% | TC
Irst
CENTRO PER LA RICERCA

SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy

Tel.: +39 0461 314312

Fax: +39 0461 302040

e—mail: prdoc@itc.it — url: http://www.itc.it

HISTORY DEPENDENT AUTOMATA

Montanari U., Pistore M.

December 2001

Technical Report # 0112-14

U Istituto Trentino di Cultura, 2001

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for early dissemination of its contents. In view of the transfert of copy right to the outside publisher, its
distribution outside of ITC priorto publication should be limited to peer communications and specific requests. After outside publication,

material will be available only in the form authorized by the copyright owner.

History-Dependent Automata

Ugo Montanari Marco Pistore
University of Pisa ITC-IRST
Corso Italia 40, 56100 Pisa, Italy Via Sommarive 18, 38050 Povo (Trento), Italy
ugo@li . uni pi.it pistore@rst.itc.it
Abstract

In this paper we presemiistory-dependent automat&D-automata in brief). They are an extension of ordinary
automata that overcomes their limitations in dealing witstdry-dependent formalisms. In a history-dependent for-
malism the actions that a system can perform carry inforonagienerated in the past history of the system. The most
interesting example ig-calculus: channel names can be created by some actiontiendan then be referenced by
successive actions. Other examples are CCS with locaditidshe history-preserving semantics of Petri nets.

Ordinary automata are an unsatisfactory operational miodé¢hese formalisms: infinite automata are obtained for
all the systems with infinite computations, even for veryigrones; moreover, the ordinary definition of bisimulation
does not apply in these cases, thus preventing the reusatgnofrd theories and algorithms.

In this paper we show that HD-automata are an adequate madlef history-dependent formalisms. We present
translations ofr-calculus, CCS with localities and Petri nets into HD-auata) and we show that finite HD-automata
are obtained for significant classes of systems with infioimputations. We also define HD-bisimulation and show
that it captures the standard equivalences of the considéstory-dependent formalisms. Moreover, we prove that
HD-automata can be minimized, and that the same minimal ltDraaton is associated to each class of bisimilar HD-
automata. Finally, we provide a categorical definition of Hdlitomata and of HD-bisimulation (by exploiting open
maps).

Contents
1 Introduction

2 Ordinary automata and CCS

2.1 Ordinaryautomata

22 CCS

3 Thewr-calculus
31 Syntax
3.2 Theearlysemantics
3.3 Thegroundsemantics.

4 Basic history-dependent automata
4.1 HD-automata

4.1.1 From ground-calculus to basic HD-automata

4.2 Bisimulation on HD-automata

4.2.1 Some basic properties of HD-bisimulation,
4.2.2 Global states and global bisimulation
4.2.3 Relatingr-calculus ground bisimulation and HD-bisimulation

4.3 Minimization of HD-automata

5 Basic HD-automata for other history-dependent calculi

5.1 CCSwithlocalites

5.2 Representing agents with localities as basic HD-auma

53 Petrinets

5.4 Representing Petri nets as basic HD-automata L oL L.

6 HD-automata with symmetries
6.1 Motivations
6.2 SymmetriesonNames
6.3 HDS-automata

6.3.1 From Basic HD-automatato HDS-automata e v v v v v o oo
6.3.2 Fromearlyr-calculusto HDS-automata e

6.4 Bisimulation on HDS-automata

6.4.1 Some basic properties of HDS-bisimulationo oL
6.4.2 Global states and global bisimulation
6.4.3 Relating HD-bisimulation and HDS-bisimulation
6.4.4 Relatingr-calculus early bisimulation and HDS-bisimulation

6.5 Minimizing HDS-automata

7 A categorical approach to history dependent automata

7.1 The categories of HD-automata
7.1.1 Categories of enriched sets . . .
7.1.2 Defining the enriched automata

7.2 Open maps and bisimulations

7.2.1 ApplicationtobasicHD-automata e e

7.2.2 Application to HDS-automata .

7.2.3 Minimal HDS-automata

8 Possible extensions and other work

8.1 CCSwithcausality
8.2 The later-calculus semantics
8.3 Causality/localitiesand thecalculus

8.4 Theweaksemantics.

8.5 Averification environmentbased on HD-automata

8.6 HD-automata with negative transitions .
8.7 A coalgebraic definition of HD-automata

9 Concluding remarks

oY ogP

=
o

11

13
15
16
18
21
22

22
23
24
27
28

32
32
34
35
36

38
39
41
42

43
43
45

48
48
48
49
50
51
53
54

54
55

55

56

56
57
58
59

59

1 Introduction

In the context of process calculi (e.g., Milner’'s CCS [Mi]Jg%utomata(or labelled transition systemare often used

as operational models. They allow for a simple represemaif process behavior, and many concepts and theoretical
results for these process calculi are independent from #nicplar syntax of the languages and can be formulated
directly on automata. In particular, this is true for thehavioral equivalenceand preorders which have been defined for
these languages, like bisimulation equivalence [Mil898Bh in fact they take into account only the labelled actiam
agent can perform. Automata are also important from an dhguic point of view: efficient and practical techniques and
tools for verification [IP96, Mad92] have been developediftite-stateautomata. Finite state verification is successful
here, differently than in ordinary programming, since tlumicol part and the data part of protocols and hardware
components can be often cleanly separated, and the coattd$pisually both quite complex and finite state. Partidyla
interesting is also the possibility to associate to eachraaton — and, consequently, to each CCS agentminamal
realization i.e., a minimal automaton which is equivalent to the orgione. This is important both from a theoretical
point of view — equivalent systems give rise to the same (upamorphism) minimal realization — and from a practical
point of view — smaller state spaces can be obtained.

This ideal situation, however, does not apply to all proaesuli. In the case ohistory-dependent calcylin
particular, infinite-state transition systems are gemetatstead, also by very simple processes. A calculbssisry-
dependenif the observations labelling the transitions of an ageny medier to previous transitions of the same agent,
expressing in this manner a dependence from them. For westamthe case of CCS with localities [BCHK93], each
transition exhibits, in addition to an action, also the kmain which the action is supposed to happen, and new loca-
tions are generated by fork transitions. A similar case iS@@th causality [DDNM90, DD89, Kie94]. Another quite
interesting example is-calculus [MPW92, Mil93]. It has the ability of sending chmehnames as messages and thus of
dynamically reconfiguring process acquaintances. Moreitaptly, 7-calculus names can model objects (in the sense
of object oriented programming [Wal95]) and name sendingg ttnodels higher order communication [San93b]. New
channels between the process and the environment can beccataun-time and referred to in subsequent communica-
tions. It is thus evident the history-dependent charadtercalculus.

The operational semanticsofcalculus is given via a labelled transition system. Howéeelled transition systems
are not fully adequate to deal with the peculiar featurehefdalculus and complications occur in the creation of new
channels. Consider process= (vy) zy.y(z).0. Channely is initially a local channel for the process (prefixy) _ is
the operator for scope restriction) and no global commuitnaan occur on it. Actioy, however, which corresponds
to the output of namg on the global channel, makes namg known also outside the process; after the output has
taken place, channglcan be used for further communications, and, in fads used iny(z).0 as the channel for an
input transition: so the communication of a restricted naneates a new public channel for the process. The creation of
this new channel is represented in the ordinary semantittseof-calculus by means of an infinite bunch of transitions
of the formp x(—>w) w(z).0, wherew is any name that is not already in use (e # z in our example, since is the only
name in use by; notice thatw = y is just a particular case). This way to represent the creatfmew names has some
disadvantages: first of all, also very simpiecalculus agents, likg, give rise to infinite-state and infinite-branching
transition systems. Moreover, equivalent processes dnee#ssarily have the same sets of channel names; so, there ar
processeg equivalent top which cannot usg as the name for the newly created channel. Special rulesegeed in
the definition of bisimulation to take care of this problendaas a consequence, standard theories and algorithms do not
apply tor-calculus.

The aim of this paper is to show that the ideal situation ofirmay automata can (at least in part) be recovered
also in the field of history-dependent calculi, by introcdgcia new operational model which is adequate to deal with
these languages, and by extending to this new model (pattt@®lassical theory for ordinary automata. As model we
propose thenistory-dependent automatiiD-automatain brief). As ordinary automata, they are composed of states
and of transitions between states. To deal with the pecpii@avlems of history-dependent calculi, however, states an
transitions are enriched with sets of local names: in paldic each transition can refer to the names associated to it
source state but can also generate new names, which canppearan the destination state. In this manner, the names
are not global and static, as in ordinary labelled transitigstems, but they are explicitly represented within stated
transitions and can be dynamically created. This explgtesentation of names permits an adequate represerdétion
the behavior of history-dependent processes. In particittaalculus agents can be translated into HD-automata and a
first sign of the adequacy of HD-automata for dealing withalculus is that a large class ffiitary w-calculus agents
can be represented by finite-state HD-automata. We alsagiemeral definition of bisimulation for HD-automata. An
important result is that this general bisimulation equatesHD-automata obtained from twocalculus agents if and
only if the agents are bisimilar according to the ordinargalculus bisimilarity relation. These results do not hoidy
for ther-calculus. A similar mapping exists, for instance, for CCiimMocalities [BCHK93]. HD-automata can be also
applied to concurrent formalisms outside the field of preaaculi: for instance, we show that they can be applied to

Petri nets, for representing the history-preserving sdiosof the nets [BDKP91].

The most interesting result on HD-automata is that they @amimimized. It is possible to associate to each HD-
automaton a minimal realization, namely a minimal HD-auton that is bisimilar to the initial one. As in the case of
ordinary automata, this possibility is important from adhetical but also from a practical point of view.

In order to stress that naturalness of HD-automata and Hiabiation, we show that it is possible to define them
in a very simple way in a categorical framework. A classicegorical definition of ordinary automata is extended to
HD-automata: essentially, the categorical constructioiné same, but we use the categorymaimed setas the base
category — it was the category of sets in the case of ordinatigraata Open mapsisimulation [JNW96] — an uniform
approach to define equivalences for concurrent models piedén a categorical framework — can be applied also to
HD-automata, thus obtaining a categorical definition of biBimulation. Minimization of HD-automata is captured
very naturally in the categorical framework: the minimal aebis the final model in the sub-category of equivalent
HD-automata.

Outline. CCS and some of the basic results on ordinary automata aytpresented in Section 2; this section will
be used as comparison term for the results on HD-automataedtion 3 ther-calculus is presented and the problems
of using ordinary automata to deal with it are discussed.

In order to have a simpler presentation, we define two fagibieHD-automata. Section 4 introduces a simplified
version of HD-automata, called Basic HD-automata. Theyroadel only some of the history-dependent calculi we
consider — notably, they are not adequate fora¢hdy andlate 7-calculus semantics — and they do not admit minimal
models. Section 4 also defines bisimulation on HD-automadiapsesents the translation of tigeound semantics of
m-calculus agents to HD-automata. In Sections 5 we brieflgriless two other history-dependent formalisms that can
be represented by Basic HD-automata — namely CCS with liesnd Petri nets with history-preserving semantics.

Section 6 describes the complete version of HD-automataghaHD-automata with Symmetries. They are ade-
guate not only for all the history-dependent calculi algeadnsidered for Basic HD-automata, but also for the earty an
late semantics of the-calculus. Moreover, they allow for minimization. In Sexti7 the categorical characterizations
of HD-automata and of HD-bisimulations are presented.

In Section 8 we describe in short some other formalisms thathe captured by HD-automata and some possible
extensions, while in Section 9 we propose some concludimgrks.

Previous works. This paper resumes and completes preliminary results ohlihautomata that have been reported
in previous papers by the authors. The first, primitive notd HD-automata appears in [MP95] under the name of
m-automata; they are used in an algorithm for checking blanity of w-calculus agents without matching, as a compact
algorithmical structure for representing the operatiashantics of the agents. There was no notion of bisimulation
ther-automata.

Simplified versions of the HD-automata also appeared in [[E]Y by Daniel Yankelevich and the authors, for
the CCS with localities, in [MP97b] for Petri nets, and in [BIR] for a class of partial-order systems, that includes
CCS with localities and Petri nets. HD-automata and HDrligations defined in [MPY96, MP97b, MP97a] are much
simpler than those needed faercalculus, since there is no input of names. Also, the categjodefinition of HD-
automata and HD-bisimulation is not present in those papecsitegorical characterization of HD-automata is given in
[MP98b, MP98a]. This categorical characterization onlyars Basic HD-automata.

Other works extend the theory of HD-automata in specificdiioms. In [MP99] a particular variant of HD-automata,
namely HD-automata withegative transitionsis proposed in order to deal with the asynchronetlculus [HT91,
ACS98]. In [MPO0O0] a co-algebraic semantics for thealculus is defined. It is based on the idea of extendingstat
and transitions with an algebra of names and symmetries.ridntzof HD-automata is shown to come out naturally as
a compact representation of the co-algebraic models.

Finally, an extended presentation of HD-automata can bedauthe PhD Thesis of the second author [Pis99].

2 Ordinary automata and CCS

Automata are a very convenient operational model for pcaiculi like CCS. In this section we introduce the basic
results on automata and their applications to CCS. In tHeviihg sections we will often refer to the results presented
here for CCS and ordinary automata to draw a comparison Wéhesults which hold for history-dependent calculi and
HD-automata.

2.1 Ordinary automata

Automata have been defined in a large variety of manners. Wesghthe following definition since it is very natural
and since, as we will see, it can be easily modified to defineatd@mata.

Definition 2.1 (ordinary automata) Anautomatond is defined by:
e asetl of labels

e aset() of states
e asetT of transitions
e two functionss, d : T' — () that associate aourceand adestinatiorstate to each transition;
e afunctiono : T' — L which associates a label to each transition;
e aninitial stategy € Q.
Given a transitiort € T', we writet : g LN q'if s(t) = q,d(t) = ¢' ando(t) = 1.

Notation 2.2 To represent the components of an automaton we will use tine @ the automaton as subscript; so, for
instance,() are the states of automatdh and dg is its destination function. In the case of automatép we will
simply write@,, andd,, rather than@ 4, andd 4, . Moreover, the subscripts are omitted whenever there isnnioiguity
on the referred automaton.

Similar notations are also used for the other structures wkng in the paper.

Often labelled transition systemare used as operational models in concurrency. The differevith respect to
automata is that in a labelled transition system no initiatesis specified. An automaton describes the behavior of a
single system, and hence the initial state of the automatmesponds to the starting point of the system; a labelled
transition system is used to represent the operational siceaf a whole concurrent formalism, and hence an initial
state cannot be defined.

Various notions of behavioral preorders and equivalenea® tbeen defined on automata. The most important
equivalence ibisimulation equivalencfar80, Mil89].

Definition 2.3 (bisimulation on automata) Let A, and A, be two automata on the same debf labels. A relation
R C Q1 x Q2 is asimulationfor 4; and A, if ¢g; R ¢o implies:

for all transitionst; : ¢ LN q; of A, there is some transitioty : ¢» LN g5 of A, such thatg] R gb.

ArelationR C @, x Q- is abisimulationfor A; and.A, if both R andR~! are simulations.
Two automatad, and.4; on the same set of labels doesimilar, written A; ~ A, if there is some bisimulatioR for
A and A, such thaigg; R qos3.

Animportant result in the theory of automata in concurreisdhie existence ahinimal representativas the classes
of bisimilar automata. Given an automaton, a reduced autmmia obtained by collapsing each class of equivalent
states into a single state (and similarly for the trans#jo his reduced automaton is bisimilar to the starting amne,
any further collapse of states would lead to a non-bisinalaiomaton. The reduced automaton is hence “minimal”.
Moreover, the same minimal automaton (up to isomorphismeptained from bisimilar automata: thus it can be used
as a canonical representative of the whole class of bisimiltomata.

In the definition below we denote wifh|z , the class of equivalence of stataith respect to the largest bisimulation
equivalenceR 4 on automatond. With a light abuse of notation, we denote witfiz , the class of equivalent of
transitiont, where

t1 Ry to iff s(t1) Ra s(te), d(t1) Rad(ta) and o(t1) = o(ta).
Definition 2.4 (minimal automata) Theminimal automatot,,.;, corresponding to automatao# is defined as follows:
o Lpin=1L;
Qmin = {lalra [¢ € @} andToin = {[t]r, [t € T};
smin([1r.0) = [3(t)lm.. aNdduin([l.0) = [d(B)]r.:
o(t);

® qOmin — [QO]RA-

Omin([t]RA)

2.2 CCS

The version of CCS we present here is slightly different fitwn classical one [Mil89] and follows some suggestions of
m-calculus. The differences with the classical definitiorC&S are not substantial and are introduced to have a more
uniform presentation of the various process calculi thaieap in this paper.

Let A be a set ohtomic actionsor channelgranged over byy, 3, .. .), and Var be a finite set of agent identifiers
(ranged over by, B, ...). CCS agents (ranged over pyg, . . .) are defined by the syntax:

p =0 ‘ u-p‘p\p‘pﬂ? ‘ (va)p ‘ A

whereprefixeqor actiong . are defined by the syntax:

For each agent identifiet there is a definitiomd def p4 and we assume that each agent identifigr iris in the scope
of a prefix (guarded recursion).

As usual0 is the terminated agent; p prefixes action to agenp; p|q is the parallel composition with synchroniza-
tion of agent® andq, whereap+q¢ is the nondeterministic choice. Following the notatiorredalculus, the restriction
of actiona in agentp is represented byva) p, rather than by the conventionak «. Finally, infinite behaviors are
obtained by means of agent identifiers and of their definsti@hso in this case, we prefer this solution to the x.p
construct for analogy with the-calculus. The set of definitions is assumed to be finite, tadeagents with an “infinite
program”.

We give sum and parallel composition the lowest syntactec@dence among the operators. In an aget we
often omit the trailingd.

We now introduce atructural congruencén the style of the Chemical Abstract Machine [BB92] and o th
calculus [Mil93]. This structural congruence allows usdertify all the agents which represent essentially the same
system and which differ just for syntactical details. Theustural congruences is the smallest congruence which
respects the following equivalences

(alpha) (va)p = (vB) (p{PJa}) if 5 does not appear in
(sum) p+0=p p+q = q+p p+(g+7r) = (p+q)+r
(par) plo=p plg=qlp pl(elr) = (plg)lr
(res) (va)0=0 (va) (vB)p = (vB) (va)p

(va) (plg) = pl(va) q if a does not appear in

where agenp{5/a} is obtained fromp by replacing all the free occurrences®fvith .

The structural congruence is exploited in the definitionhaf bperational semantics, for instance commutativity of
_|_is exploited to avoid the duplication of the rules for theglkal composition.

The structural congruence is also necessary in practicbttrofinite state representations for classes of agents. It
can be used to garbage-collect terminated component — Hgigrg rule p|0 = p — and unused restrictions — by
using the rules above, if does not appear inthen(va) p = p: infact, (va) p = (va) (p|0) = p|(va) 0 = p|0 = p.

By exploiting the structural congrueneg each CCS agent can be seen as a ssegfiential processdbat act in
parallel, sharing a set of channels, some of which are glabakstricted) while some other are local (restricted)clEa
sequential process is represented by a term of the form

s = u.p‘p—l—p ‘ A

that can be considered as a “program” describing all theiplessehaviors of the sequential process.
The transitions that CCS agents can perform are defined taxiben schemata and inference rules of Table 1. Since
CCS agents are defined up to structural congruence, theviatirule is implicitly assumed:

n —

_ 1
p=p p—p" p=p
pi)pm

It is easy to associate an automaton to a CCS agent.

Definition 2.5 (from CCS agents to automata)The automatomélgCS corresponding to the CCS agemts defined as
follows:

I /
—
[PREA p.p = p [sum] pliup,
p1t+p2 —p
2 a, o
[PAR] — P12 P [comm] BL— 21 P2 2 Py
p1|p2 — P2 p1|p2 — PPy
H / I /
[RES]()pT”()) ~ifp#a,a [IDE]]%—)]),ifA(Epr
va)p — (rva p

Table 1: Operational semantics for CCS

¢ the set of the labels is given by all CCS actions;

e p € (J is the initial state;

e ifg € Qandq % ¢ is a CCS transition, thep’ € Q andt = (¢, uu,¢') € T, with s(t) = ¢, d(t) = ¢’ and
o(t) = p.

Finite-state automata are obtained for important clasbagents that have infinite behaviors. In particular, if ther
is a bound for the number of active sequential componentdl dfie derivatives of a given agent, then a finite-state
automaton is obtained from that agent. Conversely, if amiagen activate an unbounded number of active sequential
components during its evolutions, then it is not possibleefiresent it with a finite-state automaton.

Definition 2.6 (finitary agents) Thedegree of parallelismieg(p) of an agenp is defined as

deg(0) = 0 deg(p.p) = 1
deg((va)p) = deg(p) deg(plg) = deg(p) + deg(q)
deg(p+q) = max{deg(p),deg(q)} deg(4) = 1

A CCS agenp is finitary if max{deg(p') | p £ --- 25 p'} < oc.
Proposition 2.7 Letp be a finitary CCS agent. Then the automattt’s is finite!

We would like to remark that it is only semidecidable whethe€CS agent is finitary. In fact, this problem is
equivalent to the problem of deciding whether a given Turirarhine needs only a finite tape.

A syntactical condition which implies that an agent is finités the absence of parallel compositions in the bodies
of recursive definitions. These agents have been cfiliitd-staten the literature; we prefer to follow the terminology
adopted inr-calculus, and to call therfinite control[Dam97]. In fact, the name “finite-state” is, in our opinion,

misleading, since finite-state automata are obtained,rditepto Definition 2.5, also for non-finite-state agentkeli
def

B = (v9) (a.(b.0.d.B|c.0.0)).
Definition 2.8 (finite control) CCS agenty has afinite controlif no parallel composition appears in the recursive
definitions used by.

Bisimulation equivalence on CCS agents is obtained by ajieicig Definition 2.3 to CCS transitions: two CCS
agents are bisimilar if and only if the corresponding auttanzaie bisimilar. Also the results on the existence of mihima
automata transfer to CCS: itis possible to associate to €&hagent a canonical, minimal automaton, so that bisimilar
agents correspond to the same canonical automaton.

3 Ther-calculus

In this section we describe thecalculus [MPW92, Mil93], an extension of CCS in which chehmames can be used as
values in the communications, i.e., channels are firstraralees. This possibility of communicating names givesio t
m-calculus a richer expressive power that CCS: in fact itvedldo generate dynamically new channels and to change the
interconnection structure of the processes. Flculus has been successfully used to model object eddahguages
[Wal95], and also higher-order communications can begasitoded in the-calculus [San93a], thus allowing for code
migration.

Many versions ofr-calculus have appeared in the literature. We consider thrdymonadicr-calculus, and we
concentrate on thgroundand on the=arly variants of its semantics.

1To obtain this result, the structural axioms are necessarge they allow for a garbage collecting of terminated congmts and unuseestric-
tions.

3.1 Syntax

Let N be an infinite, denumerable set méimes ranged over byi, b,c...w,z,y, ..., and let Var be a finite set of
agent identifiersdenoted byA, B, .. .; the r-calculus (monadicagents ranged over by, g, ..., are defined by the
syntax:

pu=0 ‘ m.p ‘ plp ‘ p+p ‘ (vz)p ‘ [z=y]p ‘ A(zy, ... mp)
where theprefixesr are defined by the syntax:

T U= T

zy | x(y).

The occurrences of in z(y).p and(vy) p are boundjfree andbound namesf agentp are defined as usual and we

denote them witlin(p) andbn(p) respectively. For each identifier there is a definitiom (y1, ... , yn) def pa (with y;
all distinctandn(pa) C {y1, ... ,yn}); we assume that, whenevéris used, its arity: is respected. Finally we require
that each agent identifier jn is in the scope of a prefix (guarded recursion).

Some comments on the syntaxofcalculus are now in order. It is similar to that of CCS. Thesmimportant
difference is in the prefixes. Trautputprefix zy.p specifies the channelfor the communication and the valyehat is
sent onz. In theinput prefixesz(y).p, namer represents the channel, whergas a formal variable: its occurrences in
p are instantiated with the received value. Thatching[x=y|p represents a guard for agentagentp is enabled only
if namesz andy coincide.

We uses, p to range over name substitutions, and we denote {#ftfx; - - - Yn/x,, } the substitution that maps into
y; fori = 1,... ,n and that is the identity on the other names.

We definer-calculus agents up tostructural congruences, as done for CCS in Section 2.2; the equivalences are
those for CCS plus the following new rule that deals with rhatg:

(match) [z=z]p=p [z=y]0 =0

Here we have presented theonadicversion ofr-calculus, where a single name in sent or received in any com-
munication. There is also polyadicversion ofr-calculus, where tuples of names can be communicated: Srctse,
the output and input prefixes ay:, y2, - . . , yn) @andz(yi,ys, - -. ,yn), respectively. In [Mil93] it is shown that the
polyadic prefixes can be encoded with monadic prefixes: &afigra polyadic communication is represented by a se-
guence of monadic communications; all these communicatigour on a private channel, that is created on purpose to
this communication, to avoid interferences with other polig communications. Here we consider only the monadic
variants ofr-calculus, since the definitions are simpler in this casd.thi results, however, scale up to the polyadic
m-calculus in the expected way.

Often, inw-calculus infinite behaviors are obtained by means of acafiin, or bang, operatdp, rather than by
means of recursive definitions. Agelptcan be intuitively explained as an infinite copies of agem parallel. The
two methods for defining infinite behaviors have the sameeasgive power: each of them can be encoded in the other
at the cost of additionat actions. Also in this case, the results do not depend on tbhsethmethod. However, if the
bang operator is used, it is difficult to identify a syntaatiass of agents that have a finite control (Definition 2.8): in
the case of recursive definitions, in fact, if no parallel gasition appears inside the recursive definitions, thearkte
the number of active parallel components cannot grow untdedly. If replication is used, however, even very simple
agents likep = lz(y).zy can activate an unbounded numbed of parallel components.

3.2 The early semantics

The early semantics of-calculus was first introduced in [MPW93], but we presentheslightly simplified version,
following in part the style proposed by [San93a] and [Mil$&] the polyadicr-calculus.
Theearly actionghat an agent can perform are defined by the following syntax:

z(y)

u:::T‘my‘ﬂ?y

and are called respectivetynchronizationfree input free outputandbound outpugctions.
Thefree namesbound nameandnamesof an actionu, respectively writterfn(u), bn(u) andn(u), are defined as
in Table 2.

p || fop) | bn(p) | n(p)

T [} [} 0
zy || {zy} | 0 | {z,y}
z(y) | {=} | {v} |{=,9}
Ty ||[{z,y}| 0 |{z,y}
Z(y) || {=z} | {y} |{=zy}

Table 2: Free and bound namesmetalculus actions

[TAaul7.p S p [ouT] zy.p 9, p
U !
xrz e
[IN] 2(y).p — p{*y} [sum] —PL—P
p1+p2 —p
14 !
[comm] 2 e [PAR] —EL—P1__if b () N fu(ps) = 0
P |p2 — ph F2 D1|p2 — P2
z z(y) 4 L,
[OPEN] if 2 £y [cLosg & = D1 D2 2 D) i of £ (py)
_;p pilps == (vy) (p1lph)
. Yijxq - Ynjz, e def
[Re§ — 2 7’17 it o gn(u) [og] AR Yo D e g),
(va)p — (vz)p Ai, - Yn) —p

Table 3: Early operational semanticsmetalculus

The transitions for thearly operational semanticare defined by the axiom schemata and the inference rules of
Table 3. We remind that rule

U 1

_ 2 _
p=p p—p" p=p
pi)p//

is implicitly assumed.

Notice that, in the case of the-calculus, the actions an agent can perform are differemh fthe prefixes. This
happens due to the free input and to the bound output actionthe case of the input, the prefix has the far(y),
while the action has the formz; this different notation is used to remark that, whjles a formal variable, nameis the
effectively received value. The bound output actions aee#ig of ther-calculus; they represent the communication of
a name that was previously restricted, i.e., it correspdodse generation of a new channel between the agent and the
environment: this phenomenon is callegime extrusion

Now we present the definition of the early bisimulation fog ttxcalculus.

Definition 3.1 (early bisimulation) A relationR over agents is aearly simulatiorif whenevep R ¢ then:
for eachp - p’ with bn(u) N fn(p|g) = 0 there is somg - ¢’ such thap’ R ¢'.

A relationR is anearly bisimulatiorif both R andR~! are early simulations.
Two agent® andq are early bisimilar writtenp ~. ¢, if p R ¢ for some early bisimulatiof.

In the definition above, clauséii(i) N fn(plg) = 0" is necessary to guarantee that the name, that is chosen to
represent the newly created channel in a bound output tiamsis fresh for both the agents. This clause is necessary
since equivalent agents may have different sets of free same

As for other process calculi, a labelled transition systemded to give an operational semantics tostkmalculus.
However, this way to present the operational semantics biae slisadvantages. For instance, an infinite humber of
transitions correspond even to very simple agentslikex(y).gz.0: in fact, this agent can perform an infinite number
of different input transitiong — wz.0, corresponding to all the possible choicesw€& N Itis clear that, except for
2 andz, which are the free names pf all the other names are indistinguishable as input valoethe future behavior
of p. However, this fact is not reflected in the operational seinan

Also consider process= (vy) zy.y(z).0. Itis able to generate a new channel by communicating nagime bound
output. The creation of a new name is represented in theiti@msystem by means of an infinite bunch of transitions

q 2] w(z).0, where, in this casey is any name different from: the creation of a new channel is modeled by using

P1 Lp'

[PREA m.p == p [sum] T
pitp2 —p
D1 — P']
1w
P1lp2 — p'] P2

zy . z(2)
[comm] 2L P P> ,—l Py [PAR] if bn(u) N(ps) = 0
pilp2 — Pil(p2{Y/2})

Yo z(y) 4 z(y)
[oPEN % ifz#y [cLosg & _;TP] P> _2,)
(vy)p "8y pilp2 — (vy) (p1lps)
u) / PR n u) ! .
[RES] P2l ife¢n(y) [DE] palVife, - ¥ /mn}u "t A(zy,... ,zn) L pa
(vz)p — (va)p AWi, - Yn) —p

Table 4: Ground operational semanticsetalculus

all the names which are not already in use to represent it. éangequence, the definition of bisimulation is not the
ordinary one: in general two bisimilar process can haveediffit sets free names, and the clause(fi) N fn(p|q) = 0"

has to be added in Definition 3.1 to deal with those bound dutansitions which use a name that is used only in one of
the two processes. The presence of this clause makes itttificeuse standard theory and algorithms for bisimutatio
on ther-calculus — see for instance [Dam97].

3.3 The ground semantics

The ground semantics of thecalculus differs from the early semantics just considérethe fact thatbound input
transitions are considered rather tHage inputs. So, according to the early semantics, agénj.p can perform free
input transitions

z(y).p = p{¥y}

for each name, while, according to the ground semantics, agep.p can perform bound input transitions

z(2
w(y).p "3 plly}
only if z is fresh, i.e.z & fn(x(y).p).
Ground bisimilarity is easy to cheg€kHowever, it is less discriminating than early bisimilgriand does not capture

the possibility for the environment of communicating arealty existing name during an input transition of an agent.
For instance,

2(y).(79-012(w).0) ¢ 2(y).(7y-2(w).0 + 2(w).gy.0)
since, performing the free input actiar we obtain
22.0]z(w).0 £, yy.2(w).0 + z(w).5y.0
and a synchronization (i.e.,/atransition) is possible in the first agent but not in the secdtfowever,
z(y)-(5y-0[z(w).0) ~y z(y).(gy-2(w).0 + z(w).5y.0)

since the reception of the already existing nanig not allowed in the ground semantics.
Theground actionghat an agent can perform are defined by the following syntax:

o= T

and are called respectivetynchronizationbound inputfree outputandbound outputctions.

Thefree namesbound nameandnamesof an actionu, respectively writterfn(u), bn(u) andn(u), are defined as
in Table 2.

The transitions for thground operational semantiege defined by the axiom schemata and the inference rules of
Table 4.

Now we present the definition of the ground bisimulation feet-calculus.

2., and, as we will see, easy to model with HD-automata.

10

Definition 3.2 (ground bisimulation) A relation’R over agents is aground simulationf whenevep R q then:
for eachp % p’ with bn(x) N fn(plg) = 0 there is somg = ¢’ such thap’ R ¢'.

A relationR is anground bisimulatiorif both R andR ! are early simulations.
Two agentp andg are ground bisimilay writtenp ~, ¢, if p R ¢ for some ground bisimulatioR.

4 Basic history-dependent automata

Ordinary automata are successful for CCS-like languagesm®ere sophisticated languages, however, they are not: in
fact, they are not able to capture the particular structofdbese languages, that is represented in ordinary automat
only in an implicit way. As a consequence, infinite-stateomta are often obtained also for very simple programs. To
model these languages, it is convenient to enrich stateabets with (part of) the information of the programs, sattha
the particular structures manipulated by the languageseamesented explicitly. These enriched automata are hence
more adherent to the languages than ordinary automata.

Different classes of enriched automata can be defined bygilhguthe kind of additional information. Here we
focus on a simple form of enriched automata. They are ableanipulate generic “resources”. a resource can be
allocated, used, and finally released. At this very absteaet, resources can be represented by names: the allo@dtio
aresource is modeled by the generation of a fresh namesttiagn used to refer to the resource; since we do not assume
any specific operation on resources, the usage of a resquec&ransition is modeled by observing the corresponding
name in the label; finally, a resource is (implicitly) deabded when the corresponding name is no more referenced.

We call this class of enriched automéad&story-Dependent Automatar HD-automatain brief. In fact, the usage
of names described above can be considered a way to exppessdiacies between the transitions of the automaton; a
transition that uses a name depends on the past transiibgeherated that name.

In this section we introduce a simple version of HD-automeaitledBasic HD-automataThey are sufficient to deal
with some of the existing history-dependent formalismse Ppharadigmatic example we use in this section to illustrate
HD-automata is the ground semanticsmetalculus. In this case, the names represent the commigriagtannels.
Other examples are CCS with localities (in this case, theasaane the localities where the execution happens) and
history preserving semantics of Petri nets (here the namesspond to the events of a computation). We will consider
them in Section 5.

The simple mechanism for dealing with names that is intredun this section, however, is not sufficient for all the
history-dependent formalisms we are interested in. Fdam it does not capture the eatlycalculus semantics. In
Section 6 we will present a more sophisticated version ofadilemata that works also for thiscalculus semantic.

4.1 HD-automata

HD-automata extend ordinary automata by allowing sets ofesato appear explicitly in states and labels. We assume
that the names that are associated to a state or a labklcalenames and do not have a global identity. This is very
convenient, since a single state of the HD-automaton carsée to represent all the states of a system that differ just
for a renaming (that is, HD-automata work up to bijectivesitbtions of names). In this way, however, each transition
is required to represent explicitly the correspondencésden the names of source, target and label. As the reader can
see in Figure 1, to represent these correspondences waaesmset of names also to each transition, and we embed
the names of the source and target states, and of the lab¢hanhames of the transition.

Technically, we represent states, transitions and lalfedsHD-automaton by means aimed setand usenamed
functionsto associate a source state, a target state and a label ttraasition.

In a named sek, each elementis enriched with a set of names that we denote \Ej#. A function from named set
E to named seff maps each elemenbf the first in an element of the second; moreover, it also fixes a correspondence
between the names efand the names of. More precisely, this correspondence provides an embgdxfithe names
of the target elemenf into the names of the source elementhat is, the names of are seen, through the name
correspondence, as a subset of the names of

Now we introduce some notation on functions that we will udemsively in the following. Then we define formally
named sets and, based on them, the HD-automata.

Notation 4.1 A relationR on setsA and B is a subset ofi x B. If (a,b) € R then we also write R b. In this case,
dom(R) = {a | (a,b) € R} is thedomainof R andcod(R) = {b | (a,b) € R} is itscodomain We denote with
R~ theinverserelation of R; thatis, R ! = {(b,a) | (a,b) € R} C B x A. If R is a relation onA and B and
S is a relation onB and C, then we denote witR; S the compositionof R and S; thatis, R; S = {(a,¢) | (a,b) €
Rand(b,c) e S} CAxC.

11

Special notations are used for particular classes of relasi.

We represent witlf : A — B afunctionfrom setA to setB; thatis, f C A x B such that for eaclh € A there is exists
exactly one: € A such that(a,b) € f.

We represent witlf : A — B a partial bijectionfrom setA to setB; thatis, f C A x B such thatif(a,b), (a',b') € f
thena = a' iff b = b'.

We represent witlf : A «—— B aninjectionfrom setA to setB; thatis, f C A x B such that for eacla € A there
exists exactly ong e B such that(a, b) € f, and for eacth € B there is at most one € A such thaf(a,b) € f.

We represent witlf : A «— B aninverse injectiorfrom setA to setB; thatis, f C A x B such that for eaclh € B
there exists exactly one€ A such that(a,b) € f, and for eachu € A there is at most ong € B such that(a, b) € f.
We represent witlf : A «— B atotal bijectionfrom setA to setB; that is, f C A x B such that for eacla € A there
exists exactly ong € B such that(a,b) € f and, conversely, for eadhe B there exists exactly onee A such that
(a,b) € f.

We use also on these subclasses the notations that we hendriteed on relations to denote domain, codomain, inverse
and composition.

Definition 4.2 (named sets)Let N be an infinite denumerable set of names an@leV’) be the power-set of/.
A named seE is a set, denoted b¥, and a family of subset of names indexedfyynamely{E[e] C N'}.cE, oOr,
equivalentlyE[_] is a map fromE to P(N).
Given two named setsandF, anamed functiomn : E — F is a function on the sets : £ — F' and a family of name
embeddings indexed lay, namely{m[e] : E[e] <= F[f]}(.r)em:

e

lm jl\m[e]

f

E

F FL/]

A named seE is finitely namedf E[e] is finite for eacte € E. A named sek is finite if it is finitely named and sef is
finite.

5 Ele]

El

We remark that, in the definition of named function, we usersrise injection fronk[e] to F[f] to represent the
correspondence between the names afd the names of: this inverse injection, in fact, can be seen as an embedding
of the names of into the names of.

Now we define HD-automata: essentially, they have the sam@apents of ordinary automata (Definition 2.1), but
named sets and named functions are use rather than plasrsktsnctions.

Definition 4.3 (HD-automata) A HD-automator is defined by:
e anamed set of labels

e anamed sef of states
e anamed seT of transitions

e a pair of named functions,d : T — Q, which associate to each transition teeurceand destinationstates
respectively (and embed the names of the source and of theatem states into the names of the transition);

e anamed functiop : T — L, which associates a label to each transition (and embedsdinges of the label into
the names of the transition);

e aninitial stateqy € @ and aninitial embeddingry : Q[g0] +— N of the local names afj into the infinite,
denumerable set/ of global names

LetT[tow % {n € T[t] | n € dom(s[t])} and T[tnew = {n € T[t] | n & dom(s[t])} be respectively theld names

and thenew name®f transitiont € T'.
A HD-automaton idinitely namedf L, Q andT are finitely named,; it idinite if, in addition,Q and T are finite.

Let ¢ be a generic transition of a HD-automaton such #tat = ¢, d(t) = ¢’ ando(t) = 1 (in brieft : ¢ N q);
one of such transition is represented in Figure 1. T¢j&n T[t] «— Q[q] embeds, by means of an inverse injection, the
names of; into the names of, whereasl[t] : T[t] «<— Q[¢'] embeds the names gfinto the names of; in this way,
a partial correspondence is defined between the names oftineesstate and those of the target; so, in the case of the
transition in figure, namé of the target state corresponds to nantd the source. The names that appear in the source
and not in the target (that is, namesindc in Figure 1) are discarded, or forgotten, during the traosjtwhereas the
names that appear in the target but not in the source (theadmses; andk in figure) are created during the transition.

12

Figure 1: A transitiont : ¢ BN q' of a HD-automaton

4.1.1 From groundr-calculus to basic HD-automata

We are interested in the representation of the grawhoaiculus semantics as HD-automata. First we define the ciame
set of labeld. "+ for this language: we have to distinguish between synchaditins, bound inputs, free outputs and
bound outputs. Thus the set of labels is

L™ = {tau, bin, out, outs, bout}

whereout, is used when subject and object names of free outputs ceilfitidse special labels are necessary, since the
function from the names associated to a label into the nassxcmted to a transition must be injective). No name is
associated t@au, one namesf) is associated tout,, and two namesn,, andn,p;) are associated tbin, out and
bout.

In order to associate a HD-automaton to-aalculus agent, we have to represent the derivatives cfgbat as states
of the automaton and their transitions as transitions irtbBeautomaton; the names corresponding to a state are the fre
names of the corresponding agent, the names correspomdinggnsition are the free names of the source state plus, in
the case of a bound input and bound output transition, thenaame appearing in the label of the transition. A label of
L™ is associated to each transition in the obvious way.

This naive construction can be improved to obtain more cainp®-automata. Consider for instance agent
(vz) zz.B(z,y, z); it can perform an infinite number of bound output transiipdepending on the different extruded
name. In the case of HD-automata, due to the local naturenoégait is not necessary to consider all the different bound
output (and bound input) transitions that differ only on tiane used to denote the new created channel. The syntactic
identity of that name, in fact, is inessential in the modelsiAgle transition can be chosen from each of these infinite

bunches. Here we use transitipn@ p’ wherez = min (/\/ \ fn(p)). It is worth to stress out that, differently from
the case of ordinary automata, where particular care isetkadthe choice of this transition (see definition of ground
bisimulation in Section 3.3), in the case of HD-automatapuwlicy for choosing the fresh name will work: in this case,
in fact, we do not have to guarantee that equivalent statessehthe same name.

Definition 4.4 (representative transitions) A -calculus transitiorp - ¢ is arepresentative transitidih
n(p) C fo(p) U { min (N \ fn(p)) }.

According to this definition, all the synchronization anddroutput transitions are representative (in this cdgg C
fn(p)). A bound input or a bound output is representative only & tommunicated name is the smallest name not
appearing free in the agent.

The following lemma shows that the representative traositiexpress, up ta-conversion, all the behaviors of an
agent. The proof is omitted, since it is standard forthealculus.

Lemma 4.5 Letp - ¢, with 4 = az (resp.u = a(z)), be a non-representative-calculus transition. Then there is
some representative transitipn-— ¢, with i’ = ay (resp.’ = a(y)), such thay' = q{Y/z Tly}.

13

T T z(y) Ty Tx z(y)

l tau bin out outs bout
@@ [/ [7 [v 7 [17 7 [
O =r(0)e L[] || / | Nsub | Mobj | Msub | Mobj | M | Neub | Nobj

Table 5: Relations betweericalculus labels and labels of HD-automata

If only representative transitions are used when buildingCxautomaton from ar-calculus agent, the obtained
HD-automaton iginite-branchingi.e., it has a finite set of transitions from each state.

Another advantage of using local names is that two agerfexitifj only for a bijective substitution can be collapsed
in the same state in the HD-automaton: we assume to have fdinmorm that, given an agent, returns a pair
(g,0) = norm(p), whereq is the representative of the class of agents differing fgofar bijective substitutions and
o : fn(p) <— fn(q) is the bijective substitution such that= po.

Definition 4.6 (from 7-calculus agents to HD-automata)The HD-automatond, corresponding to the ground se-
mantics ofr-calculus agenp is defined as follows:

e if norm(p) = (qo, 0p) then:
— ¢o € Qistheinitial state an®[qo] = fn(qo);
— o, fn(go) < fn(p) is the initial embedding;
e ifgeQ, t:q- ¢ isarepresentative transition andrm(q') = (¢”, o), then:

- ¢" € Q andQ[¢"] = fn(q");

t € T andT[t] = fn(q) U bn(u);

s(t) = q,d(t) = ¢", s[t] = idgm(g) andd[t] = o;
o(t) = l andolt] = k are defined as in Table 5.

Table 5 defines the correspondence between the labelsafculus transitions and the HD-automaton labels: so,
for instance, an input action(y) of a w-calculus agent is represented in the HD-automaton by meflabel bin.
Moreover, the table also fixes the correspondence betweemaimes that appear in thecalculus label and the names
of the HD-automaton label. This correspondence is definedésns of two functions: functiom maps the names of a
mw-calculus label into the names of the corresponding labef the HD-automaton, whilea maps the names éfinto
the names ofi. Both functions are total bijections, and cleasly= A~!. In the case of the input actiar(y), we have
n(z(y)) = {z,y} andL™[bin] = {n.mn, nobj}; in this case, according to Table 5, functions{z, y} — {nsun, nob;}
andX : {nsun,nobj} = {z,y} are defined as followsi(z) = ngp aNdA(nsun) = ; £(y) = nob; aNdA(neb;) = .

We have used functios in Definition 4.6; function\ will become useful in the following.

For eachr-calculus agenp, the HD-automatot,,° is obviously finitely named. Now we identify a class of agents
that generate finite HD-automata. This is the clasfinitry w-calculus agents, which is defined like the corresponding
class of CCS agents.

Definition 4.7 (finitary agents) Thedegree of parallelismeg(p) of a w-calculus agenp is defined by the clauses of
Definition 2.6 plus the following clause for matching:

deg([z=y]p) = deg(p)
A r-calculus agenp is finitary if max{deg(p') | p £ --- X5 p'} < 0.
Theorem 4.8 Letp be a finitaryr-calculus agent. Then the HD-automatdy)* is finite.

Proof. Letno = max{deg(q) | p % --- ““ ¢} and letq be any agent reached framin the construction of the HD-automaton
Ap?. It must be

0= (va1) (va2) - (V) (salsa] - [s0)

whereg; are sequential processes< no, ©; # x; if i # j, andz; € fn(s1| - |sn).
First of all, we notice that — due to the operational semarafcther-calculus — each component must appear, up to substitutions
on the names, either imor in one of the definitions used hy More formally, for each € 1, ... , n there exists some agent and

some substitutionr; such that:

14

e p; appears irp orinpa for someA; and
® S; = Pi0d;.

Since Var is finite, there is just a finite number of different possibéndidates fop;; so also the candidates fey are finite up to
bijective substitutions (since the names in epgchre finite, the substitutions; can generate a number of differentwhich is finite

up to bijective substitutions).

Sincen is bounded by, also the possible candidates fats.| - - - | s, are finite up to bijective substitutions. Finally, also tle¢ of
restricted name$z 1, z2, ... , s } is finite due to the requirements that # «; if i # j and thate; € fn(si| - |sn).

Therefore, the number of agents that can be reached in tistraotion of the HD-automatad,? is finite up to bijective substitutions.
Since all the agents that are used as states in the HD-awutorast normalized, only a representative for each classerfitagip to
bijective substitutions appears in the HD-automaton, aedset of states has thus to be finite. To show that also thé sahsitions

is finite it is sufficient to notice that, since the recursienguarded, anyr-calculus agent can perform only a finite number of
representative transitions. m|

We remark that, as we discussed for CCS in Section 2.2, itlissmmidecidable whether an agent is finitary. Also
in this case, however, there is a syntactic conditions thatantees thata-calculus agent is finitary: th#énite-control
condition. According to Definition 2.8, an agenhas a finite control if no parallel composition appears inrgmirsive
definitions used by.

Corollary 4.9 Letp be a finite-controtr-calculus agent. Then the HD-automatdp? is finite.

4.2 Bisimulation on HD-automata

We introduce now bisimilarity on HD-automata and give sorhigsdbasic properties. We also show that ground bisimi-
larity of w-calculus agents is captured exactly by the bisimulatiorlBrautomata.

Due to the private nature of the names appearing in the stditefD-automata, bisimulations cannot simply be
relations on the states; they must also deal with name qreiences: a HD-bisimulation is a set of triples of the form
(q1,0, g2) whereq, andg, are states of the automata ah a partial bijection between the names of the states. The
bijection is partial since we allow for equivalent stateshadifferent numbers of names.

Suppose that we want to check if statgsand g, are bisimilar via the partial bijectioh : Q[¢1] — Q[g¢2] and

suppose thag; can perform a transitiofy : ¢ N ¢;: an instance of this situation is represented in Figure 2nTle

have to find a transitioty, : ¢- LN ¢4 that matcheg,, i.e., not only the two transitions must have the same ldhsl,
also the names associated to the labels must be used cotigistdis means that, given a namef the label:

e eithern is old in both transitions, i.e., it corresponds to some namef stateq; and to some name, of ¢ (via
the suitable name embeddings), and these namasdn. are in correspondence bythis is the case of nante
of labell in Figure 2: it corresponds to names andas, in the source states, and these are related} by

e orn is newin both transitions, i.e., it does not correspond to any namef stateg;, nor to any name, of ¢z;
this is the case of namieof labell in Figure 2: in fact, the corresponding namgsandys- in the transitions are
new.

This behavior is obtained by requiring that a partial bi@et, : T[¢;] «— T[¢2] exists such that(i) ¢ coincides withd
if restricted to the names of the source states (obviouglythe embeddingst; | ands[t2]), and extends with a partial
correspondencg between the new names afandts; (i7) the names associated to the labels are the sam¢, aiad
(#31) the destination stateg andg) are bisimilar via a partial bijectio’ which is compatible witlg (i.e., if two names
are related by’ in the destination states, then the corresponding naméitransitions are related lgy. The reader
can check that all these requirements are satisfied in FRyure

We remark that it isotrequired that two names of the destination states are cetgté& if the corresponding names
of the transitions are related iy That is, we allow some of the correspondences that holdértrémsitions to be
discarded in the destination states. In Figure 2, for im#anamesg; and f, of the target states are not related &y
even if the corresponding names of the transitions, namelndz,, are related by. We will comment further on this
choice later in this section. We anticipate that the samévatnce on HD-automata is obtained also by requiring that
no correspondence can be discarded in the target states.

Definition 4.10 (HD-bisimulation) Let A; and.A, be two HD-automata. AID-simulationfor A, and A, is a set of
triplesR C {{q1,9,q2) | 1 € Q1, g2 € Q2, § : Q1[q1] — Q2[g2]} such that, whenevdy, J, ¢») € R then:

for eacht; : ¢ N q; in A there exist som& : go N ghin Ay, Somet : T1[t1]new — Ta[t2]new, and
some(: Tq[t;] «—— T»[t2] such that:

15

Figure 2: A step of bisimulation on HD-automata

o (= (s1]ta]; &;s0[ta] 1) UE,
e 01[t1] = (; 02[t2],
e (q1,0',g5) € Rwhered' C di[t:]™; (; dafts].

A HD-bisimulationfor 4; and A, is a set of triplesR such thatR is a HD-simulation for4, and A, andR ' =
{g2,07 ", q1) | {¢q1,9,¢2) € R} is a HD-simulations fotd, and A, .

A HD-bisimulation forA is a HD-bisimulation for4 and A.

The HD-automatad; and. 4, are HD-bisimilar (written .4, ~ As) if there exists some HD-bisimulation fet; and. A,
such that(go: , 3, go2) € R for somes C o150, -

4.2.1 Some basic properties of HD-bisimulation

Now we present some basic properties of HD-bisimulations.

Proposition 4.11 Let{R; | i € I} be a (finite or infinite) set of HD-bisimulations fot; and.A,. Then(J,.; R; is a
HD-bisimulation forA; and.A,.

This proposition allows us to define the greatest bisimafatietween two automata.

Definition 4.12 (greatest HD-bisimulation) We denote witfR 4, . 4, the greatest HD-bisimulation fad; andA,, i.e.:

RA;:As def {{q1,0,q2) | {¢1,0,q2) € R, R HD-bisimulation for4; and.4,}
We denote witfR 4 the greatest HD-bisimulation fod.
By the previous propositiorf? 4,4, andR 4 are HD-bisimulations.

Proposition 4.13 If R is a HD-bisimulation for4; and. A, andsS is a HD-bisimulations fotd, and.A; thenR — S is
a HD-bisimulation forA; and A5, where:

R™S d:ef {<q17 ((s) 6,)/q?> | <q1767 Q2> € Rv <q276I7q3> € S}

16

Proof. Suppos€qi,d,q3) € R~ S. By definition of R ~ S, there areg1, 6, g2) € R and{g2, 8", g3) € S such thav = §'; 46"

Suppose also that : q; -1y ¢4. SinceR is a HD-simulation ford; and.A., there exist some, : g» — gb, £ Tilt1]new —
T2 [t2]new andc’ : T1 [t]] — TQ [t2} SUCh that

(= (si[ta]; 8" s2[t2] ") UE (1)
Ol[tﬂ = CI;OQ[tQ} (2)

and(q1,v', q2) € R for
v Cdifta] ¢ dafta). 3)

Sincets : ¢o SLIN g5 andS is a HD-simulation forA» and.43, there are some; : g3 SLIN g, &' Taft1]new = T2[t2]new and
¢" : Ta[ta] «— T3[ts] such that:

¢" = (sata]; 6" s3ts]) UE” 4)
o2[ta] = ¢"; 03[ta])

and(gs,v", ¢3) € S for
Y C dafta] "t ¢ dafta]. (6)

Let us defin€ : Ti[t1]new < T3[ta]new and(: T1[t1] «— Ts[ts] as follows:

def def

¢=¢i¢" (=0

Now we are ready to show that transities satisfies all the condition of Definition 4.10 w.r.t. trammit¢,. First of all we prove
(= (si[t1]; 8; s3fta]) U E:

¢=¢5¢" by definition of¢
= (s1t1]; 05 so[ta] 7T UL (salta]; ¢y safta] T UEY) by (1) and (4)
= (s1ft1]; 85 so[t2] s seta); ¢ sa[ta] 7T U (€15€7) sinces:[t1];8'; sz[t2] €7 =0
and¢’; so[ta]; ¢y salta] ™ = 0
= (sa[t1];0";0";s3ta] ") U (€'5€") sinces,[t2] " is a total injection
= (si[t:]; ;s3[ta]) UE sinced’; 8" = §and¢’; ¢ = €.

Then we prove [t1] = (; os[ts]:

o1[t1] = (';02[t2] by (2)
=(';¢"; 03[ts] by (5)
= (; 03[ts3] by definition of¢.

Finally (g1, (v';7"), ¢4) holds by definition ofR = S ; finally 7'; 4" C di[t:1]™"; ¢; dsfts]. In fact:

vy C dufta] 5 ¢ dafto]; dafta] i ¢ dlts] by (3) and (6)
Cdit1] Y ¢5 ¢ dalta] sinceds|ta]; da[ta] ™' C idr, iy
= du[t1]; ¢ dafts] by definition of¢.

This concludes the proof th® ~ S is a HD-simulation. Sinc¢R ~ S)"! = ™'~ R ™' we also have that iR andS are HD-
bisimulations therR — S is a HD-bisimulation. O

Itis now simple to prove that relation is an equivalence on HD-automata: symmetry and reflexivéyramediate,
whereas transitivity derives from the previous propositio

Corollary 4.14 If A; ~ Ay and As ~ As then alsad; ~ As.

Proposition 4.15 If R is a HD-bisimulation for4; and A, thenR is a HD-bisimulation for4; and.4,, where:

ﬁd;f {<Q]76’7q2> ‘ <q]:67 qZ) € R,(s g 6’}

17

Proof. Supposdq:,é,q2) € R;then(qi,d,q2) € R for somes C 6.

Suppose moreover that : g BN q. SinceR is a HD-bisimulation, there exigt : g2 BN g5, € : T1[t1)new < T2[t2]new and
¢ : T1[t1] «—= T2[t2] such that

¢ = ()l Hue %
orft1] = G 0at] ®)
and(q}, &', 5) € R where
8 Cdift1] ;¢ dolta]. 9)
Now, define¢ : T1[ti] < T»][t2] as follows.
¢E (sita] 0 sota]) UES (10)

Relation¢ is a partial correspondenge: T1[t1] «+— Ta[t»], sincedom(si[t1]d; s [t2] ") N dom(€) = 0.
Sinced C 4, by (7) we also have C ¢. So,01[t1] = (; 02[t2]; in fact,

Ol[tﬂ 25;01[t1] by (8)
C ¢ o1[t1] since¢ C ¢
which implieso1[t1] = (; 02[t2] sincecod(o1[t1]) = cod(o2[t1]) = L[] ando1[t1], 02]t2] are injective.
Finally, (¢}, 8", gb) € R holds sincelq},6’, ¢5) € R andR C R; finally, 8" C di[t:]™"; ; da[ts] by (9) and{ C C.
This concludes the proof th& is a HD-simulation. Sinc{ﬁ) o = 75?1, we also have that iR is a HD-bisimulation then als&
is a HD-bisimulation.]

Corollary 4.16 R 4 is closed foF and - -.

Proposition 4.15 shows that, whenever two states of an attomare equivalent via some partial correspondence
of names, they also are equivalent for all the corresporeteabtained by adding new relations between the names. By
exploiting this fact, we can define HD-bisimulation with eostger condition on the correspondemitéor the destination
states: in fact, we can requifé= d;[t1]~"; (; da[t2]. Also with this alternative definition the same equivaleaneHD-
automata is obtained, and also the greatest bisimul&ign 4, does not change.

The possibility of discarding correspondences in the didimof ¢, though, is very convenient. First of all, it permits
to exhibit smaller relations to prove HD-bisimilarity of tAHD-automata. Furthermore, some important properties of
HD-bisimulation do not hold if the discarding is not allowekhis is the case for instance of the concatenation property
of Proposition 4.13: in fact, if we consider the HD-autormmatd Figure 3, then relations

R = {(q1,012,42). (a1, 0,45)} with d12(a) = b
8:{<QQ76237Q3>7<qg7w7qé>} Wlth 623(b) =cC

are HD-bisimulations; however, their concatenation

RASZ{<Q1,513,QS>;<QI1;@aqg>} with 513((1) =c

is nota HD-bisimulation if we do not permit to discard name coraggpences, since name&sandc’ of the target states
are not related bR — S, even if the corresponding namesindc of the source states are related.

4.2.2 Global states and global bisimulation

Now we give an alternative characterization of HD-bisintigla, which is based on global (rather than local) names.
This alternative characterization is very useful to shoat tHD-bisimulation, when applied to HD-automata obtained
from 7-calculus agents, coincides with bisimilarity relatier.

We have seen that a state of a HD-automaton is obtained froroedculus agent by normalizing its names, so that
all the agents that differ for a renaming are representedhépame state. Conversely, a particalaralculus agent can
be recovered from a stateof the HD-automaton by giving a global identity of the localnmes ofg. Following this
intuition, if ¢ is a state of a HD-automaton and Q[g] «—— N, then(q, o) is aglobal statei.e., a state where a global
identity is assigned to the names. Global transitions afieetsimilarly.

18

Figure 3: A tricky example for concatenation of HD-bisintidas

Definition 4.17 (global state and global transition) A global stateof a HD-automaton4 is a pairg = (¢, 0), where
q € @ ando : Q[g] — N . We denote witli’ 4 the set of global states of. We denote witlt 4 the named set of global

de

state of4, obtained by defininG 4[(¢,)] Lof a(Qlq])-
A global transitioris a pairu = (¢, p), wheret € T andp : T[t] — N. We denote witl/ 4 the set of global transitions

of A. We denote with 4 the named set of global transitions.df obtained by defininy 4[(¢, p)] def p(U[t]). Moreover

we use the notatioris A [(, p)]oia = p(T[tlora) aNAUA[(E,)lnew = p(T[tlnew)-

N (q',0"), wheres = s[t] " L:p, A = o[t] 1;pando’ =d[t] L p.

Ift:q 4 q' then we write(t, p) : (¢, 0)
For the global states and global transitions of a HD-automate use notations similar to those for the components
of the HD-automaton; so, the global transitions of HD-awton B are denoted byl 5; also, if we consider two HD-
automatad; and.A,, then their global states are denoteddyandG, respectively.
Now we give the definition of bisimulation which is based oall states and global transitions.

Definition 4.18 (global bisimulation) Let A; and A, be two HD-automata. Alobal simulationfor A; and A; is a
relation R C GG; x G5 such that whenever, R g, then:

for all uq : g1 LN g5 in Uy with Uy[ui]new N Ga[g2] = 0 there exists some, : go LN g4 such that

91 R g3.
A global bisimulatiorfor A4; and A; is arelationR C GG; x G5 such that bothR is a global simulation fotd; and A,
andR ! is a global simulation fotd, and A, .
The HD-automatad, and A, are global-bisimilariff there exists some global bisimulation fah and A, such that
(go1,001) R (qo2,002).

Notice the clauseU; [u;]new N G2[g2] = 0" in the definition above, that discards all those global $iians of g
that use as new name a name which is olghinThis is necessary in the global bisimulation, since nanage la global
identity here; in fact, this clause plays the same role aisgethn(u) N fn(plg) = " in the definitions of bisimulation
in m-calculus (Definition 3.2).

Global bisimilarity coincides with HD-bisimilarity.

Proposition 4.19 Two HD-automata are HD-bisimilar if and only if they are ghdiisimilar.

Proof. We prove the two implications separately.
Proof of the “only if” implication. Itis sufficient to prove that ifR is a HD-simulation fot4d; and.A» thenR' is a global simulation,
where

R (@101, (@2,02)) | {a1,6,40) € RWith s = o130, '},

Supposdqr, a1) R’ (g2,02) and(t1, p1) < (a1, 1) ™ (g}, o) with

p1(T1[t1]new) No2(Q2[g2]) = 0. (11)

19

We have to show that there is solfte, p2) : (g2, 02) A (g5, o5) with (¢1,01) R’ (g5, 0%).
From(gi,o1) R’ (g2, o) We obtain, by definition oR’, that(g:, 8, g2) € R wheres o roy
From (t1, p1) : (q1,01) N (¢1, o1) by definition of global transition we obtain : ¢ ~L5 ¢} and:

or=sitl] e A=oiltl] e ot =dift] i

SinceR is a HD-simulation, there exist some: g, —— @by € : T1[t1]new “— Ta[to]new and(¢ : T1[t1] «— Ta[t2] such that

¢ = (s1[ta]; d;sta] 1) UE (12)
o1[t1] = (; 02[t2] 13)
(01,8, ¢b) € Rwith §' = di[t1]™*: ¢; dafta). (14)

Let

p2 = (saltal02) U (€11 p1).
Sincedom (¢ 1) C Ta[ta]new and, by definitionTs[ts]new = Ta[t2] \ dom(ss[ts]), we conclude thagps : T[ta] < N.
Property
(=piips (9

can be shown by considering separately the nameslom(s:[¢1]) and the names € T1[t1]new, and exploiting (11).
Moreover, by definition op2, o2 = s2[ta] *; p2 andX = oa[ta] *; p. Therefore, by definition of global transition, there is some

(t2, p2) : (g2, 02) © (g5, 0h), where

oh do[ta] ™" po. (16)
Finally,
8" =di[t:1] "5 ¢; dafto] by (14)
=d1[t1r];p1;p§1;d2[t2} by (15)
=ot;0h by (13) and (16).

Since(q;,4', q5) € R, by definition of R', it holds (g1, 01) R’ (g3, 0%). This concludes the proof of the “only if” implication.
Proof of the “if” implication. It is sufficient to prove that ifR is a global simulation ford; and.A» thenR' is a HD-bisimulation,
where

1 def

R = {{q1,0,¢2) | (@1,01) R (g2,02) andd = o105 ' }.

Supposeq:, 8, ¢2) € R', t1 : ¢1 —> g;. We have to show that there exist sotae g» — gb, SOMEE : Tilt1]new == Ta[t2]new
and some : Ti[t:] «— Ta[t2] such that:

o (=(silts];8;520ta]) UE

e oift1] = (5 0ofta];

o (q1,0',q>) € R' whered' C di[t1]™%; ¢; daft2].
Since{q1, 4, q2) € R’ we have(qi,o1) R (g2,02) and

6:01;051. (17)

Letp: : T1[t1] — N be such that
o1 =silt] i (18)
p1(T1[t1]new) Na2(Q2[g2]) = 0 (19)

To obtain such a function, it is sufficient to defipe\Tl[m .= si[t1]; o1 and to letp,
cod(o2)).

By exploiting (18),(t1, p1) : (q1,01) @,

: Tl[tl}new —> N\ ((’,0(‘1(0’1) U

‘Tl[h Inew

N (g1, %) with

/\=01[t1}71;p1 (20)
(7; :dl[tl]il;py (21)

20

By definition of global bisimulation, exploiting (19), theexists somét., p2) : (g2, 02) @) (g5, 0%) such tha(qy, o) R (g3, 0%),

o2 = Sz[t2]71;p2 (22)
01[t1]71;p1 =/\=02[t2r];p2 (23)
oy = d2[t2]71;p2- (24)

Hencets : g2 — gb. Let

¢E pripy ! Talta] e Tofta].

Notice thatn € T1[t1]new if and only if {(n) € Ta[t2]new: this is due to (19). Hencég, consists of a partial correspondence between
the old names of the two transitions and of a partial corredpoce between their new names. Moreover, by defining

def
£ = C‘Tl[h Inew’

and by exploiting (17), (18) and (22), we have:
(= (aiti);disafta]) UE
Also, by exploiting (20) and (23)
o1[t1] = (; 0z[ta].
Finally, (¢, o)) R (g5, o) implies(q}, &, qb) € R’ for &' % o; 047", and
8" = di[ta] ™" ¢; dats]

follows by (21) and (24). This concludes the proof. m|

4.2.3 Relatingr-calculus ground bisimulation and HD-bisimulation

Now we show that twar-calculus agents are bisimilar if and only if the correspagdHiD-automata are bisimilar.
To obtain this result we exploit the global characterizatid HD-bisimulation presented in the previous section. The
following is the main lemma.

Lemma 4.20 Let (q, o) be a global state of the HD-automatet}* corresponding to ar-calculus agenp. Then:
e if g0 % ¢" is an-calculus transition wittbn(u) N fn(go) = @, then there is some global transitidn, p) :
(0,0) “Y (¢, 0") of AZ*; and
e if (t,p): (q,0) N (¢',0") is a global transition of4};*, then there is some-calculus transitionjo = ¢
where in both caseg’ = ¢'¢’, and(l, \) are related tou as in Table 5.
Theorem 4.21 Letp; andp, ber-calculus agents. Them ~, p» iff Ap? ~ Ap?.

Proof (Sketch). Supposer: ~, po; let the relatiorR on the global states of the two HD-automatd? and.A;¢ be defined as
follows:

R = {{(q1,01), (g2,02)) € Gp, x Gy, | q101 ~4 q202}.

By exploiting Lemma 4.20, relatioR is a global bisimulation ford;? and.A,¢. Moreover(qo1, oo1) R (go2, o02), SiNC€go1 001 =
D1 ~g P2 = qo2002, SO the two HD-automata are bisimilar.

Conversely, supposd,’ ~ A,¢ and letS be the largest global bisimulation for the two automata, thke one corresponding to
HD-bisimuIationRA;f;A:g. By exploiting Lemma 4.20,

R = {{q101,q202) | (q1,01) S (g2,02)}

is a ground bisimulation. In particular, sinég1,c01) S (o2, 02) andp: = qo1001 @andpz = go2002, we obtainp: ~g4 po. a

21

Figure 4: Two non isomorphic minimal HD-automata

4.3 Minimization of HD-automata

We conclude this section with a comment on the impossibdftgefining minimal HD-automata. As we have already
discussed for ordinary automata, having a minimal canorégaesentative for a class of bisimilar automata is imaiotrt
both from a theoretical point of view and from a practicalqgodf view. Unfortunately enough, minimization is not
possible on Basic HD-automata. In Figure 4 we show two edgmtdiD-automata: they are both “minimal”, in the
sense that it is not possible to reduce them further; howtnasrare not isomorphic. In each of the HD-automata there
is a single state with two names, and two transitions: eaafsition exhibits in the label one of the two names. The
difference between the two HD-automata is that the namesadtehed along the transitions in HD-automat®nwhile
they are not ind. Still, the HD-automata are equivalent: their behavioisimetric w.r.t. the two names; and in fact a
bisimulation for these HD-automata is:

R ={(p,0,0),(p.0".q) | 6(1) = 3, 6(2) = 4 andd'(1) = 4, 5'(2) = 3}

The impossibility of representing explicitly the symmebgtween names$ and2 (and3 and4) is precisely the
cause of the impossibility of having a common minimal reatiian for the two HD-automata. In fact, there is no way to
quotient HD-automatonl with respect to its greatest bisimulati®y, = {(p, 0, p) | 6(1) = 2, 6(2) = 1}.

In Section 6 we define an enhanced version of HD-automatasthets this problem by allowing symmetries on
names to appear explicitly in the states of the HD-autom&fawill show that canonical minimal realizations exist for
this enhanced class of HD-automata (see Section 6.5).

5 Basic HD-automata for other history-dependent calculi

In this section we present two other examples of historyedent formalisms that can be successfully mapped into
Basic HD-automata. The first formalism (Sections 5.1 andliS.ZCS with locality [BCHK93], an extension of CCS
that takes into account the distributed nature of conctigsgstems: the underlying idea is that each action occurs at a
particular location of the system, and this location is obsé in the labels of the transitions. The second (Sectigdis 5
and 5.4) is an example of history-dependent formalism datslie filed of process calculi: Petri nets equipped with
history-preserving bisimulation [GR83].

22

5.1 CCS with localities

Here we recall in brief the approach to location semantic€£0S that has been introduced in [BCHK93] and [Kie94].
In Section 5.2 we show how to map this semantics of CCS on HDraata.

Location semantics is one of the so-caltady concurrentsemantics of CCS, which discriminate systems not only
according to thesequencesf actions the systems perform, but also considering aspi&etthe degree of parallelism
in the computations and the distribution of the actions mgpace. In the location semantics, in particular, loesliti
are assigned to the parallel components of a system, ana¢haddn in which an action occurs is observed in the
corresponding transition. Hence, agent9|5.0 and «.3.0+5.2.0, that are identified according to the interleaving
semantics, are distinguished in the location semantiesfitst agent may perform actiomsandg in different places,
while the second executes both actions in the same locaftus.behavior is obtained by extending the syntax of CCS
with location prefixes :: p and by observing in the operational semantics the localitiavhich the actions take place.
For instance, il :: p|m :: ¢ the actions op are observed to happen in locatibrwhereas the actions gfare observed
in locationm. Differently from thestaticapproach to localities of [Ace94] — where the distributeduna of agents is
made explicit by assigning different locations to theiralal components, as in.(l:: pjm :: ¢) — in [BCHK93] and
[Kie94] a more observational point of view is preferred. htion names are assigndgnamically during the process
of observation: the meaning of transitién «.p —> l::m::pis that the observer sees an actioemanating from a

particular sub-location dfand associates nameto this sub-location. Here we follow the dynamic approack.réfer
to [Cas93] for further comparisons of static and dynamicrapph.
Agentsa.0]5.0 anda.5.0+5.«.0 are distinguished by this approach: in fact,

a.0/5.0 %) [:0/5.0 A [::0/m::0
whereas
.80+ .00 5 1:5.0 Iﬁ> l:m

andm is a sub-location of only in the second agent.
Given a setl.oc of locations (ranged over bym, .. .; sequence of locatiorisl, - - - 1,, are ranged over by, v, .. .),
the CCS location agentare defined by extending CCS syntax as follows:

p = - | lup.

The set of location names that occupiis denoted byoc(p) and an agent is pureif loc(p) = (.
The following equivalences are added to the ones in Sectbto2iefine structural equivalengeon location agents:

(loc) I:0=0 L:(plg) = (L=p)|(l:q) l:(va)p = (va)l:p.

Two kinds of transitions are defined on location agents. &laee thestandard CCS transitionsvhich are generated
by the axioms schemata and inference rules of Table 1, estkwith the following rule for location prefixes:

U !
—
[LOC] %

lup-——l:p
And there are théocation transitions of the formp —> p', which are generated by the axiom schemata and by the

inference rules of Table 6. Notice that there is no syncrzr:ﬂmbn rule for the location transitions: since the invisib
transitions do not occur in a particular location, the staddransitions are used for them.
The definition of location bisimulation follow.

Definition 5.1 (location bisimulation) A relationR over location agents is #bcation simulatiorif whenevemp R ¢
then:

e foreachp il> p', withl & loc(p|q), there is some i; q' such thap' R ¢'; and

e for eachp — p' there is some — ¢' such thap’ R ¢

3In [BCHK93] CCS is equipped with weaklocation bisimulation, while here we consider #teongcase. The approach defined here also applies
to theweakcase — see Section 8.4.

23

a_
—p

PREH ap = 1: Loc] —»
p p a /
! l:p l—) lup
a A
y4 710 D1 7]91
[SUM] ——*—— [PAR] —————
prtp2 > p pilp2 —> piIp2

a /

p—p pa—p

[REY Sifa#a,a [IDE] ﬁ“p, if A= pa

(va)p % (va) p

u

Table 6: Location transitions for CCS with localities

A relationR is alocation bisimulationf bothR andR~' are location simulations.
Two location agentg andq arelocation bisimilar writtenp ~; ¢, if p R ¢ for some location bisimulatioR.

The problems in using labelled transition systems to giveasgics to CCS with localities are the classical problems
of history-dependent calculi. First of all, an infinite nuenlof location names can be used when a new location is

generated. In this case, moreover, even if just one locatwne is chosen at each point, still an infinite number of state

is necessary for agents with infinite behaviors: consideirfstance4 def a.A; staring fromlg :: A, an infinite number

of different states is reachable:
lonA Syl A" lyuliulyn A
lgl] l0l112

This happens since location prefixes are created but nexgatfen.

Also the definition of bisimulation is not the ordinary onegetto the clausel“¢ loc(p|q)” in Definition 5.1.

We conclude the section by showing that the transitions dhlatation agent can perform do not depend on the
particular instantiation of the location names.

Let p be a CCS agent with localities and letbe any renaming of the locations, i.e.,: Loc <— Loc; then we
represent withpo the agenp whose localities have been updated according to

Lemma 5.2 Letp be a location agent and let : Loc < Loc be a renaming of the locations. Then
e ifp %) p' thenpo %) p'o,and
e if po %) q thenp %> p'andg = p'o,
where in both cases = o (l1)o(l2) - - - o (Ix) whenevew = Iyl5 - - - 1. Similarly,
e if p— p' thenpe — p'o, and
e if po - gthenp = p’ andg = p'o.

The proof of this lemma can be found in [BCHK93].
With a little abuse of notation, we will also writer with o : loc(p) < Loc, with the obvious meaning.

5.2 Representing agents with localities as basic HD-autortea

Now we show that HD-automata can be applied to CCS with lbeali The simplest way to represent a location agent
with a HD-automaton would be to use states of the automatapieesent derivatives of the agent and to associate to a
state the location names of the corresponding agent. Thisdémg has some advantages w.r.t. the ordinary operational
semantics: all the transitions corresponding to differ@mdices in the name for a new locations could be identified.
Moreover, the same state of the HD-automaton could be usegbtesent a whole class of location agents which differ
for a renaming of the locations.

However, this is not sufficient to obtain finite HD-automata the class of finitary location agents: whenever the
agent can perform infinite computations, the number of locaprefixes continues to grow during the computations,
thus leading to an infinite number of derivatives, even ugtamings.

First of all, we have to avoid this unbounded growth of theatimn prefixes, i.e., we have to find a way to discard
these prefixes. An axiom like

(del) l:mup=m:up

24

would help. However, this axiom is not correct for the looatequivalence of Definition 5.1, since, for instance,

limzap-Slamanap

lmn

whereas
m:a.p BN m:in::p
mn

and the two labels do not correspond; this happens becagisentiie sequence of locations is observed in the label of a
transition.

Now we present a slightly different definition of locationuieplence in which only the newly created location and
its direct parent are observed. It can be shown that this aeatibn equivalence coincides with the classical one gt le
for the class of pure CCS agents.

Definition 5.3 (incremental location equivalence)A relationR on location agents is aimcremental location simula-
tionif p R ¢ implies:

e foreachp —% ', withn € loc(p, ¢), there exists somg—- ¢’ withp’' R ¢';
umn vmn

e for eachp — p' there exists somg— ¢’ withp' R ¢'.

A relationR is aincremental location bisimulatiohboth R andR ~* are incremental location simulations.
Two location agentg andq are incremental location equivalefwritten p ~a; q) if p R ¢ for some location bisimula-
tion R.

Proposition 5.4 Let p, and ¢o be two pure CCS agents. Theg ~; qq if and only ifm ::py ~a; m::qo for some
locationm.

Proof (Sketch). The proof thatpy ~; qo impliesm::po ~a; m:: qo is easy. In fact, standard results for location bisimifarit
ensure thapy ~; qo impliesm :: po ~; m:: qo. Moreover, each location bisimulation is by definition atsoincremental location
bisimulation som :: po ~a; m :: qo.

To prove the converse, i.e., that:: po ~a; m :: go impliespg ~; qo, we should show that relatioR defined as follows is a location
bisimulation:

R ={(Dn,qn) | Dn ~a1 Gk loipo 25 - s pp longo 25 - 5 g}

where-£% is either—— or — with my; ¢ loc(pi—1,¢i—1). Hencem :: po ~; m :: go and, by exploiting standard results for location

UM

equivalencepo ~; qo. :

Delis a correct axiom for this alternative characterizatiod a@rallows us, combined with the other equivalences of
the structural congruence, to associate to each agent #rtletuse of locations. Conceptually, these axioms show tha
agents can be seen in location semantics as collectiontigais) of sequential sub-agents acting in different liocest
This intuitive fact, used in [CN94] to represent locatioreats, gets, in this way, a formal foundation using simple
structural axioms.

We denote withe A the smallest congruence which containgnd which respects equivalendel.

Proposition 5.5 By exploiting=a, every location agent can be written in the following form:
p=a (van) - (vay) (ol ipr| - [l i p)
Pi = Sit| - [Sin;
where locationg; are all distinct ands;; are sequential processes.
Lemmab5.6 If p’ =a p,p ~a; gandg =a ¢ thenp' ~a; ¢'.

We are ready to map location agents into HD-automata. Wessamae that the séloc of locations is used as saf
of global names in the HD-automata. We assume also to havetidnnorm which, given a location agept returns a
pair (g, o) defined as follows. Agernis the representative of the class of agents that differ fsamly by the structural
congruence=x and by a renaming of the locations. Agentan be obtained by first transformipgn an agenp’ that
is normalized w.r.t=x; for instance, by resorting on Proposition 5.5, we couldehav

!

p'=way) - (vam) (I pr] - |l i pn)-

25

Then the locations gf can be renamed so thiatis thei-th location inLoc. Renamings : loc(p) <— loc(g) associates
a location ofp to each location of, so thaty = po.

When the HD-automaton is built, there is no reason to inchlbe transitions that diﬁerjust in the name assigned
to the new location; it is sufficient to use representatiamsitions: a location transition —> q is representativef

u m
m = min{Loc \ loc(p)}.
The named sdt’ of the labels in the case of CCS with localities is so definkd:setZ! coincides with the set of the
CCS actions. No name is associated to actiowhereas two names,. andn,.,, are associated to the visible actions.

Definition 5.7 (from location agents to HD-automata) The HD-automatomi, corresponding to the pure CCS agent
p, according to the semantics with localities, is the smal3-automaton that satisfies the following rules:

e letm be a fixed location of.oc; if norm(m :: p) = (qo, 00) then:
— o € Qis theinitial state an®[qo] = loc(go);
— o, ' is the initial embedding;

eift:qeQ,q li> q' is a representative transition antcbrm(q’) = (¢"', o), then:
- ¢" € QandQ[q ”] loc(q");

t € T andT[t] = loc(q) U {m};

s(t) =gq,d(t) =¢ ,s[,] = idjge(q) @andd[t] = o

o(t) = a andol[t](l) = niee, O[t](M) = Nnew;

e ifge@Q,t:q— q andnorm(q’) = (¢", o) then:
- ¢" € QandQ[q ”] loc(q");

—teTandT]t] = ()i
— s(t) = ¢, d(t) = ¢", s[t] = idioe(q) anddlt] =
—o(t) = 7.

Also in this case the HD-automaton corresponding to looadigenty is finite whenever agentis finitary.

Theorem 5.8 Given a pure location agent, the HD-automatoryl;, is finite if and only ifp is finitary according to
Definition 2.6.

The proof is similar to that of Theorem 4.8.
Two pure agents are location bisimilar if and only if the esponding HD-automata are bisimilar.

Theorem 5.9 Letp; andp, be two pure CCS agents. Then~, p, iff AL ~ AL .

Like in the case of the ground semanticsmetalculus, the proof of this theorem relies on the globakabterization of
HD-bisimulation. It exploits the following lemma, that is@ogous to Lemma 4.20.

Lemma 5.10 Let (¢, o) be a global state of the HD—automatotj) corresponding to a pure location agemt Then:

e if g0 —% ¢" is a location transition withn ¢ loc(go), and (¢',0') = norm(q"), then there is some global

umn

transition(¢, p) : (¢, 0) (“—>A) (¢',0") ofAlp andq” = ¢'¢o’; and

e if (t,p):(q,0) (“—A>) (¢',0") is a global transition ofAfD, then there is some location transitigag —— ¢'c”

umn

where in both cases(ni,.) = m andA(nnew) = n. A similar property holds for the transitions.

26

5.3 Petri nets

In this section we consider an example of history-depenfdemtalism outside the field of process calculi, namely Petri
nets with labelled transitions. In the case of Petri netgyraata have been used to representctie graphsf the nets,
i.e., the graphs of the reachable markings of the nets; aitiam of the automaton represents the simultaneous firing o
a set of transitions of the net. Bisimulation can then beiagdpb the case graphs. In the case of Petri nets, however, a
refined notion of equivalence is preferred, that also carsithe causal relations on the firings of the net.

Processesave been defined in [GR83] to represent concurrent runstef RFeom a process, it is possible to derive
a partial order of the events of the run, which representdd#gendencies between them. A notion of bisimulation,
calledhistory-preserving bisimulatigrihat takes into account the partial order behavior has Heéned in [RT88] for
event structures. The same notion has been introducedeief@ DNM9OQ] for process calculi, using mixed ordering
observations. History-preserving bisimulation has bgmiiad to Petri nets in [BDKP91]: for two nets to be equivdlen
it is required not only that they perform the same sequenegtidns (with the same branching structure), as in ordinary
bisimulation, but also that the partial orders correspogdo two matching computations are isomorphic, i.e., that t
causal dependencies between the actions are the samewothets. As we will see, also in this case the definition of
bisimulation is not the standard one, and suffers of problsimilar to the ones of history-dependent calculi.

Now we present the basic definitions on Petri nets. Most ofi#fmitions and of the notations are from [GR83].

Definition 5.11 (net) AnetN is a tuple(S, T, F') where:
e SisasetofplacesandT is a set otransitionswe assumeS N T = (;
e FC(SxT)U(T x S)istheflow relation

Ifz € SUT then*z = {y | (y,z) € F}andz®* = {y | (z,y) € F'} are called respectively there-setand thepost-set
ofz. Let°’N ={z e SUT |*z=0}andN° ={z e SUT | 2* = 0}.
A netN isfiniteif S andT are finite sets.

Definition 5.12 (P/T nets) A (labelled, marked) place/transition (&/T netin brief) N is a tuple(S, T, F, W, 1, m),
where(S, T, F) is a net and:

e W : F — wT assigns a positiveveightto each arc of the net; we sometimes assume fifiais defined on
(S xT)U(T x S) by requiringW (z,y) = 0if (z,y) ¢ F,

e | : T — Actis thelabeling functionwhereAct is a fixed set of action labels;
e my : S — wis theinitial marking

A markingis a mappingn : S — w. It represents a distribution of thiekensin the places of the net.
Transitiont € T is enabledat markingm if m(s) > W (s, t) for all s € *¢. In this case, thdiring of ¢ at m produces

the markingn' withm/(s) = m(s) + W (t,s) — W (s, t), and we writemn — m'.

Definition 5.13 (n-safe nets)A P/T netN is n-safe if for each reachable marking (i.e., for eachm such that
moN — --- —> m) we have:

m(s) <n Vs € Sn.

Definition 5.14 (occurrence net)An occurrence netis anét = (C, E, G) (in this case, states are also calledndi-
tionsand transitions are also callegvent$ such that:

e forallc € C, |*°¢| < 1and|c®| <1 (conditions are not branching), and

e the transitive closuré&'* of G is irreflexive (the net is acyclic).

Definition 5.15 (process)A processr of a P/T netV is atuple(C, E, G, p), whereK = (C, E, G) is a finite occurrence
netandp: (CUE) — (Sy UTy) is such that:

e p(C) C Sy andp(E) C Tn;
e my(s) =|p '(s)N°K|forall s € Sy;

e Wni(s,ple)) =|{c €®e|plc) =s} andWn(p(e),s) = |{c € e* | p(c) =s}|foralle e Eandalls € Sy.

27

We write®r for ° K and=® for K°.
Theinitial processof netN is the! processr (N) with an empty set of events.
Letr = (C,E,G,p) andr’ = (C', E',G',p') be two processes &f. If:

e E'= EU{e} forsomee ¢ E;
e C'2C;
* Ploup =P
then we writer — 7', wheref = p'(e).

Now we define history-preserving bisimulation. We followlassical characterization, as it appears in [BDKP91]
under the name dtilly concurrent bisimulation

Definition 5.16 (event structure) The(deterministic) event structufer processr = (C, E, G, p) of netN is the tuple
ev(r) = (E,F* \E, In op\E). Anisomorphisbetween two event structures is a bijective function batlear events
which respects ordering and labels.

Definition 5.17 (history-preserving bisimulation) A setR of triples is ahistory-preserving bisimulatiofor nets V;
and N, if:

e whenever(ny, f,m2) € R thenw is a process ofV, 7, is a process ofV, and f is an isomorphism between
ev(m) andev(ms);

e (mp(N1),0,m0(N2)) € R;

e whenevelr, f,m) € R andm — 7! thenm, —2 «, with (x/, f',74) € R and Flosiry =

e whenevelr;, f,m2) € R andmy BER) thenm; BN mp with (7], f', 7)) € R andf’|ev(m = f.

Two netsN; and N, are history-preserving bisimilamwritten N, ~, N, if there is a history-preserving bisimulation
for them.

Notice that the definition of bisimulation which is appliedthis case is not the standard one on labelled transition
systems. First of all, the bisimulation must deal with isoptosms between partial orders and hence it cannot be simply
a relation on states. Moreover, since processes and pantieis grow during a computation, it is possible to asseciat
finite-state systems only to nets which cannot perform itdisequences of actions.

5.4 Representing Petri nets as basic HD-automata

Now we show that also the history-preserving semantics &iri Pets can be modeled by HD-automata. In order
to obtain finite HD-automata also for nets with infinite belbas we propose now an alternative characterization of
history-preserving bisimulation on Petri nets, in whichitpd the past history can be forgotten, like we have doneén th
previous section for CCS with localities.

The first step consists of the definitionadnfigurationswhich are suitable to represent in a compact way the retevan
part of the past history for generic P/T nets. We also show pimgesses can be mapped into configurations.

Definition 5.18 (configurations) Let N be a P/T net. Aonfiguratiorfor N is a tuplec = (E, <, p), where:
e £ C Nisasetofeventsand< C E x E is a partial ordering forE;
e p: Sy x (EU {init}) - w.

We require thad © . p(s,e) > 0 for eache € F.
Theinitial configurationof net/V is configuration:o(N) = (0, po, #), with po (s, init) = mo(s) forall s € S.
Letec = (E, <, p) andc’ = (E',<', p') be two configurations folV andt € 7' be a transition ofV. If°:

e E' C EU{e} for somee ¢ E;

“Notice that the initial process of a net is unique only up tmisrphism of the set of initial conditions.
SFor simplicity, in this definition we suppose thats, e) = 0if e ¢ E and, similarly,p’ (s,e) = 0if e ¢ E'.

28

ty

(O .

t3

O -O—-O0Ho

Figure 5: Two bisimilar nets with different sets of immedi@auses

e <'=(<U{(e;e) | &' € IC(c N d).e<e})N(E x E');

—

* p(s,e) > p'(s,e) forall s € Sy ande € (B U {init}), and}_ c g giniy) (P(5,€) — p'(s.€)) = Wi (s, t) for all

SGSN;

o p'(s,e) = Wn(t,s)forall s € Sy;

then we write —{>E ¢', where the sefC(c 5. ¢') of theimmediate causesf the transition is:

IC(c LN dY={e€E|3IseS:p(s,e)<p(s,el}.
The setMC(c i>E ¢') of themaximal causesf the transition contains the elementsZ(c i>é ¢') which are
maximal w.r.t.<.

The transitionc i>E ' isrepresentativéf ¢ = min{N '\ E}.

In a configuration, the st of events represents the past events which are still refeerSince we are interested
in a partial order semantics, a partial order is definedZprvhich represents the causal dependencies between the past
events. Functiop represents the current marking of the net; rather than simefining how many tokens are in each
place of the net, it also remembers which events generadse tiokensifit is a special mark used for the tokens in the
initial marking).

We require thatin a configuration only the events are remeeatbehich generated tokens still present in the net. This
is important to obtain a finite number of different configiuwas also for certain classes of nets with infinite behaviors

A transition between two configurations corresponds to ttiegfiof a transition of the net. A new eveais gener-
ated: it directly depends on those events of the source aoatign which correspond to the tokens consumed by the
transition (these events are called themediate causesf the transition) and the partial order in the destinationfig-
uration respects these dependencies. The marking of thieatésn configuration is obtained from the marking of the
source by discarding tokens according to the pre-set of#tmsition and by adding new tokens according to the post-set
(these tokens are associated to the new exjeriEvents with no tokens in the marking are discarded and damoear
in the destination configuration.

It is important to remark that corresponding events of lisfareserving bisimilar nets can have different sets of
immediate causes. In fact, if we consider the net in Figurg, (e see that both, and#, are immediate causes of
t3, whereas in the net in Figure (¢, is not a direct cause af. It is possible to prove, instead, that two matching
events must have the same sets of maximal causes. In fack twtt; is not a maximal cause of in both nets of our
example.

The transitions between configurations correspond to irlmgfween the corresponding markings:

Definition 5.19 (from configurations to markings) Let N be a P/T net and let = (E, <, p) be a configuration for
N. The markingn. corresponding ta is defined as follows:

m.(s) = Z p(s,e) foreachs € S.

ecF

29

Proposition 5.20 Letc be a process for neV and letm,. be the corresponding marking.ch‘i>E ¢ thenm, —= m
and, conversely, ifn, ~'s 1! then there exists some configuratidrsuch that: —t>g cdandm' =m..

The transitions between configurations correspond aldoetdrainsitions between the processes of the net.

Definition 5.21 (from processes to configurations)et N be a P/T net and let = (C, E, G, p) be a process oiV.
The configuration corresponding tois ¢, = (E’', <, p) which is defined as follows:

e BE'={eeE|m°Ne*#0}and< = G*

E‘I;

e p(s,e) =|p'(s)Nn°ne®|forall s € Sy ande € E; moreoverp(s,init) = |[p~'(s)Nw°N°x|forall s € Sy.

Notice that the configuration corresponding to the initiadqess forV is precisely the initial configuration fa¥. The
following proposition shows that the transitions on confagions exactly match the transitions on processes.

Proposition 5.22 Let = be a process for nelv and letc, be the corresponding configuration. f Ly 7 then
Cr Ln—z ¢ and, conversely, i, i);_ ¢’ then there exists some processsuch thatr ty rande = Crt .

Now we introduce an alternative notion of history-preseg/isimulation, which is based on configurations rather
than on processes.

Definition 5.23 (incremental history-preserving bisimulaion) A setR of triples is anincremental history-preserving
bisimulationfor netsN; and N5 if:

e whenevelcy, f,c2) € R thene; is a configuration ofVy, ¢» is a configuration ofV, andf : E., «— E., isa
partial correspondence between the events afndc,;

e (co(N1),0,c0(N2)) €R,;
e whenevetc, f,c;) € R ande; 5., ¢ thene, 2., ¢, with:

— FIMC(er B2,) = MClea 254, ¢),

— I1(t1) = I2(t2), and

= (. f'ie3) € Ryandf' = (fuU (€1,82)) N (Eey x Eey);
e the converse, starting from the transitionscof

Two netsN; and N, are incremental history-preserving bisimilawritten N1 ~ap, Na, if there is an incremental
history-preserving bisimulation for them.

Proposition 5.24 Let N; and N, be two P/T nets. TheN; ~j, N, if and only if Ny ~ap, No.
Proof (Sketch). LetR be a history-preserving bisimulation fof; and N»; then:

Rl = {(Cﬂ'lagacﬂz) ‘ (71'11](771'2) ER, 9= fﬂ (Eﬂﬂl X EC‘I\'Q)}

is an incremental history-preserving bisimulation. Tisisufficient to prove tha¥: ~, N2 implieSNi ~anp Na.
For the converse, IR be an incremental history-preserving bisimulation. Then

R = {(7T1,f, 7T2) |(C7l'1agacﬂ'2) ER,
f is an isomorphism foev (1) andev(m2) such thay = f N (E.,, x Ec,,)}

is a history-preserving bisimulation. This is sufficienpt@ve thatVi ~anp N2 impliesNi ~p, No. m|

We would like to remark that configurations and incremenitstidny preserving bisimulation are strongly related to
generalized OM-markings and generalized OM-bisimulatefined in [Mog95]. Also generalized OM-markings are
obtained from processes by discarding most of the pastriiistod by retaining only the information on the events
that are still active, and on their causal relation. In thapgr, OM-bisimulation is proved decidable foisafe nets.
Essentially, what we have done so far in this section is terekthe definitions of [Vog95] to the more general case of
P/T nets.

When a HD-automaton is generated from a net, states of tlwnatdn correspond to configurations of the net.
However, to obtain a compact HD-automaton, it is importandentify configurations which are isomorphic.

30

Definition 5.25 (isomorphic configurations) Two configurationg = (E, <, p) and¢' = (E', <', p’) of a P/T netN
areisomorphicif there exists some bijective function £ < E' such that:

e e< e ifandonlyifi(e) <"i(e') forall e, e’ € E, and
e ple,s) =p'(i(e),s)foralle € E,s € Sy.

We assume to fix a representative for each class of isomogginifigurations and to have a functierm such that

norm(c) = (¢', o) wherec' is the representative of the class of configurations isofmicrio ¢ and o is the bijection

betweent,. andE.. .

Letc and¢’ be two isomorphic configurations and tebe the total bijection betweefi. and E.» which corresponds to

the isomorphism. Them(c) %'

c.

Now we are ready to show how, given a net, itis possible talibi HD-automaton corresponding to it, by exploiting
its behavior on configurations.

In this case, the named det” of labels is defined as follows:P™ = {(a.k) | a € Act Ak € w} and thek + 1
namesii, ... ,nk, Nnew COrrespond tda, k) foranya € Act.

Definition 5.26 (from Petri nets to HD-automata) The HD-automaton4y;' that corresponds to the P/T nét is the
smallest HD-automaton that satisfies the following rules:

e letcy be the initial configuration forV and(cy, o0¢) = norm(cg); then:

— ¢, € Qistheinitial state and[c;] = E.;

I01
— o, ! is the initial embedding;

e ifceQ,c Lg ' is a representative transition\1C(c 5.) ={e1,... e}, andnorm(c’) = (¢", o), then:
- " e QandQ[c"] = E.r;

there is some € T such thafT[t] = E. U {eq}, whereey = min{N "\ E.}; moreover

s(t) = ¢, d(t) = ", s[t] = idg, andd[t] = o;

o(t) = (o, k), wherea = Iy (t); moreovero[t](e;) =n;forj =1,... ,k ando[t](€) = Nnew-

For each representative transitioni>é ¢’ there are in general many transitions in the HD-automatwt differ for the

order of the elements oMC(c . c'): if k elements appear iMC(c . '), then there aré! ways to assign them
to the names, . .. ,n; of the label. All these different transitions have the saangét state, so no grow of the number
of states occurs due to this inefficient encoding of the RbBloreover, it is possible to generate a single transition i
the HD-automaton, at the cost of changing slightly the dédiniof HD-bisimulation, so that two transitions are allave
to match even if their labels differ for a permutation of name, . .. , ny.

The construction in Definition 5.26 generates finite HD-agta for the finite nets that aresafe for some:r. We
emphasize that it is decidable whether a finite P/T netssife for someu. A possible procedure can be found in [VJ85].

Theorem 5.27 Given a finite P/T nelN, the HD-automatomdY' is finite if and only ifN is n-safe for some.

Proof. We show thatd}" has a finite number of states. Since a finite number of stepssisille in a net from a particular marking,
also the number of transitions exiting from each state oHBeautomaton has to be finite, which concludes the proof.
Each state ofd}" is a configuration: = (E, <, p) of N, where:

e F C N and< C E x E is a partial ordering;
e p:Sx (EU{init}) — w.

By Proposition 5.20, moreoven.. is a marking ofV which is reachable from the initial marking. Since the net-isafe for somen,
there can be just a finite number of different markimgs corresponding to reachable configurations.

Since we require thdt_, ¢ p(s, ¢) > 0, the number of evenis € E cannot be greater than the total number of the tokemsinso
there is also a bound to the cardinality Bfand also the possible partial ordersifare finite. Since we work up to isomorphism of
the configurations, this is sufficient to conclude the proof.]

Two P/T nets are history-preserving bisimilar if and onlytié corresponding HD-automata are bisimilar.

Theorem 5.28 Let N; and N, be two P/T nets. TheN; ~j, Ny iff AT ~ AX.

31

To prove this result we exploit the global characterizatiéhlD-bisimulation; it is based on the incremental characte
zation of history-preserving bisimulation and on the falilog lemma, which corresponds to Lemma 4.20 in the case of
the ground semantics afcalculus.

Lemma 5.29 Let (¢, p) be a global state of the HD-automatot};' corresponding to a P/T néY. Then:
e if o(c) L. ¢ and (c',o') = norm(c"), then there is some global transiti@ti, p) : (¢, o) () (¢',o") of AR
andc" = o'(c'); and

o if (t',p): (c,0) (@) (¢, ") is a global transition of4%", then there is some(c) — o’ (c')

where in both cases = I (¢) andcod(\) = MC(co -4 ¢'o’) U {&}.

6 HD-automata with symmetries

Basic HD-automata, presented in Section 4, have some timmia The most important are that they apply only to
the groundsemantics of ther-calculus, and do not apply to tlearly (andlate) semantics; and that they do not admit
minimal realizations. In order to overcome these limitaipin this section we define an extended class of HD-autgmata
namely HD-automata with Symmetries (HDS-automata).

We start by describing the problems of mapping the eattalculus semantics on Basic HD-automata (Section 6.1).
Then we define symmetries on names (Section 6.2) and, bagbéémn HDS-automata (Section 6.3); we also map the
early semantics of-calculus into HDS-automata. Then we introduce HDS-bisathan and study its basic properties
(Section 6.4). Finally, we define minimization on HDS-austan(Section 6.5).

6.1 Motivations

The w-calculus semantics provides two ways to introduce freshesain an agent: name extrusion in bound output
transitions, and fresh name reception in input transitidinese two forms of name generation are similar in the ground
semantics, and we have seen that Basic HD-automata modelithiae same way. In the case of the early semantics
instead, input transitions are different, and Basic HDomata are not able to model them. In fact, in the earbalculus

we have to take into account that the name received in an irgmgition may be either a name already present in the
source agent or a fresh name. Difficulties occur when twovedgemt agents have different sets of free names, since they
do not agree on which names are “already present in the soamckewhich names are “fresh”. Consider for instance
agents

p:m(y).A(m,y,z) and q:a}(y).B(m,y,w)

where we assume thalt(z,y, z) ~ B(z,y,w). The two agents are bisimilar, but they have different séfeee names.

If we want to map these agents on HD-automata, we do not wagdrterate all the input transitions: it is sufficient to
consider those corresponding to the reception of a namadineresent in the source state, and one additional transiti
where a fresh name is received. However, since ageatsd g have different sets of free names, this approach leads
to different sets of transitions: the transition corresgiog to namez is considered only for agent, while the one
corresponding to name is considered only foy. Therefore the two obtained HD-automata are not HD-bisimil
according to the definition of HD-bisimulation given in Sect4.2.

The fact that Basic HD-automata are not able to distinguishtivo forms of fresh name generationmtalculus
agents is already recognized in [MP98a]. There, this dittin is obtained by typing the fresh names introduced in a
transition: bound-output-like names are typesly while fresh-input-like names are typediversal HD-bisimulation
has to be complicated to deal with these two different kinfdsash names; in fact, to be sure that the two agergad
q above are equivalent, we have to match transitich> A(z, z, z) of agentp against the transition BEN B(z,y,v)
of ¢ that corresponds to the reception of the universal name.iftbiion is that this transition of corresponds to the
reception of any name different fromandw (that are the free names @f and should hence be used to match the
transition ofp for namez.

Here we present a generalization of the approach of [MP98Bag idea is to extend the sets of names that enrich
states, transitions and labels of the HD-automata withe repositoriesthese are infinite sources, from which it is
possible to extract fresh names when needed. Differenéetasf fresh names are represented by different repostorie
and the approach of [MP98a] can be seen as a particular casee wnly two repositories are allowed, one for the
universal names and one for the new names. In Figure 6 wesepirevor-calculus transition: the upper corresponds
to a bound output, while the lower corresponds to an inpuisiteon. Two repositories are present in the states, as well

32

Figure 6: Two transitions with infinite repositories

as in the transitions and in the labels: these are nanaadiu in figure. In the case of the bound output transitions, fresh
names are taken from the infinite repositety In the case of the input transitions, instead, the freshasaane taken
from repositoryu.

Repositoryu is used also as a “drain” for the names that are discardedamaition. To understand why it is correct
to useu as the drain, we have to think at the role that play the two sipoes in ther-calculus. Names imr are used
to represent the fresh names that can be generated locadlly bgent. Names im, instead, are those names that can be
sent to the agent by the environment: that is, these namessesgt channels that already exist in the environment, but
that the agent does not know. If an agent forgets a name, #ma iis still available in the environment, and the agent
can receive it back in a successive input action. Hencegibiigect to put this names among those that can be received
in an input transition.

In the Basic HD-automata of Section 4, only a finite set of raiseassociated to a state of a HD-automaton.
In the extended model that we are defining, the whole set ofesamrepresented; however, many of these names
are indistinguishable and are represented in a compact wagdans of the infinite repositories. According to this
interpretation, in the case ofmacalculus agent the names are divided in the parts:

¢ afinite set of names that appear syntactically in the agertieset appear explicitly in the corresponding state of
the HD-automaton;

e an infinite set of names that exist in the environment, butahanot known by the agent — these are represented
by repositoryu;

¢ an infinite set of names that can be generated locally, wheragfent performs a bound output — these are

33

represented by repository

In this chapter we implement this idea by meand#iaftory Dependent Automata with Symmetri@sbrief HDS-
automata The names that appear in their states, transitions, amdslabe defined up to symmetry— that is, a set of
bijective functions, or permutations, on these names. &kgmmetries are used to identify the infinite subsets okthes
names that correspond to the different repositories. Thensgtry of a state can be thought as a declaration that the
behavior from that state is not altered by applying to the @aof the states any of the corresponding permutations.

In the case of infinite name repositories, all the names irséinee repository are interchangeable, so, in this case the
symmetry is used to define an equivalence on the names. Syrmestn be used to represent more complex behaviors,
though; for instance, in the case of agent

p = A(w7m7y) + A(wﬂy7 Z) + A(w7 Z7"’E)7

we can use them to declare that the behavior of agdsatleft unchanged by a shift: Q:‘ z @ in this way, it is
sufficient to represent explicitly only the transition cdysA(w, z,y).

Anotherimportant aspect of symmetries it that they makedisible to define minimal HD-automata. As we will see,
minimization is not possible in the case of Basic HD-aut@matcisely since it is not possible to represent explicitly

the symmetries defined by HD-bisimulation on the names o$thies of the automata.

6.2 Symmetries on Names

In this section we defingymmetrie®n names and functions between them.

Definition 6.1 (symmetries) Let A" be a infinite, denumerable set of namessyfnmetry> on Nis a set of bijections
on that is a group for composition; that is:

e idy € X (i.e., X contains the identity bijection);
e if 0,0’ € ¥ theno; o' € X (i.e.,X is closed for composition);
e if o € X then there is some’ € ¥ such thatr; o’ = id (i.e.,V is closed for inversion).

We denote the set of all the symmetries\émith Sym ().

While generic symmetries may appear in the HDS-automatagist of the examples we use infinite repositories of
names. Here we introduce some notations for them.

Notation 6.2 We denote witl{ di,...,dm, @, . @G the symmetry whew , .. . , d,, are thedistinct namesind

s1,. - , s, denote thénfinite repositoriesMore preciselyD = {d, ... ,d,,} C N is the finite subset of the names that
are neutral for the permutations in the symmetry, i.e., ndmor h = 1---m is left unchanged by all the symmetries.
Names inV'\ D are split inton infinite setsSy, ... , Sy, that correspond to the infinite repositories, . . . , s,,; all the
names in sef; are considered indistinguishable by the symmetry. Cle#irgre are infinite many different ways to split
setN \ D into then subsetsSy, ... ,S,: here we assume to fix one of these split as the canonicdl Giterefore, if
{S1,...,Sn}isthe canonical split ol \ D in n infinite sets, then

{dl,... sy (3D, . @G — {0 | o(dy) = dp forh = 1---m and

o0(Sg) =Sk fork=1---n}.

With some abuse of notation, in the following we denote the setSy, corresponding to the names of the infinite

repositorys. So, for instance, to represent the fact thais a name of infinite repository, we will write n. € @
rather thann € S;.

As we will see in the following section, each state, labekl armansition of a HDS-automaton is enriched by a
symmetry onN\'. Moreover, the HDS-automaton defines the corresponderetesebn the symmetry that enrich a
transition and those that enrich its source state, targét,sand label. This is similar to what happens in the case of
Basic HD-automata: in that case the correspondences areeddfiy means of inverse injections; in the case of HDS-
automata they are defined bynbeddings on symmetries

8For instance, by exploiting the fact th&f is countable, and by denoting with thei-th name inV, we can defines;, = {n; | n; € D andk =i
mod n + 1}. In any case, since all the splits give rise to isomorphicretries, it is not important which split is taken as the cacairone.

34

Let Y andY’ be two symmetries o/ and letp be a bijective function oV'. Assume that all the permutationsof
also appear il¥’ via the functiorp, i.e., thatt C p; ¥'; p~!, where

pEip E pratip ol € XY

Thenp is an embedding of into X’'. Notice, however, that the same embedding is defined, inrgeriyy more than
one bijection. In fact, we do not want to distinct between bijectionsp andy’ if there is some symmetry € ¥’ such
thatp’ = p; 0. Hence, we define aembeddindrom X to X' as a class of those equivalent bijections.

Definition 6.3 (embeddings on symmetries) et > and ¥’ be two symmetries a¥. Anembeddingf of ¥ into X’
(written f : ¥ — X') is a set of bijections oV such that:

e if p € f,thenX C p; ¥'; p~! (i.e., all the permutations A also appear, vigf, in X'); and

e if p € fthenf = p; ¥’ (i.e., f contains all the variants of the same embedding).

If symmetryY. contains an infinite repository; an embedding has to map the names of repositarnnto the names
of a repositorys’ of X': this is necessary to guarantee that all the symmetriesitisitamong the names efin ¥ are
reflected inx’. Moreover, for each distinct namé of ¥’ there must be exactly one distinct narhef X that is mapped
tod'. However, it is possible that also some distinct names afe mapped int@’, or that two repositories; ands, of
Y are mapped into the same repositerpf X': all these cases respect the rule thatan have more permutations than
3.

We introduce with an example some useful notation for the exldings between symmetries. Let us consider

Y= {‘dl,dg,dg,@,@[} andY’' = {d’],dg, @G The embedding froriX to ¥’ that maps distinct names andd,

of ¥ into distinct named andd;, of ¥’ respectively, and all the other namesbinto repositorys’ of ¥’ is represented
as follows:

d]'—)dl]
dgl—)dlz
B | (p | p(d) = i, plds) = db. p({dz} UEDUED) = D)
DO
OO

6.3 HDS-automata

Now we definenamed sets with symmetrigbey are similar to named sets (Definition 4.2), but in tlsisecthe elements
are enriched with symmetries on names, rather than by setaroés. Based on named sets with symmetries, we then
defined HDS-automata.

Definition 6.4 (named sets with symmetries)A named set with symmetridsis a set denoted by, and a family of
symmetries oV, indexed by, namely{E[e] € Sym(N')}ccx, or, equivalenthyE[_] is a map fromFE to Sym(N).
Given two named sets with symmetifieand F, a named function with symmetrigs : E — F is a function on the sets
m : E — F and a family, indexed by:, of embeddings on symmetries, namefe] : Ele] — F[f]}(c.f)em:

Definition 6.5 (HD-automata with Symmetries) A HD-automaton with Symmetrigsr HDS-automatopA is defined
by:

e anamed set with symmetrieof labels

a named set with symmetri@sof states

a named set with symmetri@sof transitions

a pair of named functions with symmetrigsl : T — Q, which associate to each transition tseurceand
destinatiorstates respectively (and embed the symmetry of the tramgitio the symmetries of the source and of
the destination states);

a named function with symmetries: T — L, which associates a label to each transition (and embeds the
symmetry of the transition into the symmetry of the label);

35

Figure 7: Wrong translation from HD-automata to HDS-auttana

e aninitial stategy € Q and aninitial embeddingf, : {idx'} — Q[go], that gives a global identity to the local
names ofy.

In the initial embedding{id } is the symmetry ooV that is composed only by the identity permutation. We remark
that the initial embeddingj, gives a global meaning to the names of the initial stgtenly up to the symmetr@®|qo]
that is defined on these names.

6.3.1 From Basic HD-automata to HDS-automata

Now we show that Basic HD-automata are just a particularlssb®f HDS-automata. To this purpose, we show how a
HDS-automaton can be obtained from a HD-automaton.

The first idea that comes to mind is to add to all the statesraresitions and the labels of the HD-automaton
one infinite repository of names, that represents all theesathat do not appear explicitly in the HD-automaton: an
example of such translation is represented in Figure 7, evttes repository is calle@. Unfortunately, this simple
translation is not correct. In fact, at the level of HD-autdm the left and right transitions of Figure 7 perform thmea
action: both of them have labéland generate a new namen the target state. At the level of the HDS-automata,
however, the two transitions have a different meaning: @ldft transition, name can correspond to any name; in the
right transition, it can correspond to any nameepmnamen of the source state. A HDS-automaton with one infinite
repository implements a mechanism for generating freshasatmt resembles the fresh-input transitions-eilculus,
while a HD-automaton implements a mechanism that reserttidesound-output transitions, and, as we have discussed
in Section 6.1, the two mechanisms are quite different. frutte the form of name generation that is realized by the
HD-automata, two infinite repositories of names are necgssdhe HDS-automata: we denote them V\@ and@.
When a fresh name is generated in a transition of the HD-aattmmthen a name is taken from the reposin the
corresponding transition of the HDS-automaton. Instedwma name is forgotten in a transition of the HD-automaton,
then that name is put into reposit in the HDS-automaton. This correct translation is illustdain Figure 8: here
the two transitions match also in the case of the HDS-autenifate assume that naneof the source state of the right
transition corresponds in the left transition to a name trository@, that s, if we assume that the left HDS-automaton
has already forgotten name

Finally, we assume that the set of namésssociated to the HDS-automata is split in two infinite st€$8™ and
N“. We assume that™P contains all the global names used in the HD-automata @hétd, is the initial embedding
of a HD-automaton, theend (o) € AHP). This split in the names of HDS-automata is necessary toagiiee that all
the HDS-automata associated to HD-automata agree on thestMafnthat are initially reserved for reposito.

Definition 6.6 (from HD-automata to HDS-automata) The HDS-automatof8 corresponding to HD-automata# is
defined as follows:

e L = Lyand,foreach € Lg, Lg[l] = {{n € L[I],(@), @)];

36

Figure 8: Correct translation from HD-automata to HDS-ansita

e Qs = Q. and, foreachy € Q5, Qslq] = {n € Qld], (@), W};
o Ty =T, and, for eacht € T, Tp[t] = {n € T[t].(a), @)]};
e sg = sy, and, ift € Tz then

(| nsalt](n) ifn € dom(saft]) |
n »—>@ otherwise

=1 @@
| @7 @)
e dg = dy, and, ift € Tz then
(| n—dat](n) ifnedom(daft]) |)
n— @ otherwise
dB[t] =

@~ @
O®))
e o5 = oy, and, ift € T then

n—o4lt](n) if n € dom(oa[t])
n— @ otherwise

== @~ @
| ©~® |

® ¢oB = qoa, and

nagi(n) ifn € cod(ooa)
fos =] " @) if n. € NP\ cod(og)
n= (@) if ne No

By exploiting this encoding, all the formalisms that we havapped into Basic HD-automata in Section 4 can be
mapped as well into HDS-automata. In the case of the higicggerving semantics of Petri nets, moreover, the possi-
bility of using symmetries in the label is particularly camient; according to Definition 5.26, in fact, each traositbn
the net configurations is mapped into a set of transitione®HD-automaton: these transitions differ for a permutatio
of the names that represent the past causes. By exploitngytinmetries, a single transition is required, where all the
names that represent the past clauses are declared igdistiable.

37

lel™ tau in ing out outy bout
n

- Tisub, Tobj, by Tisub; Tobj, n, Nsub; Mobj,
-0 e ol"5 e ool o6 Mool oo

Table 7: The named set of labels for earhcalculus

6.3.2 From earlyr-calculus to HDS-automata

Now we map theearly semantics ofr-calculus agents (see Section 3.2) into HDS-automata. Asave already
discussed in the introduction of this chapter, two infingpasitories of names are used in this case. The first one, that
we denote with{v), is used for the names that are generated by the agent in timellowitput transitions. The other one,
denoted with(w), is used for the names that exist in the environment but tieatat known by the agent; fresh names are
taken from here in the case of input transitions, and nanasatie forgotten in the transitions of the agent are coltkcte
in this infinite repository.

Now we define the named set with symmetri€s of the labels for ther-calculus (see also Table 7). Differently
from the labels defined in Section 4.1 for the ground semspliere we have free input actiois and in, instead of
bound input actiomin.

L™ = {tau, in, iny, out, outsy, bout}.

No distinct name is associateditau, one distinct namen) is associated ton, andouts, and two distinct namesi,1,
andn,p;) are associated tin, out andbout. In all these labels, then, there are the two infinite repoisis @) and).
Labelsin, andout, are used when subject and object names of inputs or free tsutpimcide.

As we have done in Section 4 for the ground semantics-oélculus, we assume to have a functionm that
selects the representative of each class of agents diffoira renaming. Onlyepresentative transitionare used when
building a HDS-automaton from&calculus agent. Representative transitions are definéat &ise ground semantics
(Definition 4.4). According to that definition, a single tsition is taken from a bunch of bound outputs that differ
only for the extruded name, and from a bunch of input traosgithat differ in the fresh name that is received from the
environment. In the case of the input transitions, all themesthat appear in the source state have to be considered as
other possible input values.

Finally, we assume that the set of naméss split in two infinite subsetd/ andA™“. Names\” are reserved: they
are used when a name is created during the bound outputticangdience, we assume that, initially, all the free names
of w-calculus agents are .

Definition 6.7 (from w-calculus agents to HDS-automata)Letp be ar-calculus agent witlin(p) C N,
The HDS-automatosl]- corresponding tg is the smallest HDS-automaton that respects the followires:

e if norm(p) = (g, o) then:

— g € Qs the initial state an®[g] = {n € fn(q), @), W}};
— the initial embedding is defined as follows:

n—o(n) ifn € fn(p)
fo=<l P @ if n € N\ fn(p)
ne @) if n e NV

e ifg e Q, ¢ % ¢ is arepresentative transition antbrm(q') = (¢", o), then:

- ¢" € QandQ[¢"] = {n € fu(¢"), @), W};
— there is some € T such thafT[t] = {{n € (fn(g) Un(n)), ®), @|}; moreover

38

" T zy Tx Zy Ix Z(y)
lelL™ tau in ing out outs bout
O=X<)en(w) || / x Yy x x Yy x x Y
O = H(D) S Lﬂ[l] / Nsub | Tobj n Tisub | Tobj n Nsub | Tobj

Table 8: Relations between eartycalculus labels and labels of HDS-automata

(| n—n ifnefn(q))
ne @) if u==(y)andn =y
s[t] = ne= @) if u=2ay,y &n(q) andn =y
OlaaQ)
@~ W)
((n—o(n) ifnein(g)
i = n—=a@ ifne(fn(g)Un(p))\fn(g)
®»7®
@~ W)

—o(t) =1land

n— k(n) @fn € n(p)

ne @) if n € fn(q) \ n(u)
Olaa)

@~ ®

wherel andx are related tou as defined in Table 8.

o[t] =

Definition 6.7 gives rise in general to infinite HDS-automatdowever, there are classes ®ofcalculus agents that
generate finite HDS-automata. This is caséimfary 7-calculus agents (Definition 4.7).

Theorem 6.8 Letp be a finitaryr-calculus agent. Then the HD-automatdg« is finite.
Proof. The proof of Theorem 4.8 can be reused, with small changss,imthis case. m|

We recall that it is not decidable whether an agent is finjtaowever, there are subclass of finitary agents which can be
characterized syntactically. The most well-known is tresslof the agents witfinite control

6.4 Bisimulation on HDS-automata

Now we introduce bisimulation on HDS-automata and desaise of its basic properties. We also show that early
bisimulation onr-calculus agents is captured by bisimulation on HDS-autama

Similarly to what happens for HD-bisimulation (Section 4 &lso a HDS-bisimulation is a set of triples of the form
{(q1,0, q2) whereg; andg, are states of the automata ahi a correspondence between the names of the states; in this
case, however, the correspondence between the namesljn.¢otd : ' < A is a total bijection between the names
of ¢; and those ofs.

Let us consider the HDS-automata in Figure 9. We want to cHestatesq; andg- are bisimilar via the bijection.

Stateg; can perform a transition, : ¢ BN q;- We cannot requite that this transition is matched by a sitrginsition

of ¢o: In fact, in stateg; there is a symmetry between namleand 2, so, in transitiont; the name in the label can
correspond both to namieand to name of the source state. In stage there is no symmetry between nameand

2, but there are two transitions, that use natrend 2, respectively. We consider bisimilar these two HDS-autama
proviso the target states are bisimilar according to thesspondence® ands” represented in figure; in fact, we do not
want to distinguish between the symmetries in the behattaisare “declared” in the states and those that are implicit
in the transitions of the HDS-automaton. So, transitipio be matched by the pair of transitionsandt’,, one for
each of the symmetric behaviorsf This is obtained in the definition of HDS-bisimulation byjtering that, given

transitiont; : ¢; — g», for each bijectioha; € s1[t1] there exist a transitioty, from g» and a bijectiony, € s,[t2] SO

71t is worth remind that, according to Definition 6.3, all thermutations in the symmetry af; are reflected in the bijections that form the
embeddings; [¢1].

39

Figure 9: A step of bisimulation on HDS-automata

40

thatt; andt, match w.r.t. bijectiongy; andas. This behavior works correctly also in the case of the inparigitions in
the HDS-automata obtained fromcalculus agents. In this case, in fact, if statehas a distinct name that does not
appear in statgs, this name is mapped byin repository(u) of stateg,. The specific transition of; that corresponds to
the reception of name is correctly matched ig. by the “default” transition that corresponds to the recaptf a fresh
name taken fronfw). In the general case, we have to take into account not onlgytinenetries of the source state, but

also those of the label and of the target state of a transiBona matching has to be found for a transitipn ¢; 4 q1
and three bijectiona; € si[t1], 71 € l1[t:1] andBy € di[t1].

Definition 6.9 (HDS-bisimulation) Let.4; and.A; be two HDS-automata. ADS-simulationfor .4; and A, is a set
of triplesR C {(q1,9,42) | ¢1 € @1, g2 € Q2, § : N <= N’} such that, whenevél; , §, g2) € R then:

for each transitiort; : g —— q; in A, and bijectionsy; € sq[t1], 71 € o1[t:] and S € dq[t1], there

exist some transitiom, : g- N g5 In Ay and bijectionsas € sy[ta], 72 € 0s[ta] and By € dalta], (+)
such thatv; 8 a5 ' = y157, ' = 81388, ' and (¢} &', ¢5) € R.

A HDS-bisimulationfor A4, and A, is a set of triplesR such thatR is a HD-simulation for4; and A, andR ! =
{{g2,07 ", q1) | {q1,9,¢2) € R} is a HD-simulations fotd,; and A, .

A HDS-bisimulation fotd is a HDS-bisimulation ford and A.

The HDS-automatal; and.A, are HDS-bisimilar(written A; ~ A) if there exists some HDS-bisimulation fd¢ and
As such that(go , 6, goz) € R for 6 = oo1; 005 -

If R is a HDS-bisimulation fort4;, and.A-, and a pair of transitions, in .4; andt, in A, satisfy condition £) in
definition above holds, then we write, with a light abuse aftion, that(t,, p,) € R, wherep = a;;6; a5 b

6.4.1 Some basic properties of HDS-bisimulation

In this section we present some basic properties of HDS$nbilsitions. First of all, similarly to HD-bisimulations
(Subsection 4.2.1), also HDS-bisimulations are closes wirion and concatenation.

Proposition 6.10 Let {R; | i € I} be a (finite or infinite) set of HDS-bisimulations fdi and.A,. ThenlJ,.; R;is a
HDS-bisimulation ford; and A,.

If R is a HDS-bisimulation fotd; and A, and S is a HDS-bisimulations for4; and A3 thenR — S is a HDS-

bisimulation for4; and.As, where:

R™SE {(q1,(8:6"),43) | (01,0, 42) € R, (g2, 45) € S}.
As a consequence, greatest HDS-bisimulations exist: wetdenthR 4,. 4, the greatest HD-bisimulation fod; and
As, and withR 4 the greatest HD-bisimulation fo4. Moreover, relationv is an equivalence on HDS-automata.

In the case of HDS-bisimulation, operaterhas no meaning: the name correspondence in a triple of a HDS-
bisimulation is a total bijection, and it is not possible xbemd it to new pairs of names. In the case of HDS-bisimutetjo
however, a new operator can be defined, that closes a bidionular.t. all the symmetries that are present in the states
of the HDS-automata.

Proposition 6.11 If R is a HDS-bisimulation for4, and A, thenR is a HDS-bisimulation ford; and A,, where:

~ def |

R = {<f11-,5'7112) (1,0,92) € R, 8" = o1;0;00 andoy € Q1[q1], 02 € Qa[g2]}-

Proof. We prove thqﬁ is a HDS-simulation whenevé® is a HDS-simulation.
Assume(q1,d’, g2) € R. Then, by definition ofk, (q1,d, ¢2) € R with

8 =01;6;02 (25)

for somes; € Qi[g:1] ando, € Q2[g2].

Lett: : qu —]> q'l anda’1 € 51[t1], Y1 € 01[t1], ﬁ] € d1[t1].
Now, let

(631 déf a'l;m. (26)

Then, according to definition of embedding on symmetrase s1[t1].

41

Since(q1, d,¢2) € R andR is a HDS-bisimulation, then there exist : ¢» L gb anda € softa], v2 € 02[t2], B2 € d2[t2] such
that

ar; 0oy =y = B8 By

and(qy,4", ¢3) € R.
Moreover, let

Oé{z déf ag;O'Q. (27)

Then, applying equations (26), (25) and (27)4Q §; o, * = 71;y, *, We obtain
ab;dhah =y
Moreover,R C R, s0{q1,d",qy) € R implies{q;,d8",q5) € R. This proves that, is a good matching transition fer also for

relationR.
This concludes the proof tha is a HDS-simulation wheneveR is a HDS-simulation. To prove th& is a HDS-bisimulation

~\ —1
wheneverR is a HDS-bisimulation it is sufficient to notice thé‘R) =R O

6.4.2 Global states and global bisimulation

Now we define global bisimulation on HDS-automata; the tduniis similar to the one applied in Subsection 4.2.2 for
HD-automata: we enrich states and transitions with a mapipom their local names into the global names.

Definition 6.12 (global states and global transitions)A global statef a HDS-automatonl is a pairg = (¢, o), where
g € Qando : N +— N. The set of all the global states dfis denoted by.

A global transitionis a pairu = (¢, p), wheret € T andp : N' «+— N. The set of all the global transitions of is
denoted by/.

Ift:q > ¢ then we write(t, p) : (¢, o) N (¢',0"), whereoc = a~';p,andX = v~ 1;p, ando’ = 3~ !; p for some
a € s[t],y € o[t] and g € d[t].

We remark that this definition is different in many aspectsiirthe definition of global states and global transitions on
Basic HD-automata (Definition 4.17). First of all, globatsts and global transitions are not named sets with symme-
tries: it is meaningless to define symmetries on global nasiase this is contrary to the intuition that global names,
differently from local names, have a precise identity. Glloftates and global transitions can be seen better as a con-

venient notation: this interpretation is enforced by thet that different repositories, labels and targets can bigasd

to the same global transitiai, p): in fact, it holds that, p) : (¢, 01) Y (¢',01) and(t, p) : (q,02) (123) (¢, d%)

whenevewr; ando differ for a permutation in the symmetry gf(and similarly for the labels and the targets).
Now we give the definition of global bisimulation on HDS-aumata.

Definition 6.13 (global bisimulation) Let.4; and.A, be two HDS-automata. global simulatiorfor A; andA, is a
relation R C GG; x G5 such that whenever, R g, then:

for all u; : g LN g4 in Uy with there exist some : g- LN g5 in Us such thaty) R g5.

A global bisimulatiorfor A; and A, is a relationR C G; x G5 such thatR is a global simulation fot4; and.4, and
R~ is a global simulation fot4, and A4;.

The HDS-automated; and A, are global-bisimilariff there exists some global bisimulation far; and.4, such that
(QO] s UO]) R (q027 002) for eaChUO] S f()] andUOQ S fog.

In the definition of global bisimulation for Basic HD-autotaaclause Ui [u1]new N Ga[g2] = 0" was added to
guarantee the freshness for of the new names introducedramsition. This clause is not necessary in the case of
HDS-automata, since the mechanism of infinite repositasiesifficient to guarantee the correspondence of the new
names.

Proposition 6.14 Two HDS-automata are HDS-bisimilar iff they are global bigar.
Proof. We show that ifR is a HDS-bisimulation then

R (((a1,02), (g2, 02)) | (@15 (01505 1), 42) € R}

42

is a global bisimulation, and, conversely, thaRif is a global bisimulation then

def _

RE {(q1; (01505 "), a2) | (@1,02) R' (g2,02)}
is a HDS-bisimulation.
We proof only the first implication: the second can be recederasily by reverting the steps of the proof.
Assume thatqi, 1) R’ (g2, 02). By definition of global bisimulation, we want to prove that €ach(ti, p1) : (g1, o1)) (¢1,07)
there is sométs, p2) : (g2, 02) G, (¢, 0%) such thatqi, o1) R’ (g5, 0%).
By definition of global transitions this corresponds to grdhiat for eactt, : 1 — g}, ay € si[t1], 81 € di[t1], 71 € o1[t1] there
existt2 1 Q2 —]) qu, a2 € SQ[tQ}, ,82 € dz[tz}, Y2 € OQ[tQ} such that

v aor =A=7, as; 00 (28)

and(q1,01) R’ (g2, 02) with

oy = ﬁfl;(xl;ol and oy = ﬁ;l;(xz;og. (29)
Now, (28) and (29) are equivalent to require that

a;diay =y = P66y

5 oo,

forédz*"fm;agland 109
That is, it is equivalent to require that transitionsand¢. match according to HDS-bisimulatidR. m|

6.4.3 Relating HD-bisimulation and HDS-bisimulation

In Subsection 6.3.1 we have seen a mapping from HD-autom&iBS-automata. Here we show that, according to this
map, HDS-bisimilar HDS-automata are associated to, andtonHD-bisimilar HD-automata.

Theorem 6.15 Let A; and A, be two Basic HD-automata, and 1&; and B, be the corresponding HDS-automata,
according to Definition 6.6. Thed; ~ A, if and only if B; ~ Bs.

Proof (Sketch). If R is the greatest HD-bisimulation betwegh and.A., thenR' is a HDS-bisimulation betweefi; and Bs,
where

R E (1,6, q2) | (@1,0,02) € RAS : N = N A6 extendsy}

and wherey’ extends) if the following conditions hold:
e § C ¢’ (i.e., all the name correspondences iare also iny’),
e n € (oifandonlyifé’(n) € (@) (i.e., the names in sink&) in g1 andg> correspond through'),
e if n € Qa,[q1]\ dom(4) thend'(n) € @U (Qua,[g2] \ cod(d)) and if§' (n) € Q.a,[g2] \ cod(d) thenn € @U (Qua [q1])\
dom(d)) (i.e., all the distinct names af, that are not in relatiod are mapped into names of si@, and vice-versa).
For the converse, iR’ is the greatest HDS-bisimulation betweBn and B2, thenR is a HD-bisimulation between; and A»,
where:

R {(a1,6,2) | (@16, a2) € R' AT = &' N (Quy[01]xQuay [g2]) }-

6.4.4 Relatingr-calculus early bisimulation and HDS-bisimulation

Now we show that twar-calculus agents are bisimilar, according to the early sdivs if and only if the corresponding
HDS-automata are bisimilar.

Theorem 6.16 Let A7¢ and A7 be the HDS-automata that corresponditecalculus agentg;, andp,, according the
earlysemantics. Them ~. p iff AT ~ AJ°.

Proof (Sketch). For the “if” implication, we show that, ifR is a HDS-bisimulation fordT¢ and.A%¢, then
R' = {(p1o1,p202) | 01,02 : N <= N, (p1, (01505), p2) € R}

is am-calculus early bisimulation.

Assumeyg; R' g2. Then(p:, (o1;05 1), p2) € R andq: = p1o1, g2 = p20s.

Assumeg; -2 ¢} with bn(g) N fn(gi1]g2) = 0. Then we want to prove thgt = ¢4 andq; R’ ¢5.

The proof proceeds by cases, considering the differentskafdr-calculus transitions. Here we consider only the inputgitons
qi ﬂ> q'l.

We distinguish five sub-cases:

43

.x#y,y € fn(q:) andy € fn(g2);
.z #y,y € fn(q1) andy ¢ fn(g2)
()
)

.x#y,y ¢ n(q)andy € fn(ge

-z #y,y ¢ fn(q) andy ¢ fn(q2);
5. x = y (hencey € fn(q:) andy € fn(g2)).

Let us consider sub-case 1.

Sinceo, is a bijection onV, ¢1 =% ¢} impliesp; % p) with z = o (a),y = o1(b) and

a1 =pior. (30)

A W DN P

Clearly,b € fn(p1), sop: LN p' is a representative transition. By Definition 6£7,: p: N p? is a transition ofA7", where
norm(py) = (p, o7).

Let us fix anya: € si[t1],y1 € o1[t1] andBr € difti].

Then there are SOme : ps — ply, vy € sa[ta], y2 € 0a[ta], andBs € dalts], such that

a1 (o0y Diay =y, =P By (31)

and(pY, ', py) € R for somed’.
Now, sincet, : p» —=» p¥, there must be some representative transition"%> p}, such that(py, o) = norm(p}).
Thenga —5 ¢4, wherew = o(c), z = o2(d) and

4> = pr0s. (32)

Now we show thatv = z. In fact,y1(a) = nsun = v2(c). By applying (31) this impliesr: (a1 (a)) = o2(a2(c)). However, since
a € fn(p1), by constriction (a) = a. Similarly, a2 (c) = ¢. So,x = a1(a) = g2(c) = w.

Analogously,y = z holds.

It remains to show thaf; R’ ¢5. To this purpose, we show that

@ =pioy and gy =pyo, (33)
for someo| ando? such thav; o5 ' = §'. Then,g; R’ ¢ derives. by definition oR’, from (p,8’, pi) € R.
Leto) def 0’1'71; o1 ando) def (5’71; 0. Then, clearlyp’; ot =6
Now we show that (33) holds. First of all,

a1 =pi by (30)

_ pllln';’710'1 Sincenorm(pﬁ) = (;D’(ﬂ;'),

which proves the first equivalence of (30). For the secondvatgnce, we observe that

> = pho> by (32)
= pgrfgqrfg sincenorm(ps) = (ph, 05).
Itis hence sufficient to prove that (n) = o2 (0% ' (n)) for eachn € fn(p}).
By definition of o} and ofas, this amounts to require that

a1(of " (0" () = oa(0h " (m)). (34)
Letm %' 67 ~' (6’ ' (n)). Then we can rewrite (34) as follows:
o5 H(o1(m)) =i (&' (a1 (m))). (39)

This is a consequence af; (o1;05 ');a; ' = B81;6"; 85 ', since by constructio'rdfn(p:l) C a1, 0! C B1, and similarly foras and
Be.

This completes the proof of sub-case 1. The other cases offibetransitions, as well as the other kinds of transitidaow similar
patterns.

The proof of the “only if” implication is similar.]

44

Amin

Figure 10: A minimal HDS-automaton for the HD-automata afufe 4.

6.5 Minimizing HDS-automata

In this section we show that, given a HDS-automathrit is possible to minimize it, i.e., to define a HDS-autonmato
Amin that is bisimilar to4 and that is “minimal” in the class of HDS-automata bisimiar4 — we define below what
is the meaning of “minimal”.

We start by showing that the counter-example presenteddtid®e4.3 on the existence of minimal HD-automata
does not apply to the case of HD-automata with Symmetries. fiilmimal HDS-automaton corresponding to the two
HD-automata in Figure 4 is represented in Figure 10. HD®+aatonA,.,;,» has a single statg, with one infinite
repository and two distinct namdsand2. Moreover the symmetry associated to staieclares that namdsand?2
can be switched without affecting the behavior. HDS-autmmal,.,;,, has one transitior, that exhibits one of the two
names in the label. Also the transition and the label have one infinite repogitim the figure, we have not represented
explicitly that the infinite repositories ¢f, ¢ and« are in correspondence along the transition.

The possibility of declaring the symmetry on the two narhemd?2 of statep is the key feature for obtaining a
canonical minimal HDS-automaton. Indeed, this symmetrkesat possible to use a single transitiolof A, to
represent both transitions of and5 — the two transitiong; andt. in the HD-automata differ only for the choice of
the name to exhibitin the action. Moreover, the symmetryeenl and2 makes ephemeral the fact that the two names
are exchanged or not along transition

We start by describing the fine structure’f;. This will be useful to guide the construction of the miniraatoma-
ton. First of all, relatioriR 4 is closed for concatenation, so it defines a partition on thes() of A; that is, relation
=4 is an equivalence, where

P=4q iff (p,d,q) € R4 for somed.

Consider two states, ¢ € @, and letA 4(p, q) be the set of correspondences that exist, accordifigtpbetween the
names of and ofg:

Aalp,a) E {6] (p,6.q) € Ra}.

The following proposition shows thatl. A 4(q,q) is a symmetry on\V" and Q[¢] is a subset ofA 4(q, q); that 2.
A _4(p, q) can be recovered, starting from any of its elements,ésdoy composing with all the elements oA 4(q, ¢);
and that3. if two statep andq are equivalent, then 4 (p, p) are A 4(q, ¢) are isomorphic.

Proposition 6.17 Let A be a HD-automaton. Then:
1. A4(q, q) is symmetry otV such thatQ[q] C A 4(q, q);
2. if6 € Aalp,q) thenAu(p,q) = {6;6" | 0" € Aulg,q)} = {60 |0" € Aulp,p)};
3. ifp=aqandd € Ay(p,q), thenA (g, q) = {0~ ";p:0 | p € Aulp,p)}.

Proof.

1. The proof that\ 4(q, q) is @a symmetry is easy: clearlyilyr € A.4(q, q); moreover, if§ € Aa(q,q) andd’ € A(q,q) then
8;:68" € A(q,q) by Proposition 6.10. Finally, i € A4(q, q) thens™* € A(q,q) SinceR 4 is symmetric.

Assumed € Q[q]. Sinceidy € A 4(q, q) andida € Q[g], then by Proposition 6.14 = §; ida; idy € A a(g, q).

45

2. Letéd € Aa(p,q).
By Proposition 6.10, i’ € A 4(q, q) thend; 6’ € A 4(p,q). This proves that\ 4 (p,q) D {d';5 | &' € Aa(p,p)}-

Conversely, assum&’ € A4(p,q). By symmetry ofR.4, 6 ' € A4(q,p). Hence, by setting’ def 516" we obtain
d' € Aa(q,q)- Clearly,§"” = 6;4', and this proves thak 4(p,q) C {6’; | &' € A(p,p)}.

3. Letd € A(p,q) (setA4(p, q) is not empty sincg = ¢). Thend ' € A 4(q, p) by symmetry ofR 4.

If p' € Aulq,q)thenp ' §;p'; 671 € Aa(p,p) by Proposition 6.10.

Conversely, ifp € A4(p,p) thenp’ ' 671 p;5 € Aa(p, p).

Also the transitions can be partitioned in a similar fashi®n, on the transitions we define
t=t iff (t,p,t") € R4 for somep.
This relation turns out to be an equivalence. Moreover, Hindwy
Aat,t")y ={p | (t.p,t") € Ra},

the results of Proposition 6.17 also hold for transitions.

Now we are ready to define the minimal HDS-automaton corneding to a given HDS-automatod. It is obtained
by replacing each class of equivalent states and transitidd with a single state or transition. The symmetries
associated to states and transitions of the minimal HDSraation are those defined By 4: these, in fact, express all
the symmetries that exist between the names, not only thdesdred” in HDS-automatad. We remark that it is the
possibility of representing the symmetries defined by theSHilsimulations directly in the states of an automaton that
allows for the definition of minimal HDS-automata.

In the definition of the minimal HDS-automaton, we denotehviif= , the equivalence classes of the states w.r.t.
=4; thatis,[gl=, = {¢' | ¢ =4 ¢'}. We also assume that a canonical representative is definagycsuch class, and
we denote with|¢| =, the canonical representative of cldgk- ,; thatis,|¢|=, € [¢]=, and wheneveq =4 ¢’ then
lg|=, = |¢'|=.. Similar notations are used for the transitions.

A HDS-automaton may contain states and transitions thahateeachable from the initial state. These states
and transitions should not appear in the minimal HDS-automasince they do not contribute to the definition of the
behavior of the automaton. We start by defining formally hedade states and transitions.

Definition 6.18 (reachable states)Reachable states and reachable transitions of HDS-automdtare the smallest
sets of states and transitions that are closed for the fotigwules:

e ¢ is areachable state;
e forall t € T, if s(t) is a reachable state, thens a reachable transition;
e forall t € T, if ¢ is a reachable transition, thed(t) is a reachable state.
The definition of minimal HDS-automaton follows.
Definition 6.19 (minimal HDS-automaton) The minimal HDS-automatad,,i, for A is defined as follows:
e Lin = L andL,in[l] = L[I] for eachl € L,in;
¢ Qumin = {lal=, | ¢ € Q, greachable stattand Q..in[¢] = A 4(q, q) for eachq € Quin;
e Thin = {|t]=, | t € T, t reachable transitioh and T in [t] = A 4(¢,) for eacht € Tpin;
® Omin(t) = o(t) andomin[t] = o[t] for eacht € Tpin;

e smin(t) = [s(t)]=, andsyin[t] = {0 | 0 = o';0" foro’ € s(t) ando” € A4(s(t),|s(t)]=,)} for each

t e Tmin;

o duwin(t) = |d(t)|]=, anddwin[t] = {0 | 0 = o';0" foro’ € d(t) ando” € A4(d(t),|d(t)]=,)} for each
te Tmin;

® Jomin = LQOJEA andmein - {U ‘ o = U’;U” for U’ € fO andU” € A.A(QO-,QminO)}-

A first, important property of minimal HDS-automata is thdéiti, is HDS-bisimilar to the original HDS-automatoh

46

Proposition 6.20 Let A be a HDS-automaton. Thef ~ Amin.

Proof (Sketch). Itis easy to prove that

R Y {(q,0, g)=.) | ¢ € Q4 reachable state o € A 4(q, |q]=,)}

is a HDS-bisimulation. O

Now we show that minimal HDS-automata are unique, up to igpimiem, for each class of bisimilar HDS-automata.
We start by defining isomorphic HDS-automata.

Definition 6.21 (isomorphic HDS-automata) Anisomorphisnbetween two HDS-automathandB is a pair of named
functions with symmetrigsg, ir) withig : Q4 — Qp andir : T4 — T such that:

e ig: Q4 < Qpand, foreachy € Q 4, holdsQxs[ig(q)] = ialg)~'; Qalql;ialdl;
e ir: T4 < T and, for eacht € T4, holdsT[izr(t)] = it[t] ;T alt];it[t];

o forall t € T holdoa(t) = os(ir () ando[f] = it[t]; oslir(1));

o forall t € T4 holdig(sa(t)) = sp(ir(t)) ands4lt];iq[sa(t)] = it(t]; splir(t)];
o forall t € T holdig(da(t)) = di(ir(t)) andd.alt]; iolda(t)] = ir[f]; dsliz(£)].

It is easy to see that, by changing the canonical represezgdy |= , of the states of HDS-automato#, isomor-
phic minimal HDS-automata are obtained. Moreover, isorhimrplDS-automata are HDS-bisimilar, as shown by the
following proposition.

Proposition 6.22 Let A and B be two isomorphic HDS-automata. Thdrand 53 are HDS-bisimilar.

Proof (Sketch). Let (iq, it) be an isomorphism betweetiandB. Itis easy to prove that

R Y {(g,iala),ia()) | g € Qa}

is a HDS-bisimulation. O

The next lemma shows that two equivalent stgteandg, in two bisimilar HDS-automatal; and.4; have isomor-
phic symmetries\ 4, (g1, ¢1) andA 4, (g2, g2). This lemma will be used in the proof that two bisimilar HD&t@mata
have isomorphic minimal realizations.

Lemma 6.23 Letg; € @1 andg, € () be two states of two HDS-automata and.A; and letA 4,. 4, (¢1,g2) def {4 |
(g1,9,q2) € Ra,.4,}. Then, forany) € A4, 4,(q1, g2):

Asyias (@1,02) = Auy (q15,01);0 = 05 A4, (g2, 42)-
MoreoverA 4,4, (g1, g2) is an embedding of symmetty4, (¢1) into symmetnA 4, (¢2).

Proof. Letd € Aa;.4,(q1,q2). We prove that\ 4,. 4, (q1,2) = A, (q1,q1); 5. By Proposition 6.10, i, € A, (q1,¢1) then

31;0 € Aayia,(q1,q2). This proves that\ 4. 4, (q1,q2) 2 {81; | 81 € A, (q1,q1)}. Conversely, assume € A 4.4, (q1,q2).

Letds; & 8’56~ '. By Proposition 6.10 we hav® € A4, (q1,¢1). Clearly,§’ = 6,;4, and this proves that a,,.4,(q1,¢2) C

{01;0 [01 € Ay (g1, 1)}

The proof thatA 4,;.4, (¢1,g2) = 6; A, (g2) foranyd € A4,;4,(q1,g2) is similar.

Finally, from A4, (¢1,q1);0 = &;Aa,(g2,q2) we obtaind ™ '; A, (q1,q1);6 = A, (g2,q2). This concludes the proof that
A 41545 (g1, g2) is a symmetry embedding. o

Proposition 6.24 Let A and B be two HDS-automata such thdt~ B. ThenA,;, and B, are isomorphic.

Proof. Letig C Qua,,, X @5, be defined as follows:
(Qa,qp) €Eio iff {(qa,d,qp) € R.a B for somed.

Now we prove thaig : Q... = @s,.., namely thay, in Q 4_,, there is one, and only one, in Q... such thatlq.,d, q») €
R 4,5 for somed. The fact that there is (at least) opedepends on the fact that is reachable ind, and hence a matching stajge
should exist inB according to the definition of HDS-bisimulation. On the athand, ifq, andg;, are two states of) 5., that can
matchg,, theng, =5 q;, and hence, = g, by definition of minimal HDS-automaton. By the symmetry i ttefinition ofig we
deduce that,' : Q5,,,, = Q4. and hencéq : Q4,.., < Q5,.;.-

min

47

Let us extend functiong to a named function with symmetries Let us defige Q4,,, — Qs,,,, as follows:

iQlga] = {6 | (¢a, 0,) € Ra,5}.

The fact thaiq[g.] is indeed an embedding & 4[g.] into Qzs[io (g.)] is a consequence of Lemma 6.23.
Finally, again by Lemma 6.23 applieditgq.] ™", we haveQs[io(q)] = iqlg]™"; Qalg]; iq[q].

(ta,ts) € ir iff (ta,d,ts) € Ra,nB for somed.
and
it[ta] = {0 | (ta,d,ts) € RaB}.

Also in this caseir is well defined, and g[ir (t)] = it[t]”"; Talt]; it[t].
To conclude the proof we have to show tkiat, it) is an isomorphism betweefni, andBmin. We have already proved the first two
items in the definition of HDS-isomorphism. The other iterolofv easily by the definition of HDS-bisimulation. m|

Theorem 6.25 Let .4 and B be two HDS-automata. The# ~ B if and only if Anin @andBin are isomorphic.

Proof. The “only if” implication consists of Proposition 6.24.
For the “if” implication, assume thatlin and Bmin are isomorphic. Then, by Proposition 6.22, we haigin ~ Bmin. By
Proposition 6.20 we also have thdt~ Ami» and thatBmin ~ B. By transitivity of ~ we conclude thad ~ B. a

The obtained HDS-automatof,;, is minimalsince it has the minimum number of states and of transitiomsray
the HDS-automata that are bisimilar.tig moreover, it has the maximum set of symmetries in thesestatd transitions.
Notice that increasing the symmetries in states and tiansits considered a step toward minimization: in fact, rij&x
symmetries are present, then a smaller number of transitiosufficient to represent the same behaviors. If we cadlaps
further states and transitions df.,in, Or if we enlarge symmetries of its states and transitiongmequivalent HDS-
automaton is obtained: this is a consequence of Propoéititth

7 A categorical approach to history dependent automata

In this section we give an alternative characterization BF<omata and of HD-bisimulation in a categorical setting
This approach works both for Basic HD-automata and for HBanata with Symmetries.

We start by defining HD-automata by extending a classicagratcal definitions of ordinary automata. (Section
7.1). Then, we exploit open maps [JNW96] to define HD-bisatioh on these categories of HD-automata (Section
7.2); we also show that, in the case of HD-automata with Symmese the minimal HDS-automaton, that we have built
explicitly in Section 6.5, is reobtained in the categormetting.

7.1 The categories of HD-automata
In a categorical setting, an ordinary automaton is cla#igidafined as a diagram
/i\/k

~—
d

L+>—T Q+——1
in the categorBet of (small) sets. Usually, sdtis a singletor{ «} and the initial statg, of the automaton is designated
asi(x); we only consider such single-pointed automata in this tgrap

Given two automatad; and 4, on the same sek of labels, amorphismm : A; — A, is a pair of arrows
mq : @1 = Q2 andmy : Ty — T, that respect sources, destinations, labels, and thel istitige.

Automata and morphisms between automata form a cateyary It is often useful to consider the full subcategory
of Aut whose automata have the samelsef labels: this category is denoted Byut ..

7.1.1 Categories of enriched sets

Basic HD-automata and HD-automata with Symmetries can Bretkin a similar way; we have just to replace the
categorySet with a category of “sets enriched with names” and of “setsolied with symmetries”. Now we show that
also these “enriched sets” can be defined by exploiting alardcategorical construction, namely feconstruction.

Definition 7.1 (] J-construction) Given a categoryC, thefree coproduct completioof C is the categonf [C defined
as follows:

48

e its objects are families (i.e., indexed sets) of object€ofmore precisely, each obje& of [C is a pair
(A, (Ala])aea), WhereA is a set and, for each € A, A[a] is an object oiC;

e its arrowsf from A to B are pairs(f, (f[a])sca), Wheret : A — B and, for eachs € A, f[a] : Ala] — B[f(a)]is
an arrow inC;

e identity arrows and composition are defined as usual.

Notice thaff] C = (T](C°P))"”, where[] (D) is the free product completion of categddy
Now we revise the definitions of named sets (Definition 4.2) ahnamed sets with symmetries (Definition 6.4) in
a categorical setting, by using th-construction.

Definition 7.2 (categoryINSet of named sets)Let A/ be an infinite, denumerable set odmes
CategoryJ of injective functions on names defined as follows:

e objects of] are the subsets of';

e arrows ofJ are the injective functions between the subsef§pf

¢ identity and composition are defined as usual.
CategoryNSet of named setss defined as followsNSet = [J(JP).

We would like to remark that categodyis similar to category of injective functions on finite sets that has been used in
[Sta96], [FMS96], and [CSW97] as the category of names inesgim models ofr-calculus. The difference is that sets
of cardinalityw are allowed inJ, while they are not if.

Notice that named sets are built on the top of cated6Py rather than off; in fact, according to Definition 4.2, in a
function between named sets, inverse injective functioesiaed on the names.

Definition 7.3 (categorySym of named sets with symmetries)CategorySym of thesymmetries onV is defined as
follows:

e objects oSym are the symmetries o" (Definition 6.1);
e arrows ofSym are the embeddings on symmetries\dr{Definition 6.3);
¢ if ¥ is an object oSym, then the identity arrow foE is defined asdy = X;

eif f: X = Y andf' : ¥ — ¥ are two arrows oSym, then their compositiorf; f' : ¥ — X" is defined as
i =Ao;0" o€ f,o' € f'}.

CategorySymSet of named sets with symmetriesdefined as followsSymSet =] Sym.

7.1.2 Defining the enriched automata

Enriched automata on a base categ@rare defined by taking states, transitions, labels (and thghsms between
them) from category] C.

Definition 7.4 (category of enriched automata)Let C be a base category. Aenriched automatoon C is a diagram

S
—
—

d

L+>—T Q+—1
in category[] C.
Let.4; and A, be two enriched automata dni with the same labelg and initial pointsZ. Amorphismm : A; — As

is a pair of arrowsmg : Q1 — @2 andmy : Ty — T, that respect sources, destinations, labels, and the Irstites,
i.e., such that the two overlapped diagrams

51

Ty :__: @1 .
y dy \
L mr mQ I
T, 3 Q-2

da

49

in category] [C commute in the obvious way. The identity morphism and th@aesition of two morphisms are defined
component-wise.

We denote wittAut(C) the category of enriched automata on categ@ryMoreover, we denote witAut(C)y the
full subcategory of the enriched automata on categ@rwith labelsL and initial pointsI. SubcategorieA ut(C);
andAut(C),, are defined similarly.

The general definition of enriched automata can be speethtiz obtain Basic HD-automata and HD-automata with
Symmetries.

Definition 7.5 (Basic HD-automata) Let| be the named set withas singleton element and witk] = V.
CategoryHD of the(Basic) HD-automaté the category oA ut(J°P),.

Moreover, letL be a named set. CategoBID, is the full subcategory oAut(J°?)_; whose objects respect the
observation condition.

Definition 7.6 (HDS-automata) Let| be the named set with symmetries that has singleton element and such that
I[+] = {idy}.

CategoryHDS of theHD-automata with Symmetrids the category oA ut(Sym);.

Moreover, letl be a named set with symmetries. Categdi#S, of the HD-automata with Symmetries on labklis
the categoryAut(Sym), .

We would like to remark that the approach followed above téingeBasic HD-automata and HDS-automata in
a categorical framework is quite general. To define a categbenriched automata, it is sufficient to give the base
categoryC that defines the information that enriches the automata.n,THEC) defines the sets enriched with the
information inC, andAut(C) defines the category of enriched automatabn

A comment is in order on the choice of the enrichedlsef initial points. We remark that, for the case of HD-
automata, sel is the onlyweak initial object in categoryJ°P. Similarly, symmetry{id} is the onlyweak initial
object in categonSym. In general, we propose to take Ashe singleton sefx}, and to letl[x] be the weak initial
objecte, of the base catego§. In this way, object, represents the case of maximal information on the stateeof th
system (e.g., all names known, no symmetry on the names)m@odi : | — Q models the correspondenie] that
exists between this maximal, global information and thedld information associated to the initial stage= i(x).

It is interesting to observe that ordinary automata can hainéd by applying definition 7.4 to the categdrywe
recall that category has a single object, and the identity arrow for it).

Fact 7.7 CategorySet is isomorphic to categor]] 1. As a consequence, categdkyat of the automata is isomorphic
to categoryAut(1) of the enriched automata on categdry

7.2 Open maps and bisimulations

Consider a morphism : A; — A, in the category of automata. Relation
R={{q1,2) € Q1 x Q2 | g2 = mq(q1)}

is a simulation fotd; and.A,. In fact, assume; R g2 andt; : q; LN q;; then we have, : ¢ LN gb andq; R ¢, by
takingt, = mr(t1) andgh, = mg(q)). Moreovergy; R qoz2, Sincegoz = mg(qo1)-

Therefore, a morphism : A; — A, expresses the fact that all the transitionsigfcan be simulated inl,, starting
from the initial states. In general, however, it is not trbattall the transitions afl, can be simulated ind; .

Nevertheless, it is possible to define a particular clasbisifhulation” morphisms, such that the existence of such a
morphism fromA; to .4, guarantees not only that the transitions4f can be adequately simulated.ity but also the
converse; i.e., the existence of a “bisimulation” morphguarantees that; and.4, are bisimilar.

There exist bisimilar automatd, and.4, such that no “bisimulation” morphism (nor generic morphiroan be
found between them. However, whenever two autoroétaand A, are bisimilar, it is possible to find a common
predecessad and a span of “bisimulation” morphisms, : A — A; andm, : A — A, between them:

mi A ma
N
./41 A?

The span of morphisms is necessary for being able to definerigaelations between the states of the two automata.

8We recall that objectq is weak initial in categonC if for any other object: of C there is some (not necessarily unique) arrow freymo z.

50

These “bisimulation” morphisms have been defined in vanoasner in the literature, and different names have been
given to them. They are calleabstraction homomorphisniis [Cas87] and in [MS89]zig-zag morphismi [vB84],
transition preserving homomorphisnts [FM90] and in [FMM97], andopen mapsn [JNW96]. Here we consider
the approach based on open maps; this approach has the aglvafhteing general enough to be applied not only to
automata, but also to other models of concurrency, likel Rets and event structures.

Assume a categori¥I of models Let E be the subcategory d¥1 whose objects are thexperimentghat can be
executed orM and whose arrows express how the experiments can be extelid€ds an object off and M is an
object ofM, an arrowz : X — M of M represents the execution of the experim&nin the modelM .

Consider an arrown. : M — N in M. We can see this arrow as a simulation of mogielin model N. Hence,
correctly, if an experimenk can be executed if/ (there exists an arrow : X — M) andN can simulateV/ (there
exists an arrown : M — N) then the experimenY can be executed iy (via the arrowz; m : X — N).

Suppose now to extend the experimé&hto an experiment” (via an arrowf : X — Y in E) and that an arrow
y 1 Y — N exists such that the following diagram commuted/n

X —>M

fl l’” ()

Y—N

This means that the execution of the experime€nih V (viax; m) can be extended to an execution of the experiment
Y in N (viay).

This does not imply in general that also the executioiXoh M can be extended to an executionoin M. We
can make this sure by requiring that there is an argbsuch that the diagram

X —5M

121

Y—N

commutes. Givem : M — N, if for each commuting diagranx) there is an arrow’ such that alsoxx) commutes,
we say thatn is anE-open map

It is easy to check that the open maps form a subcategaM @fe., identities are open and open maps are closed
for composition).

Definition 7.8 (open bisimulation) We say that two object®&/; and M5 of M are open-bisimilawith respect tdE if
and only if there is a span df-open mapsn, m..

M
m/ \7‘712

M, M,

In [INW96] it is shown that, if the categotut;, is used as the category of the models and the full subcategory
Branj, of thebrancheqi.e., of those finite automata which consist of a linear sege of transitions) is used as the cat-
egory of experiments, then two automata are open-bisitifidéard only if they are bisimilar according to Definition 2.3.

Now we apply open maps to Basic HD-automata and to HD-autwmidh Symmetries.

7.2.1 Application to basic HD-automata

In the case of Basic HD-automata, an experiment is a finitaesgrps of transitions and an extended experiment can be
obtained by adding new transitions. Moreover, we requieg tto name is forgotten during an experiment, since this
models the idea that the observer can remember all the namasysly used in the experiment.

Definition 7.9 (category of HD-experiments)A HD-automatonY is a HD-experimentf:
e Q=1{q,q,.-.,q,} arethe states an@ = {¢,, ... ,t,} are the transitions, and(¢;) = ¢;—; andd(¢;) = ¢;;

e forall t € T, d[t] : T[t] «— Q]g] is a bijection.

51

A morphismmgq, mt) : X — X' isname preserving mq andm~ are bijections on the names, i.enq|q] is a bijection
betweerQ'[mg(q)] andQJg] for all ¢ € @, and similarly formr.

ThecategoryHD-Exp of HD-experimentss the subcategory dID with HD-experiments as objects and name pre-
serving morphisms as arrows.

CategoryHD-Exp, is the full subcategory diD-Exp whose objects areID, -automata.

Now we show that the notion of HD-bisimulation given in Deffioi 4.10 is also obtained by the uniform technique of
the open maps.

Theorem 7.10 Two Basic HD-automata on the same lablelsre HD-bisimilar iff they are open-bisimilar w.r.t. experi
mentsHD-Exp, .

Proof. We prove the two implications separately.

Proof of the “if” implication. We show that, ifn : A — B in aHD-Exp-open map, thend andB are HD-bisimilar. From this, by
transitivity of HD-bisimilarity, it is easy to conclude thlvo HD-automata are HD-bisimilar if there is a span of opeapmfor them.
We show thatR is a HD-bisimulation ford and B, where

R < {(q1,6,q2) | a1 reachableg: = mq(q1),d = mqla:]}

Suppose thafq, d,¢2) € R and thatt; : ¢ SN qi. Itis easy to check that is matched bynr(t1) = t2 : g2 SN g, choosing
C = mT[tl} and£ = C|T_A[t1]new.
Suppose, conversely, that : g- N g». Sinceq; is reachable, there is an experimetitand a morphisnx : X — A so that
experimentY terminates o, . Via x; m, experiment¥’ can be executed ii, ending in statgs.
Now we extend experimenrt to an experimend’, obtained by adding a transition correspondingstoLet the last state ot beg,,.
Then) is obtained fromX by adding a state,+: and a transitiort,,+1 : ¢» LN Gn+1- Letus defin€lTy[tnt1] = Qylgnt+1] =
Qx[gn] ¥ T2[t2]new (We assume, without loss of generality, th@g[g.] and T2 [t2]new are disjoint). MapSy [tn+1] anddy [tn+1]
are defined in the obvious way, whereas mgf..+1] = «; 02[t2], With @ : Ty [t,41] «— T2[t2] defined as follows:

o if n € Tafta]new thena(n) = n;

o if n € Qx[ga] thena(n) = so[t2] " (malar](xalgn]()).
The definition of the name-preserving morphigm X —) is obvious, sinceY is a prefix of).
Let us define morphism : J — B as follows: onX, morphismy is defined byx; m. Moreover transitiort,, +-1 is mapped td-» so
thatyr[tn+1] = «. Finally, statey, 11 is mapped omgs so thatyq[gn+1] = s2[ta]; yr[tn+1]-
It is easy to check that diagram

X——A

y B

commutes. Since: is an open map, a morphisgh : Y — A exists so that diagram

T

Y

X— A

7t

y——B

commutes. Let us definfl = yg(gn+1) andés = yz(tny1); thents - Ly ¢}, Let us defing = mr[t1] and¢ =
Then itis easy to check that:
o (= (s1[t1]; 8;0[t2]) UE,
e oi[t1] = (s o2fta],
e (¢1,8,qb) € Rwhered’ = mq[qi]”'; moreoverd’ = di[ti] " ¢; da[ts].
This concludes the proof of the first implication.
Proof of the “only if” implication. We show that, if4 andB are HD-bisimilar automata, then here exist a HD-autom&tamd a

span of open maps

A B

C|T1[11]new'

Suppose thatl andB are HD-bisimilar via the HD-bisimulatio®; by Proposition 4.15 we can assume tRat R.
The HD-automato® andm andm' are defined as follows:

52

e Qc =R;foreachr = (ga,d,q5) € R we havemq(r) = ¢, andmyg(r) = g5. Moreover
Qc[r] = (Qulga] \ dom(d)) Wé W (Qslas] \ cod(d)),
i.e., the names of statein C are the union of the names @f and ofg,, where the names related byare identified. Finally,
mq[r] andmg|r] are defined as follows:
— if n € Qulga] \ dom(d) thenmq[r](n) = n andmg[r](n) is undefined;
— if (n,n') € §, thenmgq[r](n,n') = n andmg[r|(n,n') = n';
— if n' € Qalgs] \ cod(8) thenmq[r](n) is undefined anehg[r](n) = n.
e Tc = S, where(t,, (,tp) € Sif t, andt, are matching transitions accordingo T 4[t.] «— Tg[ts]. For each. € T¢, the
set of name§ ¢[t.] and the embeddings[t.] andm?[t.] are defined as the corresponding components for the states.
e The starting state d is (go, (00.4; 053), qo8,) € R.
It is easy to show thatr andm’ are morphisms. Now we show that is an open map (the proof fan’ is similar). Suppose then

that diagram
X C
1k

y——A

T

—

commutes, withf : X — Y is a morphism between experiments. We have to show that ¢éx&sts some)’ :) — A such that

X ——cC

i

y—A

commutes. It is sufficient to consider the cases in whitls obtained fromY by adding just a statg,+: and a transitiori,, 1 :

qn BN gn+1. ON the prefixX’ of), morphismy’ is defined as morphism (this assures that the upper triangle commutes). Now we
define how transition,,+; and statey,,+: are mapped intG.

Suppose thagr (tns1) = ta : ga — gl With ga = yo(gn) andg, = yo(gu+1). Thenzo(gn) = (ga,d,) € R. SinceR is
a HD-bisimulation, there must be some transitigrof B that matches, according to somé, i.e., there is someé = (t.,(,) :

(qa,8,00) == ¢’ = (d,,8',q;) of C. By definition ofC, we know thatmr (¢) = t, andmo(q') = ¢,. Let us defingjy (tn11) = t
andyg(gn+1) = ¢'. Then itis easy to show that also the lower triangle commutes a

7.2.2 Application to HDS-automata

In the case of HD-automata with Symmetries, an experimeafiisite sequences of transitions and an extended experi-
ment can be obtained by adding new transitions. Moreoverggeire that no symmetries are defined on the names of
states and transitions of the experiments: the intuitiadhas the observer can distinguish all the names.

Definition 7.11 (category of HDS-experiments)A HDS-automatot¥’ is aHDS-experimenif:
e Q={q,q,.-.,q,} are the states an@ = {t,,... ,t,} are the transitions, and(¢;) = ¢;—1 andd(¢;) = ¢;;
e foreachq € @, Q[¢] = {idx }; similarly, for eacht € T', T[t] = {idx}.

ThecategoryHDS-Exp of HD-experimentss the full subcategory dIDS with HDS-experiments as objects.
CategoryHDS-Exp, is the full subcategory diDS-Exp whose objects arBIDS, -automata.

Theorem 7.12 Two HDS-automata on the same lablelsre HDS-bisimilar iff they are open-bisimilar w.r.t. exjreents
HDS-Exp, .

Proof (Sketch). We prove the two implications separately.
Proof of the “if” implication. This proof is similar to the proof of the “if” implication of leorem 7.10.
It consists of showing that, i : A — B in aHD-Exp-open map, thetd andB are HDS-bisimilar via HDS-bisimulation

R {{a1,8,42) | a1 reachableg, = mq(q1),0 € ma[ai]}.

We omit the details.

Proof of the “only if” implication. This proof is similar to the proof of the “only if” implicatio of Theorem 7.10.

It consists of showing that, iA and B are HD-bisimilar automata, then here exist a HDS-automé&tamd a span of open maps
m:C— Aandm' : C — B.

Suppose thatl andB are HDS-bisimilar via the HDS-bisimulatioR. The HDS-automato andm andm’ are defined as follows:

53

* Qc =R, foreachg = (g, 0, q») € R we havemq(g) = ga andmg, (¢) = g». MoreoverQc[g] = {idx}, i.e., all the names
of stateg in C are distinguished. Finallyng[g] = {p | p € Qulga]} andmgq] = {d;p | p € Qalaa]}-

e Tc = S, where(t,,(,ty) € S if t, andt, are matching transitions according¢a N «+— N. For eacht € T¢, we define
Tc[te] = {idx}. Embeddingsnt[t] andm’ [t] are defined as for the states.

e The starting state af is (go, (00.4; 045), o8,) € R for somesoa € foa andoos € fos.
We omit the proofs thatr andm’ are open maps.]

7.2.3 Minimal HDS-automata

We have seen in Section 2.1 that minimal automata exist ih elass of bisimilar automata. In Section 6.5 a similar
result has been given for HDS-automata. Now we show thatmaihautomata and minimal HDS-automata can be
defined also in the categorical setting.

Let Aut” be the subcategory ut that is defined as follows:

e the objects ofAut’, are thereachable automatd.e., all the state are reachable from the starting st@e®me
sequence of transitions;

e the arrows ofAut”, are the open maps &ut.

Clearly, categonAut’”, consists of different connected components, that corregsmthe different classes of bisimilar
automata.

Theorem 7.13 Every connected component of categAmyt” has a terminal object.

Therefore, in each class of bisimilar automata there is fiquéar automaton that is terminal with respect to bisimu-
lation morphisms. Standard categorical results guarahtaethe terminal object is unique up to isomorphisms. So,
Theorem 7.13 defines an unique canonical representativeafdr class of bisimilar automata. It is easy to prove that
this canonical automaton coincides with the minimal autmmhat we have defined explicitly in Section 2.1.

The same result also hold for HDS-automata. In factH&S'_ be the category of reachable HDS-automata and of
the HDS-Exp-open morphisms on them. Then the following theorem holds:

Theorem 7.14 Every connected component of categHiIpS’, has a terminal object.

Proof. Let A be a reachable HDS-automaton and Jgt;, be the minimal HDS-automaton corresponding.Acaccording to
Definition 6.19.

Now we show that there exists one and only one open map. A — Awin. This is sufficient to conclude the proof, since by
Proposition 6.24 if3 ~ A then Amin andBmin are isomorphic, and hence there is one and only one open mafrain 3 to Amin.
Let us define morphismm : A — A, as follows:

e if g € Qthenmq(q) = |q] € Qmin; moreovermq(q] = A (g, |q]);
e if t € T thenmz(t) = |t] € tmin; moreoverms[t] = A 4(t, [t]).

It is easy to check that: is a morphism between HDS-automata, and that it is an opes.map

Conversely, lein’ : A — Amin be an open map; we show that = m.

Letg € Q and letg' = mg(q); we remark that, by definition oflmin, ¢’ € Q.

It is easy to prove that, for ea¢he mglq], (¢,0,q') € Ra;a,.,,. By definition of Amin, this implies thatg, d, ¢') € R.4. Hence,
q = ¢', which impliesq’ = |¢| by definition of|¢], and this in turn implieg’ = |¢| by definition of Amin. S0,m(q) = mq(q).
Letd € mg[q]. We have already seen that it holis 6, ¢') € R4, i.e.,d € A(g,q') = mq[q]. Letd’ € A(g,q') = mqlq]. Then
5§78 € A(d,q') and, by definition ofAmin, 6~ '; 8’ € Qmin[g']. Henced’' = §; (67 ';6') € my[q] by definition of embedding on
symmetries. Song[q] = mq[q] for anyq € Q.

This concludes the proof thato = mg. We omit the proof thainy = mi, which is similar. a

8 Possible extensions and other work

In this section we discuss some possible extensions of theaph described in the paper. In particular, we present
some other examples of formalisms that could be mapped iBtatitomata. We also discuss a verification environment
that exploits HD-automata to verify history dependent falisms.

9An objectt of a (sub)categong is terminal if, for any other object of C there exists exactly one arrow fromto ¢.

54

8.1 CCS with causality

In Section 5.1 we have presented the location semantics 8f&&& way to define a truly concurrent behavioral equiva-
lence for this language. Tleausal semanticepresents another possible approach to obtain this résdilis case, the
causality relations between the actions of an agent ara iake account, as we did in the history-preserving semantic
of Petri nets.

In agenia|f the two actionsy andj are independent: in fact, the meaning of the parallel cotitiposs that the two
subagents are in two distinct computation threads. In agght- 5., instead, the two actions can occur in any order,
however they are not independent: the second action is sglLi® the first one and is enabled only by the occurrence
of the first.

There are many ways to formalize this idea. For instancd)IDNM90] CCS agents are mapped into Petri nets, so
that the history preserving semantics of the nets can betasgide a causal semantics to the agents. In [DD89, Kie94]
the causal dependencies between the actions of an agetsamed directly in the labels of the transition system.eHer
we follow the approach of [Kie94], which is similar to the &imn approach of Section 5.1. Also in this case we extend
the language with prefixes of the fom: p; here, howevek; is acauserather that a location. Transitions are of the form

whereC is the set — not a sequence as in the location approach — oftrses that enabled actiearandc represents
the new name that will be used in the following transitionsafer to this action.
The main difference between the location and the causabaphris in the synchronization: consider the agent

p = (vB) (a.B|B-7).

In the case of the location semantics we observe the coniputat
P> (wB) (= BlA) T (vB) (1 :01y) > (vB) (1 0]l 2 0)
and in the case of the causal approach we observe:

p -5 (UB) (1 = B|By) == (B) (c1 :0ley :y) —— () (€1 ::0]cy 2 ey 2 0).
0,c1 {c1},e0

Action~ depends on actiom (there is no way to executewithout first executingy), and this is represented by requiring

that the synchronization transition ghextends also to the subagenthe causes of.

In general, a synchronization “mixes” the causes of the taroglementary actions. As a consequence, the structure
of the causes is not a tree, as it was for the structure ofitataiths; rather, it is a partial order, as it was in the cdse o
the Petri nets. Hence, to map CCS with causality on Basic HfBraata we can use techniques similar to the ones for
nets.

First of all, we define an alternative semantics where ondyrttaximal causes that enable an action are observed
in the transition. In this way, causes can be removed fromgemtawhen there are no more processes which depend
directly on them. This “incremental” causal semantics for CCS is equivatenthe classical one, but allows for
discarding unused causes. A mapping to Basic HD-automata@a be defined so that the obtained HD-automata are
finite whenever the agents are finitary. Moreover, HD-bidatian exactly matches causal bisimulation:

Theorem 8.1 Letp; andp, be two CCS agents and ldf; and.4, be the corresponding HD-automata according to the
causal semantics. Then ~c., po iff A7 ~ As.

8.2 The later-calculus semantics

In Section 3 we have presented gp@undand theearly semantics of ther-calculus. However, these are not the only
semantics that has been proposed for this language. Fangestthe semantics that was proposed from the very begin-
ning for ther-calculus wadate [MPW92]. The difference with respect to the early semaritids the input transitions:

in the early approach, the label of the transition carriesatttual channel name which is received in the communication
in the late context, instead, the label carries just a “glataer” for the received name and the instantiation takasepl

in a successive stép Agentp = a(z).p’ performs the bound input transition

a(z) ,
p p
10Notice that to remember the partial order of the causes ité®ssary to add a new structure to the agents. In fact, it vgsitpe to represent the

tree structure of the location directly in the syntax of tigemts; however, it is quite more complex to represent aglatder in this way.
11The namesarly andlate refer to the time of the instantiation of the received name.

55

where name: is the placeholder. If the received name will ghen the effective obtained agent will pg/z}. This
instantiation is performed in the definition of bisimulatiavhere a specific clause for input actions is preserit i a
bisimulation ang R ¢, then

whenevep " 1/ andz ¢ fn(p|q), thenp S andp' {0z} R ¢'{b/z} for each namé.

We denote with~; the late bisimulation equivalence.

In [FMQ96] a different approach has been proposed for treedatantics. The input transition is split in two steps,
the first which announces an input on a given channel, andettensgl which corresponds to the reception of the input
value: so, for instance, the input of the agent a(z).p’ is modeled as follows:

p -5 Awp’ D p)

whereb is the effectively received name. The two steps have to bsidered atomic, i.e., when an agent perform the
first step, the second step has to follow immediately.

Since the instantiation of the received name is performetiéntransition system, no special clause for the input
transition has to appear in the definition of bisimulatiom[FMQ96] it is proved that this approach coincides with the
original late semantics of [MPW92].

We can exploit this idea also to capture the late semanti¢heof-calculus within the framework of the HDS-
automata. We have to replace the two labielsandin,, used for the early input actions, with the labéts ... and

inenq, corresponding to the two stepé- andﬂ> respectively; one distinct nameg,;, is associated to labéhg;ay:,
whereas one distinct namgy,; is associated to labeh.,q. Also the definition of the mapping fromt-calculus agents
to HDS-automata has to be changed accordingly.

All the results we have presented for the early semanticdeamstated for the late approach. Also in this case the
HDS-automata corresponding to ageris finite whenever agentis finitary. Finally:

Theorem 8.2 Letp andq be tworr-calculus agents and let]' and A7 be the corresponding HDS-automata, according
to the late translation. Thep ~; ¢ iff A7 ~ A7,

8.3 Causality/localities and ther-calculus

In [San964a] a localities semantics is proposed forihgalculus: the approach is very similar to the one described
Section 5.1 for CCS. [San96a] also shows that it is possibleddify” the location semantics into thecalculus: there
exists a fully abstract mapping from thecalculus with localities to the bare-calculus. In [BS98] similar results are
obtained for ther-calculus with causality. The usage of names inthealculus is, hence, general enough to represent
the tree-like structure of localities and the partial orgigucture of causes. However, the encodings defined in fzgn9
and in [BS98] do not preserve finitary agents: the obtainezhtsgare not finitary whenever the starting agents can
perform infinite computations.

HDS-automata can be exploited also to capture the localitia the causal semanticsmtalculus. In the case
of the localities semantics, for instance, it is sufficiemtcombine the techniques described in Section 6.3.2 and in
Section 5.2. The obtained HDS-automata have four infinjieseories; two of them are the repositorigs and(u) that
are necessary to deal withcalculus names; the other two repositories are used aseand drain for the localities:
they play the same role of repositor and@ in Section 6.3.1.

The approaches of [San96a] and [BS98] and the approach baddbS-automata that we have just sketched have
different aims and use different techniques. The trarmiatiof [San96a] and [BS98] are syntactic (and hence they
always terminate), while our translations generate anaijmeral model for the agents (and hence they terminate only
for certain classes of agents). On the other hand, the fatttik obtained HDS-automata are finite whenever the sgartin
m-calculus agents are finitary shows that HDS-automata offee freedom in handling names thascalculus.

8.4 The weak semantics

In this paper we have presented #tengsemantics of CCSg-calculus and CCS with localities. These process calculi
are equipped also withweaksemantics.

Differently from the strong approach, whereactions are dealt with as other actions, in the weak appriteghare
considered internal actions which cannot be observed fremtitside. Weak transitions are defined to this purpose:

« — = (-5)*, and

[e] € @ €
o = = = —=fora#rT.

56

Figure 11: Weak transitions of HD-automata

Notice thatp == p’ means thap can evolve irp’ by making just internal actions, i.e., by not communicativith the
outside; in particular, we can haye= p'. Also, visible transitions can be preceded and followed ty @nobserved
internal computation.

The “weak” automaton can be built by first building the auttmmaaccording to the strong operational semantics
and then by adding to it the weak transitions according tatites above. A weak behavioral equivalence is obtained
by exploiting the ordinary bisimulation on these weak awatan Whenever the strong automaton is finite, also the
corresponding weak automaton is finite — but possibly muayele]PT87, KS90] — so the standard algorithms can be
used also in this case.

Two different approaches are possible for building a “weBllD-automata for the calculi considered in the paper.
The first approach is simply to use the weak transitions afetoalculi in the construction of the automaton. The second
approach consists of building the strong HD-automaton had bf generating the weak transitions directly on the HD-
automaton. A graphical representation of the rules for gaireg the weak transitions in the case of Basic HD-automata
is given in Figure 11. The first two rules are for th&ransitions, that correspond to a sequence wénsitions: ruleR,
is for the empty sequence oftransitions, while rule?, shows how this sequence can be extended by adding a new
transition. RuleR; is for the visible transitions: it shows that these can absequences af transitions that precede
and follow them. Similar rules exist for HD-automata withr@yetries.

Itis possible to prove that equivalent “weak” HD-automataabtained by using the weak transitions of the calculus,
and by first building the “strong” HD-automaton and then gating the weak transitions with the rules in Figure 11.

8.5 A verification environment based on HD-automata

The HD-Automata LaboratoryHAL) is an integrated tool-set for the specification, verifioatand analysis of concur-
rent and distributed systems. The coreHiL are the HD-automata: here they are used as a common formtitefor
various history-dependent languages. H#&L environment includes modules which implement decisiorcpdoires

to calculate behavioral equivalences, and modules whippa verification of behavioral properties expressed as fo
mulae of suitable temporal logics. The environment has Iseenessfully applied to the specification and verification
of mobile processes defined ascalculus agents. In particular, the verification of the d@rer protocol for mobile
telephones [OP92] has been carried out withinki#d. environment. Here we provide a short overview of the current
implementation of th&lAL environment. A fuller account of this and of other case stadahay be found in [FF&97]

and [GR97].

57

CCS with w-calculus
w-calculus localities Petri nets logic Iocalitylogic

/ﬁp_'
HD-automata ‘\ HD logic !
Y AL
unfold. , model and' unfold.
! equivalence
i check |
ordinary automata logic for ordinary automata
JACK

Figure 12: TheHAL environment: an overview

TheHAL environment allowsr-calculus agents to be translated into ordinary automatthat existing equivalence
checkers can be used to calculate whetherrtigalculus agents are bisimilar. The environment also stipperification
of logical formulae expressing desired properties of theavéor of r-calculus agents. To this purpose, we found
convenient to exploit a logic with modalities indexed dycalculus actions, and to implement a translation of this
logic into a logic for ordinary automata. Hence, existingdabcheckers can be used to verify whether or not a formula
holds for a givenr-calculus agent.

Figure 12 presents an overview of tHAL environment. The dashed boxes indicate work-in-progiessmodules
which are under development. In the current implementdtietdAL environment consists essentially of five modules:
three modules perform the translations frergalculus agents to HD-automata, from HD-automata to anginutomata,
and fromr-logic formulae to ordinary ACTL formulae. The fourth moéyprovides routines that manipulate the HD-
automata in order to reduce their size. The fifth module isdadlg the JACK system [BGL94] which works at the level
of ordinary automata and performs the standard operatiotisem like behavioral verification and model checking. The
JACK environment combines different specification andfietion tools, independently developed, around a common
format for representing ordinary automata: the FC2 file farflBRRAS96]. TheHAL environment supports also a
textual user interface to invoke the commands in the modafidse system and graphical user interface, that allows for
a user-friendly invocation of the basic functionalitied-tAL.

8.6 HD-automata with negative transitions

Basic HD-automata and HD-automata with Symmetries areuitgtde for the open semantics [San96b] and the asyn-
chronous semantics [HT91, ACS98]mofcalculus. These definitions of bisimulation are quiteatiint from the classical
one. When two agenjsandq are bi-simulated, not all the transitionsypare matched by corresponding transitiong of
(and vice-versa). Some of the transitiongareredundanti.e., they are covered by more general transitiop iéelf,
andgq is required to match only thieredundanttransitions ofp. (See [PS01] and [MP99] for a detailed description of
the open and asynchronous bisimulation, respectively.)

In [Pis99, MP99] HD-automata with Negative transitions (RHautomata) have been defined. They extend Basic
HD-automata by allowing for definingredundancyof transitions in a quite general way. In particular they aloée to

58

capture the open and asynchronous semantigsaaficulus. An interesting direction of further investigatis the inte-
gration of negative transitions and symmetries. This caoration will open the possibility of having minimal realikats
also for HDN-automata.

8.7 A coalgebraic definition of HD-automata

In [MPOO] a variant of HD-automata with Symmetries is defime@ coalgebraic setting. In that paper, the transition
system ofr-calculus is modeled as a coalgebra on a category of nameupetion algebras. The role of permutations
in that context is very similar to that of permutations in HAG&omata, namely, they allow for an explicit representati

of the distinguished names of the agents, and of the gearratifresh names during the evolutions of the agents. The
classical results of the coalgebraic theory for ordinaansition systems [Rut00], and notably the existence of & fina
coalgebra, apply also to this extended case.

In [MPOO] the coalgebraic semantics is also linked to HDeadta. It is shown that (a variant of) HD-automata with
Symmetries are in bijective correspondence, up to isonmismphwith the coalgebraic transition systems built on the to
of the permutation algebra, and that minimal HD-automateespond to minimal transition systems. Therefore, HDS-
automata can be seen as a concrete and compact represeatatoalgebras built on the top of permutation algebras,
precisely in the same way as ordinary automata can be selea esricrete representation of standard coalgebras [Rut00]
This result is particularly interesting, as it shows that dlefinitions of HDS-automata and of HDS-bisimulation giiren
this paper are not arbitrary: rather, they derive naturithyn the more primitive concept of coalgebras on permutatio
algebras.

9 Concluding remarks

We have presented History-Dependent Automata and we havensthat they are an operational model particularly
adequate for history-dependent calculi. We have congidéiféerent kinds of history-dependent calculi, that imple
ment different phenomena of concurrent systems: theseophema include mobilityA-calculus), locality (CCS with
localities), and causality (Petri nets).

We have defined two variants of HD-automata. Basic HD-autaraee, as their name suggests, the simplified
version: they are automata whose states, transitions, ab&lsl are enriched with sets of local names. Basic HD-
automata are well suited to model the creation of fresh nam#se evolution of a system. CCS with localities, Petri
nets and the ground-calculus are mapped into this family of HD-automata. In H&fomata, symmetries among
the names are added to the model. These symmetries have &dienlprly useful for the representation of history-
dependent calculi with more sources of fresh names: the ingstrtant example is the (early and latefalculus. The
two families of HD-automata come equipped with a bisimolatbased observational semantics. HD-bisimulation on
HD-automata corresponds to the ordinary bisimulation sgits&for history-dependent calculi.

An important property that holds only for HDS-automata is éxistence, in each class of equivalent HD-automata,
of a minimal representative. As it happens for ordinary endta, this minimal HDS-automaton can be considered the
semantic object corresponding to the class of equivaler+dbDtomata.

We have also revisited the definitions of HD-automata and@fldsimulation in a categorical framework. Classical
categorical definitions of automata and of bisimulatioresextended to deal with Basic HD-automata and with HDS-
automata. The possibility of using uniform techniques fefiming HD-automata and HD-bisimulation enforces our
confidence in the approach.

HD-automata provide the core 6fAL [FFG97, GR97], a verification environment for concurrent systenfe-
scribed in history-dependent formalism: HD-automatavalfor a compact representation of the behaviors of these
concurrent systems, and can be used in the algorithms asmaoformat for the history-dependent calculi.

The approach proposed in this paper can be extended inatiffdirections. Clearly, new history-dependent for-
malisms can be represented by means of HD-automata. Rartydateresting would be the application of HD-automata
to the join calculus [FGIE96, BFL98], the fusion calculus [PV98, Vic98], and the sdcoius [AG99, AG98]; the ex-
isting definitions of bisimulations for these calculi areywspecific, and HD-automata could allow for describing then
in a clean and uniform way.

More interesting is the extension of the approach from Hibpanata to different classes of enriched automata.
Enriched automata and enriched bisimulation can be defim@dparametric way with respect to the information that
enriches the automata. It would be useful to see if the aghroan be applied, for instance, to symbolic transition
graphs [HL95], or to concurrent constraint programmingrfSa

Another interesting research direction consists of extanth HD-automata the meta-theory of process calculi based
on formats [DS85, GV92, BIM95]. This meta-theory is advaeaus from a theoretical point of view — it allows the

59

development of theories that can be applied to differernglages — and for a practical point of view — it would be
possible to implement tools that work for all the languagefengd in these formats. While some extensions of the theory
of formats to richer families of calculi have been alreadpegred in the literature [WB96, Ber98], we feel that the idea
of multiple repositories of names introduced in Section 6ldde particularly interesting for the development of faiti

for w-calculus-like calculi.

References

[Ace94] L. Aceto. A static view of localitiesFormal Aspects of Computing(2):201-222, 1994.

[ACS98] R. Amadio, I. Castellani, and D. Sangiorgi. On bislations for the asynchronouscalculus.Theoretical
Computer Sciencd 92(2):291-324, 1998.

[AG98] M. Abadi and A. D. Gordon. A bisimulation method forygtographic protocols in the spi calculus. In
Proc. ESOP’98volume 1381 of.NCS Springer Verlag, 1998.

[AG99] M. Abadi and A. D. Gordon. A calculus for cryptographprotocols: the spi calculudnformation and
Computation148:1-70, 1999.

[BB92] G. Berry and G. Boudol. The chemical abstract machifteeoretical Computer Scienc@6(1):217-248,
1992.

[BCHK93] G. Boudol, I. Castellani, M. Hennessy, and A. Kiel@bserving localitiesTheoretical Computer Science
114(1):31-61, 1993.

[BDKP91] E. Best, R. Devillers, A. Kiehn, and L. Pomello. @anrent bisimulations in Petri netécta Informatica
28(3):231-264, 1991.

[Ber9s] K. Bernstein. A congruence theorem for structurpérational semantics of higher-order languages. In
Proc. LICS'98 1998.

[BFL98] M. Boreale, C. Fournet, and C. Laneve. Bisimulasidar the join-calculus. IProc. PROCOMET'98
Chapman & Hall, 1998.

[BGL94] A. Bouali, S. Gnesi, and S. Larosa. The integratioojgct for the JACK environmentBullettin of the
EATCS54, 1994.

[BIM95] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulatioran’t be tracedJournal of ACM 42:232-268, 1995.

[BRRAS96] A. Bouali, A. Ressouche, V. Roy, and R. de Simortee FC2Tools set. IRroc. CAV’'96 volume 1102 of
LNCS Springer Verlag, 1996.

[BS98] M. Boreale and D. Sangiorgi. A fully abstract semesifor causality in ther-calculus.Acta Informatica
35, 1998.

[Cas87] I. Castellani. Bisimulation and abstraction horogohisms. Journal of Computer and System Sciences
34(2/3):210-235, 1987.

[Cas93] I. Castellani. Observing distribution in processén Proc. MFCS’93 volume 711 ofLNCS Springer
Verlag, 1993.

[CN94] F. Corradinio and R. De Nicola. Distribution and Ititaof concurrent systems. [Rroc. ICALP’94
volume 920 ofLNCS Springer Verlag, 1994.

[CSW97] G. L. Cattani, I. Stark, and G. Winskel. Presheaf eiedior the pi-calculus. IfProc. CTCS’97 volume
1290 ofLNCS Springer Verlag, 1997.

[Dam97] M. Dam. On the decidability of process equivalerfoeshe m-calculus. Theoretical Computer Science
183(2):215-228, 1997.

[DD89] Ph. Darondeau and P. Degano. Causal tree®rdo. ICALP’89 volume 372 ofLNCS Springer Verlag,
1989.

60

[DDNMQ9O0] P. Degano, R. De Nicola, and U. Montanari. A partaflering sematics for CCSTheoretical Computer

[DS85]

[FFG+97]

[FGL+96]

[FM90]

[FMM97]

[FMQ96]

[FMS96]

[GR83]

[GRO7]

[GV92]

[HLO5]
[HT91]

[IP96]

[JNWOE]

[Kie94]
[KS90]

[Mad92]
[Mil89]
[Mil93]

[MP95]

[MP97a]

[MP97b]

Science75:223-262, 1990.

R. De Simone. Higher level synchronizing devices iEIWE-SCCS. Theoretical Computer Science
37(3):245-267, 1985.

G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pist@ed G. Ristori. An automata based verification
environment for mobile processes. Pnoc. TACAS'97volume 1217 oLNCS Springer Verlag, 1997.

C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, andRémy. A calculus of mobile agents. Rroc.
CONCUR’96 volume 1119 of NCS Springer Verlag, 1996.

G. Ferrariand U. Montanari. Towards the unificatidmmdels for concurrency. IRroc. CAAP’90Qvolume
431 of LNCS Springer Verlag, 1990.

G. Ferrari, U. Montanari, and M. Mowbray. Structdré&ransition systems with parametric observations:
observational congruences and minimal realizatidlathematical Structures in Computer Sciencg—
42,1997.

G. Ferrari, U. Montanari, and P. Quaglia. ”Acalculus with explicit substitutionsTheoretical Computer
Sciencel168(1):53-103, 1996.

M. Fiore, E. Moggi, and D. Sangiorgi. A fully-absttanodel for ther-calculus. InProc. LICS’96 IEEE,
Computer Society Press, 1996.

U. Goltz and W. Reisig. The non-sequential behavididretri netsinformation and Contrql57(2/3):125—
147, 1983.

S. Gnesi and G. Ristori. A model checking algorithm fecalculus agents. IRroc. ICTL'97. Kluwer
Academic Publishers, 1997.

J. F. Groote and F. Vaandrager. Structured operatisemantics and bisimulation as a congruerictar-
mation and Computatiqri00(2):202—-260, 1992.

M. Hennessy and H. Lin. Symbolic bisimulatiohheoretical Computer SciencE38:353-389, 1995.

K. Honda and M. Tokoro. On asynchronous communices@mantics. liProc. ECOOP’91volume 612
of LNCS Springer Verlag, 1991.

P. Inverardi and C. Priami. Automatic verificationdiftributed systems: The process algebras approach.
Formal Methods in System Desig{(1):1-37, 1996.

A. Joyal, M. Nielsen, and G. Winskel. Bisimulatiorofn open maps.Information and Computatign
127(2):164-185, 1996.

A. Kiehn. Comparing locality and causality basedieglencesActa Informatica 31(8):697-718, 1994.

P. C. Kanellakis and S. A. Smolka. CCS expressiongefgtate processes, and three problems of equiva-
lence.Information and Computatiqr86(1):43—68, 1990.

E. Madelaine. Verification tools for the CONCUR poj. Bullettin of the EATC347:110-126, 1992.
R. Milner. Communication and Concurrencrentice Hall, 1989.

R. Milner. The polyadicr-calculus: a tutorial. In.ogic and Algebra of Specificatipwolume 94 ofNATO
ASI Series FSpringer Verlag, 1993.

U. Montanari and M. Pistore. Checking bisimilarity finitary 7-calculus. InProc. CONCUR’95volume
962 of LNCS Springer Verlag, 1995.

U. Montanari and M. Pistore. History dependentfieation for partial order systems. Partial Order
Methods in Verificatiopvolume 29 ofDIMACS SeriesAmerican Mathematical Society, 1997.

U. Montanari and M. Pistore. Minimal transition s for history-preserving bisimulation. Froc.
STACS’97volume 1200 of.NCS Springer Verlag, 1997.

61

[MP98a]

[MP98D]

[MP99]

[MPOO]

[MPW92]

[MPW93]

[MPY96]

[MS89]

[OP92]

[Par80]
[Pis99]

[PSO1]

[PT87]

[PVO8]

[RT88]

[Rut00]

[San93a]

[San93b]

[San96a]

[San96b]
[Sar93]
[Sta96]

[vB84]

U. Montanari and M. Pistore. History dependent mata. Technical Report TR-11-98, Universita di Pisa,
Dipartimento di Informatica, 1998.

U. Montanari and M. Pistore. An introduction to loigt dependent automata. Rroc. Second Workshop
on Higher-Order Operational Technigues in Semantics (HS@Y, volume 10 oENTCS Elsevier, 1998.

U. Montanari and M. Pistore. Finite state verificatfor the asynchronous-calculus. InProc. TACAS’'99
LNCS. Springer Verlag, 1999.

U. Montanari and M. Pistorer-calculus, structured coalgebras and minimal hd-autonataroc. MFCS
200Q volume 1893 ot NCS Springer Verlag, 2000.

R. Milner, J. Parrow, and D. Walker. A calculus of niletprocesses (parts | and Il)information and
Computation100(1):1-77, 1992.

R. Milner, J. Parrow, and D. Walker. Modal logic forofnile processesTheoretical Computer Science
114(1):149-171, 1993.

U. Montanari, M. Pistore, and D. Yankelevich. Effiait minimization up to location equivalence.Proc.
ESOP’96 volume 1058 o£.NCS Springer Verlag, 1996.

U. Montanari and M. Sgamma. Canonical represergatfor observational equivalence classesRéso-
lution Of Equations In Algebraic Structureglume 1: Algebraic Techniques. Academic Press, 1989.

F. Orava and J. Parrow. An algebraic verification of @bite network. Formal Aspects of Computing
4(5):497-543,1992.

D. Park.Concurrency and Automata on Infinite Sequeneekime 104 oLNCS Springer Verlag, 1980.

M. Pistore. History Dependent AutomataPhD thesis, Universita di Pisa, Dipartimento di Inforioat
1999. Available aht t p: // www. di . uni pi . it/ phd/tesi/tesi 1999/ TD- 5-99. ps. gz.

M. Pistore and D. Sangiorgi. A partition refinemegoaithm for ther-calculus.Information and Compu-
tation, 164(2):264-321, 2001.

R. Paige and R. E. Tarjan. Three partition refinemégariéhms. SIAM Journal of Computingdl6(6):973—
989, 1987.

J. Parrow and B. Victor. The fusion calculus: Expressess abd symmetry in mobile processesPioc.
LICS’98 1998. To appear.

A. Rabinovich and B. A. Trakhtenbrot. Behaviour stiwres and nets. Fundamenta Informaticae
11(4):357-404, 1988.

J.J.M.M. Rutten. Universal coalgebra: a theoryystems. Theoretical Computer Scienc249(1):3-80,
2000.

D. SangiorgiExpressing Mobility in Process Algebras: First-Order an@ijher-Order Paradigms PhD
thesis, University of Edinburgh, 1993.

D. Sangiorgi. From-calculus to higher-order-calculus — and back. IRroc. TAPSOFT’93volume 668
of LNCS Springer Verlag, 1993.

D. Sangiorgi. Locality and interleaving semaniiccalculi for mobile processe§ heoretical Computer
Science155(1):39-83, 1996.

D. Sangiorgi. A theory of bisimulation fercalculus.Acta Informatica 33:69-97, 1996.
V. A. SaraswatConcurrent Constraint Programming/IT Press, 1993.

I. Stark. A fully abstract domain model for the pi@dus. InProc. LICS'96 IEEE, Computer Society
Press, 1996.

J. van Bentham. Correspondence theoryHamdbook of Philosophical Logigolume II. Reidel, 1984.

62

[Vicos]

[VJ85]

[Vog95]
[Wal95]
[WB96]

B. Victor. The Fusion Calculus: Expressiveness and Symmetry in MBbileessesPhD thesis, Depart-
ment of Computer Systems, Uppsala University, 1998.

R. Valk and M. Jantzen. The residue vector sets withliagtions to decidability problems in Petri nets.
Acta Informatica21:643-674, 1985.

W. Vogler. Generalized OM-bisimulatioinformation and Computatiqri18:38-47, 1995.
D. Walker. Objects in the-calculus.Information and Computatiqri16(2):253—-271, 1995.

S. Weber and B. Bloom. Metatheory of thhecalculus. Technical Report TR96-1564, Cornell Univarsit
1996.

63

