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ABSTRACT
We study validation of streamed XML documents by means
of finite state machines. Previous work has shown that
validation is in principle possible by finite state automata,
but the construction was prohibitively expensive, giving an
exponential-size nondeterministic automaton. Instead, we
want to find deterministic automata for validating streamed
documents: for them, the complexity of validation is con-
stant per tag. We show that for a reading window of size
one and nonrecursive DTDs with one-unambiguous content
(i.e. conforming to the current XML standard) there is an
algorithm producing a deterministic automaton that vali-
dates documents with respect to that DTD. The size of
the automaton is at most exponential and we give matching
lower bounds. To capture the possible advantages offered by
reading windows of size k, we introduce k-unambiguity as a
generalization of one-unambiguity, and study the validation
against DTDs with k-unambiguous content. We also con-
sider recursive DTDs and give conditions under which they
can be validated against by using one-counter automata.

1. INTRODUCTION
As an increasing number of organizations and individuals

are using the Internet, the ability to manipulate information
from various sources is becoming a fundamental requirement
for modern information systems. The XML data format has
been adopted as the common format for data exchange on
the Web, and, to facilitate query answering, XML data needs
to be validated against DTDs and XML-Schemas.

Streamed data is data originating from sources that pro-
vide a continuous flow of information. Storing the flowing
data stream in order to process it is not a feasible solution
since it would normally require large amounts of memory. To
cope with this issue, one needs to find ways to process data
as it comes without going back and forth in the stream. The
symbols in the stream are the element tags and the included
text in the order of their appearance in the XML document.
Since we are interested in checking only structural proper-
ties, such as DTD conformance, we ignore the data values
and consider the stream as a sequence of opening and closing
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tags. Checking that an XML stream conforms to a DTD in
a single pass under memory constraints is referred to as the
on-line validation of streamed XML documents [13]. There
are two types of on-line validation considered in [13]: strong
validation, which includes checking well-formedness of the
input document, and validation, which assumes that the in-
put is a well-formed document.

In this work, we investigate on-line validation of XML
documents using finite-state machines. The nonrecursive
DTDs conforming to the current standard [14] (i.e. with
one-unambiguous content) correspond to a reading win-
dow of size one. Further, we introduce k-unambiguous
regular expressions as a generalization of one-unambiguous
regular expressions and study nonrecursive DTDs with k-
unambiguous content. In both cases the finite machines are
deterministic. The advantage is having constant time com-
plexity of validation for each open/closed tag. We prove
exponential lower and upper bounds for the size of the min-
imal deterministic automaton used for strong validation.

According to statistical data [6], nonrecursive DTDs are
more frequent than recursive DTDs, but still recursive DTDs
are used commonly in practice. For on-line validation
against recursive DTDs we propose using one-counter au-
tomata. We also give syntactic conditions under which re-
cursive DTDs can be recognized by one-counter automata.

Related Work On-line validation of streamed XML doc-
uments under memory constraints has also been studied
in [13]. One of the results there is that for any nonrecursive
DTD one can construct a finite automaton (a particular case
of a result in [12]). An algorithm was given that constructs
for any nonrecursive DTD a finite automaton that can be
used to perform strong validation. However, the resulting
automaton was nondeterministic, exponential in the size of
the DTD and had exponential (in the size of the DTD) per-
tag complexity of validation. Validating against recursive
DTDs was also considered in [13]. Under the restrictive as-
sumption that the input stream is well-formed, they present
a class of recursive DTDs validated by finite automata.

Strong validation against recursive DTDs can be per-
formed by push-down automata. However, their disadvan-
tage is having a stack of size proportional, in the worst case,
to the size of the XML stream. This approach was dis-
cussed in [13, 10]. In our approach the space required by
the counter is logarithmic in the size of the input stream.

One-unambiguous regular expressions [4] reflect the re-
quirement that a symbol in the input word be matched
uniquely to a position in the regular expressions without
looking ahead in the word. We generalize this concept in a



different way than in the extension considered in [7]. With
a lookahead of k symbols we want to determine the next,
unique, matching position in the regular expression, while
in the approach considered in [7] a lookahead of at most k
symbols will determine uniquely the next k positions.

We assume the reader is familiar with basic no-
tions of language theory: (nondeterministic) deterministic
finite-state automaton ((N)DFSA), context-free grammar
(CFG) and language (CFL), extended context-free grammar
(ECFG)(e.g., see [2, 12]).

The paper is organized as follows. The first section
describes the problem of validating XML streams against
DTDs. Section 2 presents canonical XML-grammars associ-
ated to any DTD and also the size of the minimal automa-
ton used for validating nonrecursive DTDs. In Section 3
we establish results for DTDs with one-unambiguous and
k-unambiguous content. Finally, in Section 4 we investigate
strong validation against recursive DTDs.

2. THE VALIDATION PROBLEM
Let Σ be a finite alphabet. An XML document is ab-

stracted as a tree document. A tree document over Σ is a
finite ordered tree with labels in Σ. Formally, a string rep-
resentation denoted [t] is associated to each tree document
t as follows: if t is a single node labeled a, then [t] = a ā;
if t consists of a root labeled a and subtrees t1...tk then
[t] = a[t1]...[tk]ā, where a and ā are opening and closing
tags. Let Σ = {ā|a ∈ Σ} denote the alphabet of closing
tags. An XML document is a well-formed document if the
string representation corresponding to the XML tree is well-
balanced. If T is a set of tree documents, L(T ) denotes the
language consisting of the string representations of the tree
documents in T .

A DTD (Document Type Definition) [14] D = (Σ, R, r)
that ignores the attribute elements is a finite set of rules
R of the form a → Ra such that a ∈ Σ, Ra is a regular
expression over Σ and r /∈ Σ is called the root. The set of tree
documents satisfying a DTD D is denoted by SAT (D). The
language over Σ∪Σ consisting of the string representations
of all tree documents in SAT (D) is defined as: L(D) =
{[t] | t ∈ SAT (D)}. The dependency graph Dg of a DTD
D is the graph whose set of nodes is Σ, and for each rule
a → Ra in the DTD there is an edge from a to b for each
b occurring in some word in Ra. A DTD is nonrecursive if
and only if Dg is acyclic and is recursive if and only if Dg is
cyclic.

The problem of validating an XML stream with respect to a
DTD D is defined as checking that the string representation
of the XML document is contained in the associated language
L(D).

3. CANONICAL XML-GRAMMARS
In the context of streaming, since the attributes are ig-

nored, a DTD appears to be a special kind of extended
context-free grammar. The formal grammar that captures
explicitly the opening and closing tags is the XML-grammar,
first introduced in [1]. Given a DTD D = (Σ, R) we de-
note a corresponding XML-grammar by DECF = (N, Σ ∪
Σ, ROOT, P ), where Σ ∪ Σ is the set of terminals, N is the
set of nonterminals and N is in 1-1 correspondence with
Σ, ROOT is the start symbol and P is the set of produc-
tions. The set P contains only rules of the following types:

ROOT → r RROOT r̄; A → a RA a; A → a a, where A ∈ N ,
a ∈ Σ and ā ∈ Σ. RROOT , RA is a regular expression
containing only nonterminals and corresponds to the non-
terminal ROOT , A respectively.

Since XML-grammars [1] were studied without provid-
ing a way to link them with DTDs, we give an algorithm
that transforms a DTD D into an XML-grammar DECF

such that L(DECF ), i.e. the language of the grammar
DECF , is the same as L(D). We call the grammar pro-
duced by the algorithm the canonical XML-grammar as-
sociated to the DTD D. Let D = (Σ ∪ Σ, r, R) be a
DTD, Π be an alphabet such that Π ∩ Σ = ∅ and ROOT
be the symbol such that ROOT 6∈ Π. Π is the alpha-
bet of nonterminals in the canonical XML-grammar. Let
f : RegExp(Σ) ∪ {r} → RegExp(Π) ∪ {ROOT} be a func-
tion such that f(r) = ROOT , f(Σ) = Π and f/E is a bijec-
tion. The set of terminals of the canonical XML-grammar
is T = Σ ∪ Σ. The set of productions P of the canonical
XML-grammar are modifications of the rules of the DTD
where rules of the form a → Ra are transformed into pro-
ductions of the form f(a) → af(Ra)ā. The output is the
canonical XML-grammar DECF = (N, T, ROOT, P ).

The canonical XML-grammar associated to a DTD is in-
strumental in proving the results of this paper.

Example 3.1. Consider the DTD D over Σ = {r, a, b, c}
with the rules: r → a∗b, a → bc, b → c + ε, c → ε.
The algorithm gives the XML-grammar DECF = (N, Σ ∪
Σ, ROOT, P ), where N = {ROOT, A, B, C} and the set
of productions P is: {ROOT → rA∗Br̄, A → aBCā,
B → b(C + ε)b̄, C → cc̄}.

Given a DTD D, the language L(D) is the same as the
language generated by the canonical XML-grammar that
corresponds to D. Thus, validating an XML stream with
respect to a DTD D becomes equivalent to checking that
the stream belongs to L(DECF ), which is the definition we
will use throughout the paper.

The canonical XML-grammar DECF corresponding to a
nonrecursive DTD D is nonrecursive, thus the language
L(DECF ) is regular [12]. We give an algorithm of bottom-
up substitution that takes as input a canonical nonrecursive
XML-grammar DECF and returns a regular expression that
generates the language L(DECF ) [5].

The regular expression that generates L(DECF ) is the reg-
ular expression corresponding to the nonterminal ROOT ,
computed by the bottom-up substitution algorithm.

Example 3.2. Let D and DECF be the DTD, respec-
tively the XML-grammar grammar from the previous ex-
ample. The regular expression obtained by bottom-up sub-
stitution is r(a(b(cc̄ + ε)b̄cc̄)ā)∗(b(cc̄ + ε)b̄)r̄.

The regular expression obtained by applying bottom-up
substitution to a DECF is used to construct an automaton
which is used as a validating tool. The size of the automaton
is linear in the size of the expression.

An algorithm was presented in [13], which yields a validat-
ing non-deterministic automaton whose size is exponential
in the size of the DTD. Here we show that even for the
minimal automata the lower bound on their size is still ex-
ponential with respect to the size of the DTD. In order to
compute the lower bound we partition the symbols of the
alphabet into strata, defined below.



Definition 3.3. Stratum 0 of a nonrecursive DTD is the
set of all symbols in Σ such that the right-hand sides of the
corresponding rules contain only the symbol ε. Stratum i of
a DTD is the set of all symbols in Σ such that the right-hand
sides of the corresponding rules contain only symbols from
Stratum 0, ..., Stratum i − 1 with at least one symbol from
Stratum i− 1.

We define the depth of a nonrecursive DTD to be the
corresponding number of strata. We parameterize the size
of a nonrecursive DTD by its depth and the maximum length
of a right-hand side of a rule.

Remark 3.4. For a nonrecursive DTD, the number of
strata is finite and a symbol in the alphabet belongs to only
one stratum. Also, in general, the depth of a DTD is not
related to the number of productions.

Let D be a nonrecursive DTD. Let d be its depth and let
L be the maximum number of symbols that appear in the
body of a rule.

Lemma 3.5. [5] The size of the minimal automaton AD

that recognizes L(D) is bounded from above by 1 + 2 · Ld−1
L−1

.

We show that the bound is tight by considering the fol-
lowing example.

Example 3.6. Let D = ({r, a1, ..., an}, R) be a nonre-
cursive DTD s.t. the set of rules is R = {r → a1 a1, a1 →
a2 a2, ............, an−1 → an an, an → ε}. The regular expres-
sion corresponding to this DTD obtained by applying the
bottom-up substitution algorithm to the associated DECF is
r (a1 (a2 (... (an−1 (an an)2 an−1)

2 ...)2 a2)
2 a1)

2 r. The mini-
mal automaton that recognizes L(D) has 1 + 2 · (2n+1 − 1)
states, where n + 1 is the depth of D and the maximum
length of a production in R is 2.

4. STREAMED VALIDATION OF NONRE-
CURSIVE DTDS

We now investigate the problem of validating XML
streams against nonrecursive DTDs. The XML stan-
dard [14] requires that the regular expressions associated
with each production match uniquely a position of a sym-
bol in the expression to a symbol in an input word without
looking beyond that symbol. This scenario corresponds to
processing the stream with a deterministic automaton hav-
ing a reading window of size one. The regular expressions
described by the standard are the one-unambiguous regular
expressions introduced in [4].

Before presenting the results of this section, we recall the
definition and some characterizations of one-unambiguous
regular expressions [4]. To denote different occurrences
of the same symbol in an expression, all the symbols are
marked with unique subscripts. For example, a marking of
the expression b((a+bc)∗|(abd)∗) is b7((a1

+b2c3)
∗|(a4b5d6)

∗).
The set of symbols of expression E is denoted by sym(Σ).
For expression E, we denote its marking by E′. Each
subscripted symbol is called a position. For a given posi-
tion x, X (x) indicates the corresponding symbol in Σ with-
out the subscript. Formally, an expression E is defined to
be one-unambiguous if and only if, for all words u, v, w
over sym(E′) and all symbols x,y in sym(E′), if the words
uxv, uyw ∈ L(E′) and x 6= y then X (x) 6= X (y). One pos-
sible method to convert a regular expression into a finite

automaton was proposed in [8]. In the Glushkov automaton
of an expression E, the states correspond to positions in E
and the transitions connect positions that are consecutive
in a word in L(E′). For each expression E, the following
sets are defined: First(E′), the set of positions that match
the first symbol of some word in L(E′); Last(E′), similarly
for the last positions; and Follow(E′, z), the set of posi-
tions that can follow position z in some word in L(E′). A
Glushkov automaton corresponding to a regular expression
is constructed using the sets defined above. The Glushkov
automaton has as many states as the number of positions in
the corresponding marked expression plus one.

Definition 4.1. A DTD D (an XML-grammar DECF )
is one-unambiguous if all the rules (productions) have one-
unambiguous regular expression in their right-hand sides.

The canonical XML-grammar associated to a one-
unambiguous DTD is also one-unambiguous.

Theorem 4.2. Let D = (Σ, R) be a nonrecursive one-
unambiguous DTD. Then the language L(D) is one-
unambiguous.

To prove that the language L(D) (or the language
L(DECF ) generated by the canonical grammar DECF ) is
one-unambiguous it is sufficient to show that there exists
a one-unambiguous expression that generates the language.
The solution to this problem is the regular expression ob-
tained by bottom-up substitution [5].

Corollary 4.3. There is an algorithm that, given a non-
recursive one-unambiguous DTD D, constructs a determin-
istic Glushkov automaton GD such that GD accepts precisely
the language consisting of the string representations of the
documents that conform to D.

The algorithm in [13] constructs an exponential-size non-
deterministic automaton, which yields per open/closed tag
complexity that is exponential in the size of the DTD.
In contrast, for one-ambiguous DTDs, we can construct a
deterministic automaton that verifies conformance to the
DTD for streaming documents. This yields constant per
open/closed tag complexity.

Remark 4.4. If the validation of nonrecursive DTDs is
performed using their corresponding Glushkov automata, the
exponential lower and upper bounds of these automata in the
size of the DTDs are the same as the bounds shown in the
previous section.

From example 3.6 and remark 4.4 is follows that the ex-
ponential bound on the size of the Glushkov automata ac-
cepting L(D) for a one-unambiguous DTD D cannot be im-
proved. The lower bound on the size of the minimal deter-
ministic automata accepting L(D) is also exponential in the
size of D.

We consider now the case of DTDs with non-deterministic
content, which appear in practice in a variety of fields [6,
5]. To model these types of DTDs we introduce the k-
unambiguous regular expressions. They are a generalization
of one-unambiguous regular expressions, different from the
one considered in [7]. Informally, a k-unambiguous expres-
sion matches uniquely a position of a symbol in the expres-
sion to a symbol in an input word by looking ahead k sym-
bols. Practically, an XML stream can be validated against



a nonrecursive DTD with k-unambiguous content by a finite
automaton that uses a reading window of size k to move to
a unique state.

Definition 4.5. A regular expression E is k-
unambiguous, where k ≤ |E|, if and only if for all
words u, v, w, x = x1 ... xk and y = y1 ... yk over sym(E′),
ux1...xkv ∈ L(E′), uy1...ykw ∈ L(E′) and xk 6= yk implies
that X (x1) ... X (xk) 6= X (y1) ... X (yk).

Example 4.6. Consider the regular expression
b((a+bc)∗|(abd)∗) marked as b7((a1

+b2c3)
∗|(a4b5d6)

∗).
This regular expression is not one-unambiguous. Given the
word babc it cannot be decided if the symbol a following
the symbol b is matching position a1 or a4. By looking
ahead 4 symbols we can match the occurrence of symbol c
with position c3.

Example 4.7. The following 3-unambiguous content
model stand point → ((back sight, fore sight|back sight,
fore sight, back sight), intermidiate sight∗, info stand?,
info i∗) appears in a DTD that describes digital measure-
ments http:// gama.fsv.cvut.cz/ s̃oucek/ dis/ convert/ dtd/
dnp-1.00.dtd.

Another way of characterizing k-unambiguous regular ex-
pressions is using Glushkov automata.

Definition 4.8. A Glushkov automaton G = (Q, Σ, δ, F )
is k-deterministic if for every state p ∈ Q and every word
a1 ... ak over Σ, the extended transition δ∗(p, a1...ak) con-
tains at most one state.

In other words, we call a Glushkov automaton k-
deterministic if from any state following all paths labeled
a1 ... ak we reach at most one state.

Given a marked expression E′ we define the sets:
First(E′, k) = {w ∈ sym(E′)| there is a word u s.t. wu ∈
L(E′) and |w| = k}, Follow(E′, z, k) = {w ∈ sym(E′)| there
are words u and v s.t. uzwv ∈ L(E′) and |w| = k}, for all sym-
bols z ∈ sym(E′) and Last(E′, k) = { w ∈ sym(E′)| there
is a word u s.t. uw ∈ L(E′) and |w| = k}. These sets can
be computed in time polynomial in the size of E′, and thus
we can give a polynomial-time algorithm to check whether
a regular expression is k-unambiguous, for a given k. The
worst case time complexity is O(|E′|k+1). There are regular
expressions that are not k-unambiguous for any number k.

Example 4.9. The Glushkov automaton in Figure 1(i)
is k-deterministic for any k ∈ N, since δ∗(a1, aaaaaaaaa) =
{a1, a3}. The Glushkov automaton in Figure 1(ii) is 3 −
unambiguous.

Proposition 4.10. (a) If a regular expression E is k-
unambiguous then E is k + 1-unambiguous. (b) A regular
expression E is k-unambiguous if and only if the Glushkov
automaton corresponding to E is k-deterministic.

Given a nonrecursive DTD D = (Σ, R), we obtain
by applying our bottom-up substitution algorithm to the
canonical XML-grammar DECF a regular expression ED

that describes the language L(DECF ) = L(D). The
Glushkov automaton corresponding to ED is used for vali-
dation XML streams against D. If the regular expression
ED is k-unambiguous, then the automaton used for on-
line validation is also k-deterministic. We define the set
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Figure 1: Glushkov automaton corresponding to the
regular expressions (i): (a + b)∗a(a + b)(a + b) and (ii):
(abc + ab∗d)d.

Σk = { a ∈ Σ| a → Ra ∈ R and Ra is k -unambiguous}
for any number k. A regular expression is called finite
if it denotes a finite language. Now, we define the set
Σfin

k = { a ∈ Σ | a → Ra ∈ R and the regular expression
Ra is finite k-unambiguous} for any number k. On the de-
pendency graph Dg we define the set Reachablea, a ∈ Σ, to
be the set of symbols contained in the subtree rooted in a.

As shown in the example 4.9, there exist expressions that
are not k-unambiguous for any number k. Also, similarly
to the class of one-unambiguous expressions, the class of
k-unambiguous expressions is not closed under union, con-
catenation and star operation. Thus, we need to impose con-
ditions on the nonrecursive DTDs that guarantee that the
bottom-up substitution algorithm applied to the correspond-
ing XML-grammars yields a k-unambiguous expression.

Theorem 4.11. Let D = (Σ, R) be a nonrecursive DTD
with the root rule denoted by r → Rr. Let Dg be the
dependency graph of D. Assume that one of the following
conditions is true:

1. The regular expression Rr is k-unambiguous and
Reachablea ⊆ Σfin

p for a ∈ sym(Rr)

2. The regular expression Rr is one-unambiguous and
there exists at most one a ∈ Σk such that Reachablea ⊆
Σfin

1 , none of the elements on the path from a to the root
appear under a Kleene-star and

a ∈
⋃

b∈sym(Rr)

Reachableb.

Then there exists a number k′ such that the regular expres-
sion associated to the canonical XML-grammar DECF and
obtained by bottom-up substitution is k′-unambiguous.

We illustrate the conditions of the theorem in the follow-
ing two examples.

Example 4.12. Let D = ({r, a, b, c, d, e, f}, {r →
(a+e|ac)(cd)∗, a → b, b → ce|cf, c → ε, d → ccf |cce, e →
ε, f → ε}) be a nonrecursive DTD satisfying the first
condition of the theorem. The expression Rr is 2-
unambiguous and the rest of the rules correspond to fi-
nite 3-unambiguous expressions. The regular expression



obtained by the algorithm of bottom-up substitution is
r((ab(cc̄eē|cc̄f f̄)b̄ā)+eē|ab(cc̄eē|cc̄f f̄)b̄ācc̄)(cc̄d(cc̄cc̄f f̄ |cc̄cc̄
eē)d̄)∗r̄, where the maximum of the lengths of the regular
expressions associated to the nonterminals A, B, C, D, E, F
is 14. Thus, k′ = 14.

Example 4.13. Let D = ({r, a, b, c, d, e, f}, {r →
ba+, a → ed∗f, b → c|d+, c → f+e|fd, f → ee, d →
ε, e → ε}) be a nonrecursive DTD that satisfies the
second condition of the theorem. The regular expression
obtained by the algorithm of bottom-up substitution
applied on the canonical XML-grammar associated to D is
rb(c((feēeēf̄)+eē|feēeēf̄dd̄)c̄|(dd̄)+)b̄(aeē(dd̄)∗feēeēf̄ ā)+r̄.
In this case k′ = 18, which is the length of the regular
expression associated to the nonterminal C.

As the following examples show, the theorem is quite
tight, since there are DTDs that deviate only slightly from
the conditions of the theorem and have associated regular
expressions that are not k-unambiguous.

Example 4.14. Let D = ({r, a, b, c, d}, {r → ab|ac, a →
d∗, b → ε, c → ε, d → ε}) be a nonrecursive DTD,
for which the first condition of the theorem is not sat-
isfied. The regular expression associated to the DTD is
r(a(dd̄)∗ābb̄|a(dd̄)∗ācc̄)r̄, which is not a k′-unambiguous reg-
ular expression for any k′ ≤ 14 (the length of the expression
being 14).

Example 4.15. Let D = ({r, a, b, c, d, e}, {r → ab, a →
cd|ce, b → ε, c → d∗, d → ε, e → ε}) be a nonrecursive
DTD, for which the second condition of the theorem is not
satisfied. The regular expression associated to the DTD
is ra(c(dd̄∗c̄dd̄|c(dd̄)∗c̄eē)ābb̄r̄. The Glushkov automaton
of this expression is not k′-unambiguous for any k′, since
the extended transition of the automaton contains more
than one state when reading words racdd̄dd̄...dd̄ of arbitrary
length.

5. STREAMED VALIDATION OF RECUR-
SIVE DTDS

We now consider the problem of strongly validating an
XML stream against a recursive DTD using (restricted) one-
counter automata. Recursive DTDs appear in fields like:
computational linguistics, web distributed data exchange,
financial reposting, etc [5].

Example 5.1. The following recursive content model
exception → (type, msg, contextdata∗, exception?) ap-
pears in a DTD from Workflow Management Coalition
http://www.oasis-open.org/cover/WFXML10a-Alpha.htm.

A one-counter automaton (1-CFSA) is a quintuple M =
(Q, Σ, H, q0, F ), where Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊂ Q is the set of final states, Σ is the
finite alphabet and the transition set H is a finite subset
of Q × (Σ ∪ ε) × Z+ × {−1, 0, 1} × Q [9, 11]. Thus, the 1-
CFSA consists of a finite state automaton and a counter
that can hold any nonnegative integer and can only test if
the counter is zero or not. The move of the machine depends
on the current state, input symbol and whether the counter
is zero or not. In one move, M can change state, add +1, 0
or −1 to the counter. However, the counter is not allowed to
subtract 1 from 0. The machine accepts a word if it starts

in the initial state with the counter 0 and reaches a final
state with the input completely scanned and the counter
0. A language accepted by a one-counter machine is called
one-counter language. We denote the family of one-counter
languages by OCL. A restricted one-counter automaton
(restricted-1-CFSA) is a one-counter automaton which, dur-
ing the computation cannot test if the counter is zero [9,
2, 3]. The language accepted by a restricted one-counter
automaton is called restricted one-counter language and the
family of such languages is denoted ROCL. It is known that
the family of restricted one-counter languages are strictly in-
cluded in the family of one-counter languages [3] and that
OCL is NSPACE(log n) [15]. Every language accepted by
a one-counter automaton is a context-free language [2].
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ra/+1

Figure 2: One-counter automaton recognizing the
language {rananr|n > 0}
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Figure 3: One-counter automaton recognizing the
language {(ac)na(ε|cc̄)ā(c̄ā)nbmb̄m}

Example 5.2. The language corresponding to the DTD
D = {r → a, a → a|ε} is rananr and a streamed XML
document can be strongly validated against D using the one-
counter automaton in Figure 2.

Definition 5.3. A DTD D is (deterministic) one-
counter recognizable, (deterministic) restricted one-counter
recognizable, if the language L(D) is in (D−)OCL,
(D−)ROCL respectively. An XML-grammar DECF is (de-
terministic) one-counter recognizable, (deterministic) re-
stricted one-counter recognizable, if the language L(DECF )
is in (D−)OCL,(D−)ROCL respectively.

We denote the family of one-counter recognizable
(restricted one-counter recognizable) DTDs by OCRD
(ROCRD). The family of languages generated by
(restricted) one-counter recognizable DTDs is contained
strictly in the family (R)OCL, since there are languages
that are (restricted) one-counter but cannot be generated
by a DTD, e.g. {α]β| α, β ∈ Σ∗, ] /∈ Σ, |α| 6= |β|} [2].

The family of strongly recognizable DTDs [13] is included
in (R)OCRD, since the regular languages are included in the
(restricted) one-counter languages. However, both ROCRD
and OCRD are incomparable with the family of recogniz-
able DTDs [13]. We illustrate this result in the following
example.

Example 5.4. Consider the DTD D = {r → aa, a →
a|ε}. D is not recognizable, but is in OCRD since L(D) =
{ranānamāmr̄|n, m ≥ 0} ∈ OCL. Conversely, let D be



the DTD {r → a, a → a?|b, b → b?}. D is recognizable
but the corresponding language, L(D) = {ranbmb̄mānr̄|n ≥
1, m ≥ 0} is not OCL [2], hence D is not in OCRD. Consider
now the restricted one-counter recognizable DTD D = {r →
a, a → a∗}. By straightforward testing of the necessary
conditions provided in [13], one can prove that D is not
recognizable. Finally, the DTD D = {r → a1a2, a1 → a1?,
a2 → a2?} is recognizable, but using the iteration theorem
for the family of restricted one-counter languages [3] one
can show that L(D) /∈ ROCL and thus, D is not restricted
one-counter recognizable.

Finding grammatical characterizations of (D)ROCL and
(D)OCL is still an open problem. However, adapting a well
known result from [3] one can infer sufficient conditions for
a DTD to be in ROCRD. We present syntactic restrictions
that yield a class of recursive DTDs that are OCRD.

Theorem 5.5. Let D = (Σ, R) be a recursive DTD and
let DECF = (Σ∪Σ, N, P ) be the associated canonical XML-
grammar. Let {A1, ..., An} ⊆ N be the set of recursive non-
terminals in DECF and let G be the dependency graph of
DECF . Assume the following conditions are true:

• every node in G appears in at most one simple cycle.

• the regular expressions RA1 , ..., RAn contain only one
recursive nonterminal and that recursive nonterminal
does not appear under the scope of a Kleene-star.

• all the nonterminals Bi /∈ {A1, ..., An} have corre-
sponding regular expressions by bottom-up substitution.

Then the language L(DECF ) = L(D) is a one-counter lan-
guage, which means that D is in OCRD. Moreover, there is
an algorithm to construct a one-counter automaton that can
be used to validate an XML stream against the DTD D.

If D has only one-unambiguous content then the resulting
one-counter automaton is deterministic.

Intuitively, if the dependency graph of a DTD D satisfies
the conditions of Theorem 5.5, one can find an expression
describing L(D) and construct based on it a one-counter
automaton that precisely accepts L(D) [5].

Example 5.6. Let D = ({r, a, b, c}, {r → ab, a → c|ε,
c → a|ε, b → b|ε}) be a recursive DTD. The corresponding
canonical XML-grammar DECF has the following produc-
tions {ROOT → rABr̄, A → aCā| aā, C → cAc̄| cc̄, B →
bBb̄|bb̄}. The language generated by the grammar is
{(ac)na(ε|cc̄)ā(c̄ā)nbmb̄m|n, m ≥ 1}, which is not a regu-
lar language. The one-counter automaton recognizing the
language generated by DECF is presented in Figure 3.

Relaxing slightly the conditions of the theorem we can
find examples of the DTDs whose languages are no longer
one-counter.

Example 5.7. Let D = ({r, a, b}, {r → a, a → a|b|ε, b →
b|ε}) be a recursive DTD. D deviates slightly from the
first two conditions of the theorem. The language gen-
erated by the corresponding canonical XML-grammar is
{ranbmb̄mānr̄|n ≥ 1, m ≥ 0}, which is not OCL.

Example 5.8. Let D = ({r, a, b, c}, {r → a, a →
ac|ε, c → b, b → b|ε}) be a recursive DTD. D verifies the first
two conditions of the theorem but deviates slightly from the
third. L(D) = {an(cbmb̄mc̄ā)n|n ≥ 1, m ≥ 0}, which is not
OCL.

6. CONCLUSION
This paper continues the formal investigation of the prob-

lem of on-line validation of streamed XML documents with
respect to a DTD. We provided further insights on the size
of the minimal (deterministic) automata that can be used
for strong validation against non recursive DTDs.

Motivated by real world examples of DTDs with non-one-
unambiguous content models and to capture the possible
advantages of using reading windows of size greater than
one, we introduced the notion of k-unambiguous regular ex-
pressions as a generalization of one-unambiguous regular ex-
pressions.

We also investigated the problem of strong validation
against recursive DTDs without imposing that the streamed
document be well-formed. We introduced a hierarchy of
classes of DTD that can be recognized using variants of one-
counter automata and provided syntactic conditions on the
structure of the DTDs that ensure the existence of a one-
counter automaton for performing strong validation.

A precise characterization of the DTDs recognizable by
deterministic counter automata is yet not available and will
be considered in future work.
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