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Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets

Rodrigo Fonseca Sylvia Ratnasamy David Culler Scott Shenker Ion Stoica

Abstract

This paper proposes a practical and scalable technique for
point-to-point routing in wireless sensornets. This method,
called Beacon Vector Routing (BVR), assigns coordinates to
nodes based on the vector of distances (hop count) to a small
set of beacons, and then defines a distance metric on these co-
ordinates. Packets are routed greedily, being forwarded to the
next hop that is the closest (according to this beacon vector
distance metric) to the destination. This approach is evalu-
ated through both simulation and a prototype implementation
on motes.

1 Introduction

Because ad hoc networks cannot use careful address alloca-
tion to create significant route aggregation, as is used in Inter-
net routing, it has proven difficult to design scalable multihop
point-to-point routing for wireless sensornets. There is a vast
literature on such algorithms in the MANET space [16], with
most proposals using some form of (perhaps partial) flood-
ing to discover individual routes on demand. While these de-
signs perform admirably in many settings, they are not scal-
able when the traffic pattern involves many source-destination
pairs.

One approach that is potentially very attractive is geo-
graphic routing [9, 1, 10]. Here, nodes know, and are identi-
fied by, their geographic coordinates. Routing is done greed-
ily; at each step in the routing process, nodes pick as next-
hop the neighbor that is closest to the destination. When a
node has no neighbor that is closer to the destination, GPRS
geographic routing enters perimeter mode, where routing is
restricted to a planarized subset of the graph and the packet
is sent along a “right-hand walk” until it either (1) reaches
a node that has a neighbor closer to the destination than the
starting point of perimeter mode (in which case it resumes
its greedy forwarding), or (2) returns to the node at which
it entered perimeter mode (in which case there is no node
closer to the destination than that node, and the algorithm

stops). While geographic routing is eminently scalable with
small routing state and localized discovery, it has two prob-
lems. First, the most common planarization algorithms do not
work on general graphs.1 Second, and more seriously, such
routing requires that each node must know its geographic
coordinates. While there are some sensornet nodes that are
equipped with GPS, the most widely used node — the Berke-
ley mote [5] — is not. Moreover, even when available GPS
does not work in certain physical environments and localiza-
tion algorithms are not sufficiently precise (at least not in all
settings), to be used for geographic routing. Finally, even ig-
noring all the above, greedy geographic may be substantially
suboptimal because it does not use real connectivity informa-
tion and geography is not always in congruence with true net-
work connectivity (e.g., in the face of obstacles or consistent
interference) Consequently, there are a number of sensornet
deployments for which geographic routing is not a viable op-
tion.

There have been two recent attempts to use geographic
routing ideas for sensornets without geographic information.
The NoGeo scheme [14] creates synthetic coordinates in an
iterative fashion, with each node adjusting to the coordinates
of their neighbors until an equilibrium is reached. The ini-
tialization technique for this scheme requires roughly

� � � � �

nodes to flood the sensornet, and for each of these flood-
ing nodes to store the entire

� � � � �
X

� � � � �
matrix of

distances (in hops). This is keeping
� � � �

state at roughly� � � � �
nodes, clearly an impractical burden in large sensor-

nets. The GEM scheme [13] is more scalable in steady state,
but employs a very intricate recovery process in which, when
nodes fail or radio links degrade, a potentially large number
of nodes in the system must recompute routing labels so as
to maintain GEM’s regular topological structure. Thus, this
algorithm may not be very robust in practice.

Note that neither of these schemes has been implemented
on motes. While there are cases where implementation yields
little additional insight, the severe resource restrictions of

1This problem may have been solved by some recent unpublished work,
but because it is under anonymous submission we can’t cite it here.



the lowest, most numerous tier of sensor networks impose
daunting complexity restrictions that can only be appreciated
through an actual implementation. Moreover, coping with the
vicissitudes of real radios, especially in non-laboratory phys-
ical spaces, requires a fair degree of robustness. We discuss
some of these issues below, but suffice it to say that we expect
these issues to render both GEM and NoGeo quite difficult to
implement and operate on resource constrained sensor net-
work nodes.

Thus, our goal is to find a scalable point-to-point sensornet
routing algorithm that does not rely on geographic coordinate
and is both simple and robust. We propose such a scheme,
called Beacon Vector Routing (BVR). The BVR approach
combines the greedy routing notion from geographic routing
with the use of landmark beacons from Landmark Routing
[18].2

BVR uses a small set of beacons (typically 1-2%) that
(conceptually) flood the sensornet so that each node learns
its distance in network hops from the beacons. A node’s vec-
tor of distances from the set of beacons serves as its coordi-
nates. A packet’s destination is described in terms of a dis-
tance vector and each sensornet node forwards a packet to its
neighbor whose own distance vector is “closest” (according
to some metric, which we define later) to the destination dis-
tance vector. When this greedy routing can make no more
progress, the packet is forwarded towards the beacon closest
to the destination. If while heading towards the beacon the
packet can resume greedy forwarding it does so; if not, the
packet is flooded with a limited scope once it reaches the said
beacon, with the necessary scope determined by the distance
vector.

The algorithm requires very little in the way of state, over-
head, or preconfigured information (such as geographic loca-
tion of nodes). Routes are based on connectivity and have low
stretch over minimum paths. We evaluate this algorithm via
simulations and prototype deployments on two mote testbeds.
While our results from the testbeds are preliminary, the mote
implementation itself provides evidence of the simplicity of
the algorithm.

Before developing BVR in earnest, we note that the need
for point-to-point routing on sensornets is not as obvious as
in traditional computer networks. The first wave of sensor-
net applications used many-to-one or one-to-many routing
(as in directed diffusion [7] and TinyDB [12]). This partly
reflects application requirements but is also partly an indica-
tion of what routing problems have scalable, practical solu-
tions. Several recent proposals for sensornet algorithms and
applications do require point-to-point routing. These include
tracking [?] and various forms of in-network storage and pro-

2While Landmark Routing is superficially similar, in that nodes are lo-
cated in terms of their distances to beacons, we can’t directly apply that ap-
proach here because Landmark Routing depends on carefully placed beacons
that self-organize themselves into a hierarchical structure. Our beacons are
randomly chosen, and we don’t require them to establish any structure.

cessing [11, 3, 4, 2, 17, 15]. Without having a scalable point-
to-point routing algorithm, we will not even be able to test
these ideas. Thus, we see our proposal as an enabler for the
next round of exploration of sensornet applications.

The remainder of this document is organized as follows.
Section 2 describes our routing algorithm. We also describe
possible implementations of a location service to be used in
conjunction with such routing, which is necessary for some
applications. In Section 3, we show through high level sim-
ulations that the algorithm finds efficient routes, can scale to
large networks, and works in the presence of obstacles and in
low density networks. Section 5 present results of a protoype
of BVR implemented in TinyOS [6] and deployed in two real
testbeds of mica2dot motes. These deployments are a very
effective way of testing the algorithm because it exposes us to
the idiosyncrasies of the real radio environment, and the addi-
tional challenges the resource constrained platform imposes.
Finally, future directions and our conclusions are presented in
section 6.

2 The BVR Algorithm

As mentioned earlier, BVR defines a set of coordinates and
a distance function to enable scalable greedy forwarding.
These coordinates are defined in reference to a set of “bea-
cons” which are a small set of randomly chosen nodes that
periodically flood messages to the rest of the network using
a fairly standard reverse path tree construction algorithm (we
use one similar to that described in [19], but those used by
TinyDB[12] or Directed Diffusion[7] would have also suf-
ficed). These periodic messages allow every node to learn its
distance, in hops, to each of the beacons.3

Let � � � � �
denote the distance in hops from node

�
to bea-

con � . Let � denote the total number of beacon nodes. Then,
we define a node

�
’s position � � � �

as being the vector of these
beacon distances: � � � � �  � � � � � � � � � � � � � � � � � � � � � �

. Note
that two different nodes can have the same coordinates, so we
will always retain a node identifier to disambiguate nodes in
such cases. Nodes must know the positions of their neighbors
(in order to make routing decisions), so nodes periodically
(locally) broadcast messages announcing their coordinates.

To route, we need a distance function � � � � � �
on these vec-

tors that measures how good
�

would be as a next hop to reach
a destination

�
. We choose a distance function (or metric) that

(1) emphasizes the components where
�

is closer to the bea-
con than

�
and (2) only considers the � closest beacons to

�
.

The latter is to reduce the number of elements � � � � �
that must

be carried in the packet (see below), the former is because
moving away from a beacon (to match the destination’s coor-
dinate) might be going in the wrong direction, while moving

3As described in Section 4, our implementation measures and takes into
account the bidirectional quality of each link when constructing these trees,
so in reality our network distance is the number of hops along a path of
acceptable quality links.



Packet fields Description� � � � � � � the destination’s unique identifier� � � � � � � � � �
destination’s BVR position� � � � � 
 � � � 
 � � � � �

seen, � � � � � � � � � �

Table 1: BVR packet header fields

Para. Description
� total number of beacons
� � � � ; used to define a destination’s position� � weights used in calculation of � � �

Table 2: BVR algorithm parameters

towards a beacon (to match the destination’s coordinate) is
always moving in the right direction. In other words, a bea-
con that “pulls” routes inwards towards itself (and hence the
destination) is a better routing guide than one that “pushes”
routes away from itself.

The distance function we use is:

� � � � � � 
 � � �
� � � � � �  " $ � � � � 
 � % � � � � � ' � � � 
 � % �

(1)

where � � � � 
 �
is the set of the � beacons closest to



and

$ � � � � 
 � � ) *
if � � � � � , � � � 
 �

else $ � � � � 
 � � )
. While this

functions performs well in our simulations and implementa-
tion, there may well be other distance functions that perform
equally well.

To route to a destination node � , a packet holds three fields
in the header: (1) the destination node’s unique identifier, (2)
the destination’s position � � � �

, and (3) � 
 � � , a � -position
vector where � 
 � � � � �

is the minimum distance that the packet
has seen so far using � � � � � �

, the � closest beacons to � . Ta-
ble 1 describes these fields. The reason we store the desti-
nation’s unique identifier in addition to its position is to dis-
ambiguate in cases where neighboring nodes have identical
positions.

Table 5 summarizes the parameters in our BVR algorithm
and Algorithm 1 lists the pseudocode for the forwarding al-
gorithm. Forwarding a message starts with a greedy search
for a neighbor that improves the minimum distance we have
seen so far. When forwarding the message, the current node
(denoted / 0 � � ) chooses among its neighbors the node

� 2 3 �
that minimizes the distance to the destination. We start us-
ing the � closest beacons to the destination, and if there is no
improvement, we successively drop beacons from the calcu-
lation.

If we do not find a neighbor that improves on � 
 � � � � �
for

any � , we have to resort to fallback mode. In fallback mode,
a node forwards the packet towards the beacon closest to the
destination; i.e., it sends the packet to its parent in the cor-
responding beacon tree. The parent will forward as usual –
first attempting to forward the message greedily and, failing

Algorithm 1 BVR forwarding algorithm
BVR FORWARD(node / 0 � � , packet 4 )

// first update packet header
for ( � =

)
to � ) do4 � � 
 � � � � � � 7 9 : � 4 � � 
 � � � � � � � � � � / 0 � � � 4 � � � � � �

// try greedy forwarding first
for ( � = � to 1) do� 2 3 � < > ? A 7 9 : D � E G I � J L � � " M � � � � 3 � 4 � � � � � P

if ( � � � � � 2 3 � � 4 � � � � � Q 4 � � 
 � � � � �
) then

unicast 4 to
� 2 3 �

//greedy failed, use fallback modeR T U U W T / � W / � < closest beacon to 4 � � � �
if (

R T U U W T / � W / �
!= / 0 � � ) then

unicast 4 to PARENT(
R T U U W T / � W / �

)

//fallback failed, do scoped flood
broadcast 4 with scope 4 � � � � � � � � R T U U W T / � W / � �

to do so, using fallback mode.4 Hence the intuition behind
fallback mode is that if a node cannot make progress towards
the destination itself, it can instead forward towards a node
that it knows is close to the destination and towards which it
does know how to make progress.

It is possible however that a packet ultimately reaches the
beacon closest to the destination and still cannot make greedy
progress. At this point, the root beacon initiates a scoped
flood to find the destination. Notice that the required scope of
the flood can be precisely determined – the distance in hops
from the flooding beacon to the destination is determined
from the destination’s position in the packet header. While
this ensures that packets can always reach their destination,
flooding is an inherently expensive operation and hence we
want to minimize the frequency with which this step is per-
formed, and also the scope of the flood. Our results show both
these numbers to be low.

The algorithm, as described so far, assumes that the orig-
inating node knows the coordinates of the intended destina-
tion. Depending on the application, it may be necessary for
the origination node to first look up the coordinates by name,
so we must provide a directory mapping node identities to
coordinates. We describe a simple mechanism to achieve
this functionality, but we have not focused on this mecha-
nism in this paper. This mechanism uses the beacons as a
set of storage nodes. Consistent hashing [8] provides a map-
ping Z \ � ] � 2 � � `a W 2 T / ] � � � , from node ids to the set of
beacons. As all nodes know all beacons, any node can in-
dependently (and consistently) compute this mapping. The
location service then consists of two steps: each node � peri-
odically publishes its coordinates to its corresponding beacon

4Note that the use of b c d f ensures that routing will never loop.



� � � � � � �
. When a node � first wants to route to � , it sends a

coordinate request to the beacon
� � . Upon receiving a reply,

it then routes to the received coordinates. Further communi-
cation between the nodes may skip the lookup phase, if the
nodes piggyback their own location information on the pack-
ets they send.

3 Simulation Results

To evaluate the BVR algorithm, we use both extensive simu-
lations and experiments on testbeds of real sensor motes. To
aid the development of BVR and to better understand its be-
havior and design tradeoffs we start by evaluating BVR using
a high-level simulator that abstracts away many of the va-
garies of the underlying wireless medium. While clearly not
representative of real radios, these simplifications allow us to
explore questions of algorithm behavior over a wide range
of network sizes, densities, and obstacles that would not be
possible using a real testbed.

In practice however, the characteristics of wireless sensor
networks impose a number of challenges on actual system
development. For example, the mica2dot motes have se-
vere resource constraints – just 4KB of RAM, typical packet
payloads of 29 bytes etc. – and the wireless medium exhibits
changing and imperfect connectivity. Hence, our next round
of evaluation is at the actual implementation level. We present
the implementation and experimental evaluation of our BVR
prototype in Sections 4 and 5 respectively and our simuala-
tion results in this section. We start with a description of our
high-level simulator:

Simulator We use a packet-level simulator implemented in
C++. Our simulator makes several simplifying assumptions.
First, it models nodes as having a fixed circular radio range;
a node can communicate with all and only those nodes that
fall within its range. Second, the simulator ignores the capac-
ity of, and congestion in, the network. Finally, the simulator
ignores packet losses. While these assumptions are clearly
unrealistic, they allow the simulator to scale to tens of thou-
sands of nodes.

In our simulations, we place nodes uniformly at random
in a square planar region, and we vary the total number of
beacons � , and the number of routing beacons, � . In all our
tests, we compare the results of routing over BVR coordinates
to greedy geographic routing over the true positions of the
nodes.

Our default simulation scenario uses a 3200 node network
with nodes uniformly distributed in an area of 200 � 200
square units. The radio range is 8 units, and on average nodes
have approximately 16 neighbors. Unless otherwise stated, a
node’s neighbors are those nodes that fall within its one hop
radius.

3.1 Metrics

In our evaluation, we consider the following performance
metrics:

� (Greedy) success rate: The fraction of packets that are
delivered to the destination without requiring flooding.
We stress that the final scoped flooding phase ensures
that all packets eventually reach their destination. This
metric merely measures how often the scoped flood-
ing is not required.

� Flood scope: The number of hops it takes to reach the
destination in those cases when flooding is invoked.

� Path stretch: The ratio of the path length of BVR to the
path length of greedy routing using true positions.

� Node load: The number of packets forwarded per node.

In each test, we’re interested in understanding the over-
head required to achieve good performance as measured by
the above metrics. There are three main forms of overhead in
BVR:

� Control overhead: This is the total number of flooding
messages generated to compute and maintain node coor-
dinates and is directly dependent on � , the total number
of beacons in the system. We measure control overhead
in terms of the total number of beacons that flood the
network. Ideally, we want to achieve high performance
with reasonably low � .

� Per-packet header overhead: A destination is defined
in terms of its � � � � ) routing beacons. Because the des-
tination position is carried in the header of every packet
for routing purposes, � should be reasonably low.

� Routing state: The number of neighbors a node main-
tains in its routing table.

3.2 Routing Performance vs. Overhead

In this section, we consider the tradeoff between the routing
success rate and the flood scope on one hand, and the over-
head due to control traffic ( � ) and per-packet state ( � ) on the
other hand.

We use our default simulation scenario and for each of ten
repeated experiments, we randomly choose � beacons from
the total set of nodes. We vary � from

� �
to � �

each time
generating � � � � � �

routes between randomly selected pairs of
nodes.

Figure 1 plots the routing success rate for an increasing to-
tal number of beacons ( � ) at three different values of � , the
number of routing beacons ( � � 


,
� �

, and � �
) As expected,

the success rate increases with both the number of total bea-
cons and the number of routing beacons.

We draw a number of conclusions from these results:
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� We see that with just �
� � �

routing beacons we can
achieve routing performance comparable to that using
true positions. The performance improvement in in-
creasing � to 20 is marginal. Hence, from here on, we
limit our tests to using �

� � �
routing beacons as a

good compromise between per-packet overhead and per-
formance.

� Using �
� � �

, we see that only between 20 to 30 total
beacons ( � ) is sufficient to match the performance of true
positions. At less than 1% of the total number of nodes,
this is very reasonable flooding overhead.

� The average path length in these tests was 17.5 hops and
the path stretch, i.e., the length of the BVR path over the
path length using greedy geographic routing over true
positions, is 1.05. In all our tests, we found that the
path stretch was always less than 1.1 and hence we don’t
present path stretch results from here on.

� We also compared the distribution of the routing load
over nodes using BVR versus greedy geographic rout-
ing over true positions and found that for most nodes,
the load is virtually identical though BVR does impose
slightly higher load on the nodes in the immediate vicin-
ity of beacons. For example, for the above test using
�

� � �
and �

� � �
, the 90%ile load per node was 48

messages using BVR compared to 37 messages using
true positions.

In summary, we see that BVR can roughly match the per-
formance of greedy geographic routing over true positions
with a small number of beacons using only its one-hop neigh-
bors.

Figure 2 illustrates the trade-off between the control over-
head and the overhead due to scoped flooding of routes that
fail, by plotting the scope of flood as a function of the to-
tal number of beacons. The scope of flood decreases from �
hops to � hops as the number of beacons increases from

� �
to

�
�
. However, note that the improvement is more pronounced

when the number of beacons is low. For �
�

beacons the flood
scope is already less than

�
�

�
, and for

� �
beacons the flood

scope is
�
.

3.3 The Impact of Node Density

In this section, we consider the impact of the node density on
the routing success rate. Figure 3 plots the success rate for the
original density of

� �
nodes per communication range, and

for a lower density of � � � nodes per communication range.
While at high density the performance of both approaches
is comparable, we see that at low densities BVR performs
much better than greedy geographic routing with true posi-
tions. In particular, while the success rate of the greedy rout-
ing is about

� � �
, the success rate of BVR reaches �

� �
with
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�
�

beacons, and � � �
with

� �
beacons. Thus, BVR achieves

an almost �
� �

improvement in the success rate compared to
greedy routing with true positions. This is because the node
coordinates in BVR are derived from the connectivity infor-
mation, and not from their geographic positions which may
be misleading in the presence of the voids that occur at low
densities.

These results reflect the inherent tradeoff between the
amount of routing state per node and the success rate of
greedy routing. At lower densities, each node has fewer im-
mediate neighbors and hence the performance of greedy rout-
ing drops. One possibility to improve the performance of our
greedy routing is to have nodes maintain state for nodes be-
yond their one-hop neighborhood. This however increases
the overhead and complexity of maintaining routing state. To
retain high success rates without greatly (or needlessly) in-
creasing the routing state per node, we propose the use of on-

Algorithm avg max % nodes avg
ngbrs ngbrs w/ 2hop success

BVR (hi-dens) 15.7 30.7 0 96.1
BVR � 2hop (hi-dens) 17.0 67.5 5 99.7
true postns (hi-dens) 15.7 31.7 0 96.3

true postns � 2hop (hi) 15.8 48.0 0.7 99.5
BVR (lo-dens) 9.8 22.1 0 89.2

BVR � 2hop (lo-dens) 12.7 50.0 15 97.0
true postns (lo-dens) 9.8 22.8 0 61.0

true postns � 2hop (lo) 10.7 36.3 6 82.7

Table 3: State requirements using on-demand two hop neigh-
bor acquisition for BVR and true positions at two different
network densities. These state requirements are averaged
over 10 runs with �

� � �
and �

� � �
.

demand two-hop neighbor acquisition. Under this approach,
a node starts out using only its immediate (one-hop) neigh-
bors. If it cannot forward a message greedily, it fetches its
immediate neighbors’ neighbors and adds this two-hop neigh-
bors to its routing table.5 The intuition behind this approach is
that the number of local minima in a graph is far smaller than
the total number of nodes. Thus, the on-demand approach to
augmenting neighbor state allows only those nodes that re-
quire the additional state to incur the overhead of maintaining
this state.

To evaluate the effectiveness of using on-demand two-hop
neighbor acquisition, we repeat the experiments in Figure 3
using this approach. The results are plotted in Figure 4. Not
surprisingly, this approach greatly improves the routing suc-
cess rate. With only �

�
beacons, the success rate of BVR

exceeds � � �
for the high density network, and � � �

for the
low density network. Table 3 shows the average and worst
case increase in the per-node routing state for both BVR and
true positions. Using BVR, at high density, only

� �
of nodes

fetch their two-hop neighbors while
� � �

of nodes do so at
the lower densities. This confirms our intuition that acquiring
two-hop neighbors on demand represents a big win at a fairly
low cost.

3.4 Scaling the Network Size

In this section, we ask the following question: how many bea-
cons are needed to achieve a target success rate as the network
size increases? To answer this question, we set the target of
the routing success rate at � � �

. Figure 5 plots the number of
beacons required to achieve this target for both BVR using a
one-hop neighborhood, and BVR using on-demand two-hop
neighbor acquisition. In both cases the number of routing
beacons is

� �
.

There are two points worth noting. First, the number of
beacons for the on-demand two-hop neighborhood remains

5Note that greedy routing can fail even over this two-hop neighborhood
in which case the forwarding node will resort to forwarding using fallback
mode as before.
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routing beacons.

constant at
� �

as the network size increases from
� �

to
�

�
�

�
� �

nodes. Second, while the number of beacons in the case of
BVR with one-hop neighborhood increases as the network
size increases, this number is still very small. When the net-
work is greater than �

� �
nodes, the number of beacons for the

one-hop neighborhood never exceeds �
�

.
These results show that routing rarely needs to resort to

flooding, and when it does the scope of the flood is small.
Moreover, the number of beacons required to achieve low
flooding rates grows slowly (or not at all!) with the size of
the system.

3.5 Performance under obstacles

In this section, we study the BVR performance in the pres-
ence of obstacles. We model obstacles as horizontal or ver-
tical “walls” with lengths of

� �
or �

�
units. For comparison,

recall that the radio range of a node is 8 units.
Table 4 shows the success rates of BVR routing over a one-

hop neighborhood for different numbers of obstacles. For
each entry, we also show, in parentheses, the success rate of
greedy routing using true positions. Surprisingly, as the num-
ber of obstacles and/or their length increases, the decrease
in success rate using BVR is not significant. In the worst
case the success rate drops only from � � �

to � � �
. For com-

parison, the sucess rate of greedy routing with true positions
drops from � �

�
to

�
�

�
!

As in the case of the lower density network scenario, the
main reason BVR achieves much better results is because the
node coordinates in BVR reflect their connectivity instead of
their true positions. Two nodes on opposite sides of a wall
may be very close in true geographic space even though they
cannot communicate. In contrast, the same nodes might be
quite far apart in the virtual coordinate space constructed by
BVR.

Length of Number of Obstacles
Osbstacles 0 10 20 50

10 0.96 (0.98) 0.96 (0.91) 0.95 (0.87) 0.95 (0.79)
20 0.96 (0.98) 0.95 (0.84) 0.94 (0.70) 0.91 (0.43)

Table 4: Comparing BVR with greedy forwarding over true
positions in the presence of obstacles

4 BVR Implementation

This section describes our prototype implementation of BVR
in TinyOS [6] for the mica2dot motes. The resource con-
straints of the mote hardware and the vagaries of the wire-
less medium lead to a number of practical difficulties not ad-
dressed in our discussion so far. In particular, the following
are four key issues that must be addressed in a real implemen-
tation:

� Link estimation: In a wireless medium, the notion of
an individual link is itself ill-defined as the quality of
communication varies dramatically across nodes, dis-
tance and time. Link estimation is used to characterize
a link as the probability of successful communication
rather than a simple binary on/off relation.

� Link/neighbor selection: The limited memory in the
mote hardware prevents a node from holding state for all
its links. Link selection determines the set of neighbors
in a node’s routing table.

� Distance estimation: Recall that our BVR algorithm
defines a node’s coordinates as its distance in hops to
a set of beacons. We describe how we define the hop
distance from a node to a beacon when individual links
are themselves defined in terms of a quality estimate.

� Route selection: This addresses how a node forwards
packets in the face of lossy links.

Each of the above is a research problem in itself (see
[19, 20] for a detailed exploration of some of these issues);
while our implementation makes what we believe are sound
choices for each, a comprehensive exploration of the design
space for each individual component is beyond the scope of
this paper. In what follows, we describe our solutions to each
of the above problems and present the results of our system
evaluation in the following section.

For simplicity, our prototype sets the number of routing
beacons equal to the total number of beacons ( � � � ) and
does not implement the successive dropping of beacons in
computing distances for greedy forwarding (i.e., a node that
cannot make greedy progress using all available beacons
switches directly to fallback mode). Finally, the selection of
beacons is preconfigured and we make no attempt to replace
failed beacons. We also do not implement the on-demand



neighbor acquisition described in the previous section. If any-
thing, these simplifications can only degrade performance rel-
ative to our earlier simulation results.

4.1 Link Estimation

Estimating the qualities of the links to and from a node is
critical to the implementation of BVR as this affects the es-
timated distance from beacons as well as routing decisions.
For example, consider a node that on occasion hears a mes-
sage directly from a beacon over a low quality link. If, based
on these sporadic receptions, the node were to set its distance
from the beacon to be one hop then that would have the un-
desired effect of drawing in traffic over the low quality link.

Our link estimator is based on that described by Woo et
al [19]. Nodes perform passive estimation of link qualities
by snooping packets on the wireless medium. This is pos-
sible due to the broadcast nature of the radio. All packets
are assigned sequence numbers from which a node can de-
termine the number of packets transmitted by and received
from a given neighbor node. A node estimates the quality of
a given link as an exponentially weighted moving average of
that link’s quality over successive time windows. The link’s
quality for a given time window is the fraction of transmitted
packets received from the corresponding source in that win-
dow. A link over which no packets were received in a given
time window is assigned a link quality of zero for that win-
dow and a link that has a quality of zero for 5 successive time
windows is removed from the link table. Our implementa-
tion uses a time window of 120 seconds and an exponential
average with a smoothing constant of 40%.

The above estimates the quality of an incoming link at a
node. In addition, every node periodically transmits its cur-
rent list of incoming links and their respective qualities. This
allows nodes to learn the quality of links from them which is
important for selecting good links along which to route mes-
sages. This is particularly important as previous work has
shown that mote radio links can be highly asymmetric [19]).

The assumption underlying the above link estimation is
that nodes transmit at a certain minimum rate. In BVR, nodes
periodically broadcast “hello” messages announcing their co-
ordinates to their immediate neighbors. This is the minimum
control traffic required for routing and also serves the purpose
of ensuring sufficient traffic for link estimation. To avoid syn-
chronization effects, the interval between successive position
broadcasts is jittered around an expected interval value. Our
implementation uses an expected interval time of 40 seconds
with a jitter of � 20 seconds.

4.2 Neighbor Selection

As described above, a node maintains state for each link
whose quality it must estimate. Motes however have very
limited memory and hence a node may not be able to (or may

not want to devote the memory needed to) hold state for all
the nodes it might hear from. Hence on the one hand we
want a node to hold state for its highest quality links but on
the other hand the node does not have the memory resources
necessary to estimate the quality of all its links.

To solve this problem we use a scheme that guarantees
that a node’s link table will eventually converge to storing the
highest quality links. Let

�

denote the total number of slots
available for link information. Of these, we let � slots be test-
ing slots used to hold new neighbors. When a new neighbor is
inserted into a test slot, it cannot be replaced until a probation
period has passed. We set the probation period to be such that
the link estimator would have converged to within 10% of the
stable quality of the link. When a node hears from a new
neighbor, it searches its testing slots for the lowest quality
neighbor that is past probation. If such a neighbor exists, it is
evicted from the link table and replaced by the new neighbor.
When a neighbor in a testing slot has completed its probation
period, we check to see if its link quality is better than the
lowest quality node in the

� �
� non-testing slots and if so,

we swap the two. This replacement scheme guarantees that a
node eventually holds the

� �
� highest quality neighbors. In

our prototype, we use
� � �

� and �
� �

.

4.3 Distance Estimation

Every node in BVR maintains two key pieces of information:
(1) its distance in hops to the root beacons and (2) the posi-
tions of the node’s immediate neighbors

Our prototype implements these using two distinct flows of
control packets.6 To set up the distances to the root beacons,
each root periodically floods a message to the entire network.
To avoid synchronization, the interval between two floods ini-
tiated by a root beacon is jittered. Our flooding protocol ex-
hibits two important properties: first, we guarantee that every
node will send each message once, and second, the protocol
constructs trees that optimize the quality of the reverse paths
to the root.

A beacon flood is identified by the beacon’s identifier and
a sequence number. For each beacon, a node maintains the
sequence number of the last flood from that beacon and its
parent and hopcount to that beacon. Upon receiving a beacon
flood message, the node determines if it came from that bea-
con’s current parent, or from a ‘better’ parent. In the latter
case, the node updates its parent, and in either case, forwards
the message on if it has a new sequence number. To avoid
collisions, each node waits for a random interval before for-
warding a message.

6An alternate option would have been to use the periodic local neighbor
exchanges to also infer distances to beacons in the style of distance-vector
routing algorithms. While this would use less control traffic, it requires im-
plementing more complicated loop avoidance techniques such as split hori-
zon, hold down timers, counting-to-infinity and so on. We opted for the
simpler approach in our prototype but this is certainly a tradeoff that merits
further exploration.



We define a ‘better’ parent as one that has a lower expected
path loss rate to the root. The path loss rate is obtained by
multiplying the reverse path probability from the parent up
to the root with the node’s estimate of the reverse link quality
from itself to the parent. The goal of such estimates is to avoid
selecting long, low quality links that result in low hopcounts
to the root, albeit of very low quality. Thus, a node’s path to
the root is that with the lowest expected loss rate and we set
the node’s distance to the root to be the number of hops along
that path (computed as usual by adding one to the parent’s
hopcount).

4.4 Route Selection

Our BVR prototype uses two optimizations to improve rout-
ing reliability in the face of lossy links. First, it uses link
level acknowledgements of all unicast packet transmissions
and retries every transmission up to five times. Second, if
a transmission fails (despite the multiple retries), the node
will successively try to forward a packet to any neighbor that
makes progress to the packet destination (where progress is in
terms of the distance metric defined in Section 2). The node
will try each of these next hop in the decreasing order of their
outgoing link quality. Only when it has exhausted all possible
next hop options will the forwarding node revert to fallback
mode.

5 Prototype Evaluation

This section presents the results of our experiments with the
BVR prototype deployed over two testbeds. The first consists
of 23 mica2dot motes [?] in an indoor office environment
(the Intel Berkeley Lab.) of approximately 20x50m while the
second is a testbed of about 42 mica2dot motes deployed
across multiple student offices on a single floor of the com-
puter science building at UCB. In both testbeds, motes are
connected to an Ethernet backchannel that we use for logging
and driving the experiments. These testbeds are of moderate
scale – the Intel-Lab testbed has a network diameter of four
hops and average routing pathlength of 2.0 hops,7 while the
UCB testbed has a diameter of approximately 8 hops and av-
erage pathlength of 3.22 hops – and hence do not truly stress
BVR’s scalability. Nonetheless, these deployments are an in-
valuable (if not the only!) means by which to test our algo-
rithms using real radios with the non-uniform and dynamic
link characteristics that cannot be easily captured in simula-
tion.

On both testbeds, we preconfigure four corner nodes to act
as beacons and set the parameters of the algorithm accord-
ing to the values in Table 5. We selected these parameters to
achieve what seemed like a good tradeoff between maintain-
ing freshness of the routing state, and the amount of control

7The network diameter is computed as the 99th percentile of measured
path lengths.

Link Estimator

Size of Table 12
Expiration 5 succ. windows
Replacement 1 testing slot
Reverse Link Info � 70s (jittered)
Update Link � 120s (fixed)
Exponential Average smoothing constant 40%

BVState

Root Beacon � 60s � 30s (uniform)
Position Broadcast � 40s � 20s (uniform)

Table 5: Parameters used in the experiments on both the Intel-
Lab and UCB testbeds

traffic generated. For example, using the above parameters
on the Intel-Lab testbed each mote generates approximately
0.1 messages per second.8 For a channel capacity of approx-
imately 30 messages per second (observed), and an average
of 7 neighbors, this control traffic occupies only about 2% of
the channel.

Our experiments consist of a setup phase of several minutes
to allow the link estimations to converge, beacon trees to be
constructed and nodes to discover their neighbors’ positions.
After this setup phase, we issue route commands from a PC
to individual motes over the ethernet backchannel.

In the reminder of this section we evaluate three main as-
pects of the BVR design. First, we validate that a node se-
lects indeed high quality neighbors. This is important be-
cause the performance of BVR depends heavily on the link
quality. Second, we evaluate the BVR routing with respect to
two metrics: success rate, and per-node load distribution. We
find that the routing success rate is close to

� � � �
when the

network load is low, and it degrades gracefully as the load in-
creases. Finally, we evaluate the stability of node coordinates,
and we find that these coordinates are surprisingly stable.
This result open the possibility of implementing higher level
abstractions, such as data-centric storage, on top of BVR.

5.1 Link Estimation

The link estimation results presented here were obtained from
an almost two hour long run of BVR on the Intel-Lab testbed.
For this run, we did not impose any actual routing load on the
network and hence the only traffic in the network is the reg-
ular control traffic (i.e., beacon floods, neighbor exchanges)
generated by BVR itself.

Based on the packets logged at each mote, we record the
quality of every link over which even a single packet was re-
ceived. Figure 7 compares these measured link qualities to
those of the subset of links selected by motes in their routing

8There are 4 root beacons which means a node will forward on average 1
root message every � � � 	 �  seconds. In addition, each node will (on average)
transmit 1 position message every 40s, and 1 reverse link update every 240s.
Hence the expected combined rate is about � �

� � �
messages per second.
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Figure 6: Neighborhood graph as determined by the neighbor tables of motes logged after 30 minutes of run time with the
beacons and coordinate broadcasts. Each node is shown with its nodeID and its coordinates with respect to the four beacons
used. The beacons are shown in gray. The positions of the nodes are to scale.

tables. We see that the fraction of neighbor links selected in
each range of quality increases with the quality and hence the
results attest that nodes choose links with comparatively good
qualities to be part of their coordinate tables. We notice how-
ever, that some high quality links were not selected by any
motes even though lower quality ones were. Closer exami-
nation revealed two primary causes for this. The first is due
to the limit of 12 neighbors per mote because of which well
connected motes might ignore even high quality links. The
second is due to link asymmetry: if a link’s quality is good
in one direction but very poor in the other then a node might
not receive the reverse link quality information (used to select
neighbors) often enough.

Figure 6 shows a snapshot of the network connectivity as
determined by the neighbor tables at each mote about 30 min-
utes into the test. Note that mote positions in the figure repre-
sent their actual layout on the testbed and the figure is drawn
to scale. We see that network connectivity is frequently not
congruent with physical distance. For example, mote 31 and
14 are not neighbors but 31 and 5 are. Likewise motes 10 and
12 are not connected though 10 and 17 are. We also note the
existence of short but asymmetric links as between 39 and 1.

Finally, we found that the link qualities estimated by the
motes, at least in this environment, did not vary as widely as
anticipated; Figure 8 shows the link qualities from a (fairly
representative) sample mote as estimated by its neighbors.
We note that the link estimator is more stable when links have
either very good or very poor quality, and this is the main dis-
tinction we need to make.

5.2 BVR

The experimental setup for the results in this section is as
described above with the only addition that, after the setup
phase, each mote will periodically attempt to route to a ran-
domly selected destination mote. The rate at which each mote
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messages received per node per second, for the routing test
on the Intel-Lab testbed.

initiates these routes is a test parameter and we present results
from runs on both testbeds.

Our first set of results explore BVR routing performance
in terms of successful greedy packet delivery and how this
scales with increasing routing load. While our simulation re-
sults indicated that BVR rarely requires flooding to discover
routes, those tests did not model realistic radios nor capture
the effect of a finite (and small) channel capacity. As in
the simulations, we measure success rate as the fraction of
routes that arrived at the target destination without requiring
scoped flooding. Figure 9 shows the results for the Intel-Lab
testbed. Our test starts with each mote issuing 1 route request
every 2 seconds (0.5 routes/second) and increases this rate
every 200 seconds until we reach a rate of approximately 7
routes/second per mote. Figure 9 plots the success rate over
time along with the percentage of routes that failed due to

radio or contention drops (where contention drops are pack-
ets that were dropped due to a lack of sending or receiving
buffers along the internal send/receive path in the stack and
radio drops are transmissions that failed despite the multi-
ple retries; i.e., the message was repeatedly sent out over the
channel but no acknowledgements were received). The graph
also plots the per-mote route request rate over time with the
scale on the right hand Y axis. We see that BVR achieves a
success rate of 100% until a load of about 3 requests/second
at which point we start seeing a very small number of con-
tention drops. Only when the rate gets to approximately 6
requests/second do we observe radio drops. In this testbed,
no route attempts required flooding, they either arrived at the
destination or suffered drops.

Figure 10 shows the results from similar tests on the UCB
testbed. Here the routing load is held low at 1 request/second
until about 4,500 seconds into the experiment and then repeat-
edly increased up to a maximum of 10 requests/second per
mote. Over the 3124 routes initiated during the period upto
4500 seconds, an average of 88.4% of routes reached their
target destination without requiring any flooding and 6.5%
were dropped (about 6.46% of these were radio drops, the
remainder due to buffer contention). 4.57% of routes termi-
nated at beacons thus requiring scoped floods; the average
scope of the required flood was 2.6. Finally, we found that a
very small percentage (approx. 0.5%) of routes were “stuck”
at nodes along the way. Examination of the logs revealed that
this was typically because all the potential next hop links at
the forwarding node were of very poor quality. In fact, ex-
amination of the link estimation logs indicate that the average
link quality on the UCB testbed is significantly lower than the
Intel-Lab testbed. This is also indicated by the higher number
of radio drops. The UCB testbed is a relatively new deploy-
ment and further exploration is required to determine the ex-
tent to which careful tuning of our link estimation algorithms



might further improve performance.9

Finally, Figure 11 examines the load distribution load in
the network, in terms of the number of messages received per
second for the Intel-Lab testbed. For each 100 second inter-
val, the boxplot shows the mean (dashed line), and the 5th,
25th, 50th, 75th, and 95th percentiles of the load distribution
across all nodes. Our first observation is that when BVR con-
trol traffic is the only traffic in the network (during the setup
phase, upto again 1800 seconds), the load is small and the dis-
tribution not too skewed. After this point the load grows with
the increase in routing traffic as does the skew in the load.
Notice (from Figure 9) that BVR sustained a routing success
rate of over 95% even as 25% of the nodes were receiving as
many as 17 messages per second.

In summary, the above experiments indicate that our BVR
implementation works correctly in a real deployment, and,
can sustain a significant workload of routing messages.

5.3 Coordinate Stability

Our results so far have shown that BVR generates good co-
ordinates in that they correctly guide routes towards a target
destination.

Because some applications require the location service (as
described in Section 2) to route to node identifiers, it is impor-
tant that the coordinates not change too frequently or by too
much. Otherwise the traffic generated to maintain the loca-
tion service reasonably up-to-date would be high and all com-
munication would have to incur the overhead of first looking
up the destination’s current coordinates (because caching the
results of an earlier lookup would not be effective).10

Hence, we explore two questions: (1) how frequently do
a node’s coordinates change? and (2) when change occurs,
what is the magnitude of change? Accordingly, Figures 12
and 13 plot the distribution and histogram of the number of
individual coordinate changes11 experienced per mote over
the entire duration of our routing tests for the Intel-Lab and
UCB testbeds respectively. We see that changes are very in-
frequent. For example, on the UCB testbed, 50% of the motes
saw no change and no individual node experienced more than
3 changes over a test period of over an hour.

Corresponding to the above, Figures 14 and 15 plot the
distribution and histogram of the magnitude of individual co-
ordinate changes over all coordinate changes. We see that
change, when it occurs, is small.

9Both these testbeds are currently being expanded; a final version of this
paper will report on results from testbeds with over 100 motes.

10Note that a node whose coordinates change frequently, but not by much,
would be less problematic as the stale coordinates will still follow the gener-
ally right direction and might well arrive at the right location.

11If a single node experiences a change in its distance to (say) 3 beacons,
we count that as three distinct changes.

6 Conclusions and Future Work

Beacon Vector Routing is a new approach to achieving scal-
able point-to-point routing in wireless sensornets. Its main
advantages are its simplicity, making it easy to implement on
resource constrained nodes like motes, and resilience, in that
we build no large-scale structures. In fact, the periodic flood-
ing from the beacons means that no matter what failures have
occurred, the entire state can be rebuilt after one refresh in-
terval. Our simulation results show that BVR achieves good
performance in a wide range of settings, at times significantly
exceeding that of geographic routing. Our implementation re-
sults suggest that BVR can withstand a testbed environment
and thus might be suitable used for real deployments.

However, we are at the very early stages of our investiga-
tion. We need to understand much more about how BVR’s
performance is linked to radio stability, and how BVR re-
sponds to large-scale failure or very ephemeral nodes (par-
ticularly ephemeral beacons). Most importantly, we have not
yet implemented any applications on top of BVR, so we don’t
yet know if it provides a suitably stable substrate on which to
build. All of these items represent future work, to which we
now turn.
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Figure 14: Intel-Lab Distribution and histogram of the mag-
nitude of individual coordinate changes over all coordinate
changes seen across all nodes over the entire duration of the
test (ignores first change due to initialization).
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to initialization).
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