

Representing Utility for Automated Negotiation

Alan H. Karp
Intelligent Enterprise Technologies Laboratory
HP Laboratories Palo Alto
HPL-2003-153
July 28th , 2003*

E-mail: alan.karp@hp.com

utility
functions,
automated
negotiation

We present a means to represent utility, the measure of goodness of
a possible deal. This representation includes a number of features
necessary to represent complex requirements, such as time
dependence, explicit combinations of terms, and cross dependences.
The formulation is closely tied to the form used to represent
contracts, which makes it useful for automated negotiation
software.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

Representing Utility for Automated Negotiation

Alan H. Karp
Hewlett-Packard Laboratories

alan.karp@hp.com

July 21, 2003

Abstract

We present a means to represent utility, the measure of goodness of a
possible deal. This representation includes a number of features necessary
to represent complex requirements, such as time dependence, explicit combi-
nations of terms, and cross dependences. The formulation is closely tied to
the form used to represent contracts, which makes it useful for automated
negotiation software.

1 Introduction

Implicit in the concept of negotiation is an evaluation function that assigns payoffs
to different deals; the most common representation being a multi-attribute utility
function [6]. In effect, the utility function is a mapping from the many attribute
values in a potential deal to a single number, which simplifies comparing deals.

Determining your own utility function is not always easy [7], and estimating
that of the other party in the negotiation is even harder. An alternative approach
is to rank order the possible deals. Software tools have been developed to make this
problem tractable [3].

Much of the work on multi-attribute utility theory (MAUT) involves the mathe-
matical properties or the construction of utility functions from complex and conflict-
ing requirements [6, 7]. The actual specification of the various terms is beyond the
scope of that work, so the examples shown are ad hoc [1]. We need something more
precise to use utility functions in automated negotiation systems. In this paper,
we’ll use the formal specification of the terms in a contract as the basis for repre-
senting the utility function. In addition, we’ll show how to use this representation
to express dependences among various attribute values.

We’ll start by describing the respresentation as it appears in the utility theory
literature in Section 2. Section 3 extends this approach to allow us to compute
the best deal possible from a given point in the negotiation based on a offers that
can include multiple values for an attribute [4]. We next extend the representation
to account for explicit dependences between attributes in Section 4. We argue in

1

Section 5 that price equivalence is not always an appropriate way to value deals,
and discuss in Section 6 the use of partial order instead of utility.

Special attention is paid to constraints on attributes with continuous values in
Section 7. The impact of time is described in Section 8. Section 9 contains the
formal specification we used in our prototype system [4]. In a negotiation, even
if we know what we want, we may only have an estimate of what the other party
wants; Section 10 and 11 show how this uncertainty can be included in our utility
representation.

2 Additive Utility Function

Let j ∈ {1 . . . J} be the attributes being negotiated, and ~xj be the Kj-element
vector of values for the j’th attribute.1 A deal consists of a single value for each of
the J attributes that is included in the final contract.

Each of the negotiating parties, i has a value, Vi(~xj) representing its payoff.
This general formulation is often replaced by a linear combination of terms. We use
the somewhat more general form shown in Equation 1 to clarify the extension to
compound offers in Section 3.

Vi =
J∑

j=1

wi
j

K∑
k=1

bjkV i(xjk), (1)

where V i(xjk) is the contribution to the payoff negotiator i assigns to the k’th value
of attribute j, and wi

j is a weight function that adjusts the scaling of these functions
to reflect the relative importance of the j’th attribute to negotiator i. This additive
utility function implies mutual utility independence but is more restrictive [6].

The term bjk, the k’th element of the vector~bj , is 1 if the corresponding attribute
value is included in the offer, and is 0 otherwise. Only one of the elements of ~bj is 1
for this form of the utility function, but all elements may be zero if the attribute is
not included in the offer. The k’th element of the vector V i(~xj) has the contribution
of the corresponding attribute value to the payoff. Hence, the summation over k is
an inner product of these two vectors. The result is the contribution to the payoff
of the j’th attribute if the k’th value appears in the offer.

3 Evaluating Compound Offers

An offer in the protocol we use may include multiple values for an attribute [4]. We
can’t use Equation 1 to determine the payoff, because it sums the payoff contribution
of all the attribute values in the offer. It is unlikely to be the case that a potential
deal is worth more if both black and brown are still options, but that is exactly
what Equation 1 implies when more than one value for a given attribute appears in
the offer.

1This list is replaced by a range for numeric attributes [2]. However, we can treat the range as
a finite vector of discrete values or an infinitely long vector representing a continuum of values.

2

In order to properly represent the utility, we modify the definition of the rep-
resentation. First of all, we note that we’d like the utility to be −∞ for attribute
values that violate our constraints, and those attributes that are not included in
the offer should not affect the utility. Constraints are easily represented in this
form using a penalty function; V i(xjk) is set to −∞ if the attribute value violates
a constraint. We also change the two values that appear in the binary vector ~b to
be 0 if the attribute value is in the offer and −∞ if it is not.

The result of adding these two terms is the contribution to the payoff, with a
result of −∞ if the value violates the constraints when the attribute is included in
the offer, and −∞ if the attribute value is not in the offer. The modified form of
the utility function becomes

Vi =
J∑

j=1

wi
j

Kj

max
k=1

[bjk + V i(xjk)], (2)

which represents the best deal that can be reached from this offer. This form still
requires additive independence, with all the assumptions that condition implies.

It is not necessary for an attribute to be introduced into the negotiation at
all [4]. However, unless every attribute appears, we can’t simply take bjk = −∞ for
all values of this attribute. Doing so would make the utility −∞ , indicating that
no agreement is possible. We deal with this fact by assuming there is a payoff of
zero for each attribute representing its absence in the offer. Element Kj + 1 of ~bj

is normally zero if the attribute is not included in the offer and −∞ if it is. The
only exception is that this element will be −∞ if the attribute is required by the
negotiating party. We only need to choose no deal over one with a zero utility to
make this formulation work in all cases.2

4 Composite Utility Function

While it is simple, the formulation of Section 3 misses the connection between
attributes. For example, I can express a preference for black wingtips over brown
loafers, but no assignment of values and weights can capture the fact that I also
prefer brown loafers to brown wingtips and black loafers.3

The proof is simple. Say that w1 represents the weight factor for style and w2

the weight for color. The two styles will be denoted by x1 and x2 while the two
colors by y1 and y2. Our conditions are

w1x1 + w2y1 > w1x2 + w2y2 (3)

w1x2 + w2y2 > w1x1 + w2y2 (4)

2We can’t simply take this term to be zero, because the max function would select it instead
of a negative value for one of the included attribute values. If there are other terms that make the
utility positive, selecting zero instead of a negative value for the contribution of an attribute will
lead to an overestimate of the utility.

3Note the absence of a comparison between brown wingtips and black loafers. These two deals
can’t be compared, resulting in a partial order of the deals.

3

w1x2 + w2y2 > w1x2 + w2y1 (5)

Equation 4 implies that w1(x1 − x2) > 0, and Equation 5, w2(y2 − y1) > 0. Thus,
w1(x2 − x1) + w2(y2 − y1) > 0, which contradicts the Equation 3.

This weakness is a direct result of assuming additive independence. A standard
way to deal with this problem is to introduce a pseudo attribute [6]. Rather than
use one of the standard approaches, we adopt a utility function of the form of
Equation 2 for each enumerated set of attribute values. In other words,

Vi =
J∑

j=1

wj max
k∈Cj

[bjk + V i(xjk)] +
J∑

j=1

wj

Kj

max
k=1

[bjk + V i(xjk)], (6)

where the first term is over the various combinations and the second term is over
the remaining attribute values. The set Cj represents the set of attribute values
appearing in combination j. For example, a component of this set might stand for
“color=black” and “style=wingtips”. In essence, we’ve introduced a new attribute,
style-color, with the cross product of the values appearing in the offer. Note that
we must use combinations to represent something as simple as a different price
for wingtips and loafers. Also, the coefficients must be adjusted to avoid double
counting when an attribute value appears both singly and in a combination.

We need to be careful. If one of the relevant attribute values or combinations
doesn’t appear in the offer, the corresponding element in Vi will be −∞. If none of
the terms in the summations satisfies the constraints, then the term will contribute
−∞, and it will appear that no deal is possible. For example, if the only element in
the first summation is red loafers, which I do not want, it will appear that no deal
is possible, even though black and brown may be in the offer. The solution is to
make sure that each of the terms in Equation 2 includes an entry with zero value if
none of the combinations is included in the offer. If we will only accept one of these
combinations, then we don’t include this extra component.

At first glance, it appears that there is no need for the summation over j in the
first term of Equation 6 because we’re enumerating the combinations. However, we
need this factor when we introduce more than one pseudo attribute. For example,
I prefer black wingtips to brown loafers, but I also prefer to pay cash for immediate
delivery and by credit card if the merchandise is shipped. The weight factor in
the first term allows me to express the relative importance of these combinations
and reduces the number of terms in the summation compared to enumerating all
possible combinations of the four attributes.

The cost of this approach, of course, is that the number of combinations is the
product of the number of values. In the worst case, we can include every attribute
value in one pseudo attribute. However, we expect that most of the time, the number
of attribute values in any combination will be modest. For example, we might have
one combination for style and color and another for shipping and payment methods.
Our representation will be far more compact than trying to represent all possible
combinations of all four of these attributes, yet it is rich enough to represent our
intent. Other attributes can be included in the second term.

Note that the combinations are over attribute values, not attributes, greatly
reducing the number of elements in the first term. For example, shoes might come

4

in 5 colors and 7 styles, but we are only interested in the colors black and brown
and the styles wingtips and loafers. This example has only 4 elements in the first
term, instead of 35 if we considered every possible combination of attribute values.
The second summation has the remaining 3 terms for color and 5 terms for style.

It’s easy to see how we could be misled by using an additive utility function
that combines the preferred deals. Say that the utility function includes an element
representing delivery schedule. I may not care if black wingtips are delivered in 1
day or 3 days , but I do care for brown loafers. A linear combination of V 1

buyer and
V 2

buyer that properly computes the utility will necessarily have a larger value for
delivery in 1 day as opposed to 2. This affect is handled by combining delivery with
style and color into a composite term. Thus, there is one term for black wingtips,
another for brown loafers delivered in 1 day and another for brown loafers delivered
in 3 days.

We’ve said nothing about brown wingtips and black loafers, so we might assume
they don’t satisfy our constraints. Alternatively, we can continue this process to
include brown wingtips as a separate element in the vector, making sure their utility
is less than the above cases. However, a simpler approach is to include them as terms
in the sum over individual attribute values,

Vbuyer(wingtips, brown) = 2w1 + w2

Vbuyer(loafers, black) = 3w1 + w2,
(7)

Providing such terms in the utility function is equivalent to stating that we would
purchase one of these configurations given the right circumstances.

5 Price Equivalence

One problem with the linearized form of the utility function, Equation 1, is that the
utility function reduces every option to a monetary value whenever price appears as
an attribute. More generality is needed. Not every attribute value can be associated
with a price, even if we allow negative prices [6]. For example, I may be willing
to pay with cash if I take the shoes with me, but I insist on using a credit card if
the shoes are to be delivered. However, we’ve written an equation with one term
for price and another for delivery and payment options. If we’re not careful, the
equations will predict that there is a price at which I’ll pay cash for later delivery.
Indeed, there is such a price, just not a reasonable one.

This work is based on the presumption that not every price offer is reasonable,
even allowing for negative prices. The objective is to avoid either party taking an
unneeded object. We assume there is a smallest positive price that an item will
carry, the price the seller thinks someone else will pay. This price may be only the
scrap value, but it won’t be zero. We can even allow a negative price as long as it
doesn’t exceed the disposal costs. Economists would say that we do not have free
disposal. In other words, there is a cost associated with getting rid of junk. Another
effect of this assumption is that we assume there is no reasonable price at which
I’ll take my second choice as long as an offer that doesn’t violate my constraints
for my first choice is on the table. The weight factors explicitly included in the

5

utility functions presented here allow me to guarantee this behavior by making the
coefficient of the price term small enough that the utility of my second choice will
not exceed that of my first choice for any reasonable price.

6 Utility as a Partial Order

In a negotiation, I only need to know that I prefer one possible deal to another; I
don’t need to know by how much more. Hence, utility need only be specified as a
partial order of the possible contracts [6]. I prefer black wingtips to brown loafers,
but there is no need to quantify how much. If I can get black wingtips at a price I
can afford, I won’t consider brown loafers at any (reasonable) price.

While Equation 2 avoids combinatoric explosion, it has a problem for the rep-
resentation of offers of the protocol of our automated negotiation prototype [4].
Namely, Equation 6 does not address the issue of rank ordering the deals. However,
a simple modification allows us to solve this problem. We write

~Vi = ~br + ~V i(~xr) +
J∑

j=1

wj max
k∈Cj

[bjk + V i(xjk)] +
J∑

j=1

wj

Kj

max
k=1

[bjk + V i(xjk)], (8)

where r ∈ R, and the set R represents those attribute values and combinations
relevant to the rank ordering. The utility is now a vector with one component for
each rank ordered deal. The first element is the most preferred deal, and so on.
The summations contribute a constant value to the vector and don’t affect the rank
ordering.

In our example, the attribute values that affect the rank ordering are the colors
black and brown and the styles wingtips and loafers. Other attributes affect the
evaluation of the deal and its constraints, but are not relevant to the rank ordering.
For example, I want to pay less, but I still want black wingtips more than brown
loafers.

Unfortunately, not every strategy can use the form of Equation 8. Some strate-
gies assign a probability of reaching any potential deal. In order to select a good
counteroffer, they must weigh the benefit against the likelihood of reaching a par-
ticular deal. For example, if the best deal I could get is unlikely to be acceptable
to the other party, I’d be better off driving the negotiation in the direction of my
second best deal rather than risking a failed negotiation. Knowing when to make
this tradeoff requires quantifying the amount by which one deal is favored over an-
other. On the other hand, constraint relaxation strategies, in which I counteroffer
with my next most favorable deal, can treat utility as a partial order.

7 Attributes with Continuous Values

We said in Section 2 that attributes with continuous values, such as price, can be
treated as an infinite list of individual values. That’s fine for the formal represen-
tation, but not when it comes time to evaluate the function.

6

Functions of continuous variables and those attributes with a large number of
discrete values, such as price, need to be represented in functional form. We will
represent the constraints by giving the function limited support and define the value
outside that support to be −∞. We’ll use the notation H(a, f(x), b), where a and b
represent the lower and upper bounds of the support. For example, the seller in our
shoe shopping example would use H(100, P,∞) to represent the way utility changes
with price. The buyer uses H(0, 200− P,∞) to represent the contribution of price
to utility.

There is no reason the function must be linear. For example, I might value the
amount of gasoline as H(5, P e−x, 200), which states that it’s not worth my while
to buy less than 5 gallons, that I can’t store more than 200 gallons, and that the
last gallon is worth less to me than the first. In addition, the function H can be
replaced with a representation with continuous derivatives. For example, tanh(αx)
is +1 for large, positive values of x, and -1 for negative values of large magnitude.
Picking a sufficiently large value for α makes this function as steep as desired.

8 Accounting for Time

We also need to include the ”monetary value of time”, which includes more than
just the time value of money [6]. Time is not just money. It has several effects on
the evaluation of an offer. Sometimes time appears as a cost of negotiating, such
as the resources consumed in each round or the cost to remain connected. In this
case, we can simply subtract a linear term in the utility function. Other times, time
enters non-linearly, as when there is a deadline. In this case, we subtract a nonlinear
term, which may be different for each deal. We may also change the relative payoffs
of various attribute values or their combinations, so we make Vi(xsk, t) functions of
time, where s denotes either a combination of attribute values or a specific attribute.

There is also an effect if we choose to rank order potential deals. In this case, we
make the values Vi(xrk, t), where r denotes one of the rank ordered deals, functions
of time. If time is discrete, then these functions can be chosen to change the rank
order of various possible deals without introducing overlap. This guarantee can also
be made with continuous time if the function is discontinuous in time. However, it
may also be that we become more accommodating of offers other than the highest
ranked as time goes on. In this case, the values of the time dependence can be
adjusted so that the values of the utility functions are made equal. In this case, we
have, in effect, a single utility function representing the combination of deals.

9 Representing Utility

We now have a formulation for calculating utility, but we still need a way for negotia-
tors to express their utility for evaluation. Such a representation must capture three
key components, combinations, individual attributes, and time. Time in particular,
but other components as well, must be representable as arbitrary functions.

One representation is a 2-element list. The first element describes the time

7

dependence of the cost of the negotiation. The second is a list of contributions to the
payoff.4 Each entry in the second term is a 3-element list. The first component of the
combination list is the weight given the combination; the second, a list consisting of
the specific contributions to the combination; and the third, a function representing
the value.

A key part of this representation is an unambiguous means of identifying the
attribute. Since these utility functions are to be used in the framework of negotiating
contracts, we’ll use the same ontology representation as used to specify the contract
template [4]. Each section of the contract is expressed in a vocabulary, which consists
of attribute-value pairs. Each section has a name unique to the contract it is in;
each section is described in a set of vocabularies; each attribute has a name unique
to the vocabulary it is in. Hence, we can uniquely identify an attribute by giving
its section, vocabulary, and attribute names. The contract being used is implicit in
the negotiation.

In more formal terms we have

payoff:: (timedep, combinations)
combinations:: combination | (combinations)
combination:: (weight, attributes, values)
weight:: Integer
attributes:: attribute | (attributes)
attribute:: (sectionName, vocabName, attName, values)
sectionName:: string
vocabName:: string
attName:: string
timeDep:: value
values:: [value] | [values]
value:: string interpreted as an executable expression | constant
constant:: string | integer | float

An example will illustrate the features of this representation. We’ll assume that
the shoes are described in Section 1, the payment terms in Section 2, and the delivery
information in Section 3. The section and vocabulary information are redundant in
this example because each section uses only a single vocabulary. Other cases may
arise. For example, we may want to have separate payment terms for the product
and the shipping costs. (The section name has been elided to save space.)

(
’-0.1*time’,
(3,(
(((’1’,’shoe’,’color’,[’black’]),(’1’,’shoe’,’style’,[’wingtip’])), ’3-0.4*time’),
(((’1’,’shoe’,’color’,[’brown’]),(’1’,’shoe’,’style’,[’loafer’])), ’2-0.1*time’)))
(1,(
(((’3’,’delivery’,’delay’,[0,0]),(’2’,’payment’,’method’,[’cash’])),1),
(((’3’,’delivery’,’delay’,[1,BIG]),(’2’,’payment’,’method’,[’credit’])),1)))

4If deals are rank ordered, there is a third term, which contains a list of the individual terms.

8

(2,(
(((’1’,’shoe’,’style’, [’wingtip’]),),1),
(((’1’,’shoe’,’style’, [’loafer’]),),1)))
(1,(
(((’1’,’shoe’,’color’, [’black’]),),1),
((((’1’,shoe’,’color’, [’brown’]),),1))))
(0.04,(
(((’2’,’payment’,’price’,[-INFINITY,200.0]),),”300.0-min(att.value)”)))
)

The first term shown is the dependence on time. Here it is a simple linear
penalty, but it could be any executable expression. We see in this example a weight
of 3 given to the combination of color and style, while a weight of 1 is assigned to
the combination of delivery delay and payment method. You’ll see the use of the
vocabulary name, attribute name, and list of attribute values to specify the exact
attribute value being evaluated. Note the functional dependence on time of the
color/style combinations. Also note the use of the value of the designated attribute
in the last line of the example.

Although brown loafers and black wingtips appear as a combination, these four
attribute values also appear as individual terms. Thus, brown wingtips and black
loafers represent valid deals. On the other hand, the delay and payment method
attributes appear only in particular combinations. Any other combination results
in no deal.

10 Estimating Payoffs

When negotiating, we may know what we want, but we don’t know what the other
party wants; we must make an estimate. The better the estimate, the stronger our
negotiating position will be.

In order to code our estimates for whatever strategy is being used, we modify
the representation of Section 9. Each payoff value is augmented with the standard
deviation of the estimate of the other party’s utility. In the following example,
changes from the representation without uncertainty are underlined.

(
(’-0.1*time’, ’0.02*time’),
(3,(
(((’1’,’shoe’,’color’,[’black’]),(’1’,’shoe’,’style’,[’wingtip’])),(’3-0.4*time’,0.5)),
(((’1’,’shoe’,’color’,[’brown’]),(’1’,’shoe’,’style’,[’loafer’])),(’2-0.1*time’,0.5))))
(1,(
(((’3’,’delivery’,’delay’,[0,0]),(’2’,’payment’,’method’,[’cash’])),(1,0.2)),
(((’3’,’delivery’,’delay’,[1,100]),(’2’,’payment’,’method’,[’credit’])),(1,0.2))))
(2,(
(((’1’,’shoe’,’style’, [’wingtip’]),),(1,0.1)),
(((’1’,’shoe’,’style’, [’loafer’]),),(1,0.2))))
(1,(

9

(((’1’,’shoe’,’color’, [’black’]),),(1,0.5)),
((((shoe’,’color’, [’brown’]),),(1,0.5)))))
(1,(
(((’3’,’delivery’,’delay’,[0,5])),(1,0.2))))
(0.04,(
(((’2’,’payment’,’price’,[-INFINITY,200.0]),),(”300.0-min(att.value)”,50.0))))
)

An interesting aspect of this representation is that we can also express uncer-
tainty in our own utility function. How to interpret that uncertainty is left as an
exercise for the reader. However, it might be interesting to simulate a negotiation
both with and without that uncertainty to see what happens.

11 Constraint Uncertainty

I may have a very precise estimate of how much you value a particular item, perhaps
something easily exchangable such as a barrel of oil, but I may not know if you
have one to sell. Hence, we need to represent explicitly our uncertainty in the other
party’s constraints, which we do by adding a term following the weight associated
with each combination. As before, additions to the previous example are underlined.

(
(’-0.1*time’, ’0.02*time’),
(3,0.3,(
(((’1’,’shoe’,’color’,[’black’]),(’1’,’shoe’,’style’,[’wingtip’])),
(’3-0.4*time’,0.5)),
(((’1’,’shoe’,’color’,[’brown’]),(’1’,’shoe’,’style’,[’loafer’])),
(’2-0.1*time’,0.5))))
(1,0.8,(
(((’3’,’delivery’,’delay’,[0,0]),(’2’,’payment’,’method’,[’cash’])),(1,0.2)),
(((’3’,’delivery’,’delay’,[1,100]),(’payment’,’method’,[’credit’])),(1,0.2))))
(2,0.9(
(((’1’,’shoe’,’style’, [’wingtip’]),),(1,0.1)),
(((’1’,’shoe’,’style’, [’loafer’]),),(1,0.2))))
(1,0.8(
(((’1’,’shoe’,’color’, [’black’]),),(1,0.5)),
((((shoe’,’color’, [’brown’]),),(1,0.5)))))
(1,0.3,(
(((’delivery’,’delay’,[0,5])),(1,0.2))))
(0.04,1.0(
(((’payment’,’price’,[-INFINITY,200.0]),),(”300.0-min(att.value)”,50.0))))
)

In this example, we estimate that there’s a 30% chance that you will only buy
black wingtips or brown loafers, and that you are certain to walk away from a deal
that violates your price constraint.

10

12 Summary

In this report, we’ve extended the simplest form of the utility function to include
cases that violate its assumption of additive utility independence and to represent
uncertainty in both values and constraints. We’ve also shown how to express the
utility in a language based on the ontologies used to represent offers.

There are a number of possible extensions. We’ve used the additive form for
the utility function, but the multiplicative form is more general. We don’t know
if we need to extend the formulation, or if the pseudo attributes we introduced in
Section 4 make the additive formulation sufficiently expressive. We also need to
investigate the effect the utility independence assumptions have on the expressive-
ness of this representation. For example, we can include the value of the attribute
designated in a term, but there is no way to include the values of other attributes. It
is not clear if this limitation significantly restricts our ability to express our desires.

Acknowledgements: I’d like to thank Claudio Bartolini for his careful reading of
a draft of this report and for the improvements he suggested.

References

[1] M. Barbuceanu and W-K Lo, “Multi-attribute Utilty Theoretic Negotiation for
Electronic Commerce”, in Agent-Mediated Electronic Commerce III, Current
Issues in Agent-Based Electronic Commerce Systems, Frank Dignum, Ulises
Corts (Eds.), also Lecture Notes in Computer Science 2003, ISBN 3-540-41749-
4, Springer (2001)

[2] P. Faratin, M. Klein, H. Sayama, and Y. Bar-Yam, “Simple Negotiat-
ing Agents in Complex Games: Emergent Equilibria and Dominant Strate-
gies”, in Proceedings of the 8th Int Workshop on Agent Theories, Archi-
tectures and Languages (ATAL-01), Seattle, USA, pp. 42–53, 2001, also at
http://ccs.mit.edu/peyman/pubs/ATAL-01.pdf

[3] V. S. Iyengar, J. Lee, and M. Campbell, “Q-Eval: Evaluating Multiple At-
tribute Items Using Queries”, EC’01, October 14–17, Tampa, FL (2001)

[4] A. H. Karp, “Rules of Engagement for Automated Nego-
tiation”, HP Labs Technical Report HPL-2003-152, 2003
http://www.hpl.hp.com/techreports/2003/HPL-2003-152.html

[5] A. H. Karp, R. Wu, K-Y. Chen, and A. Zhang, “A Game Tree Strategy
for Automated Negotiation”, HP Labs Tech Report HPL-2003-154, 2003,
http://www.hpl.hp.com/techreports/2003/HPL-2003-154.html

[6] R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences
and Value Tradeoffs, Cambridge University Press (1993)

[7] H. Raiffa, The Art and Science of Negotiation, Harvard University Press, 1982

11

