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Abstract

This paper takes as a starting point Walter Viniteseminal book, “What Engineers Know and How They
Know It,” and explores the implications for inteti@e system design of some of his observationsrgineering
knowledge. In particular, it discusses the obstadesigners face in accessing relevant knowlealg their
consequent difficulties in engaging in design. Ppaper suggests that a crucial step in building\tedge about
interactive system design knowledge is the estainléent ofcritical parametersconcerning the human activity
that the application supports. It concludes witliszussion of the implications for innovative gyatdesign.

1 Introduction

Those who design and build software systems for direct use by people amdairgas play
an increasingly important role in society. These are, almost urliyensgeractive systems
that are operated directly by their users via the system’s niggfaice. Their designers must
try to respond to users’ demands for improved services and productivity bypiegehew
applications. They must be prepared to follow up, when their designsi@essful, with
more powerful and reliable systems that keep pace with users’ erpganeéeds. There is
constant pressure on the designers of interactive systems to do more and to do it better.

In this paper | am concerned, not so much with whether software ergyareetdoing a good
enough job of designing interactive systems, but how in the first placec#éimesicquire the
knowledge they need to do their job. In effect, | take as my starting pgataphrase of a
remark of Walter Vincenti's [27]what software engineers do depends on what they.know
My interest is to understand what software designers need to know, thisekmowledge is

to be found, whether there are significant barriers to the growth of kdgel about
interactive systems and, if so, what effects these barriers might have.

To address this topic, | have chosen to try to apply general theorieseaigingering design
knowledge to the special case of software design. There are dangead®pting this

approach, for it is not unanimously accepted that software design caedbedtas an
engineering exercise [29]. However, | try in the course of this pag@ovide evidence that
my approach is a sound one, and that it is valid to talk about interagstem design as
“software engineering.”

| therefore begin by outlining a basic taxonomy of engineering design knowledgéyesind t
provide some evidence that it applies to software design. When applibéé design of
interactive systems it yields interesting results, especidigrwcontrasted with the design of
embedded softwaree., the non-interactive systems and components that support interactive
software. | conclude that it is particularly hard for designeiatefactive systems to acquire

In: Proceedings of Software Ergonomie '97, Dresden,chld-6, 1997



2 What Application Designers Know

the knowledge they need. | have some final comments on how this affectsation in
interactive applications.

2 A taxonomy of engineering design knowledge

As | have pointed out, the question of how growth in engineering knowledge ocaars is
effect two questions: what kinds of knowledge do engineers depend upon, and welest ca
this knowledge to accumulate? My first task is therefore to anhedirst sub-question, by
enumerating some major categories of engineering design knowledge, andtieiglmorahe
categories in discussing how they contribute to design. | then compargdhertsy with the
findings from studies of software designers’ knowledge.

2.1 Ataxonomy

As a first cut at the categorization of engineering knowledge, | dffferfollowing five
categories, drawn from a number of previous analyses of engineering design [24, 23, 27]:

(1) Domain knowledge relating primarily to designed artefacts and twistituent
technologies

(2) Domain knowledge relating primarily to environments in which artefacts are used

(3) Knowledge of representations, particularly those applied to describperta of the
domain

(4) Known techniques for analysing the design or for simulating the proposfdctst
behaviour

(5) Knowledge of the critical parameters against which the atiefgperformance is
measured.

The list is not exhaustive. It deliberately omits two categafiémowledge that play roles in
software design, namely knowledge of procedures and processes, and general kan@how
rules of thumb. | do not regard this omission as crucial to the arguments | will lay out here.

2.2 Fitting the taxonomy to descriptions of engineer ing design

Accounts of engineering design refer frequently to the five categoriésmfledge listed
above. Henry Petroski [21], for example, describes structural enginekrsign thus (my
own category numbers in parentheses): “As each hypothetical arrangeirgarts (1) is
sketched either literally or figuratively on the calculation pad orpder screen (3), the
candidate structure must be checked by analysis (4). The analysistsarisa series of
guestions about the behavior of the parts under the imagined conditions oftarse a
construction (2).” In a similar vein, Rogers identifies the engisested “to determine the
size and shape of a piece of equipment (2) to perform a specifiedSjuty to predict the
performance of the design (4) when it is called upon to function under opezating
conditions (2)” [23].

A particularly thorough treatment of design can be found in Herbert Simmwoo& The
Sciences of the Atrtificiain which he identifies roles for all of the taxonomy’s components
[24]. He places particular emphasis on the distinction betweenrther” environment of
design—the substance and organization of the artifact itself (1)—aridutez” environment

in which the artefact operates (2). He goes on to discuss desifpeersent difficulty in
predicting how their designs will behave (4), the influence of choicemksentation on
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design problem solving (3) and so-called “figures of merit” that pecontparison between
designs (5).

2.3  How the taxonomy fits software design

Do these accounts of engineering design apply to the design of softwaré? s@tware

design fundamentally different in its knowledge requirements? Answdigeese questions
can be found in the studies of programmers and software designers bgrAdets Soloway
[1], Visser [28], Guindon [12] and others. To a large extent the studiésr that software

designers do rely on the same five categories of knowledge and, insfieet,ego about their
work like other engineering designers.

For example, reliance on knowledge of existing designs can be seen ilwetgy study
of software design. Designers tend to start with a schema or mabtle solution, which
they construct from past experience or from a supplied solution. Hrtidem is familiar to
them, the schema is likely to be well-formed and easily speditipd If the problem is
unfamiliar, software designers are still likely to reuse antiegjgested design, even though
its adaptation to the new problem may be timeconsuming [12].

Software designers also rely on their knowledge of the environment of u#e the
engineers described by Petroski and Rogers, they apply their knowledge tactorgstr
scenarios of use, which are then used in simulating the performatioe a@dsign. Guindon,
for example, describes how designers of a lift control system ecrehi/pothetical
configurations of the lifts for the purpose of testing designs [12]. Sodmased simulation
can be observed helping the designer to understand the behaviour of the syatevhade.
Not surprisingly, designers who lack familiarity with the environmenis& have difficulties
constructing scenarios and are less able to simulate their designs’ perforfijance [

Knowledge of notations and other representations can also be seen cogtribwgbftware
design. Experienced designers will often search among the notations familiar to treler in
to choose one suitable for the problem [12]. If they are less expediethey may go to the
extreme of adopting a familiar notation to prepare the design, subseqgtrantliating the
finished design to the required notation [28].

2.4  Where the taxonomy falls short

There is plenty of evidence, therefore, of software designersheelian domain knowledge
and on familiarity with representations; but what about techniques ratysas and

simulation, and what about critical parameters? These kinds of kihgsvlare also in

evidence, but not in great quantities.

The designers studied by Adelson and others showed no inclination to applycahalyti
techniques to the evaluation of their designs. Their simulation methadsnty be regarded
as primitive. They relied on simple inspections and scenario walkthrougiose purpose
was just to check the functioning of the designs, and not to predict tinfsirnp@nce. The
almost total lack of attention to performance analysis is sungtifiecause programmers are
known to take pride in squeezing speed improvements out of programs.

Software designers also showed little awareness of criticdbrpeance parameters. No
“figures of merit” are mentioned in the studies; instead desigagsar to adopt their own
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preferred evaluation criteria, such as reliability or simpliciffhey use these to guide the
choice of solution, but never apply any overall performance targets [12].

Again, the reason may lie in the designers’ lack of experience witilas problems.
Although presented with a precise problem definition, they mostly tendedrtonage
elaborating on the stated requirements and constraints during desigmatiigssoftware
designers’ well-known proclivity for “requirements drift.” By continyaladjusting the
functional requirements for the system, they lost track of cripeslormance parameters as
potential design targets.

3 Software designers’ acquisition of knowledge

On the basis that it is valid to apply the knowledge taxonomy to softlesign, | will now
look at the means available to software designers to acquire theedgaithey need. This is
an exercise that has been carried out before, e.g., by Denning [7] and euatis[6].
However, these studies have not distinguished between the design of emindtcze snd
interactive systems. Do designers in these two areas fasaitie problems in accessing
information?

In answering these questions | have had to switch to a more subjagpr@ach, because
there is so little published information on how software designersrackpowledge. | hope

nevertheless to convince readers that the two problems of informato@ssa concerning
embedded software and interactive systems respectively, arecggtiifidifferent problems,

because of fundamental differences in the nature of the information.

3.1 Knowledge in support of embedded software design

What do the designers of embedded software need to know? And how can tleegtboarn
this knowledge? To answer these questions | will look in turn atatmomy’s five main
categories of knowledge.

Domain knowledge about embedded software artefacts can be acquiregpubdished
accounts. Textbooks lay out a range of solutions, traditionally as codedthatgorbut
increasingly as object descriptions [9]. There are journals and cooésrelevoted to specific
types of software systems, such as operating systems, distributechsyshage processing,
computer graphics, databases, and so forth. Articles and papers deswrib&gyorithms and
compare them with past solutions. By reading this literature thteasef designer can gain
familiarity with a range of designs, from which he or she can develeghema for a new
design problem. The fact that designs are presented as algorithpasteyns assists this
process.

The same literature provides examples of the environments in whibedeled software
artefacts are used, because these environments are softwamssysb. They may not
always be described to the same level of detail as are compobentdiey support the
generation of scenarios for use in testing the design of the embedded compdke
superficial knowledge of a CAD system will, for example, enabledésggner of a graphics
package to simulate the latter's performance in generating a display.

The representations needed in embedded software design are egs#mbisdl for the
specification of software. They include programming languages, datseagagons, state-
transition notations and the various other graphical notations offered byofhgare
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engineering methodologies [14]. Software designers get to know theseerggtiesis early
in their careers.

Techniques for the analysis of embedded software designs form exlagst part of the

designer's knowledge. There are, as | pointed out earlier, techniquesgdecting code and
conducting walk-through analyses [2]. More rigorous methods of algorithmigsahalre

also available, although empirical evidence suggests that thesesdreamsparatively rarely.
From these analyses the designer can gain a rough idea of the sesftstare’s performance.
However, an alternative to analysis is always available, in the form of pratgtgpd testing.
Through a combination of these, the designer is generally able to evileadesign to an
adequate level.

Finally, the critical parameters against which embedded softw#ested appear to be widely
understood. A number of universal parameters are applied to mostreoft@ggns: speed of
execution, reliability, use of resources. Speed, often the primary caat®de may be
measured in terms of performance of standard benchmarks, or indedimensions of the
problem domain; thus speed may be proportionat?tor logn). The existence of critical
parameters that are tacitly agreed among designers, and localibedetmbedded component
in question, enables designers to set and achieve specific performance targets.

3.2  Knowledge in support of interactive system desig n

For the designer of an interactive system, acquisition of relevant knowledgeig different
matter. Again, the differences can be appreciated by looking at ygaelott knowledge in
turn.

Like embedded systems, interactive systems are described itetagube. Furthermore, and
unlike most embedded systems, they can sometimes be experiendeanfirstor example in
the form of cash machines and on-line library catalogues; and sorhemfdan even be
purchased in computer stores for personal use. In a sense, thereforéedgeoabout
interactive systems is particularly accessible to designemweter, the availability of this
knowledge is distinctly uneven: if the application cannot be purchased essadcpublicly,
information about it is likely to be very hard to obtain. The “organisati@yatems used by
banks, police services, hospitals, government offices and military persamenkept under
wraps for the most part. Very few descriptions can be found intdratlire, and then they
are usually very superficial. Even the most celebrated organisatippltations, such as the
SAGE air defence system and the Sabre airline reservatiomsystwe been documented to
only a most perfunctory degree [8, 5]. As a result, designers’ knowledgeegly skewed
towards those designs that are readily accessible.

The environments in which interactive systems are used are enviraaidniman activity,
altogether different from the software-systems environments inhvénitdbedded components
are used. Learning about these environments is, again, relatively basyaacess to the
environments is itself easy. However, the difficulty here for tisgaer is to know what are
suitable scenarios against which to test the design. It is tegnfati the designer to say,
“This is how! would use the system,” but this carries a risk of applying a scetrat is
weighted in the system’s favour. Discovering patterns of behaviour in cappfi
environments is a specialised task, and few software designerghieaskill or the time to
carry it out. As a result there is a constant danger that etiterasoftware will be designed
on a basis of relatively superficial knowledge of the environment of use.
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One of the barriers to disseminating domain information about inteszastistems is the
relative lack of suitable representations. The designs of intexragystems are difficult to
describe because they involve many linked software components and have cdynHexc
user interfaces. The notations for describing such systems arewvtds developed, in
comparison with the notations for algorithms and software objects.ve3ovenen details of
interactive systems are published, weaknesses in the descriptiigeatations may prevent
designers from finding out what they need to know. For example, when aétiks Xerox
Star system were made public in a number of articles [13, 25, 2G]etueiptions appear to
have been inadequate for those who tried to replicate what Xerox had built [30].

Designers of interactive systems are poorly equipped with analydolsl. The techniques
available to the embedded software designer do not apply here, becapsebtem is to
analyse and predict the behaviour of an interactive system in the haadisérs. This is a
complex domain of analysis, and there is a tendency for analysis tméetisuming and
difficult to learn. Some simple methods have been developed, includingrideysevel
Analysis and Cognitive Walkthroughs [3, 22, 17]. However, they do not appear to have
achieved widespread use.

Perhaps the most pervasive problem for the designers of interagsiteans is the lack of
known critical parameters, analogous to the execution-speed pararietergovern the
design of most embedded software components. In the case of spgeppseations, such
as cash machines, critical parameters do tend to be known withiorghaeisations that
develop them, but are unavailable to other designers. A well-documentaglexa this is
the study, known as “Project Ernestine,” of workstations for toll-anidtasse operators, or
TAOs [11]. In this application the time taken by the TAO to compdeteh call is a critical
parameter in the workstation’s design; however, the times areetifféor each type of call,
and information about times and call-types is considered confidentialdphbne companies
[10]. Each application has its own critical parameters; in masgs; the research has not yet
been done to establish what they are.

In summary, therefore, the design of interactive systems is sigmifycless well provided
with essential information, and levels of knowledge in designers are bouyel lower as a
result. Particular problems are patchiness in knowledge of existisignde superficial
knowledge about application environments, and an almost complete dearth of dgewle
about the critical parameters that apply to individual applications.

3.3 Is this engineering?

With so many barriers in the way of acquiring knowledge, we might firchitl to view
interactive system design as an engineering activity. Afterfadingineering design is a
knowledge-dependent activity, and the knowledge is unavailable, can engineergry lesi
said to take place?

The answer lies, | believe, in the evidence that application desigyeirs almost every case,
to access the information they need to design and build systems in arsedgaay; and this
organised use of available knowledge is the ultimate stamp of the en[§8¢ Even if they

abandon the search for information in some areas, e.g., for informatiomlineggaxisting

solutions to the problem at hand, they will still attempt to searthaodically for it in others.
They will not start from scratch unless there is no alternatiweould claim, therefore, that
we are discussing a design practice that exhibits the main featua® engineering activity.



William Newman 7

As such, we can compare it with other engineering practices andheiseas a basis for
understanding how interactive system design might develop into a stronger discipline.

3.4  The search for critical parameters

| have mentioned the problem of identifying critical parametersnteractive systems, and |
will wrap up this section by expanding on this problem and suggesting how it beght
attacked.

The essence of a critical parameter is that it provides ia fmasquantifying a requirement.
Vincenti quotes an example in his study of the development of requirements fot diyorgf
qualities [27]. By means of extensive testing, engineers were @ldelate the parameter
stick force peg accelerationas a basic determinant of maneuverability. Once this parameter
had been identified, and accepted by the aircraft industry, it becastendard means of
specifying flying qualities. Vincenti quotes figures of six pounds gem fighter-type
aircraft and up to 50 pounds pgron bombers and transports. He adds, “Aeronautical
engineers today express amazement that any meneuverability critesidasbstick force per

g ever existed.” One of the hallmarks of engineering is, | claims, tdndency for critical
parameters to become tacitly and universally accepted [18].

As | have said, critical parameters are different for eappli@ation. The parameter
governing the design of TAO workstatiangall-completion timél cannot be assumed to
apply to calls to directory-assistance or ambulance-service omefakdr The reason for this
variation lies in the dependence of application-design parameters supih@rted activity If
the activity changes, critical parameters may no longer apply.

In comparison with other fields of engineering, very little research heen done into
establishing critical parameters for software systems, of ategory. As regards embedded
systems, the tendency has been to assume that the standard paraspeteds reliability, use
of resources, et apply in all cases. In the design of interactive systems, the coagern
has been to provide adequate functionality (where “adequate” can meae tnaor the
competitor's”). A secondary concern has been usability; but the astagnt of an
interactive system’s usability often includes deciding what to measamd different
parameters not necessarily critical to the applicatiomay be selected on an arbitrary basis
for each usability evaluation.

The difficulty of determining critical parameters for interaetisystems should not be
underestimated. The concept that human activity is sufficiently tageato allow
measurement of recurring parameters may seem controversial;m@heargue that such
parameters cannot be found, or cannot be used as a basis for designlyQegtaown
experience has been that deliberate attempts to find them ofteanfhithat the parameters
sometimes emerge in the course of looking for something else [19]stiDimgest arguments
for their existence are that they have been detected in some app$icae.g., in TAO
activities [11], and that people’s ability to plan their activiteegygests an ability to make
their own estimates of how long the activities will take [20].wH can tap into this tacit
knowledge, we may be able to discover the critical parameters we need to know.

Difficult though critical parameters are to determine, ther@ $$rong argument for trying to
do so, because critical parameters lie at the root of the aomuisi software engineering
design knowledge. They provide a basis for enhancing designs, for without thdetitien
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as to whether enhancement has been achieved becomes arbitrary. sohEpwatle a means
of selecting scenarios for testing designs: if the scenario ishedum terms of critical
parameters, e.g., it describes a task whose performance-timigced,ahen it will provide a
valid basis for testing. Critical parameters also help us to staael what kinds of analyses
we need to carry out, and therefore what tools need to be developed. | sugglest,
therefore, that if more attention is paid to the identification hefsé parameters, faster
progress may be achieved towards providing interactive system desigthetiserAknowledge
they need to do their job. | will conclude with some remarks on this point.

4 Thoughts on innovation in interactive systems

To work in the computer field is to experience unceasing innovation onsavegsale. This
Is true whether one works in hardware, embedded software, interagstesns or some other
related area. In a sense, innovations must proceed in tandemregaalbacause advances in
one area depend on advances in another.

What does it mean, then, if one dreateractive systenis experiences particular difficulties
in acquiring essential knowledge? How can this area keep pacéwitbst? | have worked
in the interactive systems area for some years, and have mearkgpilean eye on
developments in other areas, and my sense is that innovations in iméesystems dmot
keep pace with the rest, in the true sense. Although novel ideasdaciinte systems are
generated at the same rate as in other areas, or even i#&feth¢innovationprocess by
which these ideas are brought into general use often falters.

Innovation is indeed a process, not an instantaneous “eureka’-type evens. fddesw
designs do not work perfectly first time, unless they are very minomeeheents to existing
designs. The ideas for interactive systems that flood the computeressidend to be
relatively radical. They offer totally new ways to do things, e.g., teslibrary books, to

hold meetings, to carry out surgical operations. Ideas of this kind tesrthgpwith them a

host of side-effects and performance problems, which need to be workedeodime. The

goal of this innovative process is, as Constant has put it, to reduawigheal “radical
technology” to a generally accepted and established “normal technology'Didiing the
innovative process, designers and users alike are motivated by the prispaating an
advantage over the previous technology. Thus reading books on-line should be advantageous
in comparison with reading them on paper, holding a videoconference should offer
advantages over holding it face-to-face, remote surgery should be prefetalelast some of

the time, to traditional surgery.

As | have pointed out, knowing whether we have improved on an existing design involves
knowing the critical parameters for that design problem; and in thgnde$ interactive
applications the critical parameters are generally unknown. Theséso a need to know
about existing designs, and about techniques for analysing and predicting tfeemaece.

The lack of these forms of knowledge has two undesirable effects.

First, radical ideas may be pursued when existing solutions could easily be imprawesiv
idea for an interactive system has an attraction all of its ®&cause it is new, it generates
interest in its further development. But it may not offer any aelsfantages over existing
systems. There may be simple ways of enhancing an existing desigmayVieot know
enough about the existing design to tell. Unless we know the criticanpsers against
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which to assess the two approaches, and are familiar with thedstsign, we cannot make
an informed choice here.

Secondthe innovative process may degrade rather than improve performanoevation
involves a long series of design changes. Since the critical paranae¢ unknown, there is
no way to tell whether the design is being changed for the better. Ethayiare known,
analytical techniques may be inadequate, as in the case of Pnojestifie [10]. What can
designers do in these circumstances? One common recourse is ¢atadesf because these
are seen as “improvements” in the competitive sense. Interatstems thus gradually
become more feature-rich and resource-demanding; but do they offer immopedrt to
their users?

There is a solution to these problems, in the form of research tbthaikinds of knowledge
that | have suggested is so hard for interactive system desigraaguioe. Foremost among
these is to establish the critical parameters of interaeip@ications. In tandem, work is
needed to develop analytical models for similating and predicting the oescofrdesign.

Efforts need to be made to document existing applications. As | halettssse are hard
areas of research; but they have the potential to offer considéaddits. | believe they
could enable the process of innovation in interactive systems to prodeetiedter than it

currently does.
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