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Abstract. Consider the set * of all linear (or affine) transformations between two vector spaces over
a finite field F. We study how good * is as a class of hash functions, namely we consider hashing a set
S of size n into a range having the same cardinality n by a randomly chosen function from * and look
at the expected size of the largest hash bucket. * is a universal class of hash functions for any finite
field, but with respect to our measure different fields behave differently.

If the finite field F has n elements, then there is a bad set S , F2 of size n with expected maximal
bucket size V(n1/3). If n is a perfect square, then there is even a bad set with largest bucket size
always at least =n. (This is worst possible, since with respect to a universal class of hash functions
every set of size n has expected largest bucket size below =n 1 1/ 2.)

If, however, we consider the field of two elements, then we get much better bounds. The best
previously known upper bound on the expected size of the largest bucket for this class was O(2=log n).
We reduce this upper bound to O(log n log log n). Note that this is not far from the guarantee for a
random function. There, the average largest bucket would be U(log n/ log log n).

In the course of our proof we develop a tool which may be of independent interest. Suppose we
have a subset S of a vector space D over Z2, and consider a random linear mapping of D to a smaller
vector space R. If the cardinality of S is larger than ceuR uloguR u, then with probability 1 2 e, the
image of S will cover all elements in the range.

Categories and Subject Descriptors: E.2 [Data Storage Representations]: hash-table representations;
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems–
sorting and searching

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Hashing via linear maps, universal hashing

1. Introduction

Consider distributing n balls in s buckets, randomly and independently. The
resulting distribution of the balls in the buckets is the object of occupancy theory.

In the theory of algorithms and in complexity theory, it is often necessary and
useful to consider putting balls in buckets without complete independence. More
precisely, the following setting is studied: A class * of hash functions, each
mapping a universe U to {1, 2, . . . , s}, is fixed. A set S # U to be hashed is
given by an adversary, a member h [ * is chosen uniformly at random, S is
hashed using h, and the distribution of the multi-set {h( x) ux [ S} is studied. If
the class * is the class of all functions between U and {1, 2, . . . , s}, we get the
classical occupancy problems. Carter and Wegman [1979] defined a class * to be
universal if

@x Þ y [ U : Prob~h~ x! 5 h~ y!! #
1

s
.

We remark that a stricter definition is often used in the complexity theory
literature.

For universal families, the following properties are well known; variations of
them have been used extensively in various settings:

(1) If S of size n is hashed to n2 buckets, with probability more than 1/2, no
collision occurs.

(2) If S of size 2n2 is hashed to n buckets, with probability more than 1/2, every
bucket receives an element.

(3) If S of size n is hashed to n buckets, the expected size of the largest bucket is
less than =n 1 1

2.
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The intuition behind universal hashing is that we often lose relatively little
compared to using a completely random map. Note that, for the Property (1),
this is true in a very strong sense; even with complete randomness, we do not
expect o(n2) buckets to suffice (the birthday paradox), so nothing is lost by using
a universal family instead. The bounds in the second and third properties,
however, are rather coarse compared to what one would get with complete
randomness. For Property (2), with complete randomness, Q(n log n) balls
would suffice to cover the buckets with good probability (the coupon collector’s
theorem), that is, a polynomial improvement over n2, and for Property (3), with
complete randomness, we expect the largest bucket to have size Q(log n/ log log
n), that is, an exponential improvement over =n. In these last cases we do seem
to lose quite a lot compared to using a completely random map and better
bounds would seem desirable. However, it is rather easy to construct (unnatural)
examples of universal families and sets to be hashed showing that size Q(n2) is
necessary to cover n buckets with non-zero probability, and that buckets of size
=n are in general unavoidable, when a set of size n is hashed to n buckets. This
shows that the abstract property of universality does not allow for stronger
statements. Now fix a concrete universal family of hash functions. We ask the
following question: To which extent are the finer occupancy properties of completely
random maps preserved?

We provide answers to these questions for the case of linear maps between
two vector spaces over a finite field, a natural and well known class of universal
(in the sense of Carter and Wegmen) hash functions. The general flavor of our
results is that “large fields are bad”, in the sense that the bounds become the
worst possible for universal families, while “small fields are good” in the sense
that the bounds become as good or almost as good as the ones for independently
distributed balls.

More precisely, for the covering problem, we show the following (easy)
theorem.

THEOREM 1. Let F be a field of size n and let * be the class of linear maps
between F2 and F. There is a subset S of F2 of size Q(uFu2), so that for no h [ *,
h(S) 5 F.

On the other hand, we prove the following harder theorem:

THEOREM 2. Let S be a subset of a vector space over Z2 and choose a random
linear map to a smaller vector space R. If uSu $ ceuRuloguRu, then with probability at
least 1 2 e the image of S covers the entire range R.

For the “largest bucket problem”, let us first introduce some notation: Let U
be the universe from which the keys are chosen. We fix a class * of functions
mapping U to {1, . . . , s}. Then, a set S # U of size n is chosen by an adversary,
and we uniformly at random pick a hash function h [ *, hash S using h and
look at the size of the largest resulting hash bucket. We denote the expectation
of this size by Ln

s . Formally,

Ln
s ~*! 5 max

S#U , uS u5n

Eh[*F max
y[{1, . . . ,s}

u$ x [ S uh~ x! 5 y% uG .
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Usually, we think of s being of size close to n. Note that if s 5 V(n2), any
universal class yields Ln

s 5 O(1).
The class * we will consider is the set of linear maps between Fm 3 Fk for

m . k. Here, F is a finite field and s 5 uF uk. This class is universal for all values
of the parameters.

When k 5 1 and thus uF u 5 s, the expected largest bucket can be large.

THEOREM 3. Let F be a finite field with uFu 5 s. For the class * of all linear
transformations F2 3 F, we have

Ls
s~*! 5 V~s1/3! .

Furthermore, if uFu is a perfect square, we have

Ls
s~*! . Îs.

Note how close our lower bound for quadratic fields is to the upper bound of
=s 1 1/ 2 that holds for every universal class. We also mention that for the bad
set we construct in Theorem 8 for a quadratic field there is no good linear hash
function, since there always exists a bucket of size at least =s.

When the field is the field of two elements, the situation is completely
different. Markowsky, et al. [1978] showed that for this case Ls

s(*) 5 O(s1/4).
Mehlhorn and Vishkin [1984] improved on this result (although this is implicit in
their paper) and showed that Ls

s(*) 5 O(2=log s). We further improve the
bound and show that:

THEOREM 4. For the class * of all linear transformations between two vector
spaces over Z2,

Ls
s~*! 5 O~log s log log s! .

Furthermore, we also show that even if the range is smaller than uS u by a
logarithmic factor, the same still holds:

THEOREM 5. For the class * of all linear transformations between two vector
spaces over Z2,

Ls log s
s ~*! 5 O~log s log log s! .

Note that even if one uses the class 5 of all functions one obtains only a slightly
better result: the expected size of the largest bucket in this case is Ls

s(5) 5
Q(log s/log log s) and Ls log s

s (5) 5 Q(log s), which is the best possible bound
for any class. Interestingly, our upper bound is based on our upper bound for the
covering property.

We do not have any nontrivial lower bounds on Ls
s for the class of linear maps

over Z2, that is, it might be as good as O(log s/log log s). We leave this as an
open question.

1.1. MOTIVATION. There is no doubt that the method of implementing a
dictionary by hashing with chaining, recommended in textbooks [Cormen et al.
1990; Gonnet and Baeza-Yates 1991] especially for situations with many update
operations, is a practically important scheme.
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In situations in which a good bound on the cost of single operations is
important, for example, in real-time applications, the expected maximal bucket
size as formed by all keys ever present in the dictionary during a time interval
plays a crucial role. Our results show that, at least as long as the size of the hash
table can be determined right at the start, using a hash family of linear functions
over Z2 will perform very well in this respect. For other simple hash classes, such
bounds on the worst case bucket size are not available, or even fail to hold (see
example in Section 4); other, more sophisticated hash families [Siegel 1989;
Dietzfelbinger and Meyer auf der Heide 1992; Dietzfelbinger et al. 1992] that do
guarantee small maximal bucket sizes consist of functions with higher evaluation
time. Of course, if worst case constant time for certain operations is absolutely
necessary, the known two-level hashing schemes can be used, for example, the
FKS scheme [Fredman et al. 1984] for static dictionaries; dynamic perfect hashing
[Dietzfelbinger et al. 1994] for the dynamic case with constant time lookups and
expected time O(n) for n update operations; and the “real-time dictionaries” from
Dietzfelbinger and Meyer auf der Heide [1992], that perform each operation in
constant time, with high probability. It should be noted, however, that a price is to be
paid for the guaranteed constant lookup time in the dynamic schemes: the (average)
cost of insertions is significantly higher than in simple schemes like chained hashing;
the overall storage requirements are higher as well.

1.2. RELATED WORK. Another direction in trying to show that a specific class
has a good bound on the expected size of the largest bucket is to build a class
specifically designed to have such good property.

One immediate such result is obtained by looking at the class * of d-degree
polynomials over finite fields, where d 5 c log n/log log n (see, e.g., Alon et al.
[1986]). It is easy to see that this class maps each d elements of the domain
independently to the range, and thus, the bound that applies to the class of all
functions also applies to this class. We can combine this with the following
well-known construction, found in, for example, Fredman et al. [1984], and some-
times called “collapsing the universe”: There is a class # of size 2Q(log n1log log uUu)

containing functions mapping U to {1, . . . , nk12}, so that, for any set S of size n, a
randomly chosen map from # will be one-to-one with probability 1 2 O(1/nk).

The class consisting of functions obtained by first applying a member of
#, then a member of * is then a class with Ln

n 5 Q(log n/log log n) and size
2O(log log uU u1log2 n/log log n) and with evaluation time O(log n/log log n) in a
reasonable model of computation, say, a RAM with unit cost operations on
members of the universe to be hashed.

More efficient (but much larger) families were given by Siegel [1989] and by
Dietzfelbinger and Meyer auf der Heide [1992]. Both provide families of size
uU un

e

such that the functions can be evaluated in O(1) time on a RAM and with
Ln

n 5 Q(log n/log log n). The families from Siegel [1989] and Dietzfelbinger and
Meyer auf der Heide [1992] are somewhat complex to implement while the class
of linear maps requires only very basic bit operations (as discussed already in
Carter and Wegman [1979]). It is therefore desirable to study this class, and this
is the main purpose of the present paper.

1.3. NOTATION. If S is a subset of the domain D of a function h, we use h(S)
to denote {h(s) u s [ S}. If x is an element of the range, we use h21( x) to
denote {s [ D u h(s) 5 x}. If A and B are subsets of a vector space V and x [
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V, we use the notations A 1 B 5 {a 1 b u a [ A ` b [ B} and x 1 A 5
{ x 1 a u a [ A}. We use Z2 to denote the field with 2 elements. All logarithms
in this paper are base two.

2. The Covering Property

2.1. LOWER BOUNDS FOR COVERING WITH A LARGE FIELD. We prove Theo-
rem 1. Take any set A , F of size uA u 5  uF u/ 2 and consider S 5 {( x, y) u y Þ
0 ` x/y [ A ` ( x 2 1)/y [y A}. S has density around one quarter. To see this,
note that if x and y are picked randomly and independently in F*, ( x/y, ( x 2
1)/y) has the same distribution as ( x, x 2 y). Also, no linear map g: F2 3 F
satisfies g(S) 5 F. To see this, take a nonzero linear map g: ( x, y) ° ax 1 by
and note that, if 0 [ g(S), then a Þ 0 and 2b/a [ A, but in this case a [y
g(S).

2.2. UPPER BOUNDS FOR COVERING WITH A SMALL FIELD–THE EXISTENTIAL

CASE. We start by showing that if we have a subset A of a vector space over Z2
and uA u is sufficiently larger than another space W, then there exists a linear
transformation T mapping A to the entire range T( A) 5 W. The constant e
below is the base of the natural logarithm.

THEOREM 6. Let A be a finite set of vectors in a vector space V of an arbitrary
dimension over Z2 and let t . 0 be an integer. If uAu . t2t/log e, then there exists a
linear map T: V 3 Z2

t , so that T maps A onto Z2
t .

For the proof of this theorem, we need the following simple lemma. Note that,
although we state the lemma for vector spaces, it holds for any finite group.

LEMMA 2.1. Let V be a finite vector space, A # V, a 5 1 2 uAu/uVu. Then for a
random v [ V,

EvS 1 2
uA ø ~v 1 A! u

uV u D 5 a2 .

PROOF. If v and u are both chosen uniformly independently at random from
V, then both events u [y A and u [y v 1 A have probability a and they are
independent. e

PROOF OF THEOREM 6. Let m be the dimension of V, N 5 uA u and a 5 1 2
uA u/ uV u 5 1 2 N/ 2m. Starting with A0 5 A, we choose a vector v1 [ V so that
for A1 5 A0 ø (v1 1 A0)

1 2
uA1u

uV u
# a2 .

Such a choice for v1 exists by Lemma 2.1. Then, by the same procedure, we
choose a v2 so that for

A2 5 A1 ø ~v2 1 A1! 5 A 1 Span$v1, v2% ,

1 2
uA2u

uV u
# a4 ,

672 ALON ET AL.



and so on up to As 5 A 1 Span{v1, . . . , vs} with s 5 m 2 t for which

1 2
uAsu

uV u
# a2s .

Note that one can assume that the vectors v1, . . . , vs are linearly independent
since choosing a vector vi which linearly depends on the vectors formerly chosen
makes Ai 5 Ai21.

Let W 5 Span{v1, . . . , vs}. We have A 1 W 5 V since for x [ V\( A 1 W)
the sets x 1 W and A 1 W 5 As were disjoint, a contradiction as ux 1 W u 5
uW u and uAsu $ 2m 2 2ma2 s

$ 2m 2 2m exp(2N22t) . uV u 2 uW u.
We choose an onto linear map T: V 3 Z2

t such that its kernel T21(0) equals
W. As T(W) 5 {0}, we have T( A) 5 T( A 1 W) 5 T(V) 5 Z2

t as claimed. e

The bound in Theorem 6 is asymptotically tight as shown by the following
proposition:

PROPOSITION 2.2. For every large enough integer t, there is a set A of at least
(t 2 3 log t)2t/log e vectors in a vector space V over Z2 so that for any linear map
T: V 3 Z2

t , T does not map A onto Z2
t .

PROOF. Let V 5 Z2
t1s with s 5 t/10 and let A be chosen at random by

picking each element of V independently and with probability p 5 1 2 22x into
the set with x 5 (t 2 2 log t)22s. From Chebyshev’s inequality, we know that
with probability at least 3/4, A has cardinality at least pN 2 2=pN for N 5
2s1t. Using p . x/log e 2 x2/(2 log2e) one can show that this is as many as
claimed in the proposition. Let us compute the probability that there exists a
linear map T: V 3 Z2

t such that T maps A onto Z2
t . There are 2 t(t1s) possible

maps T and each of them satisfies T( A) 5 Z2
t with probability at most (1 2

(1 2 p)2 s

)2 t

5 (1 2 222 sx)2 t

5 (1 2 t2/ 2 t)2 t

, exp(2t2). So with probability
almost 3/4, A is not small and still no T maps A onto Z2

t . e

2.3. CHOOSING THE LINEAR MAP AT RANDOM. In this subsection, we
strengthen Theorem 6 and prove that if A is bigger than what is required there by
only a constant factor, then almost all choices of the linear transformation T
work. This may seem immediate at first glance since Lemma 2.1 tells us that a
random choice for the next vector is good on average. In particular, it might
seem that for a random choice of v1 and v2 in the proof of Theorem 6, Ev1,v2

(1 2 uA 1 Span{v1,v2} u/ uV u) # a4. Unfortunately, this is not the case: For
example, think of A being a linear subspace containing half of V. In this case, the
ratio a of points that are not covered is 1/2. As random vectors vi are chosen to
be added to A, vectors in A are chosen with probability 1/2. Thus, after i steps, a
remains 1/2 with probability 1/ 2 i and becomes 0 otherwise. Thus, the expected
value of a i is 22i21 which is much bigger than 222 i

.
Our first lemma is technical in nature:

LEMMA 2.3. Let ai for 1 # i # k be random variables and let 0 , a0 , 1 be a
constant. Suppose that for 0 # i , k we have 0 # ai11 # ai and conditioned on any
set of values for a1, . . . , ai we have E[ai11ua1, . . . , ai] 5 ai

2. Then for any threshold
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0 , t , 1 we have

Prob@ak $ t# # a0
k2log log(1/t)1log log(1/a0).

PROOF. The proof is by induction on k. The k 5 0 base case is trivial.
We assume the statement of the lemma for k and prove it for k 1 1. Let c 5

k 2 log log (1/t). We may suppose c 1 1 1 log log(1/a0) $ 0 since otherwise
the bound in the lemma is greater than 1.

After the choice of a1, the rest of the random variables form a random process
of length k satisfying the conditions of the lemma (unless a1 5 0); thus we can
apply the inductive hypothesis to get

Prob@ak 1 1 $ t# 5 Ea1
@Prob@ak 1 1 $ t ua1## # E@ f~a1!# ,

where we define f0( x) 5 xc1log log(1/x) for 0 , x , 1 and take f( x) 5 min(1,
f0( x)) in the same interval and f(0) 5 0. The value f(a1) is clearly an upper
bound on Prob[ak11 $ t ua1].

We claim that in the interval 0 # x # a0 we have f( x) # f0(a0) x/a0. To
prove this, simply observe that f0( x)/x is first increasing then decreasing on (0,
1). To see this, compute the derivative ( f0( x)/x)9 5 (c 1 log e 2 1 1 log
log(1/x)) f0( x)/x2. If a0 is still in the increasing phase then we have f( x)/x #
f0( x)/x # f0(a0)/a0 for 0 , x # a0. Suppose now that a0 is already in the
decreasing phase and define x9 5 2222c21

. Notice that we assumed a0 # x9 in
the beginning of the proof, so we have f0(a0)/a0 $ f0( x9)/x9. Let us define x0 5
x92 5 2222c

and notice that we have f( x) 5 1 if and only if x $ x0. It is easy to
check that x0 must still be in the increasing phase of f0( x)/x; thus, we have
f( x)/x 5 f0( x)/x # f0( x0)/x0 5 1/x0 for 0 , x # x0. For x0 # x , 1, we simply
have f( x)/x 5 1/x # 1/x0. Thus, we must have f( x)/x # 1/x0 5 f0( x9)/x9 #
f0(a0)/a0 for 0 , x , 1. We have thus proved the claim in all cases for 0 , x #
a0. The claim is trivial for x 5 0.

Using the claim, we can finish the proof writing:

Prob@ak11 $ t# # E@ f~a1!# # EF f0~a0!a1

a0
G 5

f0~a0! E@a1#

a0

e

5 f0~a0!a0 5 a0
c111log log(1/a0) .

We remark that the bound in the lemma is achievable for t 5 a0
2 j

with an
integer 0 # j # k. The optimal process has a i 5 a i21 or a i 5 0 for 1 # i #
k 2 j, while a i 5 a i21

2 for k 2 j , i # k.

THEOREM 7

(a) For every e . 0, there is a constant ce . 0 such that the following holds. Let A
be a finite set of vectors in a vector space V of an arbitrary dimension over Z2,
let t . 0 be an integer. If uA u $ cet2 t, then for a uniform random linear
transformation T: V 3 Z2

t

Prob~T~ A! 5 Z2
t ! $ 1 2 e.
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(b) If A is a subset of the vector space Z2
u of density uA u/ 2u 5 1 2 a , 1 and

0 # t , u is an integer, then for a uniform random onto linear
transformation T: Z2

u 3 Z2
t

Prob~T~ A! Þ Z2
t ! # au2t2log t1log log(1/a) .

PROOF. We start with proving part (b) of the theorem. In order to pick the
onto map T, we use the following process (similar to the one in the proof of
Theorem 6). Pick s 5 u 2 t vectors v1, . . . , vs uniformly at random from the
vectors in Z2

u and choose T to be a random onto linear transformation T: Z2
u 3

Z2
t with the constraints T(vi) 5 0 (i 5 1, . . . , s), that is, the vectors v1, . . . , vs

are in the kernel of T. Note that the vi’s are not necessarily linearly independent
and that they do not necessarily span the kernel. Still, the transformation T is
indeed distributed uniformly at random amongst all onto linear maps of Z2

u onto
Z2

t .
Using notations similar to the ones used in the proof of Theorem 6, let A0 5

A, Ai 5 A0 1 Span{v1,. . . , vi} and a i 5 1 2 uAiu/ 2u for i 5 0, . . . , s.
Clearly, a i is nonnegative and monotone decreasing in i with a0 5 a . The
equation E[a i11ua1, . . . , a i] 5 a i

2 is guaranteed by Lemma 2.1 since Ai11 5 Ai

ø ( Ai 1 vi11) and vi11 is independent of a j for j # i. Thus, all the conditions
of Lemma 2.3 are satisfied and we have

Prob@a s $ 22t# # a s2log t 1 log log~1/a! .

By the definition of s, the right-hand side here is equal to the estimate in the
theorem. Finally note that (as in the proof of Theorem 6) when as , 22t then
T( A) 5 Z2

t since for x [ Z2
t \T( A) the sets T21( x) and As were disjoint with

sizes 2u2t and (1 2 as)2u . 2u 2 2u2t, a contradiction. Thus, we have the
claimed upper bound for the probability that T( A) Þ Z2

t .
Now we turn to part (a) of the theorem and prove it using part (b). Part (a) is

about a random linear transformation, not necessarily onto, but this difference
from the claim just proved poses less of a problem, the difficulty is that we do not
have an a priori bound on 1 2 uA u/ uV u. In fact, this ratio can be arbitrarily small.
To solve this, we choose the transformation T in two steps, the first step ensuring
that the density of the covered set is substantial, then applying part (b) for the
second step.

Let W 5 Z2
u, with u 5 log(2 uA u/e). We factor T through W. First, we pick

uniformly at random a linear transformation T0: V 3 W. Then, we pick a
random onto linear map T1: W 3 Z2

t , and set T 5 T0+T1. This results in a
uniformly chosen linear map T: V 3 Z2

t . This is true even for a fixed onto T1
and a random T0, since the values T0(ei) for a basis e1, e2, . . . of V are
independent and uniformly distributed in W, thus the values T(ei) are also
independent and uniformly distributed in Z2

t .
Any pair of vectors v Þ w [ A collide (due to T0) with probability

Prob[T0(v) 5 T0(w)] 5 1/ uW u. Thus, the expected number of collisions is
( uA u

2 )/ uW u. Since uT0( A) u # uA u/ 2 implies at least uA u/ 2 such collisions, Markov’s
inequality gives Prob[ uT0( A) u # uA u/ 2] # 2( uA u

2 )/( uA u uW u) , uA u/ uW u # e/ 2. For
any fixed T0, part (b) of the theorem gives

Prob@T~ A! Þ Z2
t # # au2t2log t 1 log log~1/a! ,
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where a 5 1 2 uT0( A) u/ uW u. In case uT0( A) u . uA u/ 2, we have a , 1 2
uA u/(2 uW u) , exp(2e/8); thus, using the monotonicity of the bound above, we
get

Prob@T~ A! Þ Z2
t # # exp~2e~u 2 t 2 log t 1 log(log exp(e/8)))/8) . (1)

Choosing ce 5 4(2/e)8/e we have that uA u $ cet2 t implies u 5 log(2 uA u/e) .
t 1 log t 1 log(8/e) 1 (8/e) log(2/e). This implies that the bound in Eq. (1) is
less than e/2; thus, we get Prob[T( A) Þ Z2

t ] # Prob[ uT0( A) u # uA u/ 2] 1 e/ 2 ,
e as claimed. e

We remark that a more careful analysis gives ce, that is, a small polynomial of
1/e.

3. The Largest Bucket

3.1. LOWER BOUND FOR THE LARGEST BUCKET WITH A LARGE FIELD. We
start by showing why linear hashing over a large finite field is bad with respect to
the expected largest bucket size measure. This natural example shows that
universality of the class is not enough to assure small buckets. For a finite field
F, we prove the existence of a bad set S , F2 of size uS u 5 uF u such that the
expected largest bucket in S with respect to a random linear map F2 3 F is big.
We prove the results in Theorem 3 separately for quadratic and nonquadratic
fields.

We start with an intuitive description of the constructions. Linear hashing of
the plane collapses all straight lines of a random direction. Thus, a bad set in the
plane must contain many points on at least one line in many different directions.
It is not hard to come up with bad sets that contain many points of many
different lines; however, the obvious constructions (subplane or grid) yield sets
where many of the “popular lines” tend to be parallel and thus they only cover a
few directions. This problem can be solved by a projective transformation: the
transformed set has many popular lines, but they are no longer parallel.

For the nonquadratic case, it is convenient to explicitly use the concept of the
projective plane over a field F. Recall that the projective plane P over F is
defined as (F3 2 {(0, 0, 0)})/;, where ; is the equivalence relation ( x, y,
z) ; (cx, cy, cz) for all c Þ 0. The affine plane F2 is embedded in P by the
one-to-one map ( x, y) ° ( x, y, 1). A line in P is given by an equation {( x, y,
z) uax 1 by 1 cz 5 0}, that is, a projective line corresponds to a plane in F3

containing the origin. All projective lines are extensions (by one new point) of
lines in the affine plane F2, except for the ideal line, given by {( x, y, z) uz 5 0}.
A projective transformation mapping the ideal line to another projective line L is
a map f̃: P 3 P obtained as the ;-quotient of a nonsingular linear map
f: F3 3 F3 mapping the plane corresponding to the ideal line into the plane
corresponding to L.

Projective geometry is useful for understanding the behavior of linear hash
functions due to the following fact which is easily verified: Picking a random
nontrivial linear map F2 3 F as a hash function and partitioning a subset
S , F2 into hash buckets accordingly, corresponds exactly to picking a random
point p on the ideal line and partitioning the points of S according to which line
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through p they are on. This observation will be used explicitly in the proof of
Theorem 9.

THEOREM 8. Let F be a finite field with uFu being a perfect square. There exists a
set S , F2 of size uSu 5 uFu such that for every linear map h: F2 3 F, S has a large
bucket, that is, there exists a value y [ F with uh21( y)u $ =uFu.

PROOF. We have a finite field F0 of which F is a quadratic extension. Let uF0u
5 m and uF u 5 m2 5 n. Let a be an arbitrary element in F\F0 and define S 5
{1/( x 1 a), y/( x 1 a) ux, y [ F0}. Note that uS u 5 m2 5 uF u. Notice also, that
S is the image of the subplane F0

2 under the projective transformation ( x, y) °
(1/( x 1 a), y/( x 1 a)).

Fix A, B [ F and consider the function h: F2 3 F defined by h( x, y) 5
Ax 1 By. We must show that there is some C [ F such that uh21(C) ù S u $
m. If B 5 0, then h maps all the m elements of S9 5 {(1/a, y/a) u y [ F0} to
C 5 A/a, as needed. Otherwise, we claim that there is a C [ F such that both
C/B and (aC 2 A)/B are in F0. To see this, observe that if g1 and g2 are two
distinct members of F0, then ag1 and ag2 lie in distinct additive cosets of F0 in F,
since otherwise their difference, a( g1 2 g2) would have to be in F0, contradict-
ing the fact that a [y F0. Thus, as g ranges over all members of F0, ag intersects
distinct additive cosets of F0 in F, and hence aF0 intersects all those cosets. In
particular, there is some g [ F0 so that ag [ F0 1 ( A/B), implying that C 5
gB satisfies the assertion of the claim. For the above C, define y( x) 5 (C/B) x 1
(aC 2 A)/B; it follows that y( x) [ F0 for every x [ F0. We have now
A(1/(a 1 x)) 1 B( y( x)/(a 1 x)) 5 C, showing that h maps all the m elements
of S9 5 {(1/(a 1 x), ( y( x)/(a 1 x)) u x [ F0} , S to C. e

THEOREM 9. Let F be a finite field. There exists a set S , F2 of size uSu 5 uFu
such that for more than half of the linear maps h: F2 3 F, S has a large bucket, that
is, there exists a value y [ F with uh21( y)u $ uFu1/3/3 2 1.

PROOF. First, we construct a set S9 , F2 such that uS9 u # uF u 5 n and there
are n distinct lines in the plane F2 each containing at least m $ n1/3/3 points of
S9.

Let us first consider the case when n is a prime, so F consists of the integers
modulo n. We let A 5 {i u 1 # i , =n} and consider the square grid S9 5
A 3 A. Clearly, uS9 u , n. It is well known that each of the n most popular lines
contains at least m $ n1/3/3 points of S9. This is usually proved for the same grid
in the Euclidean plane (see, for example, Pach and Agarwal [1995, pp. 178 –179])
but that result implies the same for our grid in F2.

Now let n 5 pk and let F0 be the subfield in F of p elements. Let x [ F be a
primitive element, then every element of F can be uniquely expressed as a
polynomial of x of degree below k with coefficients from F0. Let k1 5 (k 1
1)/3, k2 5 k 2 k1 5 (2k 1 1)/3 and let A1 5 { f( x) u deg( f ) , k1}, A2 5
{ f( x) u deg( f ) , k2}, where the polynomials f have coefficients from F0.
Finally, we take S9 5 A1 3 A2. Clearly, uS9 u 5 n. For a [ A1 and b [ A2, we
consider the line La,b 5 {( y, ay 1 b) u y [ F} in F2. Notice that there are n
such lines and we have ay 1 b [ A2 whenever y [ A1. Thus, we have n distinct
lines each containing m 5 uA1u 5 pk1 points of S9. We have m $ n1/3 as claimed
unless k [ 1 (mod 3). Notice that for k [ 2 (mod 3) our m is much higher than
n1/3. For the bad case k [ 1 (mod 3), we apply the construction below instead.
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Finally suppose n 5 pk, p is a prime and k [ 1 (mod 3). To get our set S9 in
this case, we have to merge the two constructions above. Let F0 be the p element
subfield of F, then F0 consists of the integers modulo p. We set A 5 {i u 1 #

i , =p}. Let k1 5 (k 1 2)/3 and k2 5 (2k 1 1)/3 and let x [ F be a
primitive element, so we can express any element of F uniquely as a polynomial
of x of degree less then k with coefficients from F0. We set A1 5 { f( x) u
deg( f ) , k1 ` f(0) [ A}, A2 5 { f( x) u deg( f ) , k2 ` f(0) [ A} where the
polynomials f have coefficients from F0. Finally, we set S9 5 A1 3 A2. Clearly,
uS9 u , n. For j, j9 [ F0, let Lj, j9 5 {(i, ji 1 j9) u i [ F0}. Let a and b be
polynomials with coefficients from F0 with deg(a) , k1 and deg(b) , k2.
Consider the line La,b 5 {( y, a( x) y 1 b( x)) u y [ F}. We now compute the
value of uLa,b ù S9 u. Note that a point ( y, a( x) y 1 b( x)) of La,b is in S9 if and
only if y 5 f( x) for some polynomial f of F0 so that deg( f ) , k1, f(0) [ A and
a(0) f(0) 1 b(0) [ A. The number of such polynomials f is exactly
pk121 uLa(0),b(0) ù ( A 3 A) u. Thus, uLa,b ù S9 u is exactly pk121uLa(0),b(0) ù
( A 3 A) u. Thus, from knowing that the p most popular lines in F0

2 contain at
least m0 $ p1/3/3 points from A 3 A, we conclude that there exist n distinct
lines each containing at least m 5 m0pk121 $ n1/3/3 points of S9; namely, the
lines La,b for those choices of a and b for which La(0),b(0) is a popular line in F0

2.
In all cases, we have constructed our set S9 , F2 of size uS9u # n with n distinct

popular lines each containing at least m $ n1/3/3 points of S9. Let P be the projective
plane containing F2. Out of the n2 1 n 1 1 points in P, every popular line covers
n 1 1. The ith popular line (1 # i # n) can only have i 2 1 intersections with earlier
lines; thus, it covers at least n 1 2 2 i points previously uncovered. Therefore, a
total of at least (n12

2 ) 2 1 points are covered by popular lines. Simple counting gives
the existence of a line L in P not among the popular lines, such that more than half
of the points on L are covered by popular lines. Let f be a projective transformation
taking the ideal line L9 5 P \ F2 to L. We define S 5 { x [ F2 u f(x) [ S9} 5 f21(S9)
ù F2. Clearly, uSu # uS9u # n.

One linear hash function h: F2 3 F is constant zero (and thus all of S is a
single bucket), for the rest there is a point xh [ L9 such that h collapses the
points of F2 of each single line going through xh, as we observed at the beginning
of the section. Furthermore, if the linear nonzero map is picked at random, all
such points xh are equally likely. Thus, the statement of the theorem follows, if
we show that for at least half the points xh on the ideal line, it holds that some
line through xh intersects S in at least n1/3/3 2 1 points. But some line through
xh intersects S in at least n1/3/3 2 1 points if and only if some line through f( xh)
intersects f(S) in at least n1/3/3 2 1 (projective) points. For this, it is sufficient
that some line through f( xh) intersects S9 in at least (n1/3/3 2 1) 1 1 5 n1/3/3
points (the 11 comes from the possibility of f( xh) [ S9), that is, that some line
through f( xh) is popular, in the sense we used above. But, by definition of f, this
is true for at least half of the points xh on the ideal line, and we are done. e

3.2. UPPER BOUND FOR THE LARGEST BUCKET WITH A SMALL FIELD. Let us
now recall and prove our main result.

For convenience here, we speak about hashing n log n keys to n values. Also,
we assume that n is a power of 2.
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THEOREM 5. Let * be the class of linear transformations between two vector
spaces over Z2, then

Ln log n
n ~*! 5 O~log n log log n! .

This theorem implies Theorem 4.
We have to bound the probability of the event that many elements in the set S

are mapped to a single element in the range. Denote this bad event by E1. The
overall idea is to present another (less natural) event E2 and show that the
probability of E2 is small, yet the probability of E2 given E1 is big. Thus, the
probability of E1 must be small. We remark here that a somewhat similar line of
reasoning was used in the seminal paper of Vapnik and Chervonenkis [1971].

For the proof, we fix the domain to be D 5 Z2
m, the range (the buckets) to be

B 5 Z2
log n, and S , D of size uS u 5 n log n.

Let us choose arbitrary , $ log n and consider the space A 5 Z2
,. We

construct the linear transformation h: D 3 B through the intermediate range A
in the following way. We choose uniformly at random a linear transformation
h1: D 3 A and uniformly at random an onto linear transformation h2: A 3 B.
Now we define h def

5 h1+h2. Note that, as mentioned in the proof of part (a) of
Theorem 7, this yields an h which is uniformly chosen from among all linear
transformations from D to B.

Let us fix a threshold t. We define two events. E1 is the existence of a bucket
of size at least t:

Event E1. There exists an element a [ B such that

uh21~a! ù S u . t.

We are going to limit the probability of E1 through the seemingly unrelated
event E2:

Event E2. There exists an element a [ B such that

uh2
21~a! # h1~S! .

Consider the distribution space in which h1 and h2 are uniformly chosen as
above. We shall show that

PROPOSITION 3.1. If d 5 2,/(n log n) . 1, we have

Prob@E2# # d2log d2log log d .

PROPOSITION 3.2. If t . c1/2 (2,/n) log(2,/n) (with c1/2 from Theorem 7a)), then

Prob@E2uE1# $
1

2
.

From Propositions 3.1 and 3.2, we deduce that the probability of E1 must be
small:

COROLLARY 3.3. There is a constant C, so that for all r . 4 and every power of
two n, the following holds: If a subset S of size uSu 5 n log n of a vector space over
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Z2 is hashed by a random linear transformation to Z2
log n, we have

Prob@maximum bucket size . rC log n log log n#

# 2~r/log r!2log(r/log r)2log log(r/log r) .

PROOF. Given r . 4, let l 5 log n 1 log log n 1 log r 2 log log r 1 1 and
let t 5 4c1/ 2r log n log log n. Letting d 5 2,/(n log n), we have d 5 2,/(n log
n) $ 2log n1 log log n1log r2log log r/(n log n) 5 r/log r . 1 and 2,/n #
2log n1log log n1log r2log log r11/n 5 2 log n(r/log r), so

c1/ 2~2,/n!log~2,/n! , c1/ 2S 2 log nS r

log rD D ~1 1 log log n 1 log r!

, c1/ 22 log nS r

log rD ~2log log n 1 log r!

5 4c1/ 2r log n log log n

5 t,

so the conditions of Proposition 3.1 and 3.2 are satisfied, and, combining their
conclusions, we get

Prob@E1# # 2 Prob@E2# # 2d2log d 2 log log d .

But the event E1 is the event that the biggest bucket is bigger than t 5 4c1/ 2r log
n log log n and since d $ r/log r, the statement of the corollary follows, by
putting C 5 4c1/ 2. e

Let us now prove the propositions above.

PROOF OF PROPOSITION 3.1. Note first that an alternative way to describe E2
is

h2~ A\h1~S!! Þ B.

We will prove that Proposition 3.1 holds for any specific h1, and thus it also
holds for a randomly chosen h1. So fix h1 and consider the distribution in which
h2 is chosen uniformly amongst all full rank linear transformation from A to B.

We use part (b) of Theorem 7 for the set A \ h1(S) , A. Its density is clearly
1 2 a for a 5 uh1(S)u/uAu # uSu/uAu 5 1/d. Thus, the theorem gives Prob[E2] #
a,2log n2log log n1log log(1/a) # d2 log d2log log d as claimed. e

PROOF OF PROPOSITION 3.2. Fix h for which E1 holds, and fix any full rank
h2. We will show that the probability of event E2 is at least 1/2 even when these
two are fixed and thus the conditional probability is also at least 1/2.

Now since E1 holds there is a subset S9 # S of cardinality at least t mapped by
h to a single element a [ Z2

log n. Fix this a and define D9 def
5 h21(a) and A9 def

5

h2
21(a). Consider the distribution of h1 satisfying h 5 h1 + h2. When we restrict

h1 to D9, we get that the distribution implied by such h1 is a uniform choice of an
affine or linear map from D9 into A9 (we show this in Proposition 3.4, below).
For event E2 to hold, it is enough to have A9 # h1(S). We will show that h1(S9)
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covers all the points in A9 with probability at least 1/2 and thus we get that event
E2 happens with probability 1/2. Since h2 is onto, we have uA9 u 5 2,/n. On the
other hand, D9 ù S has cardinality at least t 5 c1/ 2(2,/n) log(2,/n). By part
(a) of Theorem 7, the probability that a set of cardinality t mapped by a random
linear transformation will cover a range of cardinality 2,/n is at least 1/2. (Note
that Theorem 7, part (a), clearly applies to a random affine transformation
too.) e

At this point, we have proven Corollary 3.3. This limits the probability of large
buckets with linear hashing. It is straightforward to deduce Theorem 5 from that
corollary:

PROOF OF THEOREM 5. Ln log n
n is the expectation of the distribution of the

largest bucket size. Corollary 3.3 limits the probability of the tail of this
distribution, thus yielding the desired bound on the expectation. The constant C
is from Corollary 3.3 and we set K 5 C log n log log n.

E@max S-bucket size# 5 E
0

`

Prob[max S-bucket size . t]dt

# 4K 1 E
4K

`

Prob[max S-bucket size . t]dt

5 4K 1 KE
4

`

Prob[max S-bucket size . rK]dr

# 4K 1 KE
4

`

2~r/log r!2log~r/log r! 2 log log(r/log r)dr

5 O~K! 5 O~log n log log n! . e

In order for the paper to be self-contained, we include a proof of the simple
statement about random linear transformations used above.

PROPOSITION 3.4. Let D, A and B be vector spaces over Z2. Let h: D 3 B be an
arbitrary linear map, and let h2: A 3 B be an arbitrary onto linear map. Let a be
any point in B and denote D9 def

5 h21(a) and A9 def
5 h2

21(a). Then, choosing a
uniform linear map h1: D 3 A such that h 5 h1 + h2 and restricting the domain to
D9 we get a uniformly chosen linear map from D9 to A9 if a 5 0 or uniformly chosen
affine map from D9 to A9 otherwise.

PROOF. Consider D0
def
5 h21(0) and A0

def
5 h2

21(0). Let us choose a comple-
ment space D1 to D0 in D, that is, D0 ù D1 5 {0} and D0 1 D1 5 D. Let us
call x the unique vector in D9 ù D1. We have D9 5 D0 1 x. A linear
transformation h1: D 3 A is determined by its two restrictions h9: D0 3 A and
h0: D1 3 A. Clearly, the uniform random choice of h1 corresponds to uniform
and independent choices for h9 and h0. The restriction h 5 h1 + h2 means that
h9(D0) # A0 and h0 + h2 is the restriction of h to D1. Thus, after the restriction
the random choices of h9 and h0 are still independent. Note that if a 5 0, then
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the restriction of h1 in question is exactly h9: D9 3 A9. If a Þ 0, then use
h1(u 1 x) 5 h9(u) 1 h0( x) for u [ D0 to note that the restriction in question
is again h9, this time translated by the random value h0( x) [ A9. e

4. Remarks and Open Questions

We have discussed the case of a very small field (size 2) and a very large field
(size n). What happens with intermediate sized fields? Some immediate rough
generalizations of our bounds are the following: If we hash an adversely chosen
subset of Fm of size n 5 uF uk to Fk by a randomly chosen linear map, the
expected size of the largest bucket is at most O((log n log log n)loguF u) and at
least V( uF u1/3). Tighter bounds should be possible.

Another question is: Which properties do other well-known hash families
have? Examples of the families we have in mind include: Arithmetic over Zp

[Carter and Wegman 1979; Fredman et al. 1984] (with ha,b( x) 5 (ax 1 b mod
p) mod n), integer multiplication [Dietzfelbinger et al. 1997; Anderson et al.
1995] (with ha( x) 5 (ax mod 2k) div 2k2,), Boolean convolution [Mansour et
al. 1993] (with ha( x) 5 a + x projected to some subspace).

An example of a natural nonlinear scheme for which the assertion of Theorem
6 fails is the scheme that maps integers between 1 and p, for some large prime p,
to integers between 0 and n 2 1 for n 5 p/m, by mapping x [ Zp to (ax 1 b
mod p) div m, where a, b are two randomly chosen elements of Zp. For this
scheme, there are primes p and choices of n and a subset S of cardinality V(n
log n log log log n) of Zp, which is not mapped by the above mapping onto [0,
n 2 1] under any choice of a and b.

To see this, let p be a prime satisfying p [ 3 (mod 4) and consider the set

S 5 $ j2 mod p uj [ Zp\$0%% ,

of all quadratic residues modulo p. Note that for every nonzero element a [ Zp,
the set aS (mod p) is either the set of all quadratic residues or the set of all
quadratic nonresidues modulo p. The main result of Graham and Ringrose
[1990] asserts that for infinitely many primes p, the smallest quadratic nonresi-
due modulo p is at least V(log p log log log p) (this result holds for primes p [
3 (mod 4) as well, as follows from the remark at the end of Graham and
Ringrose [1990]). Since for such primes p, 21 is a quadratic nonresidue, it
follows that for the above S and for any choice of a, b [ Zp, the set aS 1 b
(computed in Zp) avoids intervals of length at least V(log p log log log p).
Choosing m 5 c log p log log log p for an appropriate (small) constant c, and
defining n 5 p/m, it follows that uS u 5 ( p 2 1)/ 2 5 V(n log n log log log n)
is not mapped onto [0, n 2 1] under any choice of a and b.

A final question is whether there exists a class * of size only 2O(log loguU u1log n)

and with Ln
n (*) 5 O(log n/log log n). Note that linear maps over Z2, even

combined with collapsing the universe, use O(log log uU u 1 (log n)2) random
bits while the simple scheme using higher degree polynomials uses O(log log uU u
1 (log n)2/log log n).
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