Vegas SmithForm algorithmin x5.3. The quali�cation fast is justi�ed on two fronts. First, we demonstratea complexity for the algorithm in terms of expected number of bit operationsthat improves dramatically on any previously published results. Secondly, thealgorithm is eminently practical, admitting a very simple implementation (in acomputer algebra language), and outperforms any previously known method.Without loss of generality, we assume that an input matrix A 2 Q[x]n�m hasinteger coe�cients. Complexity results will be given in terms of n, m, d, and jjAjjwhere d� 1 is a bound on the degrees of entries in A and jjAjj denotes maximummagnitude of all coe�cients of all entries of A 2 ZZ [x]n�m. We will use theparameter s = n+m+d+log jjAjj as a measure of the size of matrixA 2 ZZ [x]n�n.(Note that this is distinct from Size(A), which indicates the total size in bits of57



58 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]matrix A. In particular, Size(A) = O(s4).) We use P (d) to indicate the number of�eld operations in F required to multiply two polynomials of degree d� 1 in F[x].Similarly,M(t) shall denote the number of bit operations required to multiply twot bit integers. Using fast integer and polynomial multiplication (the Sch�onhage-Strassen algorithm) we can take P (d) = d log d log log d andM(t) = t log t log log t.However, for SmithForm over Q[x] we give a solution that uses a homomorphicimaging scheme that avoids almost all computation with large integers and largedegree polynomials | for this algorithm we also give a complexity result in termsof standard integer and polynomial multiplication: P (d) = d2 and M(t) = t2.Before embarking on a discussion of previous results, we make some qualifyingremarks about probabilistic algorithms. Let A be an algorithm that requiresO(p(M)) bit operations for a single pass where M is the size of the input inbits. In general, a single pass of an algorithm returns either a result (correct orincorrect) or FAIL. Fix a positive constant � such that 0 < � < 1. Algorithm Ais said to be Monte Carlo probabilistic if it requires O(p(M)) bit operations toproduce a result that will be incorrect with probability less than �. Algorithm Ais said to be Las Vegas probabilistic if requires O(p(M)) bit operations to returna result, which is guaranteed correct, except when FAIL is returned, and thishappens with probability less than �. The key point here is that the probability �is valid for every possible input. That is, there does not exist some pathologicalinput that will a priori cause bad behavior of the algorithm. Consequently, for aLas Vegas algorithm we can a priori give an expected cost in terms of number ofbit operations to produce a correct result.The �rst proof that SmithForm over Q[x] is in P was given by Kaltofen, Kr-ishnamoorthy and Saunders in [23]. Their algorithm uses the fact, a consequenceof Kannan (cf. [25]), that SmithForm over GF(p)[x] is in P. Given a nonsingu-lar matrix A 2 ZZ [x]n�n, the algorithm computes the SNF of A mod p for variousprimes p and uses Chinese remaindering to reconstruct the SNF of A over Q[x].A drawback of this method is the large number of primes needed to guaranteecorrectness; their approach calls for �(n3d log ndjjAjj) image solutions.The authors of [23] take an alternative approach and in the same paper presenta parallel Monte Carlo probabilistic algorithm for SmithForm over F[x] for thecase of square nonsingular input. This algorithm is appealing in that it admitsvery fast sequential solution for SmithForm over Q[x]. In practice, the maincost of the algorithm is triangularizing via fraction-free Gaussian elimination apolynomial matrix of same dimension and with similar size entries as the inputmatrix. However, this SmithForm algorithm has the drawback that it may returnan incorrect result which is not easily detected. In a subsequent paper, the same



59authors give a Las Vegas algorithm for SmithFormWithMultipliers over F[x][24]. This KKS Las Vegas algorithm is based on column echelon form computationand has expected cost at least that of HermiteFormWithMultipliers.We have made a distinction between the problem of computing pre- andpost-multipliers (SmithFormWithMultipliers) and computing only the SNF(SmithForm). This is because over the input domain Q[x], SmithFormWith-Multipliers is inherently a more di�cult problem than SmithForm. The com-plexity of SmithFormWithMultipliers compared to SmithForm is analogousto the complexity of the extended Euclidean problem over ZZ [x] compared to agcd computation. Consider the matrix A 2 ZZ [x]2�1:U24 u11 u12u21 u22 35 A24 a11a21 35 Vh v11 i= S24 s110 35Finding the SmithForm of A is equivalent of �nding s11 gcd(a11; a21). A hostof powerful techniques have developed to �nd gcd's over ZZ [x] that abdicate theproblem of expression swell; Hensel li�ng, modular homomorphisms follows byChinese remaindering, and heuristic methods based on single point interpolation(cf. [14]). In particular, the original heuristic gcd algorithm of Char, Geddesand Gonnet [9] can be made Las Vegas probabilistic (cf. Sch�onhage [31]) andrequires O�(d(d + jjAjj)) bit operations. On the other hand, �nding candidatesfor the entries of U is equivalent to solving the extended Euclidean problem: �ndpolynomials u11 and u12 such thatu11a11 + u12a21 = s11 (5.1)where s11 is gcd of a11 and a21. This problem is much more di�cult (in terms ofbit complexity) because of the size of the coe�cients of u11 and u12 (cf. x4.1). Inparticular, solving the extended Euclidean problem is far too much work if onlythe gcd is required.This brings us to the second reason for distinguishing SmithForm and Smith-FormWithMultipliers; namely, the entries in pre- and post-multipliers fora given matrix A over Q[x] are typically large compared to entries in A or S.Consider a nonsingular input matrix A 2 ZZ [x]n�n. Let U and V be pre- andpost-multipliers for A such that UAV = S. The diagonal entries of S are factorsof det(A) and hence the sum of the degrees of all entries of S are bounded by ndand the length of the rational coe�cients of entries of S are bounded by O�(n(d+log jjAjj)) bits | this leads to Size(S) = O�(n2d(d + log jjAjj) bits. To get anidea of the size of matrices U and V , we can look at the problem HermiteFormconsidered in the previous chapter. Theorem 6 bounds the degrees of polynomials



60 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]in HNF pre-multiplier matrix U by (n� 1)d and the length of rational coe�cientsin U by O(n2d log ndjjAjj) bits. Corollary 3 gives Size(U) = O�(n5d2 log jjAjj).This suggests Size(U) � O�(s4)Size(S).The majority of algorithms found in the literature for SmithForm over F[x] orZZ are based on HermiteFormWithMultipliers and by virtue of this actuallysolve the more di�cult problem SmithFormWithMultipliers (cf. [24, 35, 25,21]). Speci�cally, these algorithms produce pre- and post-multipliers U and Vsuch that UAV = S is in SNF within the same asymptotic complexity as requiredto produce S alone. One reason for producing multipliers is to verify correctness.In particular, the KKS Monte Carlo SmithForm algorithm does not producepre- and post-multipliers and may return an incorrect result which cannot bedetected easily. Our algorithm di�ers from these methods in that we are ableto completely avoid the need for solving computationally expensive polynomialdiophantine equations such as (5.1) and hence obtain a better complexity result.5.1 Preliminaries and Previous ResultsIn this section we recall some basic facts about the Smith and Hermite normalforms and review the Monte Carlo and Las Vegas probabilistic SNF algorithms ofKaltofen, Krishnamoorthy and Saunders [23, 24]. As well, the algorithms of thenext section will depend on some elementary facts about lattices over principalideal domains.We require some notation. For an n�m matrix A, let minor(A; i) denote thei-th principal minor of A for 1 � i � min(n;m). In general, a minor of A is asquare submatrix of A. If A is square, then Aadj will denote its adjoint.Let A 2 F[x]n�m be of rank r with SNF S. Let Ai;j or aij denote the entry inthe i-th row j-th column of A. Let s�(A; i) or s�i denote the gcd of the determinantsof all i by iminors of A for 1 � i � r and let s(A; i) or si be the i-th diagonal entryof the SNF of A. By convention, de�ne s�(A; 0) = 1. The diagonal entry si is calledthe i-th invariant factor of A while each s�i is called the i-th determinantal divisorof A. The invariant factors and determinantal divisors are related by si = s�i =s�i�1for 1 � i � r. We have some similar facts for diagonal entries of the HNF. Firstassume that r = m so A is of full column rank and let H be the HNF of A. Leth�(A; 0) = 1 and let h�(A; i) or h�i denote the gcd of the determinants of all i byi minors of the �rst i columns of A. Let h(A; i) or hi be the i-th diagonal entryof the HNF of A. Then we have hi = h�i =h�i�1 for 1 � i � m. These facts holdin general for matrices over principal ideal domains (cf. [29]). Recall that for the



5.1. PRELIMINARIES AND PREVIOUS RESULTS 61invariant factors of A we have sijsi1 for 1 � i � r. The following fact follows fromthe divisibility properties of the invariant factors and determinantal divisors.Fact 2 For a principal ideal domain R, let g�0; g�1; : : : ; g�r be elements from R withg�0 = 1. Then, there exists a matrix in Rn�m of rank r having, for 1 � i � r, i-thdeterminantal divisor an associate of g�i , if and only ifg�i 2jg�i�1g�i+1; 1 � i � r � 1:It will be convenient sometimes to express the output of the algorithms wepresent as a list s�i ; : : : ; s�r of determinantal divisors of the input matrix. Clearly,the SNF of a matrix A is easily determined from its determinantal divisors andvice versa. Note that Fact 2 provides a necessary (but not su�cient) condition forcorrectness on the output of an algorithm that returns a list of candidates for thedeterminantal divisors of an input matrix.Fact 3 Let A and B in F[x]n�n be nonsingular with T = UA upper triangular.Then, the following statements are equivalent:(1) U is unimodular;(2) det(T ) ' det(A);(3) Ti;i ' h�(A; i) for 1 � i � n;5.1.1 The KKS Probabilistic AlgorithmsA possible algorithm for �nding s�i is to compute the determinants of all i � iminors of A and set s�i to be their gcd. Unfortunately, the number of minorsincreases exponentially with respect to the matrix dimension. The Monte CarloSmithForm algorithm of [23] overcomes this problem by preconditioning theinput matrix using certain random unimodular pre- and post-multipliers withentries chosen from a subset of the coe�cient �eld. With high probability, eachs�i can be determined by taking the gcd of only two minors.Algorithm: KKS Monte Carlo SmithFormInput: A nonsingular matrix A 2 F[x]n�n.



62 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]Output: [s�1; s�2; : : : ; s�n], the determinantal divisors of A.(1) Let U1; U2; V1; V2 be random matrices from Fn�n.(2) Set B = U1AV1, C = U2AV2.(3) Set s�i = gcd(det(minor(B; i));det(minor(C; i))) for 1 � i � n.The entries of the matrices in step (1) can be chosen from a subset of F (cf.[23]). With high probability, the entries of U1; U2; V1; V2 do not form a root of apolynomial of large degree and the s�i will be correct [23, Lemma 3.2]. The authorsof [23] also mention that U1 may be chosen upper triangular, V1 may be chosenlower triangular, and that C need not be randomized.Example 6 (KKS Monte Carlo SmithForm) Consider the matrixA = 264 x� 1 3x+ 2x� 1 2x+ 3 375We choose random unimodular matrices U1, V1, U2 and V2 and setB264 4x + 1 3x + 23x + 2 2x + 3 375= U1264 1 00 1 375 A264 x� 1 3x+ 2x� 1 2x+ 3 375 V1264 1 01 1 375and C264 x� 1 3x+ 2x� 1 2x+ 3 375= U2264 1 00 1 375 A264 x� 1 3x+ 2x� 1 2x+ 3 375 V2264 1 00 1 375The determinants of the principal minors of B are b1 = 4x+1, b2 = �x2+2x�1and for C are c1 = x� 1, c2 = �x2+2x� 1. As candidates for the determinentaldivisors of A we obtain s�(A; 1) = gcd(b1; c1) = 1 and s�(A; 2) = gcd(b2; c2) =x2 � 2x+ 1. The candidate for the SNF of A isS = 24 1 00 x2 � 2x+ 1 35 :Consider the computation again but this time with a di�erent choice for the randomunimodular multiplier matrices U1 and V1. The new choice givesB264 2x� 2 5x + 5x� 1 2x + 3 375= U1264 1 01 1 375 A264 x� 1 3x + 2x� 1 2x + 3 375 V1264 1 00 1 375 :



5.1. PRELIMINARIES AND PREVIOUS RESULTS 63For the new choice of B, candidates for the determinental divisors turn out to bes�(A; 1) = x�1 and s�(A; 2) = x2�2x+1. This leads to the following (incorrect)candidate for the SNF of A: S = 24 x� 1 00 x� 1 35 :In a later paper a Las Vegas SmithForm algorithm is o�ered [24]. For conve-nience, we give here a version restricted square nonsingular input.Algorithm: KKS Las Vegas SmithFormInput: A nonsingular matrix A 2 F[x]n�n.Output: [s�1; s�2; : : : ; s�n], the determinantal divisors of A.(1) Let V1 be a random unit lower triangular matrix in Fn�n.(2) A0 AV1.(3) A1 HNF of A0.(4) A2 HNF of transpose(A1).(5) If A2 is in SNF then output A2 otherwise fail.The typical algorithm for SmithForm involves iterating HermiteForm alongthe diagonal of the input matrix just as in steps (3) and (4) of KKS Las VegasSmithForm. While in theory the number of number of iterations is boundedby O(n3), in practice two iterations almost always su�ce; the KKS Las VegasSmithForm ensures that with high probability this will be the case.Example 7 (KKS Las Vegas SmithForm) Consider again the matrixA = 264 x� 1 3x+ 2x� 1 2x+ 3 375We choose a random unit lower triangular matrix V1 and setA0264 4x+ 1 3x + 23x+ 2 2x + 3 375= A264 x� 1 3x + 2x� 1 2x + 3 375 V1264 1 01 1 375In step (3) we obtain A1 = 264 1 �1=5x + 6=50 x2 � 2x+ 1 375 ;



64 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]the HNF of A0. In step (4) we obtainA2 = 264 1 00 x2 � 2x+ 1 375 ;the HNF of A1. Since A2 is in SNF we output A2 as the SNF of A. Considerthe computation again but this time neglecting to randomize the matrix A0 (i.e. wechoose V1 = I in step (1) whence A0 = A). Then we obtainA1 = 264 x� 1 50 x� 1 375 and A2 = 264 1 1=5x � 1=50 x2 � 2x+ 1 375 :Since A2 is not in SNF the algorithm returns FAIL.5.2 Fraction-Free Gaussian EliminationThe number �elds we work with in a computational setting are typically quotient�elds of principal ideal domains (e.g. the rationals Q or the �eld of rational poly-nomials F(x)). For problems over these domains, it advantageous to be able to doas much computation within the simpler principal ideal domain before moving tothe quotient �eld. For triangularizing matrices over �elds, an algorithm that hasproven useful in this regard is fraction-free Gaussian elimination. For a thoroughdiscussion of fraction-free Gaussian elimination see [14] or the original articles byBareiss [2, 3].For R a principal ideal domain, let A 2 Rn�m and a positive integer r �min(m;n) be given. A key step in the algorithm we present in the next sectionis to compute a partial triangularization of A over the quotient �eld of R that isexpressible entirely within R. This will correspond to �nding a lower triangularmatrix F 2 Rn�n such that FA has zero entries below the diagonal in columns1; 2; : : : ; r. In other words, if A0 is the submatrix of A comprised of the �rst rcolumns of A, then FA0 2 Rn�r will be in upper echelon form (with respect tothe quotient �eld of R).



5.2. FRACTION-FREE GAUSSIAN ELIMINATION 65Example 8 The matrixA = 2666666666666666666664
11 14 18 7 57 436 6 4 20 78 289 19 3 12 73 180 11 12 0 11 2410 20 9 5 55 2318 19 7 16 103 3012 5 6 14 71 26

3777777777777777777775has rank 4. Triangularizing A using fraction-free Gaussian elimination and record-ing row operations in a bordering identity matrix yields the matrices F and T suchthat FA = T : F = FFGE(A; 4)26666666666666664 1 0 0 0 0 0 0�6 11 0 0 0 0 060 �83 �18 0 0 0 0�918 2415 �488 694 0 0 0�15822 14904 �30618 �594 36018 0 0�33156 2829 �33398 36130 0 36018 0�30564 �13524 �1652 32758 0 0 36018
37777777777777775 A26666666666666664 11 14 18 7 57 436 6 4 20 78 289 19 3 12 73 180 11 12 0 11 2410 20 9 5 55 2318 19 7 16 103 3012 5 6 14 71 26

37777777777777775= T26666666666666664 11 14 18 7 57 430 �18 �64 178 516 500 0 694 �1456 �4368 �680 0 0 36018 108054 360180 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
37777777777777775 :Remark: Since F is non unimodular, we must have L(T ) 6= L(A). However, thepoint that will concern us is that since F is over ZZ , we must have L(T ) � L(A).The matrices F and T found using fraction-free Gaussian elimination have theproperty that all entries are associates of determinants of particular minors of A.Not only does this fact ensure good a priori bounds for the size of intermediateexpressions occurring during the triangulation, but the structure and nature of



66 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]the entries of F and T will prove very useful in lattice basis problems over PIDs(cf. next section and next chapter). For the remainder of this section, we givean explicit characterization of the matrices F and T and consider the problem oftheir computation.First we need to recall some basic de�nitions and facts from linear algebra.Let A 2 Rn�n be nonsingular. The minor Mi;j of entry aij is de�ned to bethe determinant of the submatrix obtained by deleting the the i-th row and j-thcolumn of A. The cofactor Cij is given by Cij = (�1)i+jMij.Fact 4 Let A be an n � n matrix over R with adjoint Aadj. Then, the entries inAadj are given by Aadjij = Cj;i for 1 � i; j � n. Also, det(A) is given by the i-throw expansion, det(A) = nXj=1 ai1Ci1 + ai2Ci2 + � � �+ ainCinor the j-th column expansiondet(A) = nXi=1 a1jC1j + a2jC2j + � � �+ anjCnj :Note that the last row ofAadj will consist entirely of associates of (n�1)�(n�1)minors of the �rst n � 1 columns of A. In particular, each entry of of the lastrow of Aadj will be divisible by h�(A; i � 1). Now consider the lower triangularmatrix F 2 Rn�n with [ui;1; ui;2; : : : ; ui;i] equal to the last row of the adjoint ofminor(A; i) for 1 � i � n. Then F is lower triangular with: (1) F1;1 = 1 andFi;i = det(minor(A; i� 1)) for 2 � i � n; (2) each entry to the left of the diagonalin row i of F equal to an associate of an (i� 1)� (i� 1) minor of the �rst i� 1columns of A for 2 � i � n. Furthermore, FA will be upper triangular with:(1) (FA)i;i = det(minor(A; i)) for 1 � i � n; (2) each entry to the right of thediagonal in row i of FA equal to the determinant of an i � i minor of A. Thefollowing lemma generalizes this idea to rectangular matrices.Lemma 7 Let A 2 Rn�m and a positive integer r � min(m;n) be given. LetF 2 Rn�n be lower triangular with:(1) Fi;j equal to the cofactor of the element in the j-th row, i-th column of thei-th principal minor of A for 1 � j � i � r,(2) Fi;j equal to the cofactor of the element in the j-th row, r-th column of thesubmatrix of A formed from rows [1; 2; : : : ; r� 1; i] and columns [1; 2; : : : ; r]of A for r + 1 � i � n, 1 � j � r,



5.2. FRACTION-FREE GAUSSIAN ELIMINATION 67(3) Fi;j = 0 for r + 2 � i � n, r + 1 � j � i,(4) Fi;i = det(minor(A; r)) for r + 1 � i � n.Then, the matrix T = FA will have:(1) Ti;i = det(minor(A; i)) for 1 � i � r;(2) Ti;j equal to the determinant of the i � i submatrix of A formed from rows[1; 2; : : : ; i] and columns [1; 2; : : : ; i� 1; j] for 1 � i � n, i < j � m;(3) Ti;j = 0 for 1 � j � r, j + 1 � i � n;(4) Ti;j equal to the determinant of the (r + 1)� (r + 1) submatrix of A formedfrom rows [1; 2; : : : ; r; i] and columns [1; 2; : : : ; r; j]Remark: When r � rank(A), matrix T will be upper triangular.Proof: Follows from Fact 4 by noting that the entries of FA are the claimedentries for T | which are determinants of submatrices of A | written accordingaccording to their cofactor expansion.In what follows we use FFGE(A; r) to denote the matrix F of Lemma 7.FFGE(A; r) can be found in O(nmr) ring operations by recording row operationsin a companion matrix while reducing A to upper echelon form (columns 1; : : : ; r)using a variation of the Bareiss single-step fraction-free Gaussian eliminationscheme that avoids row switching. The usual Gaussian elimination method zeroesout entries below the diagonal element in the k-th column of A for k = 1; 2; : : : ; r.When working on column k, the �rst step is to switch rows (if necessary) to en-sure that the pivot entry (the diagonal entry in column k) is nonzero. Switching ofrows will not be necessary only if, for k = 1; : : : ; r, the initial diagonal entry in thek-th column of the matrix being reduced is nonzero after columns 1; : : : ; k�1 havebeen reduced. This will happen precisely when minor(A; r) is de�nite (minor(A; i)nonsingular for i = 1; 2; : : : ; r). For our purposes, we may assume that minor(A; r)is de�nite and when computing FFGE(A; r) return FAIL if a zero pivot is encoun-tered. Hence, for nonsingular de�nite input A 2 F[x]n�n with degrees of entriesbounded by d � 1, FFGE(A;n) can be computed using O(n3P (nd)) �eld oper-ations with using fraction free Gaussian elimination. Assuming fast polynomialmultiplication yields a cost of O(n4d log nd log log nd) or O�(n4d) �eld operations.However, it is desirable to be able to compute FFGE(A; r) even whenminor(A; r) is not de�nite. When R is a polynomial domain, say Q[x], then ane�cient method to compute FFGE(A; r) is based on modular/evaluation homo-morphisms and computation of FFGE(A; r) in the image domain (integers modulo



68 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]a prime) followed by interpolation and Chinese remaindering. It may happen thatdet(minor(A; i)) maps to zero in the image domain for some 1 � i � r even whenminor(A; r) is de�nite overQ[x]. Clearly, though, the matrices F and T of Lemma7 are well de�ned even when this situation occurs, and a simple modi�cation ofthe Bareiss method obviates the problem of zero pivots. To illustrate, we o�erhere an algorithm that �nds FFGE(A;n) for any square matrix of size n. LetBAREISS(A; i) denote a procedure that returns the 3-tuple (Fi; Ti; ki) where Fiand Ti, matrices such that FiA = Ti, are found by applying ordinary fraction-freeGaussian elimination to A, but with row switches (used to choose nonzero pivots)limited to the �rst i rows of A, and where ki is the maximal column index forwhich the reduction can proceed (i.e. for which a nonzero pivot can be chosen.)Algorithm: FFGEInput(A) # an n� n matrix over ROutput(F; T ) # the matrix F = FFGE(A;n) and T = FA1 for i = 1 to n do2 (Fi; Ti; ki) BAREISS(A; i);3 if ki � i� 1 then4 row(F; i) row(Fi; i)5 else6 row(F; i) [0; 0; : : : ; 0];7 od;8 T  FARemarks:(1) In line 2, Fi and Ti can be computed by continuing the Bareiss method onmatrices Fi�1 and Ti�1.(2) BAREISS is called n times, but on pass i, only ki � ki�1 columns of A haveentries below the diagonal zeroed. In total, P2�i�n ki � ki�1 � n columns willhave entries below the diagonal zeroed. This shows the cost of algorithm FFGE issame as for BAREISS(A;n).Consider again the problem of computing F = FFGE(A;n) for a square nonsin-gular matrix A over F[x]n�n, but now assuming standard polynomial multiplica-tion: P (d) = d2. Using algorithm FFGE we can apply an evaluation/interpolationscheme to �nd F and T = FA without concern about \bad" homomorphisms. Theprocedure can be described as follows: (1) Find the matricesAjx=i for i = 0; : : : ; ndat a cost of O(n2 �nd �d) �eld operations; (2) Find F jx=i and Tx=i for i = 0; : : : ; nd



5.2. FRACTION-FREE GAUSSIAN ELIMINATION 69at a cost of O(nd�n3) �eld operations; (3) Use Chinese remaindering to reconstructthe 2n2 degree nd polynomials in matrices F and T from their images at a cost ofO(n2(nd)2) �eld operations. Combining the above yields a total cost of O(n4d2)�eld operations using standard polynomial arithmetic to compute FFGE(A;n).5.2.1 Computing FFGE(A; r) over ZZ [x]Let A 2 ZZ [x]n�m have degree bounded by d � 1 . Recall that jjAjj denotes thelargest magnitude of all coe�cients of all entries of A. The purpose of this sectionis demonstrate that F =FFGE(A; r) (and T = FA) can be found in O�(s8) bitoperations using standard integer and polynomial multiplication. (Recall thats = n + m + d + log jjAjj.) To �nd F =FFGE(A; r), we �nd Fp = F mod p 2GF(p)[x]n�n for su�ciently many primes p to allow recovery of F via the Chineseremainder algorithm. Determinants of r � r minors of A (and hence entries of Fand T ) will be polynomials bounded in degree by rd and have coe�cients boundedin magnitude by B = (prdjjAjj)r. The following lemma from Giesbrecht showsthat we can choose all our primes to be l = 6 + log logB bits in length.Lemma 8 (Giesbrecht [15]) Let x � 3 and l = 6 + log log x. Then there existat least 2ddlog2(2x)e=(l � 1)e primes p such that 2l�1 < p < 2l.We need to �nd Fp for q = d(2B + 1)=2l�1e = �(r log rdjjAjj=l) primes(pi)1�i�q that are each l bits in length. F and FA will contain at most 2nmnonzero entries bounded in degree by rd. Hence, the Chinese remainder algorithmwill need to be used to reconstruct at most 2nm(rd + 1)) integers logB bits inlength from their images modulo a set of q primes bounded in length by l bits.This yields O(nmrdM(logB) log logB) = O�(nmr3d log2 jjAjj) bit operations us-ing standard integer arithmetic to recover F and T . The images (Fpi; Tpi) overGF(p)[x] can be computed using an evaluation/interpolation scheme: (1) Find theimages (Api)1�i�q; (2) For 1 � i � q and 0 � j � rd, compute (Fpijx=j ; Tpijx=j)over GF(p)[x] at a cost of O(q � nmr((P (d) log d + rd)M(l)) bit operations; (3)For 1 � i � q, interpolate the O(nm) nonzero entries of (Fpi; Tpi) at a cost ofO(q � nmP (rd)(log rd)M(l)) bit operations. The cost of step (1) will be boundedby the cost of Chinese remaindering. Combining steps (2) and (3) together withthe cost of Chinese remaindering gives the following result.Theorem 8 Let A 2 ZZ [x]n�m with degrees bounded by d�1 and a positive integerr � min(m;n) be given. The matrices F =FFGE(A; r) and T = FA can befound in O�(nmr3d(d + log jjAjj) log jjAjj) bit operations using standard integerand polynomial arithmetic.



70 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]Corollary 4 F =FFGE(A;min(m;n)) and T = FA can be found in O�(s8) bitoperations using standard integer and polynomial arithmetic.5.3 An Algorithm for SmithForm over F[x]In this section we give an extension of the KKS Monte Carlo SmithForm algo-rithm given in x5.1.1 that veri�es correctness of the determinantal divisors found.Given a nonsingular input matrix A in F[x]n�n, the �rst step of the algorithm isto precondition A with random pre- and post-multipliers to obtain a new matrixA0 that has the same SNF as A. Using fraction free Gaussian elimination, a lowertriangular matrix UT in F[x]n�n is found such that T = UTA0 is upper triangularwith Ti;i being the determinant of the i-th principal minor of A0. The algorithmthen computes g�i , the gcd of det(A) and the determinant of the i-th minor ofA0. With high probability, g�i will equal the i-th determinantal divisor of A. Theremainder of the algorithm performs O(n2) divisibility checks which all hold if andonly if all the g�i are indeed the desired determinantal divisors. In this section werestrict our attentions to square nonsingular input.To bound the probability of failure by a constant �, where 0 < � < 1, werequire that #F � 6n3d=�. The SNF of of A over IK [x] (where IK < 6n3d=�) canbe found by computing over an algebraic extension F of IK having the requirednumber of elements; the SNF is an entirely rational form and will not change ifwe compute over an extension �eld F � IK of the coe�cient �eld. In any case,our main motivation is the case when the coe�cient �eld F has characteristiczero. As discussed in the introduction, SmithForm over F[x] can be especiallydi�cult for the case when F has characteristic zero because of the potential forintermediate expression swell experienced by the coe�cients from F. AlgorithmSquareSmithForm that follows works particularly well for coe�cient �elds F thatare the quotient �elds of a non �nite integral domains. In particular, Q is thequotient �eld of ZZ . Without loss of generality, we assume that an input matrixA 2Q[x]n�n has all integer coe�cients; in this case the algorithm �nds associates ofthe determinantal divisors of A while keeping all computations within the simplerdomain ZZ [x]. More importantly, we can obtain very good bounds on the size ofintegers occurring as intermediate expressions.Algorithm: SquareSmithFormInput: A nonsingular matrix A 2 F[x]n�n and an upper bound 0 < � < 1 on theprobability of failing.Output: [s�1; s�2; : : : ; s�n], the determinantal divisors of A.



5.3. AN ALGORITHM FOR SMITHFORM OVER F[X] 71(1) [Randomize:]Let d� 1 bound the degrees of entries of A and let C be a subset of F with#C = d6n3d=�e.UR  a unit upper triangular matrix with o� diagonal elements chosen atrandom from C;VR  a unit lower triangular matrix with o� diagonal elements chosen atrandom from C;A0 URAVR;(2) [Triangularize:]UT  FFGE(A0; n);T  UTA0;(3) [Find probable determinantal divisors of A:]d�  det(A)2;for i = 1 to n dog�i  an associate of gcd(d�; Ti;i);(4) [Check divisibility properties of g�i 's:]g�0  1;for i = 1 to n� 1 doif g�i 2 does not divide g�i�1g�i+1 then FAIL;(5) [Assay that g�i = h�(A0; i) for 1 � i � n:]for i = 2 to n dofor j = 1 to i� 1 doif g�i�1 does not divide UT i;j then FAIL;(6) [Assay that g�i = s�(A0; i) for 1 � i � n:]for i = 1 to n� 1 dofor j = i+ 1 to n doif g�i does not divides Ti;j then FAIL;(7) [Output:][s�1; s�2; : : : ; s�n] with s�i the monic associate of g�i for 1 � i � n;Remarks:(1) Note that det(A) has already been computed when step (3) is reached sinceTn;n = det(A).(2) In step (3), we may choose d�  det(A) rather than d�  det(A)2.Entries of UT and T found in step (2) are associates of determinants of minors ofA0; these have degrees bounded by nd. This leads to a bound of 2nd on degrees ofall polynomials occurring in the algorithm. The n gcd computations in step (3) will



72 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]require at most O(nP (nd) log nd) �eld operations. Using fraction free Gaussianelimination, the matrices UT and T can be found in O(n3P (nd)) �eld operations.The matrix multiplications in step (1) and the remaining n multiplications andn2� 1 trial divisions in steps (4), (5) and (6) can be accomplished in O(n2P (nd))�eld operations. Overall we obtain O(n2d(n2+ log d) log nd log log nd) or O�(n4d)�eld operations using fast polynomial arithmetic: P (d) = d log d log log d. Inpractice, we would use the evaluation/interpolation scheme discussed in x5.2 torecover UT and T | this leads to a bound of O(n4d2) �eld operations for algorithmSquareSmithForm using standard polynomial arithmetic: P (d) = d2.We now consider the special case when F = Q and the input matrix A 2 Q[x]has all integer coe�cients. For this case, we derive a complexity result in termsof n, d and � where � is a bound for both jjUT jj and jjT jj where UT and Tare the matrices found in step (2). Note that in step (1) we can choose C =f0; : : : ; d6n3d=�eg so that jjA0jj � n�d6n3d=�e�jjAjj whence � � (pndjjA0jj)n �(pndd6n3d=�ejjAjj)n or, asymptotically, log � = O(n log ndjjAjj).There is a natural duality between the integers and univariate polynomials withinteger coe�cients. The integer coe�cients (represented in binary) of a degreed� 1 polynomial f 2 ZZ [x] having coe�cients bounded in magnitude by 2k�1 � 1(k 2 ZZ ) can be written as a binary lineup to obtain the dk bit integer f jx=2k .This corresponds to the B-adic expansion of an integer; choosing B a power of 2allows the conversion to and from polynomial representation to be accomplishedin linear time. Thus, we can �nd UT and T in O(n3M(ndk)) bit operations byapplying fraction-free Gaussian elimination to the n � n integer matrix A0jx=2kwhere k = d1+log(�+1)e. By a result of Sch�onhage [31], the n gcd computationsin step 3 require O�(n�nd(nd + n log ndjjAjj)) bit operations.The remaining O(n2) trial divisions in steps (4), (5) and (6) and the O(n)polynomial multiplications in step (3) will require at most O(n2M(nd � (nd +n log ndjjAjj))) bit operations. Overall this yields O�(n3d(d + n2 log jjAjj)) =O�(s7) bit operations using fast polynomial and integer arithmetic.In practice, the dominant cost of the algorithm will almost certainly be �ndingthe triangulation T and transition matrix UT in step (2). (This would not betrue, for example, if the input matrix were of dimension 2 � 1, in which case thecomputation reduces to a gcd computation over ZZ [x].) Since the size of intermedi-ate expressions occurring in the algorithm admit very good bounds, a complexityresult in terms of fast polynomial and integer arithmetic will not be interestingfor many practical examples. By employing the homomorphic imaging schemediscussed in x5.2.1 we also have the following result as a corollary of Theorem 8.



5.3. AN ALGORITHM FOR SMITHFORM OVER F[X] 73Corollary 5 Let A0 2 ZZ [x]n�n be nonsingular with degrees bounded by d � 1.Then, there exists a sequential deterministic algorithm that �nds the matrices UTand T = UTA0 in step 2 of SquareSmithForm in O�(n5d(d+log jjA0jj) log jjA0jj) =O�(s8) bit operations using standard integer and polynomial arithmetic.To show that algorithm SquareSmithForm is a correct Las Vegas algorithm forSmithForm over F[x] will require some lemmas. Some of the following resultsare more general than we require here but they will be called upon in the nextchapter.Lemma 9 Let A 2 F[x]n�n be square nonsingular and let U (1) and U (2) be matri-ces in F[x]n�n and g�0; g�1; : : : ; g�n polynomials in F[x]. Then, if(1) T (1) = U (1)A and T (2) = U (2)A are upper triangular matrices in F[x]n�n;(2) g�0 ' 1 and g�i ' gcd(T (1)i;i ; T (2)i;i ) for 1 � � � m;(3) g�n ' det(A);(4) g�i divides each entry in row i+ 1 of U (1) and U (2) for 1 � � � n� 1;then g�i ' h�(A; i) for 1 � i � n.Proof: Let A;U (1); U (2) be matrices and g�0; g�1; : : : ; g�n polynomials that satisfythe conditions of the lemma. A nonsingular implies g�n 6= 0. Condition (4) im-plies g�i�1j gcd((U (1)A)i;i; (U (2)A)i;i) = gcd(T (1)i;i ; T (2)i;i ) ' g�i for 1 � i � n whenceg�0jg�1j � � � jg�n 6= 0 which shows g�i 6= 0 for 1 � i � n. We show by construc-tion that there exists a matrix U 2 F[x]n�n such that UA has i-th diagonalentry g�i =g�i�1; the desired result will then follow by Fact 3 and the fact thedet(UA) = Qni=1 g�i =g�i�1 = g�n ' det(A). Condition (2) implies that there ex-ists a solution (ai; bi) to the polynomial diophantine equationaiT (1)i;i + biT (2)i;i = g�i :Let E and F be diagonal matrices in F[x]n�n such that for 1 � i � n, (Ei;i; Fi;i)is such solution for (ai; bi). Let G 2 F[x]n�n be diagonal with Gi;i = g�i�1 for1 � i � n. Now consider the matrixU = EG�1U (1) + FG�1U (2):



74 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]Condition (3) implies that U is in F[x]n�n (not just F(x)n�n). Then UA is alsoover F[x]:UA = (EG�1U (1) + FG�1U (2))A= G�1(ET (1) + FT (2))= G�1 2666666666666666666664 g�1 a1T (1)1;2 + b1T (2)1;2 a1T (1)1;3 + b1T (2)1;3 � � � a1T (1)1;n + b1T (2)1;n0 g�2 a2T (1)2;3 + b2T (2)2;3 � � � a2T (1)2;n + b2T2;n0 0 . . . ......0 0 � � � 0 g�n
3777777777777777777775The last equations shows that UA is upper triangular with (UA)i;i = g�i =g�i�1.Lemma 10 Let T 2 F[x]n�m be of rank r with minor(T; r) upper triangular andwith rows r+1; : : : ; n having all zero entries. Let ti denote the i-th diagonal entryof T . If ti divides all o�-diagonal entries of row i of T for 1 � i � r � 1, thenthere exists a unimodular matrix V 2 F[x]m�m such that TV is diagonal with(TV )i;i = ti;i for i = 1; 2; : : : ; r � 1 and (STV )r;r ' gcd(Tr;r+1; Tr;r+2; : : : ; Tr;m).Proof: Without loss of generality, we assume that T has row dimension r (sincethe last n � r rows have all zero entries they will not be modi�ed by columnoperations). Then we can write T in block form asT = 24 T1 T20 T4 35= 26666666664 t1 t1;2 � � � t1;r�1 t1;r t1;r+1 � � � t1;m0 t2 � � � t2;r�1 t2;r t2;r+1 � � � t2;m... . . . ... ... ...0 0 � � � tr�1;r�1 tr�1;r tr�1;r+1 � � � tr�1;m0 0 � � � 0 tr tr;r+1 � � � tr;m 37777777775De�ne D to be a square diagonal matrix of size r � 1 with i-th diagonal entry ti,and let V4 2 F[x] be a unimodular matrix of size m� r+1 such that S4 = T4V4 isin SNF. Then, the matrix (D�1T1) will be unimodular over F[x] and S4 will havea single nonzero entry, namely (S4)1;1 ' gcd(Tr;r+1; Tr;r+2; : : : ; Tr;m). We setV = 24 (D�1T1)�1 (D�1T1)�1T20 V4 35 :



5.3. AN ALGORITHM FOR SMITHFORM OVER F[X] 75To complete the proof, note that V is unimodular and thatTV = 24 T1 T20 T4 3524 (D�1T1)�1 �(D�1T1)�1T20 I 35= 24 T1(D�1T1)�1 �T1(D�1T1)�1T2 + T20 T4I 35= 24 D 00 S4 35Theorem 9 Algorithm SquareSmithForm is correct and fails with probability lessthan �. The expected cost of �nding the SNF of a nonsingular input matrix A 2F[x] with degrees of entries bounded by d � 1 is O�(n4d) �eld operations. WhenA 2 ZZ [x]n�n, �nding the SNF of A over Q[x] requires an expected number ofO�(s7) bit operations.Proof: First we show correctness. Let g�i for 1 � i � n be as found in step (3).We show that the algorithm does not return FAIL if and only if g�i is an associateof s�(A; i) over Q[x] (g�i ' s�(A; i)) for 1 � i � n.(If:) Assume that g�i ' s�(A; i) for 1 � i � n. By Fact 2, step (4) will notabort. By construction, A0 is equivalent to and hence has the same determinantaldivisors as A. By construction of UT in step (2), UT i;j for i > 1, 1 � j � i is anassociate of an (i� 1)� (i� 1) minor of A0. Similarly, Ti;j is an i� i minor of A0for 1 � i � j � n. Since, by assumption, g�i is the gcd of all i � i minors of A(and of A0), neither steps (5) nor (6) abort.(Only if:) Assume that the algorithm does not return FAIL. Set U (1) =d�adjoint(A0) and U (2) = UT where d� = det(A)2 as in step (3). Then, the ma-trices U (1); U (2); A0 and polynomials g�1; g�2; : : : ; g�n satisfy conditions of Lemma 9.We conclude the existence of a unimodular matrix U in F[x]n�n such thatUA0 = (EG�1U (1) + FG�1U (2))A0= G�1(ET (1) + FT (2))= G�1 26666666664 g�1 b1T (2)1;2 b1T (2)1;3 � � � b1T (2)1;n0 g�2 b2T (2)2;3 � � � b2T (2)2;n0 0 . . . ......0 0 � � � 0 g�n 37777777775



76 CHAPTER 5. A FAST ALGORITHM FOR SMITHFORM OVER Q[X]where T (1); T (2); G and the ai; bi are as in Lemma 9. Note that UA0 has i-thdiagonal entry g�i =g�i�1. The success of step (6) implies that UA satis�es theconditions of Lemma 10 and we conclude that there exists a unimodular matrix Vsuch that UAV is diagonal with i-th diagonal entry g�i =g�i�1 for 1 � i � n. Finally,the success of step (4) together with Fact 3 gives the desired result.It remains to show that the probability of failure is less than �. To do this, weshow that g�i ' s�i for 1 � i � n provided the entries of UR above the diagonaland VR below the diagonal do not form the root of a certain polynomial � withdegree bounded by 4n3d. Then, our choice of entries for UR and VR allows usto apply a result of Schwartz [32] to bound the probability of failure by �. ByLemma 12, the matrix AVR will be such that h�(AVR; i) = s�(A; i) for 1 � i � nunless the entries of VR below the diagonal form a root of a polynomial �S withdegree bounded by 2n3d. Similarly, gcd(det(minor(A0; i);det(A)) = h�(AVR; i)for 1 � i � n if the entries of UR above the diagonal do not form a root of apolynomial �H = �1�2 � � ��n�1 where each �i, bounded in degree by 4ndi, is asin Lemma 13. �H will be bounded in degree by 4n3d. Let � = �S�H . Then � isbounded in degree by 6n3d.Lemma 11 ([24, Lemma 3.5]) Let f1; : : : ; ft be polynomials in F[�; x], �� is alist of new variables, with det fi � e. Then for some �e � 2e, there exists an�e� �e determinant � in F[��], whose entries are coe�cients of fi, such that for anyevaluation �� ! �r a list of corresponding �eld elements that are not a root of �,gcd(f1(��); : : : ; ft(��)) = (gcd(f1; : : : ; ft))(��).Lemma 12 ([24, Lemma 3.7]) Let A be a matrix in F[x]n�m of rank r and withthe degrees of the entries bounded by d, and let i 2 f1; : : : ; r � 1g. Then there isa polynomial �i in m(m� 1)=2 variables such that if(1) VR in F[x]m�m is unit lower triangular,(2) As is the submatrix of AR comprised of the �rst r columns.then As has rank r, and s�(A; i) = h�(As; i), unless the m(m� 1)=2 entries belowthe diagonal in VR form a root of �i. The degree of �i is not more than 2i2d + i.Lemma 13 Let A be a matrix in F[x]n�m of rank m and with the degrees of theentries bounded by d, and let i 2 f1; : : : ;m� 1g. Then there is a polynomial �i inn(n� 1)=2 variables such that if(1) UR 2 F[x]n�n is unit upper triangular,



5.3. AN ALGORITHM FOR SMITHFORM OVER F[X] 77(2) d� is a polynomial with degree less than 2md and such that h�(A; i) j d�.then h�(A; i) = gcd(d�;det(minor(URA; i)), unless the n(n � 1)=2 entries abovethe diagonal in UR together with the 2md coe�cients of d� form a root of �i. Thedegree of �i is bounded 4mdi.Proof: First consider that case where the matrix UR contains indeterminants asentries, say (UR)i;j = �i;j for j > i where �� = (�i;j)1�i�n;j>i is a list of indeter-minants. By a result of Kaltofen, Krishnamoorthy and Saunders, [24, Lemma3.6], we have det(minor(URA; i)) = h�(A; i)p, where p is an irreducible polyno-mial in F[x; ��] n F[x] or is 1. Since d� is independant of the indeterminants ��,we must have h�(A; i) = gcd(d�;det(minor(URA; i))) as required. An applica-tion of Lemma 11 yields the existence of a 4md � 4md determinant �, whoseentries are coe�cients of x of det(minor(URA; i)) and d� such that for any eval-uation �� ! �r, where �r is a list of corresponding �eld elements that are not aroot of �, gcd(d�;det(minor(URA; i))) = h�(A; i). It remains to establish a degreebound for �. Coe�cients of x of URA are of degree 1 whence coe�cients of x ofdet(minor(URA; i)) will have total degrees bounded by i. This leads to a boundon the total degree of � of 4mdi. Finally, set �i = � to complete the proof.
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Chapter 6Homomorphisms for LatticeBases over F[x]This chapter is the culmination of our work with matrix polynomial normal forms.Here, we bring together many of the results from previous chapters and constructalgorithms for obtaining bases for the lattices generated by the rows of matricesover F[x]. Each section in this chapter presents a new algorithm. In general, sub-sequent sections will depend on results from the previous sections but we presentthe algorithms separately because we feel each to be useful in its own right.Section x6.1 gives an algorithm for �nding a unimodular triangularization (butnot necessarily the unique HNF) of a square nonsingular input matrix. Section x6.2shows how to apply homomorphisms to the problem HermiteForm over Q[x]in order to avoid computation with large integers and we give an asymptoticallyfast sequential deterministic algorithm for HermiteForm overQ[x] that assumesfast polynomial and integer multiplication. On the other hand, the homomorphismmethod of x6.2 is also the most practical method for HermiteForm that we knowof. Section x6.3 shows how to handle rectangular input via a pre-conditioningalgorithm that reduces the problem to the square nonsingular case. Finally, x6.4gives a generalization of the algorithm SquareSmithForm of x5.3 that works forrectangular and/or singular input.6.1 TriangularizingA common theme in linear algebra problems is that of triangularizing matrices. Formatrices over PIDs we are interested especially in unimodular triangularizations:given A 2 F[x]n�m with rank m, �nd a unimodular matrix U 2 F[x]n�n and anupper triangular matrix T 2 F[x]n�m such that UA = T . We require U to be79



80 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASESunimodular so that the nonzero rows of T will not just be contained in but willalso span the lattice generated by rows of A (denoted by L(A)). In particular,the HNF H of A provides a unique triangular basis for L(A). Fact 3 tells usthat for any two unimodular triangularizations of A, say T1 and T2, we musthave (T1)i;i ' (T2)i;i for 1 � i � m; that is, the respective diagonal entries areassociates. The HNF H gains its uniqueness by enforcing that diagonal entriesbe monic and that o� diagonal entries have degree strictly less than the diagonalentry in the same column.For some applications, the degree condition on the o�-diagonal entries need nothold and it may be cheaper to compute a generic triangularization rather than theunique HNF. For example, algorithm SquareSmithForm of x5.3 worked by �ndinga construction for a unimodular triangularization T of a pre-conditioned inputmatrixA0 2 F[x]n�n and verifying that certain divisibility conditions held. Findingexplicitly the o�-diagonal entries of HNF of A0 would be prohibitively expensivein this case. In general, the problem HermiteForm seems to be more di�cultthan triangularization. Hafner and McCurley show in [16] how to apply fast matrixmultiplication techniques to the problem of �nding a unimodular triangularizationT of an input matrix A over a principal ideal domain R. When R is a Euclideandomain such as ZZ , the HNF of A can be found easily from T by reducing o�diagonal entries in each column but they are unable to accomplish this within aconstant factor of the the number of bit operations required to �nd T to beginwith.Our �rst result is a fast method for triangularizing matrices over F[x]; this issimilar to the Hafner and McCurley result for triangularizing integer matrices inthat we do not produce the unique HNF. For their algorithm they used fast matrixmultiplication techniques to obtain a good result in terms of the number of ringoperations. In our case, we are working over the ring F[x] and give our results interms of the number of �eld operations over F.Algorithm: TriangularizeInput: A square nonsingular matrix A 2 F[x]n�n.Output: An upper triangular matrix T 2 F[x]n�n and a unimodular matrixU 2 F[x]n�n such that UA = T .(1) [Randomize:]Let d� 1 bound the degrees of entries of A.U1; U2  unit upper triangular matrices in Fn�n with o� diagonal entrieschosen at random from a subset of F with d4m3d=�e elements;B  U1A;



6.1. TRIANGULARIZING 81C  U2A;(2) [Triangularize:]UB  FFGE(B;n);UC  FFGE(C;n);TB  UBB;TC  UCC;(3) [Find probable value g�i for h�(A; i), 1 � i � n:]for i = 1 to n dog�i  gcd((TB)i;i; (TC)i;i);(4) [Check that g�i = h�(A; i) for 1 � i � n.]for i = 2 to n dofor j = 1 to i� 1 doif g�i�1 does not divide (UB)i;j or (UC)i;j then FAIL;If U and T not required explicitly then output UB; UC; TB; TC and[g�1; g�2; : : : ; g�n] and terminate otherwise continue.(5) [Solve extended Euclidean problems:](bn; cn) (1; 0);for i = 1 to n� 1 do(bi; ci) a solution to: bi(UB)i;i + ci(UC)i;i = g�i ;(6) [Construct U and T :]DB  diag(b1; b2; : : : ; bn) 2 F[x]n�n;DC  diag(c1; c2; : : : ; cn) 2 F[x]n�n;G diag(g�0; g�1; : : : ; g�n�1) 2 F[x]n�n;U  G�1(DBUB +DCUC);T  G�1(DBTB +DCTC);(7) [Output:] U and T .Remark: In step (1), matrix U2 can be chosen to be a permutation matrix in Fn�nsuch that PA has nonsingular principal minors.Matrices U1 and P have entries constant polynomials whence matrices B andC will have degrees bounded by d � 1. This leads to a bound on the degrees ofentries in UB, UC , TB and TC of nd. Finding UB and TB will require O(n4d2) �eldoperations using an evaluation/interpolation scheme. Similarly, the matrix TC canbe found together with P and UP using ordinary fraction-free Gaussian elimination(with row pivoting) inO(n4d2) �eld operations. The extended Euclidean algorithmwill need to be used n times in step (5) to obtain suitable polynomials b1; b2; : : : ; bn



82 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASESand c1; c2; : : : ; cn that are bounded in degree by nd; the cost of this is O(n � (nd)2)�eld operations. Finally, since matrices DB, DC and G are diagonal, the matrixmultiplications in step (6) will require at most O(n4d2) �eld operations, and yieldmatrices U and T with entries bounded in degree by 2nd.It is important to note that the above complexity analysis assumes standardpolynomial arithmetic: P (d) = d2. The main cost of the algorithm is computingthe triangularizations TB and TC. In our case, these triangularizations are actuallyover the quotient �eld F(x) and can be computed using a homomorphic imagingscheme in O(n4d2) �eld operations. Other algorithms that compute unimodulartriangularizations depend upon solving diophantine equations over the polynomialdomain (either explicitly or implicitly) during the triangularization phase (i.e. al-gorithm ModTriangularize of x3.2). (In particular, information about the degreesof intermediate polynomial entries in the matrix being reduced is required; thisis not readily available when the polynomial is represented as list of residues.)As such, these methods are not suscesptable to a evaluation/interpolation homo-morphism scheme and | assuming standard polynomial and matrix arithmetic| require O(n3 � P (nd)) = O(n5d2) �eld operations. Of course, we could use fastpolynomial multiplication to achieve a complexity of O�(n4d) �eld operations |an improvement of about O(d) | but this is an asymptotic bound. In practice, dwould have to be inordinately large before a speedup was achieved.Theorem 10 Algorithm Triangularize is correct and fails with probability lessthan �. Given a nonsingular input matrix A 2 F[x]n�n with degrees of entriesbounded by d � 1, a unimodular matrix U and an upper triangular matrix T inF[x]n�n such that UA = T can be found in an expected number of O(n4d2) �eldoperations using standard polyomial multiplication.Proof: First we show correctness. Let g�i for 1 � i � n be as found in step (3).We show that the algorithm does not return FAIL if and only if g�i ' h�(A; i) for1 � i � n.If: Assume that g�i ' h�(A; i) for 1 � i � n. U1 unimodular implies B has thesame determinantal divisors as A. Similarly, C will have the same determinantaldivisors as A. By construction of UB and UC in step (2) entries on and before thediagonal in row i of UB and UC are associates of (i� 1)� (i� 1) minors of B andC respectively. Since, by assumption, g�i is the gcd of all i � i minors of A (andhence of B and C), step (3) will not return FAIL.Only if: Assume that the algorithm does not return FAIL. Then, an applicationof Lemma 9 with U (1) = UBU1, U (2) = UCP and g�0 = 1 will give the desired result.Note that the four conditions of Lemma 9 are veri�ed: construction of UB and UC



6.2. HOMOMORPHISMS FOR HERMITEFORM OVER Q[X] 83veri�es conditions 1 and 2; (TB)n;n = (TC)n;n = det(A) veri�es 3; and success ofstep (4) veri�es condition 4. Lastly, observe that the matrix U and T constructedin step (6) verify UA = T and that the de�nition of U matches the constructionof the matrix with the same name in Lemma 9.It remains to show that the probability of failure is less than �. The prooffor this is analogous to that found in the proof of Theorem 9 for algorithmSquareSmithForm and follows from Lemmas 12 and 13.6.2 Homomorphisms for HermiteForm over Q[x]For this section we assume F = Q and that we have a nonsingular input matrixA 2 ZZ [x]n�n. Let U denote the unique unimodular matrix such that UA = H, theHNF of A over Q[x]. For a prime p, let Up denote the unimoduar matrix over ZZ p(the �nite �eld with p elements) such that Up(A mod p) = Hp, the HNF ofA mod pover ZZ p[x]. Note that while for many primes p we will have Hp = H mod p, theremay exist primes such that Hp 6= H mod p. We say two images Hp1 and Hp2 are\consistent" if the degrees of the corresponding diagonal entries in the HNFs Hp1and Hp2 are identical. An algorithm to �nd U and H is now easily described.(1) Find a number � such that:(a) Numerators and denominators of rational coe�cients in U and H areintegers bounded in magnitude by �;(b) There exists a positive integer � � � such that Hp = H mod p providedthat p does not divide �.(2) Choose a list of primes fp1; p2; : : : ; pqg such that Q1�i�q pi � �(�2+1). Find(Up;Hp) for p = p1; p1; : : : ; pq. Choose a subset of primes fpi1 ; pi2 ; : : : ; pikgwith consistent images and such that Q1�j�k pij = � � �2 + 1.(3) Chinese remainder these images together to obtain the matrices U 0 = U mod� and H 0 = H mod �.(4) Perform a rational reconstruction on each of the integer coe�cients of poly-nomial entries of U 0 and H 0 to obtain the corresponding matrices U and Hover Q[x].In step (1), the bound � is chosen to be the number with the same name givenin Theorem 6, namely � = (n(d + 1)jjAjj)(npdjjAjj)n2d. That condition (a) issatis�ed follows directly from Theorem 6. Theorem 6 also gives the existence of



84 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASESa number � � � such that �U 2 ZZ [z]. Hence, we have the identity (�U)A =(�H), where �U , A and �H are over ZZ [x]. For any prime p not dividing �| the leading coe�cient of all diagonal entries in (�H) | we must have Up =��1(�U mod p) mod p and Hp = ��1(�H mod p) mod p (this follows from theuniqueness of the HNF). This shows that condition (b) holds. Note that an actualimplementation would choose the candidate for � given by the construction inFact 1.Now consider step (2). An application of Lemma 8 shows that we choose all ourprimes to be l bits in length where l = d6+log logq�(�2 + 1)) = �(log n+log d+log log jjAjj). In particular, there are at least q = 2ddlog(2q�(�2+ 1))e=(l�1)e =�((log �)=l) primes between 2l�1 and 2l; the product of these is greater than�(�2+1). Since the product of all primes for whichHp 6= (H mod p) is bounded by�, there must exist a subset fpi1; pi2 ; : : : ; pikg of primes with the desired properties.The image solutions (Upi;Hpi)i=1;:::;q are found as follows: (a) �nd (Api)i=1;:::q ata cost of O(n2dM(lq) log q) bit operations (cf. [1, Theorem 8.9]); (b) �nd Upi andHpi for i = 1; : : : ; q using the HermiteForm algorithm of Illiopoulos at a cost ofO(q � n2(n+ log nd)P (nd)M(l)) bit operations (cf. [21, Algorithm 4.2,Proposition4.3]). (Note that for some primes p we may have Ap = A mod p be a singularmatrix. Such a prime is accounted for among the bad primes and can be discarded.The Iliopoulos HermiteForm algorithm can be trivially modi�ed to return FAILin this case.) In step (3), the Chinese remainder algorithm will need to be appliedwith q primes of length l bits to construct at most n2(nd+1)+n(nd+1) = O(n3d)integers, each bounded in magnitude by �. The cost of this is O(n3dM(lq) log q)bit operations (cf. [1, Theorem 8.5]). In step (4), rational reconstruction will needto be applied to O(n3d) integers bounded in magnitude by � = O(�) to obtain acorresponding list of rational numbers with numerators and denominators boundedby �. The cost of this is O(n3dM(log �) log log �) bit operations. Combining theseresults and assuming fast polynomial and integer arithmetic gives the following.Theorem 11 Let A be a nonsingular input in ZZ [x]n�n with degrees of entriesbounded by d and largest magnitude of integer coe�cients bounded by jjAjj. Thesequential deterministic algorithm described above computes the Hermite normalform H of A (over Q[x]) and the unimodular matrix U such that UA = H inO�(n6d2 log jjAjj) or O�(s9) bit operations.A fundamental characteristic of the HermiteFormWithMultipliers prob-lem for matrices over Q[x] is that the resulting matrices U and H are dispro-portionately large compared to the size of the input matrix A. In Corollary3 we bounded the size of U by O�(n5d2 log jjAjj) or O�(s8); the size of A is



6.3. A PRECONDITIONING FOR RECTANGULAR INPUT 85only O(n2d log jjAjj) or O(s4). Furthermore, we hypothesized that this bound forSize(U) was tight. In light of this, we hypothesize that the complexity resultof Theorem 11 | which is only O�(s) larger than our bound for Size(U) | isoptimal (up to log terms) unless a method is devised for applying fast matrixmultiplication techniques to the problemm of HermiteForm over F[x].The best previous method for HermiteForm over Q[x] is the linear systemsmethod of Labhalla, Lombardi and Marlin (cf. x4.3.3). In particular, a worst casesize bound for the total size in bits of the triangular form of matrix Alin | thecoe�cient matrix of the linear systems method for HermiteForm given in x4.3.3| is O�(n6d3 log jjAjj) = O�(s10) bits. Actually triangularizing the order O(n2d)matrix Alin would be prohibitively expensive.
6.3 A Preconditioning for Rectangular InputAlgorithm Triangularize of x6.1 and the method for HermiteForm given inx6.2 were presented only for square nonsingular input. In practice, matrices thatarises during computations are typically rectangular | sometimes very rectan-gular. In particular, matrices with dimension n2 � n arise during some algebraicintegration problems, and in x1 we gave an example of computing matrix poly-nomial gcd's by solving HermiteForm for a rectangular input matrix. We havealready seen how the rectangular case can be reduced to the square nonsingularcase by permuting the rows of A and augmenting with an identity matrix (cf. x3pp. 19); in practice, this method can be extremely wasteful. Consider the 12 � 3matrix
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A = 26666666666666666666666666666666664

x3 + x2 � 2x� 2 x2 + 2x+ 1 �x � 1�35x3 � 34x2 + 73x+ 52 �35x2 � 71x� 32 37x+ 29x3 + x2 � 2x� 2 x2 + 2x+ 1 �x � 1�85x3 � 84x2 + 173x+ 152 �85x2 � 171x� 82 87x+ 79x3 + x2 � 2x� 2 x2 + 2x+ 1 �x � 197x3 + 150x2 � 50x� 1103 96x2 + 146x+ 250 x2 + x� 400x3 + x2 � 2x� 2 x2 + 2x+ 1 �x � 145x3 + 46x2 � 87x� 108 45x2 + 89x+ 48 �43x� 51�8x3 � 98x2 � 269x+ 1681 �9x2 + 79x� 284 x2 � 180x+ 56399x3 + 41x2 � 387x+ 891 98x2 + 261x� 81 x2 � 223x+ 264�55x3 � 89x2 � 7x+ 767 �56x2 � 71x� 163 x2 � 21x+ 274�5x3 � 4x2 + 13x� 8 �5x2 � 11x� 2 7x� 1
37777777777777777777777777777777775Since rank(A) = r = 3, a basis for L(A) will contain only 3 rows (ie. a matrixwith 9 entries). Applying the preconditioning discussed above requires �ndingthe HNF of a 12 � 12 nonsingular input matrix (a matrix with 144 entries); thisis much too expensive in light of the cost of HermiteForm over Q[x]. Instead,algorithm Reduce that follows �nds a matrixA� of dimension 4�3 that has similarsize entries as A and such that L(A�) = L(A). The HNF of A can then be foundby �nding the HNF of a 4 � 4 matrix. For example, a trial run of an algorithmdescribed by Reduce producedA� = 26666664 177x3 � 57x2 � 1176x+ 4218 169x2 + 628x� 573 8x2 � 709x+ 1347335x3 + 38x2 � 1681x+ 5036 327x2+ 1007x� 604 8x2 � 993x+ 1567211x3� 164x2 � 1712x+ 6823 200x2 + 852x� 980 11x2 � 1049x+ 2204173x3 + 29x2 � 898x+ 2606 165x2 + 530x� 307 8x2 � 525x+ 811 37777775 :We draw attention to the fact that the matrix A� produced will be of dimension(m+ 1) �m as opposed to m �m. Allowing an extra row in the output matrixA� allows us to keep the size of rational number coe�cients small. For example,the size of rational number coe�cients appearing in a basis for L(A) | a matrixleft equivalent to A but with only m nonzero rows (e.g. the HNF of A) | willtypically be much larger than the rational number coe�cients appearing in theinput matrix A.Let A be an input matrix in Q[x]n�m with n > m+1. An invariant of L(A) isthe quantity h�(A;m), de�ned to be the gcd of the determinant of allm�mminors



6.3. A PRECONDITIONING FOR RECTANGULAR INPUT 87of A. The algorithm Reduce that follows works by preconditioning the inputmatrix A with a certain random unimodular matrix UR. With high probability,the gcd of the determinant of the of the two m�m minors of URA comprised ofrows [1; 2; : : : ;m] (i.e. the principalm-th minor) and the rows [1; 2; : : : ;m�1;m+1]will be equal to h�(A;m). This fact is su�cient to gaurantee that Hermite(A) =Hermite(A�) where A� is the matrix comprised of the �rst m+ 1 rows of URA.Algorithm: ReduceInput: A matrix A 2 F[x]n�m with full column rank and n > m+ 1. An upperbound 0 < � < 1 on the probability of failing.Output: AmatrixA� 2 F[x]n�m with all zero entries in the lastm�n+1 rows andsuch that Hermite(A�) = Hermite(A). Optionally, a unimodular transformationmatrix U 2 F[x]n�n such that H� = UH.(1) [Randomize:]Let d bound the degrees of entries of A and let C be a subset of Fnf1g withd2m2d=�e elements.U1  a strictly upper triangular matrix in Fm�m with entries chosen atrandom from C;U2 a matrix in Fm�(n�m) with entries chosen at random from C;~� a row vector in F1�(n�m) with entries chosen at random from C exceptfor ~�1 = 0;~  a row vector in F1�(n�m) with entries chosen at random from C exceptfor ~2 = 0;UR  2666664 U1 U2~0 ~�~0 ~O O 3777775+ In.B  [URAj~e] 2 Fn�(m+1) where ~e is an n� 1 column vector with all entries0 excepts for the m-th entry, which is 1.(2) [Triangularize:]V  FFGE(B;m);W  FFGE(B;m+ 1);Note: V = 24 UT 0V 0 d1I 35 and W = 24 UT 0W 0 d2I 35 where UT 2 F[x](m+1)�(m+1)is upper triangular, V 0;W 0 2 F[x](n�m+1)�(m+1) and d1; d2 2 F[x]. Withprobability less than �, both d1 and d2 may be zero | in this case thealgorithm returns FAIL.



88 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASES(3) [Find probable value for h�(A;m):]g�m  gcd(d1; d2);(4) [Check that g�m = h�(A;m).]if g�m does not divide all entries of V 0 and W 0 then FAIL;(5) [Construct A�:]A�  24 U1 U20 0 35A;If U not required then output A� and terminate otherwise continue.(6) [Solve extended Euclidean problem:](a; b) a solution to: ad1 + bd2 = g�m;(7) [Construct unimodular multiplier:]U  24 Im+1 0ag�mV 0 + bg�mW 0 In�m+1 35UR;(8) [Output:] U and A�.Remarks:(1) In step (1), choosing C to be a subset of F n f1g instead of F ensures that therandomizing premultiplier matrix UR is unimodular (ie. nonsingular).(2) In step (2), FFGE(B;m+ 1) can be found at the same time as FFGE(B;m)by continuing fraction free Gaussian elimination for one more column.The proof of correctness for algorithm Reduce is nearly identical to that ofalgorithm Triangularize of section x6.1 and can be sketched briey as follows.If step (4) does not fail then the algorithm goes on to to construct a matrix Uand A� such that UA = A�. Clearly, U is unimodular by construction whenceHermite(A�) = Hermite(A). By construction, entries of V 0 and W 0 are associatesof determinants m�m minors of A0, whence g�m = h�(A0;m) (= h�(A;m)) if andonly if the divisibility checks in step (4) are satis�ed. This shows that an incorrectresult will never be returned. The challenge lies in proving that algorithm Reduceis a correct Las Vegas algorithm. In particular, we desire that in step (3) thatthe identity g�m = h�(A0;m) holds with high probability so that repetition ofthe algorithm will almost never be necessary. The following lemma assures usthat g�m will be correct provided that the entries in UR do not form a root of acertain polynomial bounded in degree by 2m2d; by a result of Schwartz [32], theprobability of this happening is 2m2d=#C (ie. less than �).



6.3. A PRECONDITIONING FOR RECTANGULAR INPUT 89Lemma 14 Let A be a matrix in F[x]n�m, n > m + 1, of rank m and with thedegrees of entries bounded by d. Then there is a polynomial � in (2n(m + 1) �m(m+ 3))=2 variables such that if(1) UR in F(m+1)�n has the formUR = 2664 U1 U2~0 ~�~0 ~ 3775where U2 2 Fm�(n�m), U1 is unit upper triangular in Fm�m, and ~� and~ are row vectors in F1�(n�m) with ~� = [1; �2; �3; : : : ; �n�m] and ~ =[1; 1; 3; : : : ; n�m];(2) d1 is the determinant of the principal m-th minor of URA;(3) d2 is the determinant of the m � m minor formed by rows [1; 2; : : : ;m �1;m+ 1] of URA.then gcd(d1; d2) = h�(A;m), unless the (2n(m + 1) �m(m3))=2 entries in U2, ~�,~ and above the diagonal in U1 form a root of �. The degree of � is no more than2m2d.Proof: First consider the case when UR contains indeterminant entries. Inparticular, let the entry in the i-th row k-th column of [U1jU2] be �i;k where�� = (�i;k)1�i�m;i<k�n is a vector of indeterminants and let �� = (�2; �2; : : : ; �n�m)and � = (1; 3; : : : ; n�m). By a result of Kaltofen, Krishnamoorthy and Saun-ders [24, Lemma 3.6] we must have d1 = h�(A;m)p1, where p1 2 F[x; ��; ��] eitheris an irreducible polynomial in F[��; ��; x] n F[x] or is 1. Similarly, we must haved2 = h�(A;m)p2, where p2 2 F[x; ��; �] either is an irreducible polynomial inF[��; �; x] n F[x] or is 1. Hence, we must have gcd(d1; d2) = h�(A;m) if p1 is notan associate of p2; to show this it will be su�cient to demonstrate that either p1depends on �� or p2 depends on �. Let As be the submatrix comprised of the lastn�m+ 1 rows of A and let Ci;j denote the cofactor of the entry in the i-th rowj-th column of the principal m-th minor of URA. Then, we can express d1 and d2according to their m-th row cofactor expansion (cf. Fact 4) as24 d1d2 35 = 24 1 �2 �3 � � � �n�m1 1 3 � � � n�m 35As 26666664 Cm;1Cm;2...Cm;m 37777775 (6.1)



90 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASES= 24 1 �2 �3 � � � �n�m1 1 3 � � � n�m 3526666666664 q1q2q3...qn�m 37777777775 (6.2)Now, the Cm;� in (6.1) will be independant of (��; �) since they are associates ofdeterminant of minors of the �rstm�1 rows of URA. In particular, the polynomialsq� in (6.2) will depend only on (��; x) and not on (��; �). Since d1 and d2 are nonzero(A has rank m), their must exists a smallest integer i, 1 � i � n �m such thatqi is nonzero. If i = 1, then d2 depends on 1; if i = 2, then d1 depends on�2; if 3 � i � n � m then d1 depends on �i and d2 depends on i. This showsthat gcd(d1; d2) = h�(A;m) as required. An application of Lemma 11 yields theexistence of a 2md � 2md determinant �, whose entries are coe�cients of x ofd1 and d2, such that for any evaluation (��; ��; �) ! (�̂; �̂; ̂) where (�̂; �̂; ̂) is acorresponding list of �eld elements that are not a root of �, gcd(d1; d2) = h�(A; i).It remains to establish a degree bound for �. Coe�cients of x of URA are of degree1 whence coe�cients of x of d1 and d2 will have total degrees bounded by m. Thisleads to a bound on the total degree of � of 2m2d. Finally, set � = � to completethe proof.Theorem 12 Algorithm Reduce is correct and requires repitition with probabilityless than �.6.4 A General Algorithm for SmithForm overF[x]The algorithm we give here depends on the result of the previous section. Inparticular, for an input matrixA 2 Q[x]n�m with rank r < n�1, algorithm Reduceshould �rst be used to construct a matrix A� with at most r + 1 nonzero rows.Algorithm SmithForm can then be used to compute the determinental divisors ofA�, which will be those of A.Algorithm 3.1: SmithFormInput: A matrix A 2 F[x]n�m with rank r = n or r = n � 1 and a constant0 < � < 1 bounding the probability of failure.Output: [s�1; s�2; : : : ; s�r] such that s�i is an associate of the i-th determinantaldivisors of A.



6.4. A GENERAL ALGORITHM FOR SMITHFORM OVER F[X] 91(1) [Randomize:]Let d bound the degrees of entries of A and let C be a subset of size d5n4d=�eof F.UR  a unit upper triangular matrix with o� diagonal elements chosen atrandom from C;VR  a unit lower triangular matrix with o� diagonal elements chosen atrandom from C;A0 URAVR;(2) [Triangularizee:]UT  FFGE(A0; n);T  UTA0;(3) [Find probable values for h�(A01; i); : : : ; h�(A01; r) where A01 2 F[x]n�r is com-prised of the �rst r columns of A0.]if r = n � 1 then d�  gcd((UT )n;1; (UT )n;2; : : : ; (UT )n;n)else d�  Tr;r;if d� = 0 then return FAIL;for i = 1 to r dog�i  an associate of gcd((d�)2; Ti;i);(4) [Assay that g�i for 1 � i � r is an associate of h�(A01; i):]for i = 2 to n dofor j = 1 to i doif g�i�1 does not divide (UT )i;j then FAIL;(5) [Verify condition of Lemma 10:]for i = 1 to r � 1 dofor j = i+ 1 to m doif g�i does not divide Ti;j then FAIL;(6) [Find probable values for s�(A; i)'s and verify divisibility properties:]s�0 1;for i = 1 to r � 1 dos�i  g�i ;s�r  an associate of gcd(g�r ; Tr;r+1; Tr;r+2; : : : ; Tr;m);for i = 1 to r � 1 doif s�i 2 does not divide s�i�1s�i+1 then FAIL;(7) [Output:] [s�1; s�2; : : : ; s�r];Proof: First we show correctness. Let g�i for 1 � i � r be as found in step 3. Weshow that g�i is an associate of s�(A; i) over Q[x] (g�i ' s�(A; i)) for 1 � i � r � 1if and only if the algorithm does not return FAIL.



92 CHAPTER 6. HOMOMORPHISMS FOR LATTICE BASESOnly if: Assume that g�i ' s�(A; i) for 1 � i � r � 1. By Fact 2, step (4)will not abort. By construction of UT in step (2), UT i;j for 1 � j � i � n is anassociate of an (i� 1) � (i� 1) minor of A0, which by construction has the samedeterminantal divisors as A. Similarly, Ti;j for 1 � i � j � n is an i � i minorof A0. By assumption, g�i is an associate of the gcd of all i � i minors of A (andhence of A0) and neither steps (5) nor (6) will abort.If: Assume that the algorithm does not abort. The success of step (4) togetherwith Lemma 9 will provide the existence of a unimodular matrix U 2 F[x]n�n suchthat ST = UA0 is upper triangular with ST i;i = g�i =g�i�1 for 1 � i � r. To seethis, let [A01jA02] = A0 with A01 2 F[x]n�r and A02 2 F[x]n�m�n. If r = n thenset B = A01. If r = n � 1 there exists a column vector e 2 F[x]n�1 such thatd� = (UT )n;1e1 + (UT )n;2e2 + � � � + (UT )n;nen; set B = [A01je] in this case. ThenB 2 F[x]n�n with det(B) = d�. Recall that h�(B 0; i) is the gcd of all i� i minorsof B. In particular d� as de�ned in step (3) will be an associate of h�(B; r) (andalso h�(B;n)) for both the case r = n and r = n � 1. Set U (1) = d�Badj. ThenT (1) = U (1)B = (d�)2In is upper triangular. Set U (2) = UT . Then T (2) = U (2)B isupper triangular. An application of Lemma 9 (with g�n = d� if r = n � 1) showsthat g�i = h�(B; i) for 1 � i � n. Furthermore, Lemma 9 provides a constructionfor a matrix U such that such that UB is upper triangular with i-th diagonalentry g�i =g�i�1 for 1 � i � r. Since det(UB) = det(B) we have U unimodular.Now consider the matrix ST = UA0 = U [A01jA02. The �rst r columns of ST will bethose of the upper triangular matrix UB, since B = [A01je], whence if r = n � 1then row n of ST must have all zero entries. We claim that the i-th diagonalentry of ST , namely g�i =g�i�1, divides each o�-diagonal entry in row i of ST for1 � i � r�1. By the construction of U in Lemma 9, the entry in the i-th row j-thcolumn of ST will be 1=g�i�1(aiRi;j + biTi;j) where R = U (1)A0. By construction,each row or U (1) is divisible by d� whence Ri;j is divisible by g�i . Similarly, sincestep (5) was successful, Ti;j is divisible by g�i . It follows that g�i =g�i�1 divides1=g�i�1(aiRi;j + biTi;j). We may now apply Lemma 10 with matrix ST to obtain aunimodular matrix V such that STV is diagonal with i-th diagonal entry g�i =g�i�1for 1 � i � r � 1 andg�r�1(STV )r;r ' gcd(g�r ; (ST )r;r+1; (ST )r;r+2; : : : ; (ST )r;m)' gcd(g�r ; arRr;r+1 + brTr;r+1; : : : ; arRr;m + brTr;m)' gcd(g�r ; brTr;r+1; : : : ; brTr;m) (6.3)So far, we have shown the existence of a unimodular U and V suchthat UA0V = STV is a diagonal matrix with i-th diagonal entry an as-sociate g�i =g�i�1 for 1 � i � r � 1 and r-th diagonal entry given by



6.4. A GENERAL ALGORITHM FOR SMITHFORM OVER F[X] 93(6.3). This implies s�(A0; r) = s�(STV; r) = (STV )r;rQ1�i�r�1 g�i =g�i�1 =gcd(g�r ; brTr;r+1; : : : ; brTr;m) = gcd(g�r ; Tr;r+1; : : : ; brTr;m) where the last equalityholds because s�(STV; r) divides all r � r minors of A0. Finally, the success ofstep 6, together with Fact 2 and the uniqueness of the SNF, ensures that STVmust be the SNF of A whence s�i = s�(A; i) for 1 � i � r.It remains to show that the probability of failure is less than �. The prooffor this is analogous to that found in the proof of Theorem 9 for algorithmSquareSmithForm and follows from Lemmas 12 and 13.
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Chapter 7ConclusionsThis thesis has considered the problem of computing Hermite and Smith normalforms of matrices over two fundamental domains: the ring of integers ZZ and thering F[x] of univariate polynomials with coe�cients from a �eld. The main chal-lenge in devising e�cient algorithms for computing these forms is to control thegrowth of intermediate expressions. We have presented the classical algorithm forHermite and Smith normal form | a variation of Gaussian elimination with theextended Euclidean algorithm replacing division | and demonstrated the bad be-haviour of the classical technique with respect to intermediate expression swell forboth the case of matrices over the integers and matrices over polynomial domains.In the case of matrices over the integers we have discussed a new class of normalform algorithms (that have appeared recently in the literature) that perform allintermediate computations modulo the determinant of the input matrix. The bulkof this thesis, however, has been devoted to presenting new algorithms that wehave developed for computing Hermite and Smith normal forms of matrices overF[x], F a �eld. Our emphasis has been the special case F = Q | this case posesa double challenge since we must control not only the degrees of intermediatepolynomials but also the size of the rational number coe�cients.For the following summaries, let A be an n � m matrix over F[x], F a �eld,with rank r and with degrees of entries bounded by d. We give our results interms of the input matrix parameters n, m, and d. When F = Q, we use jjAjj todenotes the largest integer coe�cient appearing in A. To summarize complexityresults, we use the parameter s = n+m+ d+ log jjAjj as a measure of the size ofan input matrix over ZZ [x]. 95



96 CHAPTER 7. CONCLUSIONSHermite Normal FormLet F = Q and let the input matrix A have n = m = r and have all coe�cientsintegers (i.e. A 2 ZZ [x]n�n is nonsingular). Let H denote Hermite normal form ofA (over Q[x]) and let U denote unique unimodular matrix such that UA = H.We have given a sequential deterministic algorithm that �nds the matrices U andH (over Q[x]) in O�(n6d2 log jjAjj) or O�(s9) bit operations. This complexityresult is asymptotic and assumes both fast polynomial and integer arithmetic. Inpractice, the dominant cost of the algorithm will be O(n3d) applications of theChinese remainder algorithm to construct integers representable in O(n2d log jjAjj)bits. We have established that the size in bits required to represent the matricesU and H is O�(n5d2 log jjAjj) or O�(s8) and have hypothesized that this bound istight in the worst case. In light of this, we hypothesize that the complexity resultof O�(s9) for computing U and H is optimal (up to log terms) unless methodsfor applying fast matrix multiplication techniques to the problem of computingHermite normal forms over F[x], F a �nite �eld, are discovered.Smith Normal FormLet A be an input matrix over F[x], F a �eld, with n = m = r. We havepresented a Las Vegas probabilistic algorithm that �nds the matrix S, the Smithnormal form of A, in an expected number of O�(n4d) �eld operations. Thiscomplexity result, however, assumes fast polynomial multiplication and will notbe interesting in most practical cases. An important feature of the techniques usedin this algorithm is that they are susceptable to a simple homomorphic imagingscheme. In particular, we can achieve a complexity of O�(n4d2) using standardpolynomial multiplication.Next, let F = Q and let the input matrix A have all coe�cients integers (i.e.A 2 ZZ [x]n�n). We have presented a Las Vegas probabilistic algorithm that �ndsthe matrix S, the Smith normal form of A over Q[x], in an expected number ofO�(n3d(d+n2 log jjAjj)) = O�(s7) bit operations. This complexity result assumesfast integer multiplication. In practice, the main cost of the algorithm is triangu-larizing via fraction-free Gaussian elimination a matrix with similar size entries asA. Again, we are able to emply a homomorphic imaging scheme to accomplish thistriangulation step in O�(s8) bit operations using standard integer and polynomialarithmetic.In practice, matrices for which the Hermite and Smith normal form are de-sired are often nonsquare and/or singular. In light of this, we have presented



97generalizations of our Hermite and Smith algorithms that work for rectangularinput. The results we have given above for computing Hermite and Smith normalforms depend on properties of square nonsingular matrices and do not generalizereadily to the rectangular case. To handle the rectangular case, we have deviseda Las Vegas probabilistic algorithm that takes as input a matrix A 2 Q[x]n�mwith r = m < n + 1 and with entry degrees bounded by d and returns a ma-trix A� 2 Q[x](m+1)�m such that Hermite(A) = Hermite(A�). Furthermore, thematrix A� will have entries bounded in degree d and have rational number coef-�cients only slightly larger than those appearing in A. The cost of �nding A� isthat of triangularizing A via fraction-free Gaussian elimination. This reductionmethod for rectangular lattices should prove useful for other problems as well |we mention some possible applications below.The computation of Hermite and Smith normal forms is a fundamental op-eration in a computer algebra systems | the fast algorithms we have presentedshould prove useful in this regard. In particular, the methods we have employedin our algorithms have two important features: (1) they control the growth ofintermediate and/or �nal expressions very well; and (2) they are susceptible tohomomorphic imaging schemes and thus have practical implementations. Our fo-cus in this thesis has been on the actual computation of Hermite and Smith normalform over polynomial domains. A natural topic for further study is to consider ap-plications of these constructions within the context of a computer algebra system.For example, there are a number of applications that follow immediately from thealgorithms we have presented: (1) A fast Las Vegas algorithm | O�(n5 log jjAjj)expected bit operations | for computing the Frobenius normal form of an integerinput matrix A 2 ZZ n�n; and (2) A fast method for �nding the smallest degreepolynomial d such that the system of polynomial diophantine equations A~x = d~badmits a solution. Less immediately, the algorithm we have given for reducingrectangular lattices over Q[x] to the nearly square case suggests a fast method forcomputing matrix polynomial gcds. From a theoretical perspective, we hope to de-vise a sequential deterministic version of our fast Las Vegas Smith form algorithmfor matrices over Q[x].
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