
CENTRO PER LA RICERCA

SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy
Tel.: +39 0461 314312
Fax: +39 0461 302040
e−mail: prdoc@itc.it − url: http://www.itc.it

HISTORY DEPENDENT AUTOMATA

Montanari U., Pistore M.

December 2001

Technical Report # 0112−14

 Istituto Trentino di Cultura, 2001

LIMITED DISTRIBUTION NOTICE

This report has been submitted for
publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for
early dissemination of its contents. In view of the transfert of copy right to
the outside publisher, its
distribution outside of ITC prior
to publication should be limited to peer communications and specific
requests. After outside publication,
material will be available only in
the form authorized by the copyright owner.

History-Dependent Automata

Ugo Montanari
University of Pisa

Corso Italia 40, 56100 Pisa, Italy
ugo@di.unipi.it

Marco Pistore
ITC-IRST

Via Sommarive 18, 38050 Povo (Trento), Italy
pistore@irst.itc.it

Abstract

In this paper we presenthistory-dependent automata(HD-automata in brief). They are an extension of ordinary
automata that overcomes their limitations in dealing with history-dependent formalisms. In a history-dependent for-
malism the actions that a system can perform carry information generated in the past history of the system. The most
interesting example is�-calculus: channel names can be created by some actions and they can then be referenced by
successive actions. Other examples are CCS with localitiesand the history-preserving semantics of Petri nets.

Ordinary automata are an unsatisfactory operational modelfor these formalisms: infinite automata are obtained for
all the systems with infinite computations, even for very simple ones; moreover, the ordinary definition of bisimulation
does not apply in these cases, thus preventing the reusage ofstandard theories and algorithms.

In this paper we show that HD-automata are an adequate model for the history-dependent formalisms. We present
translations of�-calculus, CCS with localities and Petri nets into HD-automata; and we show that finite HD-automata
are obtained for significant classes of systems with infinitecomputations. We also define HD-bisimulation and show
that it captures the standard equivalences of the considered history-dependent formalisms. Moreover, we prove that
HD-automata can be minimized, and that the same minimal HD-automaton is associated to each class of bisimilar HD-
automata. Finally, we provide a categorical definition of HD-automata and of HD-bisimulation (by exploiting open
maps).

1

Contents
1 Introduction 3

2 Ordinary automata and CCS 4
2.1 Ordinary automata 5
2.2 CCS 6

3 The�-calculus 7
3.1 Syntax 8
3.2 The early semantics 8
3.3 The ground semantics 10

4 Basic history-dependent automata 11
4.1 HD-automata 11

4.1.1 From ground�-calculus to basic HD-automata .. . 13
4.2 Bisimulation on HD-automata 15

4.2.1 Some basic properties of HD-bisimulation 16
4.2.2 Global states and global bisimulation 18
4.2.3 Relating�-calculus ground bisimulation and HD-bisimulation 21

4.3 Minimization of HD-automata 22

5 Basic HD-automata for other history-dependent calculi 22
5.1 CCS with localities 23
5.2 Representing agents with localities as basic HD-automata . 24
5.3 Petri nets 27
5.4 Representing Petri nets as basic HD-automata 28

6 HD-automata with symmetries 32
6.1 Motivations 32
6.2 Symmetries on Names 34
6.3 HDS-automata 35

6.3.1 From Basic HD-automata to HDS-automata 36
6.3.2 From early�-calculus to HDS-automata .. . 38

6.4 Bisimulation on HDS-automata 39
6.4.1 Some basic properties of HDS-bisimulation 41
6.4.2 Global states and global bisimulation 42
6.4.3 Relating HD-bisimulation and HDS-bisimulation 43
6.4.4 Relating�-calculus early bisimulation and HDS-bisimulation 43

6.5 Minimizing HDS-automata 45

7 A categorical approach to history dependent automata 48
7.1 The categories of HD-automata 48

7.1.1 Categories of enriched sets 48
7.1.2 Defining the enriched automata 49

7.2 Open maps and bisimulations 50
7.2.1 Application to basic HD-automata 51
7.2.2 Application to HDS-automata 53
7.2.3 Minimal HDS-automata 54

8 Possible extensions and other work 54
8.1 CCS with causality 55
8.2 The late�-calculus semantics 55
8.3 Causality/localities and the�-calculus . 56
8.4 The weak semantics 56
8.5 A verification environment based on HD-automata 57
8.6 HD-automata with negative transitions 58
8.7 A coalgebraic definition of HD-automata 59

9 Concluding remarks 59

2

1 Introduction

In the context of process calculi (e.g., Milner’s CCS [Mil89]), automata(or labelled transition systems) are often used
as operational models. They allow for a simple representation of process behavior, and many concepts and theoretical
results for these process calculi are independent from the particular syntax of the languages and can be formulated
directly on automata. In particular, this is true for thebehavioral equivalencesand preorders which have been defined for
these languages, like bisimulation equivalence [Mil89, Par80]: in fact they take into account only the labelled actions an
agent can perform. Automata are also important from an algorithmic point of view: efficient and practical techniques and
tools for verification [IP96, Mad92] have been developed forfinite-stateautomata. Finite state verification is successful
here, differently than in ordinary programming, since the control part and the data part of protocols and hardware
components can be often cleanly separated, and the control part is usually both quite complex and finite state. Particularly
interesting is also the possibility to associate to each automaton — and, consequently, to each CCS agent — aminimal
realization, i.e., a minimal automaton which is equivalent to the original one. This is important both from a theoretical
point of view — equivalent systems give rise to the same (up toisomorphism) minimal realization — and from a practical
point of view — smaller state spaces can be obtained.

This ideal situation, however, does not apply to all processcalculi. In the case ofhistory-dependent calculi, in
particular, infinite-state transition systems are generated instead, also by very simple processes. A calculus ishistory-
dependentif the observations labelling the transitions of an agent may refer to previous transitions of the same agent,
expressing in this manner a dependence from them. For instance, in the case of CCS with localities [BCHK93], each
transition exhibits, in addition to an action, also the location in which the action is supposed to happen, and new loca-
tions are generated by fork transitions. A similar case is CCS with causality [DDNM90, DD89, Kie94]. Another quite
interesting example is�-calculus [MPW92, Mil93]. It has the ability of sending channel names as messages and thus of
dynamically reconfiguring process acquaintances. More importantly,�-calculus names can model objects (in the sense
of object oriented programming [Wal95]) and name sending thus models higher order communication [San93b]. New
channels between the process and the environment can be created at run-time and referred to in subsequent communica-
tions. It is thus evident the history-dependent character of �-calculus.

The operational semantics of�-calculus is given via a labelled transition system. However labelled transition systems
are not fully adequate to deal with the peculiar features of the calculus and complications occur in the creation of new
channels. Consider processp = (�y) �xy:y(z):0. Channely is initially a local channel for the process (prefix(�y) is
the operator for scope restriction) and no global communication can occur on it. Action�xy, however, which corresponds
to the output of namey on the global channelx, makes namey known also outside the process; after the output has
taken place, channely can be used for further communications, and, in fact,y is used iny(z):0 as the channel for an
input transition: so the communication of a restricted namecreates a new public channel for the process. The creation of
this new channel is represented in the ordinary semantics ofthe�-calculus by means of an infinite bunch of transitions

of the formp �x(w)�! w(z):0, wherew is any name that is not already in use (i.e.,w 6= x in our example, sincex is the only
name in use byp; notice thatw = y is just a particular case). This way to represent the creation of new names has some
disadvantages: first of all, also very simple�-calculus agents, likep, give rise to infinite-state and infinite-branching
transition systems. Moreover, equivalent processes do notnecessarily have the same sets of channel names; so, there are
processesq equivalent top which cannot usey as the name for the newly created channel. Special rules are needed in
the definition of bisimulation to take care of this problem and, as a consequence, standard theories and algorithms do not
apply to�-calculus.

The aim of this paper is to show that the ideal situation of ordinary automata can (at least in part) be recovered
also in the field of history-dependent calculi, by introducing a new operational model which is adequate to deal with
these languages, and by extending to this new model (part of)the classical theory for ordinary automata. As model we
propose thehistory-dependent automata(HD-automatain brief). As ordinary automata, they are composed of states
and of transitions between states. To deal with the peculiarproblems of history-dependent calculi, however, states and
transitions are enriched with sets of local names: in particular, each transition can refer to the names associated to its
source state but can also generate new names, which can then appear in the destination state. In this manner, the names
are not global and static, as in ordinary labelled transition systems, but they are explicitly represented within states and
transitions and can be dynamically created. This explicit representation of names permits an adequate representationof
the behavior of history-dependent processes. In particular, �-calculus agents can be translated into HD-automata and a
first sign of the adequacy of HD-automata for dealing with�-calculus is that a large class offinitary �-calculus agents
can be represented by finite-state HD-automata. We also givea general definition of bisimulation for HD-automata. An
important result is that this general bisimulation equatesthe HD-automata obtained from two�-calculus agents if and
only if the agents are bisimilar according to the ordinary�-calculus bisimilarity relation. These results do not holdonly
for the�-calculus. A similar mapping exists, for instance, for CCS with localities [BCHK93]. HD-automata can be also
applied to concurrent formalisms outside the field of process calculi: for instance, we show that they can be applied to

3

Petri nets, for representing the history-preserving semantics of the nets [BDKP91].
The most interesting result on HD-automata is that they can be minimized. It is possible to associate to each HD-

automaton a minimal realization, namely a minimal HD-automaton that is bisimilar to the initial one. As in the case of
ordinary automata, this possibility is important from a theoretical but also from a practical point of view.

In order to stress that naturalness of HD-automata and HD-bisimulation, we show that it is possible to define them
in a very simple way in a categorical framework. A classical categorical definition of ordinary automata is extended to
HD-automata: essentially, the categorical construction is the same, but we use the category ofnamed setsas the base
category — it was the category of sets in the case of ordinary automata.Open mapsbisimulation [JNW96] — an uniform
approach to define equivalences for concurrent models presented in a categorical framework — can be applied also to
HD-automata, thus obtaining a categorical definition of HD-bisimulation. Minimization of HD-automata is captured
very naturally in the categorical framework: the minimal model is the final model in the sub-category of equivalent
HD-automata.

Outline. CCS and some of the basic results on ordinary automata are briefly presented in Section 2; this section will
be used as comparison term for the results on HD-automata. InSection 3 the�-calculus is presented and the problems
of using ordinary automata to deal with it are discussed.

In order to have a simpler presentation, we define two families of HD-automata. Section 4 introduces a simplified
version of HD-automata, called Basic HD-automata. They canmodel only some of the history-dependent calculi we
consider — notably, they are not adequate for theearlyandlate�-calculus semantics — and they do not admit minimal
models. Section 4 also defines bisimulation on HD-automata and presents the translation of thegroundsemantics of�-calculus agents to HD-automata. In Sections 5 we briefly describe two other history-dependent formalisms that can
be represented by Basic HD-automata — namely CCS with localities and Petri nets with history-preserving semantics.

Section 6 describes the complete version of HD-automata, namely HD-automata with Symmetries. They are ade-
quate not only for all the history-dependent calculi already considered for Basic HD-automata, but also for the early and
late semantics of the�-calculus. Moreover, they allow for minimization. In Section 7 the categorical characterizations
of HD-automata and of HD-bisimulations are presented.

In Section 8 we describe in short some other formalisms that can be captured by HD-automata and some possible
extensions, while in Section 9 we propose some concluding remarks.

Previous works. This paper resumes and completes preliminary results on theHD-automata that have been reported
in previous papers by the authors. The first, primitive notion of HD-automata appears in [MP95] under the name of�-automata; they are used in an algorithm for checking bisimilarity of �-calculus agents without matching, as a compact
algorithmical structure for representing the operationalsemantics of the agents. There was no notion of bisimulationon
the�-automata.

Simplified versions of the HD-automata also appeared in [MPY96], by Daniel Yankelevich and the authors, for
the CCS with localities, in [MP97b] for Petri nets, and in [MP97a] for a class of partial-order systems, that includes
CCS with localities and Petri nets. HD-automata and HD-bisimulations defined in [MPY96, MP97b, MP97a] are much
simpler than those needed for�-calculus, since there is no input of names. Also, the categorical definition of HD-
automata and HD-bisimulation is not present in those papers. A categorical characterization of HD-automata is given in
[MP98b, MP98a]. This categorical characterization only covers Basic HD-automata.

Other works extend the theory of HD-automata in specific directions. In [MP99] a particular variant of HD-automata,
namely HD-automata withnegative transitions, is proposed in order to deal with the asynchronous�-calculus [HT91,
ACS98]. In [MP00] a co-algebraic semantics for the�-calculus is defined. It is based on the idea of extending states
and transitions with an algebra of names and symmetries. A variant of HD-automata is shown to come out naturally as
a compact representation of the co-algebraic models.

Finally, an extended presentation of HD-automata can be found in the PhD Thesis of the second author [Pis99].

2 Ordinary automata and CCS

Automata are a very convenient operational model for process calculi like CCS. In this section we introduce the basic
results on automata and their applications to CCS. In the following sections we will often refer to the results presented
here for CCS and ordinary automata to draw a comparison with the results which hold for history-dependent calculi and
HD-automata.

4

2.1 Ordinary automata

Automata have been defined in a large variety of manners. We choose the following definition since it is very natural
and since, as we will see, it can be easily modified to define HD-automata.

Definition 2.1 (ordinary automata) AnautomatonA is defined by:� a setL of labels;� a setQ of states;� a setT of transitions;� two functionss; d : T ! Q that associate asourceand adestinationstate to each transition;� a functiono : T ! L which associates a label to each transition;� an initial stateq0 2 Q.

Given a transitiont 2 T , we writet : q l�! q0 if s(t) = q, d(t) = q0 ando(t) = l.
Notation 2.2 To represent the components of an automaton we will use the name of the automaton as subscript; so, for
instance,QB are the states of automatonB anddB is its destination function. In the case of automatonAx, we will
simply writeQx anddx rather thanQAx anddAx . Moreover, the subscripts are omitted whenever there is no ambiguity
on the referred automaton.
Similar notations are also used for the other structures we define in the paper.

Often labelled transition systemsare used as operational models in concurrency. The difference with respect to
automata is that in a labelled transition system no initial state is specified. An automaton describes the behavior of a
single system, and hence the initial state of the automaton corresponds to the starting point of the system; a labelled
transition system is used to represent the operational semantics of a whole concurrent formalism, and hence an initial
state cannot be defined.

Various notions of behavioral preorders and equivalences have been defined on automata. The most important
equivalence isbisimulation equivalence[Par80, Mil89].

Definition 2.3 (bisimulation on automata) LetA1 andA2 be two automata on the same setL of labels. A relationR � Q1 �Q2 is asimulationforA1 andA2 if q1 R q2 implies:

for all transitionst1 : q1 l�! q01 ofA1 there is some transitiont2 : q2 l�! q02 ofA2 such thatq01 R q02.
A relationR � Q1 �Q2 is a bisimulationforA1 andA2 if bothR andR�1 are simulations.
Two automataA1 andA2 on the same set of labels arebisimilar, writtenA1 � A2, if there is some bisimulationR forA1 andA2 such thatq01 R q02.

An important result in the theory of automata in concurrencyis the existence ofminimal representativesin the classes
of bisimilar automata. Given an automaton, a reduced automaton is obtained by collapsing each class of equivalent
states into a single state (and similarly for the transitions). This reduced automaton is bisimilar to the starting one,and
any further collapse of states would lead to a non-bisimilarautomaton. The reduced automaton is hence “minimal”.
Moreover, the same minimal automaton (up to isomorphisms) is obtained from bisimilar automata: thus it can be used
as a canonical representative of the whole class of bisimilar automata.

In the definition below we denote with[q℄RA the class of equivalence of stateq with respect to the largest bisimulation
equivalenceRA on automatonA. With a light abuse of notation, we denote with[t℄RA the class of equivalent of
transitiont, where t1 RA t2 iff s(t1) RA s(t2); d(t1) RA d(t2) and o(t1) = o(t2):
Definition 2.4 (minimal automata) Theminimal automatonAmin corresponding to automatonA is defined as follows:� Lmin = L;� Qmin = f[q℄RA j q 2 Qg andTmin = f[t℄RA j t 2 Tg;� smin([t℄RA) = [s(t)℄RA anddmin([t℄RA) = [d(t)℄RA ;� omin([t℄RA) = o(t);� q0min = [q0℄RA .

5

2.2 CCS

The version of CCS we present here is slightly different fromthe classical one [Mil89] and follows some suggestions of�-calculus. The differences with the classical definition ofCCS are not substantial and are introduced to have a more
uniform presentation of the various process calculi that appear in this paper.

Let � be a set ofatomic actions, or channels(ranged over by�; �; : : :), andVar be a finite set of agent identifiers
(ranged over byA;B; : : :). CCS agents (ranged over byp; q; : : :) are defined by the syntax:p ::= 0 ��� �:p ��� pjp ��� p+p ��� (��) p ��� A
whereprefixes(or actions) � are defined by the syntax:� ::= � ��� � ��� ��:
For each agent identifierA there is a definitionA def= pA and we assume that each agent identifier inpA is in the scope
of a prefix (guarded recursion).

As usual,0 is the terminated agent;�:p prefixes action� to agentp; pjq is the parallel composition with synchroniza-
tion of agentsp andq, whereasp+q is the nondeterministic choice. Following the notation of�-calculus, the restriction
of action� in agentp is represented by(��) p, rather than by the conventionalpr�. Finally, infinite behaviors are
obtained by means of agent identifiers and of their definitions; also in this case, we prefer this solution to there x:p
construct for analogy with the�-calculus. The set of definitions is assumed to be finite, to avoid agents with an “infinite
program”.

We give sum and parallel composition the lowest syntactic precedence among the operators. In an agent�:0, we
often omit the trailing0.

We now introduce astructural congruencein the style of the Chemical Abstract Machine [BB92] and of the �-
calculus [Mil93]. This structural congruence allows us to identify all the agents which represent essentially the same
system and which differ just for syntactical details. The structural congruence� is the smallest congruence which
respects the following equivalences

(alpha) (��) p � (��) (pf�=�g) if � does not appear inp
(sum) p+0 � p p+q � q+p p+(q+r) � (p+q)+r
(par) pj0 � p pjq � qjp pj(qjr) � (pjq)jr
(res) (��)0 � 0 (��) (��) p � (��) (��) p(��) (pjq) � pj(��) q if � does not appear inp

where agentpf�=�g is obtained fromp by replacing all the free occurrences of� with �.
The structural congruence is exploited in the definition of the operational semantics, for instance commutativity ofj is exploited to avoid the duplication of the rules for the parallel composition.
The structural congruence is also necessary in practice to obtain finite state representations for classes of agents. It

can be used to garbage-collect terminated component — by exploiting rule pj0 � p — and unused restrictions — by
using the rules above, if� does not appear inp then(��) p � p: in fact,(��) p � (��) (pj0) � pj(��)0 � pj0 � p.

By exploiting the structural congruence�, each CCS agent can be seen as a set ofsequential processesthat act in
parallel, sharing a set of channels, some of which are global(unrestricted) while some other are local (restricted). Each
sequential process is represented by a term of the forms ::= �:p ��� p+p ��� A
that can be considered as a “program” describing all the possible behaviors of the sequential process.

The transitions that CCS agents can perform are defined by theaxiom schemata and inference rules of Table 1. Since
CCS agents are defined up to structural congruence, the following rule is implicitly assumed:p � p0 p0 ��! p00 p00 � p000p ��! p000

It is easy to associate an automaton to a CCS agent.

Definition 2.5 (from CCS agents to automata)The automatonACCSp corresponding to the CCS agentp is defined as
follows:

6

[PREF] �:p ��! p [SUM] p1 ��! p0p1+p2 ��! p0
[PAR] p1 ��! p01p1jp2 ��! p01jp2 [COMM] p1 ���! p01 p2 ��! p02p1jp2 ��! p01jp02
[RES] p ��! p0(��) p ��! (��) p0 if � 6= �; �� [IDE] pA ��! p0A ��! p0 if A def= pA

Table 1: Operational semantics for CCS� the set of the labels is given by all CCS actions;� p 2 Q is the initial state;� if q 2 Q andq ��! q0 is a CCS transition, thenq0 2 Q and t = (q; �; q0) 2 T , with s(t) = q, d(t) = q0 ando(t) = �.

Finite-state automata are obtained for important classes of agents that have infinite behaviors. In particular, if there
is a bound for the number of active sequential components of all the derivatives of a given agent, then a finite-state
automaton is obtained from that agent. Conversely, if an agent can activate an unbounded number of active sequential
components during its evolutions, then it is not possible torepresent it with a finite-state automaton.

Definition 2.6 (finitary agents) Thedegree of parallelismdeg(p) of an agentp is defined asdeg(0) = 0 deg(�:p) = 1deg((��) p) = deg(p) deg(pjq) = deg(p) + deg(q)deg(p+q) = maxfdeg(p); deg(q)g deg(A) = 1
A CCS agentp is finitary if maxfdeg(p0) j p �1�! � � � �i�! p0g <1.

Proposition 2.7 Letp be a finitary CCS agent. Then the automatonACCSp is finite.1

We would like to remark that it is only semidecidable whethera CCS agent is finitary. In fact, this problem is
equivalent to the problem of deciding whether a given Turingmachine needs only a finite tape.

A syntactical condition which implies that an agent is finitary is the absence of parallel compositions in the bodies
of recursive definitions. These agents have been calledfinite-statein the literature; we prefer to follow the terminology
adopted in�-calculus, and to call themfinite control [Dam97]. In fact, the name “finite-state” is, in our opinion,
misleading, since finite-state automata are obtained, according to Definition 2.5, also for non-finite-state agents, likeB def= (�Æ) (a:(b:Æ:d:Bj:�Æ:0)).
Definition 2.8 (finite control) CCS agentp has afinite control if no parallel composition appears in the recursive
definitions used byp.

Bisimulation equivalence on CCS agents is obtained by specializing Definition 2.3 to CCS transitions: two CCS
agents are bisimilar if and only if the corresponding automata are bisimilar. Also the results on the existence of minimal
automata transfer to CCS: it is possible to associate to eachCCS agent a canonical, minimal automaton, so that bisimilar
agents correspond to the same canonical automaton.

3 The�-calculus

In this section we describe the�-calculus [MPW92, Mil93], an extension of CCS in which channel names can be used as
values in the communications, i.e., channels are first-order values. This possibility of communicating names gives to the�-calculus a richer expressive power that CCS: in fact it allows to generate dynamically new channels and to change the
interconnection structure of the processes. The�-calculus has been successfully used to model object oriented languages
[Wal95], and also higher-order communications can be easily encoded in the�-calculus [San93a], thus allowing for code
migration.

Many versions of�-calculus have appeared in the literature. We consider onlythe monadic�-calculus, and we
concentrate on thegroundand on theearly variants of its semantics.

1To obtain this result, the structural axioms are necessary,since they allow for a garbage collecting of terminated components and unusedrestric-
tions.

7

3.1 Syntax

Let N be an infinite, denumerable set ofnames, ranged over bya; b; : : :w; x; y; z : : : , and letVar be a finite set of
agent identifiers, denoted byA;B; : : : ; the�-calculus (monadic)agents, ranged over byp; q; : : : , are defined by the
syntax: p ::= 0 ��� �:p ��� pjp ��� p+p ��� (�x) p ��� [x=y℄p ��� A(x1; : : : ; xn)
where theprefixes� are defined by the syntax:� ::= � ��� �xy ��� x(y):
The occurrences ofy in x(y):p and(�y) p are bound;free andbound namesof agentp are defined as usual and we

denote them withfn(p) andbn(p) respectively. For each identifierA there is a definitionA(y1; : : : ; yn) def= pA (with yi
all distinct andfn(pA) � fy1; : : : ; yng); we assume that, wheneverA is used, its arityn is respected. Finally we require
that each agent identifier inpA is in the scope of a prefix (guarded recursion).

Some comments on the syntax of�-calculus are now in order. It is similar to that of CCS. The most important
difference is in the prefixes. Theoutputprefix �xy:p specifies the channelx for the communication and the valuey that is
sent onx. In theinput prefixesx(y):p, namex represents the channel, whereasy is a formal variable: its occurrences inp are instantiated with the received value. Thematching[x=y℄p represents a guard for agentp: agentp is enabled only
if namesx andy coincide.

We use�; � to range over name substitutions, and we denote withfy1=x1 � � � yn=xng the substitution that mapsxi intoyi for i = 1; : : : ; n and that is the identity on the other names.
We define�-calculus agents up to astructural congruence�, as done for CCS in Section 2.2; the equivalences are

those for CCS plus the following new rule that deals with matching:

(match) [x=x℄p � p [x=y℄0 � 0
Here we have presented themonadicversion of�-calculus, where a single name in sent or received in any com-

munication. There is also apolyadicversion of�-calculus, where tuples of names can be communicated: in this case,
the output and input prefixes arexhy1; y2; : : : ; yni andx(y1; y2; : : : ; yn), respectively. In [Mil93] it is shown that the
polyadic prefixes can be encoded with monadic prefixes: essentially a polyadic communication is represented by a se-
quence of monadic communications; all these communications occur on a private channel, that is created on purpose to
this communication, to avoid interferences with other polyadic communications. Here we consider only the monadic
variants of�-calculus, since the definitions are simpler in this case. All the results, however, scale up to the polyadic�-calculus in the expected way.

Often, in�-calculus infinite behaviors are obtained by means of a replication, or bang, operator!p, rather than by
means of recursive definitions. Agent!p can be intuitively explained as an infinite copies of agentp in parallel. The
two methods for defining infinite behaviors have the same expressive power: each of them can be encoded in the other
at the cost of additional� actions. Also in this case, the results do not depend on the chosen method. However, if the
bang operator is used, it is difficult to identify a syntacticclass of agents that have a finite control (Definition 2.8): in
the case of recursive definitions, in fact, if no parallel composition appears inside the recursive definitions, then clearly
the number of active parallel components cannot grow unboundedly. If replication is used, however, even very simple
agents likep = !x(y):�zy can activate an unbounded numbed of parallel components.

3.2 The early semantics

The early semantics of�-calculus was first introduced in [MPW93], but we present here a slightly simplified version,
following in part the style proposed by [San93a] and [Mil93]for the polyadic�-calculus.

Theearly actionsthat an agent can perform are defined by the following syntax:� ::= � ��� xy ��� �xy ��� �x(y)
and are called respectivelysynchronization, free input, free outputandbound outputactions.

The free names, bound namesandnamesof an action�, respectively writtenfn(�), bn(�) andn(�), are defined as
in Table 2.

8

� fn(�) bn(�) n(�)� ; ; ;xy fx; yg ; fx; ygx(y) fxg fyg fx; ygxy fx; yg ; fx; ygx(y) fxg fyg fx; yg
Table 2: Free and bound names of�-calculus actions

[TAU] �:p ��! p [OUT] �xy:p �xy�! p
[IN] x(y):p xz�! pfz=yg [SUM] p1 ��! p0p1+p2 ��! p0
[COMM] p1 �xy�! p01 p2 xy�! p02p1jp2 ��! p01jp02 [PAR] p1 ��! p01p1jp2 ��! p01jp2 if bn(�) \ fn(p2) = ;
[OPEN] p �xy�! p0(�y) p �x(y)�! p0 if x 6= y [CLOSE] p1 �x(y)�! p01 p2 xy�! p02p1jp2 ��! (�y) (p01jp02) if y 62 fn(p2)
[RES] p ��! p0(�x) p ��! (�x) p0 if x 62 n(�) [IDE] pAfy1=x1 � � � yn=xng ��! p0A(y1; : : : ; yn) ��! p0 if A(x1; : : : ; xn) def= pA

Table 3: Early operational semantics of�-calculus

The transitions for theearly operational semanticsare defined by the axiom schemata and the inference rules of
Table 3. We remind that rule p � p0 p0 ��! p00 p00 � p00p ��! p00
is implicitly assumed.

Notice that, in the case of the�-calculus, the actions an agent can perform are different from the prefixes. This
happens due to the free input and to the bound output actions.In the case of the input, the prefix has the formx(y),
while the action has the formxz; this different notation is used to remark that, whiley is a formal variable, namez is the
effectively received value. The bound output actions are specific of the�-calculus; they represent the communication of
a name that was previously restricted, i.e., it correspondsto the generation of a new channel between the agent and the
environment: this phenomenon is calledname extrusion.

Now we present the definition of the early bisimulation for the�-calculus.

Definition 3.1 (early bisimulation) A relationR over agents is anearly simulationif wheneverp R q then:

for eachp ��! p0 with bn(�) \ fn(pjq) = ; there is someq ��! q0 such thatp0 R q0.
A relationR is anearly bisimulationif bothR andR�1 are early simulations.
Two agentsp andq are early bisimilar, writtenp �e q, if p R q for some early bisimulationR.

In the definition above, clause “bn(�) \ fn(pjq) = ;” is necessary to guarantee that the name, that is chosen to
represent the newly created channel in a bound output transition, is fresh for both the agents. This clause is necessary
since equivalent agents may have different sets of free names.

As for other process calculi, a labelled transition system is used to give an operational semantics to the�-calculus.
However, this way to present the operational semantics has some disadvantages. For instance, an infinite number of
transitions correspond even to very simple agents, likep = x(y):�yz:0: in fact, this agent can perform an infinite number
of different input transitionsp xw�! �wz:0, corresponding to all the possible choices ofw 2 N . It is clear that, except forx andz, which are the free names ofp, all the other names are indistinguishable as input values for the future behavior
of p. However, this fact is not reflected in the operational semantics.

Also consider processq = (�y) �xy:y(z):0. It is able to generate a new channel by communicating namey in a bound
output. The creation of a new name is represented in the transition system by means of an infinite bunch of transitionsq �x(w)�! w(z):0, where, in this case,w is any name different fromx: the creation of a new channel is modeled by using

9

[PREF] �:p ��! p [SUM] p1 ��! p0p1+p2 ��! p0
[COMM] p1 �xy�! p01 p2 x(z)�! p02p1jp2 ��! p01j(p02fy=zg) [PAR] p1 ��! p01p1jp2 ��! p01jp2 if bn(�) \ fn(p2) = ;
[OPEN] p �xy�! p0(�y) p �x(y)�! p0 if x 6= y [CLOSE] p1 �x(y)�! p01 p2 x(y)�! p02p1jp2 ��! (�y) (p01jp02)
[RES] p ��! p0(�x) p ��! (�x) p0 if x 62 n(�) [IDE] pAfy1=x1 � � � yn=xng ��! p0A(y1; : : : ; yn) ��! p0 if A(x1; : : : ; xn) def= pA

Table 4: Ground operational semantics of�-calculus

all the names which are not already in use to represent it. As aconsequence, the definition of bisimulation is not the
ordinary one: in general two bisimilar process can have different sets free names, and the clause “bn(�) \ fn(pjq) = ;”
has to be added in Definition 3.1 to deal with those bound output transitions which use a name that is used only in one of
the two processes. The presence of this clause makes it difficult to reuse standard theory and algorithms for bisimulation
on the�-calculus — see for instance [Dam97].

3.3 The ground semantics

The ground semantics of the�-calculus differs from the early semantics just consideredin the fact thatbound input
transitions are considered rather thanfree inputs. So, according to the early semantics, agentx(y):p can perform free
input transitions x(y):p xz�! pfz=yg
for each namez, while, according to the ground semantics, agentx(y):p can perform bound input transitionsx(y):p x(z)�! pfz=yg
only if z is fresh, i.e.,z 62 fn(x(y):p).

Ground bisimilarity is easy to check2. However, it is less discriminating than early bisimilarity, and does not capture
the possibility for the environment of communicating an already existing name during an input transition of an agent.
For instance, x(y):(�yy:0jz(w):0) 6�e x(y):(�yy:z(w):0+ z(w):�yy:0)
since, performing the free input actionxz we obtain�zz:0jz(w):0 6�e �yy:z(w):0+ z(w):�yy:0
and a synchronization (i.e., a� transition) is possible in the first agent but not in the second. However,x(y):(�yy:0jz(w):0) �g x(y):(�yy:z(w):0+ z(w):�yy:0)
since the reception of the already existing namez is not allowed in the ground semantics.

Theground actionsthat an agent can perform are defined by the following syntax:� ::= � ��� x(y) ��� �xy ��� �x(y)
and are called respectivelysynchronization, bound input, free outputandbound outputactions.

The free names, bound namesandnamesof an action�, respectively writtenfn(�), bn(�) andn(�), are defined as
in Table 2.

The transitions for theground operational semanticsare defined by the axiom schemata and the inference rules of
Table 4.

Now we present the definition of the ground bisimulation for the�-calculus.
2 : : : and, as we will see, easy to model with HD-automata.

10

Definition 3.2 (ground bisimulation) A relationR over agents is anground simulationif wheneverp R q then:

for eachp ��! p0 with bn(�) \ fn(pjq) = ; there is someq ��! q0 such thatp0 R q0.
A relationR is anground bisimulationif bothR andR�1 are early simulations.
Two agentsp andq are ground bisimilar, writtenp �g q, if p R q for some ground bisimulationR.

4 Basic history-dependent automata

Ordinary automata are successful for CCS-like languages. For more sophisticated languages, however, they are not: in
fact, they are not able to capture the particular structuresof these languages, that is represented in ordinary automata
only in an implicit way. As a consequence, infinite-state automata are often obtained also for very simple programs. To
model these languages, it is convenient to enrich states andlabels with (part of) the information of the programs, so that
the particular structures manipulated by the languages arerepresented explicitly. These enriched automata are hence
more adherent to the languages than ordinary automata.

Different classes of enriched automata can be defined by changing the kind of additional information. Here we
focus on a simple form of enriched automata. They are able to manipulate generic “resources”: a resource can be
allocated, used, and finally released. At this very abstractlevel, resources can be represented by names: the allocation of
a resource is modeled by the generation of a fresh name, that is then used to refer to the resource; since we do not assume
any specific operation on resources, the usage of a resource in a transition is modeled by observing the corresponding
name in the label; finally, a resource is (implicitly) deallocated when the corresponding name is no more referenced.

We call this class of enriched automataHistory-Dependent Automata, or HD-automatain brief. In fact, the usage
of names described above can be considered a way to express dependencies between the transitions of the automaton; a
transition that uses a name depends on the past transition that generated that name.

In this section we introduce a simple version of HD-automata, calledBasic HD-automata. They are sufficient to deal
with some of the existing history-dependent formalisms. The paradigmatic example we use in this section to illustrate
HD-automata is the ground semantics of�-calculus. In this case, the names represent the communication channels.
Other examples are CCS with localities (in this case, the names are the localities where the execution happens) and
history preserving semantics of Petri nets (here the names correspond to the events of a computation). We will consider
them in Section 5.

The simple mechanism for dealing with names that is introduced in this section, however, is not sufficient for all the
history-dependent formalisms we are interested in. For instance it does not capture the early�-calculus semantics. In
Section 6 we will present a more sophisticated version of HD-automata that works also for this�-calculus semantic.

4.1 HD-automata

HD-automata extend ordinary automata by allowing sets of names to appear explicitly in states and labels. We assume
that the names that are associated to a state or a label arelocal names and do not have a global identity. This is very
convenient, since a single state of the HD-automaton can be used to represent all the states of a system that differ just
for a renaming (that is, HD-automata work up to bijective substitutions of names). In this way, however, each transition
is required to represent explicitly the correspondences between the names of source, target and label. As the reader can
see in Figure 1, to represent these correspondences we associate a set of names also to each transition, and we embed
the names of the source and target states, and of the label into the names of the transition.

Technically, we represent states, transitions and labels of a HD-automaton by means ofnamed setsand usenamed
functionsto associate a source state, a target state and a label to eachtransition.

In a named setE, each elemente is enriched with a set of names that we denote withE[e℄. A function from named setE to named setF maps each elemente of the first in an elementf of the second; moreover, it also fixes a correspondence
between the names ofe and the names off . More precisely, this correspondence provides an embedding of the names
of the target elementf into the names of the source elemente; that is, the names off are seen, through the name
correspondence, as a subset of the names ofe.

Now we introduce some notation on functions that we will use extensively in the following. Then we define formally
named sets and, based on them, the HD-automata.

Notation 4.1 A relationR on setsA andB is a subset ofA � B. If (a; b) 2 R then we also writea R b. In this case,dom(R) = fa j (a; b) 2 Rg is thedomainof R and od(R) = fb j (a; b) 2 Rg is its codomain. We denote withR�1 the inverserelation ofR; that is,R�1 = f(b; a) j (a; b) 2 Rg � B � A. If R is a relation onA andB andS is a relation onB andC, then we denote withR;S thecompositionofR andS; that is,R;S = f(a;) j (a; b) 2R and(b;) 2 Sg � A� C.

11

Special notations are used for particular classes of relations.
We represent withf : A! B a functionfrom setA to setB; that is,f � A�B such that for eacha 2 A there is exists
exactly onea 2 A such that(a; b) 2 f .
We represent withf : A (* B a partial bijectionfrom setA to setB; that is,f � A�B such that if(a; b); (a0; b0) 2 f
thena = a0 iff b = b0.
We represent withf : A (! B an injection from setA to setB; that is, f � A � B such that for eacha 2 A there
exists exactly oneb 2 B such that(a; b) 2 f , and for eachb 2 B there is at most onea 2 A such that(a; b) 2 f .
We represent withf : A * B an inverse injectionfrom setA to setB; that is,f � A � B such that for eachb 2 B
there exists exactly onea 2 A such that(a; b) 2 f , and for eacha 2 A there is at most oneb 2 B such that(a; b) 2 f .
We represent withf : A ! B a total bijectionfrom setA to setB; that is,f � A�B such that for eacha 2 A there
exists exactly oneb 2 B such that(a; b) 2 f and, conversely, for eachb 2 B there exists exactly onea 2 A such that(a; b) 2 f .
We use also on these subclasses the notations that we have introduced on relations to denote domain, codomain, inverse
and composition.

Definition 4.2 (named sets)LetN be an infinite denumerable set of names and letP(N) be the power-set ofN .
A named setE is a set, denoted byE, and a family of subset of names indexed byE, namelyfE[e℄ � Nge2E , or,
equivalentlyE[℄ is a map fromE toP(N).
Given two named setsE andF, a named functionm : E! F is a function on the setsm : E ! F and a family of name
embeddings indexed bym, namelyfm[e℄ : E[e℄ * F[f ℄g(e;f)2m:Em

��

3 e_m
��

E[e℄F 3 f F[f ℄�

m[e℄OO

A named setE is finitely namedif E[e℄ is finite for eache 2 E. A named setE is finite if it is finitely named and setE is
finite.

We remark that, in the definition of named function, we use an inverse injection fromE[e℄ to F[f ℄ to represent the
correspondence between the names ofe and the names off : this inverse injection, in fact, can be seen as an embedding
of the names off into the names ofe.

Now we define HD-automata: essentially, they have the same components of ordinary automata (Definition 2.1), but
named sets and named functions are use rather than plain setsand functions.

Definition 4.3 (HD-automata) A HD-automatonA is defined by:� a named setL of labels;� a named setQ of states;� a named setT of transitions;� a pair of named functionss; d : T ! Q, which associate to each transition thesourceand destinationstates
respectively (and embed the names of the source and of the destination states into the names of the transition);� a named functiono : T! L, which associates a label to each transition (and embeds thenames of the label into
the names of the transition);� an initial stateq0 2 Q and aninitial embedding�0 : Q[q0℄ (! N of the local names ofq0 into the infinite,
denumerable setN of global names.

LetT[t℄old def= fn 2 T[t℄ j n 2 dom(s[t℄)g andT[t℄new def= fn 2 T[t℄ j n 62 dom(s[t℄)g be respectively theold names
and thenew namesof transitiont 2 T .
A HD-automaton isfinitely namedif L, Q andT are finitely named; it isfinite if, in addition,Q andT are finite.

Let t be a generic transition of a HD-automaton such thats(t) = q, d(t) = q0 ando(t) = l (in brief t : q l�! q0);
one of such transition is represented in Figure 1. Thens[t℄ : T[t℄ * Q[q℄ embeds, by means of an inverse injection, the
names ofq into the names oft, whereasd[t℄ : T[t℄ * Q[q0℄ embeds the names ofq0 into the names oft; in this way,
a partial correspondence is defined between the names of the source state and those of the target; so, in the case of the
transition in figure, nameh of the target state corresponds to nameb of the source. The names that appear in the source
and not in the target (that is, namesa and in Figure 1) are discarded, or forgotten, during the transition, whereas the
names that appear in the target but not in the source (that is,namesg andk in figure) are created during the transition.

12

q
ha b l

t

m n o
gk v xuw z q0

Figure 1: A transitiont : q l�! q0 of a HD-automaton

4.1.1 From ground�-calculus to basic HD-automata

We are interested in the representation of the ground�-calculus semantics as HD-automata. First we define the named
set of labelsL�g for this language: we have to distinguish between synchronizations, bound inputs, free outputs and
bound outputs. Thus the set of labels isL�g = ftau; bin; out; out2; boutg
whereout2 is used when subject and object names of free outputs coincide (these special labels are necessary, since the
function from the names associated to a label into the names associated to a transition must be injective). No name is
associated totau, one name (n) is associated toout2, and two names (nsub andnobj) are associated tobin, out andbout.

In order to associate a HD-automaton to a�-calculus agent, we have to represent the derivatives of theagent as states
of the automaton and their transitions as transitions in theHD-automaton; the names corresponding to a state are the free
names of the corresponding agent, the names corresponding to a transition are the free names of the source state plus, in
the case of a bound input and bound output transition, the newname appearing in the label of the transition. A label ofL�g is associated to each transition in the obvious way.

This naive construction can be improved to obtain more compact HD-automata. Consider for instance agentp =(�z) �xz:B(x; y; z); it can perform an infinite number of bound output transitions, depending on the different extruded
name. In the case of HD-automata, due to the local nature of names, it is not necessary to consider all the different bound
output (and bound input) transitions that differ only on thename used to denote the new created channel. The syntactic
identity of that name, in fact, is inessential in the model. Asingle transition can be chosen from each of these infinite

bunches. Here we use transitionp x(z)�! p0 wherez = min �N n fn(p)�. It is worth to stress out that, differently from
the case of ordinary automata, where particular care is needed in the choice of this transition (see definition of ground
bisimulation in Section 3.3), in the case of HD-automata anypolicy for choosing the fresh name will work: in this case,
in fact, we do not have to guarantee that equivalent states choose the same name.

Definition 4.4 (representative transitions) A �-calculus transitionp ��! q is a representative transitionifn(�) � fn(p) [�min �N n fn(p)�	:
According to this definition, all the synchronization and free output transitions are representative (in this casen(�) �fn(p)). A bound input or a bound output is representative only if the communicated name is the smallest name not
appearing free in the agent.

The following lemma shows that the representative transitions express, up to�-conversion, all the behaviors of an
agent. The proof is omitted, since it is standard for the�-calculus.

Lemma 4.5 Let p ��! q, with � = ax (resp.� = �a(x)), be a non-representative�-calculus transition. Then there is

some representative transitionp �0�! q0, with�0 = ay (resp.�0 = �a(y)), such thatq0 = qfy=x x=yg.
13

� � x(y) �xy �xx �x(y)l tau bin out out2 bout2 = �(3) 2 n(�) = x y x y x x y3 = �(2) 2 L�g [l℄ = nsub nobj nsub nobj n nsub nobj
Table 5: Relations between�-calculus labels and labels of HD-automata

If only representative transitions are used when building aHD-automaton from a�-calculus agent, the obtained
HD-automaton isfinite-branching, i.e., it has a finite set of transitions from each state.

Another advantage of using local names is that two agents differing only for a bijective substitution can be collapsed
in the same state in the HD-automaton: we assume to have a function norm that, given an agentp, returns a pair(q; �) = norm(p), whereq is the representative of the class of agents differing fromp for bijective substitutions and� : fn(p) ! fn(q) is the bijective substitution such thatq = p�.

Definition 4.6 (from �-calculus agents to HD-automata)The HD-automatonA�gp corresponding to the ground se-
mantics of�-calculus agentp is defined as follows:� if norm(p) = (q0; �0) then:

– q0 2 Q is the initial state andQ[q0℄ = fn(q0);
– ��10 : fn(q0) ! fn(p) is the initial embedding;� if q 2 Q, t : q ��! q0 is a representative transition andnorm(q0) = (q00; �), then:

– q00 2 Q andQ[q00℄ = fn(q00);
– t 2 T andT[t℄ = fn(q) [bn(�);
– s(t) = q, d(t) = q00, s[t℄ = idfn(q) andd[t℄ = �;

– o(t) = l ando[t℄ = � are defined as in Table 5.

Table 5 defines the correspondence between the labels of�-calculus transitions and the HD-automaton labels: so,
for instance, an input actionx(y) of a �-calculus agent is represented in the HD-automaton by meansof label bin.
Moreover, the table also fixes the correspondence between the names that appear in the�-calculus label and the names
of the HD-automaton label. This correspondence is defined bymeans of two functions: function� maps the names of a�-calculus label� into the names of the corresponding labell of the HD-automaton, while� maps the names ofl into
the names of�. Both functions are total bijections, and clearly� = ��1. In the case of the input actionx(y), we haven(x(y)) = fx; yg andL�g [bin℄ = fnsub; nobjg; in this case, according to Table 5, functions� : fx; yg ! fnsub; nobjg
and� : fnsub; nobjg ! fx; yg are defined as follows:�(x) = nsub and�(nsub) = x; �(y) = nobj and�(nobj) = y.
We have used function� in Definition 4.6; function� will become useful in the following.

For each�-calculus agentp, the HD-automatonA�gp is obviously finitely named. Now we identify a class of agents
that generate finite HD-automata. This is the class offinitary �-calculus agents, which is defined like the corresponding
class of CCS agents.

Definition 4.7 (finitary agents) Thedegree of parallelismdeg(p) of a �-calculus agentp is defined by the clauses of
Definition 2.6 plus the following clause for matching:deg([x=y℄p) = deg(p)
A �-calculus agentp is finitary if maxfdeg(p0) j p �1�! � � � �i�! p0g <1.

Theorem 4.8 Letp be a finitary�-calculus agent. Then the HD-automatonA�gp is finite.

Proof. Let n0 = maxfdeg(q) j p �1�! � � � �i�! qg and letq be any agent reached fromp in the construction of the HD-automatonA�gp . It must be q � (�x1) (�x2) � � � (�xm) (s1js2j � � � jsn)
whereqi are sequential processes,n � n0, xi 6= xj if i 6= j, andxi 2 fn(s1j � � � jsn).
First of all, we notice that — due to the operational semantics of the�-calculus — each componentsi must appear, up to substitutions
on the names, either inp or in one of the definitions used byp. More formally, for eachi 2 1; : : : ; n there exists some agentpi and
some substitution�i such that:

14

� pi appears inp or in pA for someA; and� si = pi�i.
SinceVar is finite, there is just a finite number of different possible candidates forpi; so also the candidates forsi are finite up to
bijective substitutions (since the names in eachpi are finite, the substitutions�i can generate a number of differentsi which is finite
up to bijective substitutions).
Sincen is bounded byn0, also the possible candidates fors1js2j � � � jsn are finite up to bijective substitutions. Finally, also the set of
restricted namesfx1; x2; : : : ; xmg is finite due to the requirements thatxi 6= xj if i 6= j and thatxi 2 fn(s1j � � � jsn).
Therefore, the number of agents that can be reached in the construction of the HD-automatonA�gp is finite up to bijective substitutions.
Since all the agents that are used as states in the HD-automaton are normalized, only a representative for each class of agents up to
bijective substitutions appears in the HD-automaton, and the set of states has thus to be finite. To show that also the set of transitions
is finite it is sufficient to notice that, since the recursion is guarded, any�-calculus agent can perform only a finite number of
representative transitions. 2

We remark that, as we discussed for CCS in Section 2.2, it is only semidecidable whether an agent is finitary. Also
in this case, however, there is a syntactic conditions that guarantees that a�-calculus agent is finitary: thefinite-control
condition. According to Definition 2.8, an agentp has a finite control if no parallel composition appears in therecursive
definitions used byp.

Corollary 4.9 Letp be a finite-control�-calculus agent. Then the HD-automatonA�gp is finite.

4.2 Bisimulation on HD-automata

We introduce now bisimilarity on HD-automata and give some of its basic properties. We also show that ground bisimi-
larity of �-calculus agents is captured exactly by the bisimulation onHD-automata.

Due to the private nature of the names appearing in the statesof HD-automata, bisimulations cannot simply be
relations on the states; they must also deal with name correspondences: a HD-bisimulation is a set of triples of the formhq1; Æ; q2i whereq1 andq2 are states of the automata andÆ is a partial bijection between the names of the states. The
bijection is partial since we allow for equivalent states with different numbers of names.

Suppose that we want to check if statesq1 andq2 are bisimilar via the partial bijectionÆ : Q[q1℄ (* Q[q2℄ and

suppose thatq1 can perform a transitiont1 : q1 l�! q01: an instance of this situation is represented in Figure 2. Then we

have to find a transitiont2 : q2 l�! q02 that matchest1, i.e., not only the two transitions must have the same label,but
also the names associated to the labels must be used consistently. This means that, given a namen of the label:� eithern is old in both transitions, i.e., it corresponds to some namen1 of stateq1 and to some namen2 of q2 (via

the suitable name embeddings), and these namesn1 andn2 are in correspondence byÆ; this is the case of nameh
of labell in Figure 2: it corresponds to namesa1 anda2 in the source states, and these are related byÆ;� or n is newin both transitions, i.e., it does not correspond to any namen1 of stateq1, nor to any namen2 of q2;
this is the case of namek of label l in Figure 2: in fact, the corresponding namesy1 andy2 in the transitions are
new.

This behavior is obtained by requiring that a partial bijection � : T[t1℄ (* T[t2℄ exists such that:(i) � coincides withÆ
if restricted to the names of the source states (obviously, via the embeddingss[t1℄ ands[t2℄), and extendsÆ with a partial
correspondence� between the new names oft1 andt2; (ii) the names associated to the labels are the same, via�, and(iii) the destination statesq01 andq02 are bisimilar via a partial bijectionÆ0 which is compatible with� (i.e., if two names
are related byÆ0 in the destination states, then the corresponding names in the transitions are related by�). The reader
can check that all these requirements are satisfied in Figure2.

We remark that it isnot required that two names of the destination states are related byÆ0 if the corresponding names
of the transitions are related by�. That is, we allow some of the correspondences that hold in the transitions to be
discarded in the destination states. In Figure 2, for instance, namesf1 andf2 of the target states are not related byÆ0,
even if the corresponding names of the transitions, namelyz1 andz2, are related by�. We will comment further on this
choice later in this section. We anticipate that the same equivalence on HD-automata is obtained also by requiring that
no correspondence can be discarded in the target states.

Definition 4.10 (HD-bisimulation) LetA1 andA2 be two HD-automata. AHD-simulationfor A1 andA2 is a set of
triplesR � fhq1; Æ; q2i j q1 2 Q1; q2 2 Q2; Æ : Q1[q1℄ (* Q2[q2℄g such that, wheneverhq1; Æ; q2i 2 R then:

for eacht1 : q1 l�! q01 in A1 there exist somet2 : q2 l�! q02 in A2, some� : T1[t1℄new (* T2[t2℄new, and
some� : T1[t1℄ (* T2[t2℄ such that:

15

� Æ0�
q01

q2 q02

l

l
Æ
q1a1 1

2a2

h k
w1 x1y1z1

z2y2

d1f1

d2f2

b1 e1t1

t2 h k e2x2
Figure 2: A step of bisimulation on HD-automata� � = �s1[t2℄; Æ; s2[t2℄�1� [�,� o1[t1℄ = �; o2[t2℄,� hq01; Æ0; q02i 2 R whereÆ0 � d1[t1℄�1; �; d2[t2℄.

A HD-bisimulationfor A1 andA2 is a set of triplesR such thatR is a HD-simulation forA1 andA2 andR�1 =fhq2; Æ�1; q1i j hq1; Æ; q2i 2 Rg is a HD-simulations forA2 andA1.
A HD-bisimulation forA is a HD-bisimulation forA andA.
The HD-automataA1 andA2 areHD-bisimilar(writtenA1 � A2) if there exists some HD-bisimulation forA1 andA2
such thathq01; Æ; q02i 2 R for someÆ � �01;��102 .

4.2.1 Some basic properties of HD-bisimulation

Now we present some basic properties of HD-bisimulations.

Proposition 4.11 Let fRi j i 2 Ig be a (finite or infinite) set of HD-bisimulations forA1 andA2. Then
Si2I Ri is a

HD-bisimulation forA1 andA2.
This proposition allows us to define the greatest bisimulation between two automata.

Definition 4.12 (greatest HD-bisimulation) We denote withRA1;A2 the greatest HD-bisimulation forA1 andA2, i.e.:RA1;A2 def= fhq1; Æ; q2i j hq1; Æ; q2i 2 R; R HD-bisimulation forA1 andA2g
We denote withRA the greatest HD-bisimulation forA.

By the previous proposition,RA1;A2 andRA are HD-bisimulations.

Proposition 4.13 If R is a HD-bisimulation forA1 andA2 andS is a HD-bisimulations forA2 andA3 thenR_ S is
a HD-bisimulation forA1 andA3, where:R_ S def= fhq1; (Æ; Æ0); q3i j hq1; Æ; q2i 2 R; hq2; Æ0; q3i 2 Sg:

16

Proof. Supposehq1; Æ; q3i 2 R_ S. By definition ofR_ S, there arehq1; Æ0; q2i 2 R andhq2; Æ00; q3i 2 S such thatÆ = Æ0; Æ00.
Suppose also thatt1 : q1 l�! q01. SinceR is a HD-simulation forA1 andA2, there exist somet2 : q2 l�! q02, �0 : T1[t1℄new (*T2[t2℄new and�0 : T1[t1℄ (* T2[t2℄ such that: �0 = (s1[t1℄; Æ0; s2[t2℄�1) [� (1)o1[t1℄ = �0; o2[t2℄ (2)

andhq01; 0; q02i 2 R for 0 � d1[t1℄�1; �0; d2[t2℄: (3)

Sincet2 : q2 l�! q02 andS is a HD-simulation forA2 andA3, there are somet3 : q3 l�! q03, �00 : T1[t1℄new (* T2[t2℄new and�00 : T2[t2℄ (* T3[t3℄ such that: �00 = (s2[t2℄; Æ00; s3[t3℄�1) [�00 (4)o2[t2℄ = �00; o3[t3℄ (5)

andhq02; 00; q03i 2 S for 00 � d2[t2℄�1; �00; d3[t3℄: (6)

Let us define� : T1[t1℄new (* T3[t3℄new and� : T1[t1℄ (* T3[t3℄ as follows:� def= �0; �00 � def= �0; �00:
Now we are ready to show that transitiont3 satisfies all the condition of Definition 4.10 w.r.t. transition t1. First of all we prove� = (s1[t1℄; Æ; s3[t3℄�1) [�:� = �0; �00 by definition of�= (s1[t1℄; Æ0; s2[t2℄�1 [�0) ; (s2[t2℄; �00; s3[t3℄�1 [�00) by (1) and (4)= (s1[t1℄; Æ0; s2[t2℄�1; s2[t2℄; �00; s3[t3℄�1) [(�0; �00) sinces1[t1℄; Æ0; s2[t2℄�1; �00 = ;

and�0; s2[t2℄; �00; s3[t3℄�1 = ;= (s1[t1℄; Æ0; Æ00; s3[t3℄�1) [(�0; �00) sinces2[t2℄�1 is a total injection= (s1[t1℄; Æ; s3[t3℄�1) [� sinceÆ0; Æ00 = Æ and�0; �00 = �.

Then we proveo1[t1℄ = �; o3[t3℄:o1[t1℄ = �0; o2[t2℄ by (2)= �0; �00; o3[t3℄ by (5)= �; o3[t3℄ by definition of�.

Finally hq01; (0; 00); q03i holds by definition ofR_ S ; finally 0; 00 � d1[t1℄�1; �; d3[t3℄. In fact:0; 00 � d1[t1℄�1; �0; d2[t2℄; d2[t2℄�1; �00; d3[t3℄ by (3) and (6)� d1[t1℄�1; �0; �00; d3[t3℄ sinced2[t2℄; d2[t2℄�1 � idT2[t2℄= d1[t1℄; �; d3[t3℄�1 by definition of�.

This concludes the proof thatR_ S is a HD-simulation. Since(R_ S)�1 = S�1_R�1 we also have that ifR andS are HD-
bisimulations thenR_ S is a HD-bisimulation. 2

It is now simple to prove that relation� is an equivalence on HD-automata: symmetry and reflexivity are immediate,
whereas transitivity derives from the previous proposition.

Corollary 4.14 If A1 � A2 andA2 � A3 then alsoA1 � A3.
Proposition 4.15 If R is a HD-bisimulation forA1 andA2 then bR is a HD-bisimulation forA1 andA2, where:bR def= fhq1; Æ0; q2i j hq1; Æ; q2i 2 R; Æ � Æ0g:

17

Proof. Supposehq1; Æ; q2i 2 bR; thenhq1; �Æ; q2i 2 R for some�Æ � Æ.

Suppose moreover thatt1 : q1 l�! q01. SinceR is a HD-bisimulation, there existt2 : q2 l�! q02, � : T1[t1℄new (* T2[t2℄new and�� : T1[t1℄ (* T2[t2℄ such that �� = (s1[t1℄; �Æ; s2[t2℄�1) [� (7)o1[t1℄ = ��; o2[t2℄ (8)

andhq01; Æ0; q02i 2 R where Æ0 � d1[t1℄�1; ��; d2[t2℄: (9)

Now, define� : T1[t1℄ (* T2[t2℄ as follows. � def= (s1[t1℄; Æ; s2[t2℄�1) [�: (10)

Relation� is a partial correspondence� : T1[t1℄ (* T2[t2℄, sincedom(s1[t1℄Æ; s2[t2℄�1) \ dom(�) = ;.
Since�Æ � Æ, by (7) we also have�� � �. So,o1[t1℄ = �; o2[t2℄; in fact,o1[t1℄ = ��; o1[t1℄ by (8)� �; o1[t1℄ since�� � �
which implieso1[t1℄ = �; o2[t2℄ sinceod(o1[t1℄) = od(o2[t1℄) = L[l℄ ando1[t1℄, o2[t2℄ are injective.
Finally, hq01; Æ0; q02i 2 bR holds sincehq01; Æ0; q02i 2 R andR � bR; finally, Æ0 � d1[t1℄�1; �; d2[t2℄ by (9) and�� � �.

This concludes the proof thatbR is a HD-simulation. Since
� bR��1 = dR�1, we also have that ifR is a HD-bisimulation then alsobR

is a HD-bisimulation. 2
Corollary 4.16 RA is closed forb- and -_ -.

Proposition 4.15 shows that, whenever two states of an automaton are equivalent via some partial correspondence
of names, they also are equivalent for all the correspondences obtained by adding new relations between the names. By
exploiting this fact, we can define HD-bisimulation with a stronger condition on the correspondenceÆ0 for the destination
states: in fact, we can requireÆ0 = d1[t1℄�1; �; d2[t2℄. Also with this alternative definition the same equivalenceon HD-
automata is obtained, and also the greatest bisimulationRA1;A2 does not change.

The possibility of discarding correspondences in the definition of Æ0, though, is very convenient. First of all, it permits
to exhibit smaller relations to prove HD-bisimilarity of two HD-automata. Furthermore, some important properties of
HD-bisimulation do not hold if the discarding is not allowed. This is the case for instance of the concatenation property
of Proposition 4.13: in fact, if we consider the HD-automaton of Figure 3, then relationsR = fhq1; Æ12; q2i; hq01; ;; q02ig with Æ12(a) = bS = fhq2; Æ23; q3i; hq02; ;; q03ig with Æ23(b) =
are HD-bisimulations; however, their concatenationR_ S = fhq1; Æ13; q3i; hq01; ;; q03ig with Æ13(a) =
is nota HD-bisimulation if we do not permit to discard name correspondences, since namesa0 and0 of the target states
are not related byR_ S, even if the corresponding namesa and of the source states are related.

4.2.2 Global states and global bisimulation

Now we give an alternative characterization of HD-bisimulation, which is based on global (rather than local) names.
This alternative characterization is very useful to show that HD-bisimulation, when applied to HD-automata obtained
from �-calculus agents, coincides with bisimilarity relation�g .

We have seen that a state of a HD-automaton is obtained from a�-calculus agent by normalizing its names, so that
all the agents that differ for a renaming are represented by the same state. Conversely, a particular�-calculus agent can
be recovered from a stateq of the HD-automaton by giving a global identity of the local names ofq. Following this
intuition, if q is a state of a HD-automaton and� : Q[q℄ (! N , then(q; �) is aglobal state, i.e., a state where a global
identity is assigned to the names. Global transitions are defined similarly.

18

q1 q2 q3
q01 q02 q03
l l la b

a0 0
t3t2t1

Figure 3: A tricky example for concatenation of HD-bisimulations

Definition 4.17 (global state and global transition)A global stateof a HD-automatonA is a pair g = (q; �), whereq 2 Q and� : Q[q℄ (! N . We denote withGA the set of global states ofA. We denote withGA the named set of global

state ofA, obtained by definingGA[(q; �)℄ def= �(Q[q℄).
A global transitionis a pairu = (t; �), wheret 2 T and� : T[t℄ (! N . We denote withUA the set of global transitions

ofA. We denote withUA the named set of global transitions ofA, obtained by definingUA[(t; �)℄ def= �(U[t℄). Moreover

we use the notationsUA[(t; �)℄old def= �(T[t℄old) andUA[(t; �)℄new def= �(T[t℄new).
If t : q l�! q0 then we write(t; �) : (q; �) (l;�)�! (q0; �0), where� = s[t℄�1; �, � = o[t℄�1; � and�0 = d[t℄�1; �.

For the global states and global transitions of a HD-automaton we use notations similar to those for the components
of the HD-automaton; so, the global transitions of HD-automatonB are denoted byTB; also, if we consider two HD-
automataA1 andA2, then their global states are denoted byG1 andG2 respectively.

Now we give the definition of bisimulation which is based on global states and global transitions.

Definition 4.18 (global bisimulation) LetA1 andA2 be two HD-automata. Aglobal simulationfor A1 andA2 is a
relationR � G1 �G2 such that wheneverg1 R g2 then:

for all u1 : g1 k�! g01 in U1 with U1[u1℄new \ G2[g2℄ = ; there exists someu2 : g2 k�! g02 such thatg01 R g02.
A global bisimulationforA1 andA2 is a relationR � G1 �G2 such that bothR is a global simulation forA1 andA2
andR�1 is a global simulation forA2 andA1.
The HD-automataA1 andA2 are global-bisimilariff there exists some global bisimulation forA1 andA2 such that(q01; �01) R (q02; �02).

Notice the clause “U1[u1℄new \ G2[g2℄ = ;” in the definition above, that discards all those global transitions ofg1
that use as new name a name which is old ing2. This is necessary in the global bisimulation, since names have a global
identity here; in fact, this clause plays the same role of clause “bn(�) \ fn(pjq) = ;” in the definitions of bisimulation
in �-calculus (Definition 3.2).

Global bisimilarity coincides with HD-bisimilarity.

Proposition 4.19 Two HD-automata are HD-bisimilar if and only if they are global bisimilar.

Proof. We prove the two implications separately.
Proof of the “only if” implication. It is sufficient to prove that ifR is a HD-simulation forA1 andA2 thenR0 is a global simulation,
where R0 def= fh(q1; �1); (q2; �2)i j hq1; Æ; q2i 2 bR with Æ = �1;��12 g:
Suppose(q1; �1) R0 (q2; �2) and(t1; �1) : (q1; �1) (l;�)�! (q01; �01) with�1(T1[t1℄new) \ �2(Q2[q2℄) = ;: (11)

19

We have to show that there is some(t2; �2) : (q2; �2) (l;�)�! (q02; �02) with (q01; �01) R0 (q02; �02).
From(q1; �1) R0 (q2; �2) we obtain, by definition ofR0, thathq1; Æ; q2i 2 bR whereÆ def= �1;��12 :
From(t1; �1) : (q1; �1) (l;�)�! (q01; �01) by definition of global transition we obtaint1 : q1 l�! q01 and:�1 = s1[t1℄�1; �1 � = o1[t1℄�1; �1 �01 = d1[t1℄�1; �1:
SinceR is a HD-simulation, there exist somet2 : q2 l�! q02, � : T1[t1℄new (* T2[t2℄new and� : T1[t1℄ (* T2[t2℄ such that� = (s1[t1℄; Æ; s2[t2℄�1) [� (12)o1[t1℄ = �; o2[t2℄ (13)hq01; Æ0; q02i 2 bR with Æ0 = d1[t1℄�1; �; d2[t2℄: (14)

Let �2 def= (s2[t2℄;�2) [(��1; �1):
Sincedom(��1) � T2[t2℄new and, by definition,T2[t2℄new = T2[t2℄ n dom(s2[t2℄), we conclude that�2 : T2[t2℄ (!N .
Property � = �1; ��12 (15)

can be shown by considering separately the namesn 2 dom(s1[t1℄) and the namesn 2 T1[t1℄new, and exploiting (11).
Moreover, by definition of�2, �2 = s2[t2℄�1; �2 and� = o2[t2℄�1; �2: Therefore, by definition of global transition, there is some(t2; �2) : (q2; �2) (l;�)�! (q02; �02), where �02 def= d2[t2℄�1; �2: (16)

Finally, Æ0 = d1[t1℄�1; �; d2[t2℄ by (14)= d1[t1℄�1; �1; ��12 ; d2[t2℄ by (15)= �01; �02�1 by (13) and (16).

Sincehq01; Æ0; q02i 2 R, by definition ofR0, it holds(q01; �01) R0 (q02; �02). This concludes the proof of the “only if” implication.
Proof of the “if” implication. It is sufficient to prove that ifR is a global simulation forA1 andA2 thenR0 is a HD-bisimulation,
where R0 def= fhq1; Æ; q2i j (q1; �1) R (q2; �2) andÆ = �1;��12 g:
Supposehq1; Æ; q2i 2 R0, t1 : q1 l�! q01. We have to show that there exist somet2 : q2 l�! q02, some� : T1[t1℄new (* T2[t2℄new
and some� : T1[t1℄ (* T2[t2℄ such that:� � = (s1[t1℄; Æ; s2[t2℄�1) [�;� o1[t1℄ = �; o2[t2℄;� hq01; Æ0; q02i 2 R0 whereÆ0 � d1[t1℄�1; �; d2[t2℄.
Sincehq1; Æ; q2i 2 R0 we have(q1; �1) R (q2; �2) and Æ = �1;��12 : (17)

Let �1 : T1[t1℄ (!N be such that �1 = s1[t1℄�1; �1 (18)�1(T1[t1℄new) \ �2(Q2[q2℄) = ; (19)

To obtain such a function, it is sufficient to define�1��T1[t1℄old = s1[t1℄; �1 and to let�1��T1[t1℄new : T1[t1℄new (! N n � od(�1) [od(�2)�.
By exploiting (18),(t1; �1) : (q1; �1) (l;�)�! (q01; �01) with � = o1[t1℄�1; �1 (20)�01 = d1[t1℄�1; �1: (21)

20

By definition of global bisimulation, exploiting (19), there exists some(t2; �2) : (q2; �2) (l;�)�! (q02; �02) such that(q01; �01) R (q02; �02),�2 = s2[t2℄�1; �2 (22)o1[t1℄�1; �1 = � = o2[t2℄�1; �2 (23)�02 = d2[t2℄�1; �2: (24)

Hencet2 : q2 l�! q02. Let � def= �1; ��12 : T1[t1℄ (* T2[t2℄:
Notice thatn 2 T1[t1℄new if and only if �(n) 2 T2[t2℄new: this is due to (19). Hence,� consists of a partial correspondence between
the old names of the two transitions and of a partial correspondence between their new names. Moreover, by defining� def= ���T1[t1℄new ;
and by exploiting (17), (18) and (22), we have: � = (s1[t1℄; Æ; s2[t2℄�1) [�
Also, by exploiting (20) and (23) o1[t1℄ = �; o2[t2℄:
Finally, (q01; �01) R (q02; �02) implieshq01; Æ0; q02i 2 R0 for Æ0 def= �01;�02�1, andÆ0 = d1[t1℄�1; �; d2[t2℄
follows by (21) and (24). This concludes the proof. 2
4.2.3 Relating�-calculus ground bisimulation and HD-bisimulation

Now we show that two�-calculus agents are bisimilar if and only if the corresponding HD-automata are bisimilar.
To obtain this result we exploit the global characterization of HD-bisimulation presented in the previous section. The
following is the main lemma.

Lemma 4.20 Let (q; �) be a global state of the HD-automatonA�gp corresponding to a�-calculus agentp. Then:� if q� ��! q00 is a �-calculus transition withbn(�) \ fn(q�) = ;, then there is some global transition(t; �) :(q; �) (l;�)�! (q0; �0) ofA�gp ; and� if (t; �) : (q; �) (l;�)�! (q0; �0) is a global transition ofA�gp , then there is some�-calculus transitionq� ��! q00
where in both casesq00 = q0�0, and(l; �) are related to� as in Table 5.

Theorem 4.21 Letp1 andp2 be�-calculus agents. Thenp1 �g p2 iff A�gp1 � A�gp2 .

Proof (Sketch). Supposep1 �g p2; let the relationR on the global states of the two HD-automataA�gp1 andA�gp2 be defined as
follows: R = fh(q1; �1); (q2; �2)i 2 Gp1 � Gp2 j q1�1 �g q2�2g:
By exploiting Lemma 4.20, relationR is a global bisimulation forA�gp1 andA�gp2 . Moreover(q01; �01) R (q02; �02), sinceq01�01 =p1 �g p2 = q02�02, so the two HD-automata are bisimilar.
Conversely, supposeA�gp1 � A�gp2 and letS be the largest global bisimulation for the two automata, i.e., the one corresponding to
HD-bisimulationRA�gp1 ;A�gp2 . By exploiting Lemma 4.20,R = fhq1�1; q2�2i j (q1; �1) S (q2; �2)g
is a ground bisimulation. In particular, since(q01; �01) S (q02; �2) andp1 = q01�01 andp2 = q02�02, we obtainp1 �g p2. 2

21

p

q
t1 t1

t1t01

�

�

�

�

A

B
1 2

3 4

Figure 4: Two non isomorphic minimal HD-automata

4.3 Minimization of HD-automata

We conclude this section with a comment on the impossibilityof defining minimal HD-automata. As we have already
discussed for ordinary automata, having a minimal canonical representative for a class of bisimilar automata is important
both from a theoretical point of view and from a practical point of view. Unfortunately enough, minimization is not
possible on Basic HD-automata. In Figure 4 we show two equivalent HD-automata: they are both “minimal”, in the
sense that it is not possible to reduce them further; howeverthey are not isomorphic. In each of the HD-automata there
is a single state with two names, and two transitions: each transition exhibits in the label one of the two names. The
difference between the two HD-automata is that the names areswitched along the transitions in HD-automatonB, while
they are not inA. Still, the HD-automata are equivalent: their behavior is symmetric w.r.t. the two names; and in fact a
bisimulation for these HD-automata is:R = fhp; Æ; qi; hp; Æ0; qi j Æ(1) = 3; Æ(2) = 4 andÆ0(1) = 4; Æ0(2) = 3g

The impossibility of representing explicitly the symmetrybetween names1 and2 (and3 and4) is precisely the
cause of the impossibility of having a common minimal realization for the two HD-automata. In fact, there is no way to
quotient HD-automatonA with respect to its greatest bisimulationRA = fhp; Æ; pi j Æ(1) = 2; Æ(2) = 1g.

In Section 6 we define an enhanced version of HD-automata thatsolves this problem by allowing symmetries on
names to appear explicitly in the states of the HD-automata.We will show that canonical minimal realizations exist for
this enhanced class of HD-automata (see Section 6.5).

5 Basic HD-automata for other history-dependent calculi

In this section we present two other examples of history-dependent formalisms that can be successfully mapped into
Basic HD-automata. The first formalism (Sections 5.1 and 5.2) is CCS with locality [BCHK93], an extension of CCS
that takes into account the distributed nature of concurrent systems: the underlying idea is that each action occurs at a
particular location of the system, and this location is observed in the labels of the transitions. The second (Sections 5.3
and 5.4) is an example of history-dependent formalism outside the filed of process calculi: Petri nets equipped with
history-preserving bisimulation [GR83].

22

5.1 CCS with localities

Here we recall in brief the approach to location semantics for CCS that has been introduced in [BCHK93] and [Kie94].
In Section 5.2 we show how to map this semantics of CCS on HD-automata.

Location semantics is one of the so-calledtruly concurrentsemantics of CCS, which discriminate systems not only
according to thesequencesof actions the systems perform, but also considering aspects like the degree of parallelism
in the computations and the distribution of the actions in the space. In the location semantics, in particular, localities
are assigned to the parallel components of a system, and the location in which an action occurs is observed in the
corresponding transition. Hence, agents�:0j�:0 and�:�:0+�:�:0, that are identified according to the interleaving
semantics, are distinguished in the location semantics: the first agent may perform actions� and� in different places,
while the second executes both actions in the same location.This behavior is obtained by extending the syntax of CCS
with location prefixesl :: p and by observing in the operational semantics the localities in which the actions take place.
For instance, inl :: pjm :: q the actions ofp are observed to happen in locationl, whereas the actions ofq are observed
in locationm. Differently from thestaticapproach to localities of [Ace94] — where the distributed nature of agents is
made explicit by assigning different locations to their parallel components, as in�:(l :: pjm :: q) — in [BCHK93] and
[Kie94] a more observational point of view is preferred. Location names are assigneddynamically, during the process
of observation: the meaning of transitionl ::�:p ��!lm l ::m :: p is that the observer sees an action� emanating from a

particular sub-location ofl and associates namem to this sub-location. Here we follow the dynamic approach. We refer
to [Cas93] for further comparisons of static and dynamic approach.

Agents�:0j�:0 and�:�:0+�:�:0 are distinguished by this approach: in fact,�:0j�:0 ��!l l ::0j�:0 ��!m l ::0jm ::0
whereas �:�:0+ �:�:0 ��!l l ::�:0 ��!lm l ::m ::0
andm is a sub-location ofl only in the second agent.

Given a setLo of locations (ranged over byl;m; : : : ; sequence of locationsl1l2 � � � ln are ranged over byu; v; : : :),
theCCS location agentsare defined by extending CCS syntax as follows:p ::= � � � ��� l :: p:
The set of location names that occur inp is denoted bylo(p) and an agentp is pureif lo(p) = ;.

The following equivalences are added to the ones in Section 2.2 to define structural equivalence� on location agents:

(loc) l ::0 � 0 l ::(pjq) � (l :: p)j(l :: q) l ::(��) p � (��) l :: p:
Two kinds of transitions are defined on location agents. There are thestandard CCS transitions, which are generated

by the axioms schemata and inference rules of Table 1, extended with the following rule for location prefixes:

[LOC]
p ��! p0l :: p ��! l :: p0

And there are thelocation transitions, of the formp a�!u p0, which are generated by the axiom schemata and by the

inference rules of Table 6. Notice that there is no synchronization rule for the location transitions: since the invisible
transitions do not occur in a particular location, the standard transitions are used for them.

The definition of location bisimulation follows.3

Definition 5.1 (location bisimulation) A relationR over location agents is alocation simulationif wheneverp R q
then:� for eachp a�!ul p0, with l 62 lo(pjq), there is someq a�!ul q0 such thatp0 R q0; and� for eachp ��! p0 there is someq ��! q0 such thatp0 R q0;

3In [BCHK93] CCS is equipped with aweaklocation bisimulation, while here we consider thestrongcase. The approach defined here also applies
to theweakcase — see Section 8.4.

23

[PREF] a:p a�!l l :: p [LOC]
p a�!u p0l :: p a�!lu l :: p0

[SUM]
p1 a�!u p0p1+p2 a�!u p0 [PAR]

p1 a�!u p01p1jp2 a�!u p01jp2
[RES]

p a�!u p0(��) p a�!u (��) p0 if a 6= �; �� [IDE]
pA a�!u p0A a�!u p0 if A def= pA

Table 6: Location transitions for CCS with localities

A relationR is a location bisimulationif bothR andR�1 are location simulations.
Two location agentsp andq are location bisimilar, writtenp �l q, if p R q for some location bisimulationR.

The problems in using labelled transition systems to give semantics to CCS with localities are the classical problems
of history-dependent calculi. First of all, an infinite number of location names can be used when a new location is
generated. In this case, moreover, even if just one locationname is chosen at each point, still an infinite number of states

is necessary for agents with infinite behaviors: consider for instanceA def= �:A; staring froml0 ::A, an infinite number
of different states is reachable: l0 ::A ��!l0l1 l0 :: l1 ::A ���!l0l1l2 l0 :: l1 :: l2 ::A � � �
This happens since location prefixes are created but never forgotten.

Also the definition of bisimulation is not the ordinary one, due to the clause “l 62 lo(pjq)” in Definition 5.1.
We conclude the section by showing that the transitions thata location agent can perform do not depend on the

particular instantiation of the location names.
Let p be a CCS agent with localities and let� be any renaming of the locations, i.e.,� : Lo ! Lo; then we

represent withp� the agentp whose localities have been updated according to�.

Lemma 5.2 Letp be a location agent and let� : Lo ! Lo be a renaming of the locations. Then� if p ��!u p0 thenp� ��!v p0�, and� if p� ��!v q thenp ��!u p0 andq = p0�,

where in both casesv = �(l1)�(l2) � � ��(lk) wheneveru = l1l2 � � � lk. Similarly,� if p ��! p0 thenp� ��! p0�, and� if p� ��! q thenp ��! p0 andq = p0�.

The proof of this lemma can be found in [BCHK93].
With a little abuse of notation, we will also writep� with � : lo(p) (! Lo, with the obvious meaning.

5.2 Representing agents with localities as basic HD-automata

Now we show that HD-automata can be applied to CCS with localities. The simplest way to represent a location agent
with a HD-automaton would be to use states of the automata to represent derivatives of the agent and to associate to a
state the location names of the corresponding agent. This encoding has some advantages w.r.t. the ordinary operational
semantics: all the transitions corresponding to differentchoices in the name for a new locations could be identified.
Moreover, the same state of the HD-automaton could be used torepresent a whole class of location agents which differ
for a renaming of the locations.

However, this is not sufficient to obtain finite HD-automata for the class of finitary location agents: whenever the
agent can perform infinite computations, the number of location prefixes continues to grow during the computations,
thus leading to an infinite number of derivatives, even up to renamings.

First of all, we have to avoid this unbounded growth of the location prefixes, i.e., we have to find a way to discard
these prefixes. An axiom like (del) l ::m :: p � m :: p

24

would help. However, this axiom is not correct for the location equivalence of Definition 5.1, since, for instance,l ::m :: a:p a�!lmn l ::m ::n :: p
whereas m ::a:p a�!mn m ::n :: p
and the two labels do not correspond; this happens because the whole sequence of locations is observed in the label of a
transition.

Now we present a slightly different definition of location equivalence in which only the newly created location and
its direct parent are observed. It can be shown that this new location equivalence coincides with the classical one, at least
for the class of pure CCS agents.

Definition 5.3 (incremental location equivalence)A relationR on location agents is anincremental location simula-
tion if p R q implies:� for eachp a��!umn p0, withn 62 lo(p; q), there exists someq a�!vmn q0 with p0 R q0;� for eachp ��! p0 there exists someq ��! q0 with p0 R q0.
A relationR is a incremental location bisimulationif bothR andR�1 are incremental location simulations.
Two location agentsp andq are incremental location equivalent(written p ��l q) if p R q for some location bisimula-
tionR.

Proposition 5.4 Let p0 and q0 be two pure CCS agents. Thenp0 �l q0 if and only ifm :: p0 ��l m :: q0 for some
locationm.

Proof (Sketch). The proof thatp0 �l q0 impliesm :: p0 ��l m :: q0 is easy. In fact, standard results for location bisimilarity
ensure thatp0 �l q0 impliesm :: p0 �l m :: q0. Moreover, each location bisimulation is by definition alsoan incremental location
bisimulation som :: p0 ��l m :: q0.
To prove the converse, i.e., thatm :: p0 ��l m :: q0 impliesp0 �l q0, we should show that relationR defined as follows is a location
bisimulation: R = f(pn; qn) j pn ��l qk; l0 :: p0 �1�! � � � �k�! pk; l0 :: q0 �1�! � � � �k�! qkg
where

�i�! is either
��! or

ai��!uimi withmi 62 lo(pi�1; qi�1). Hence,m :: p0 �l m :: q0 and, by exploiting standard results for location

equivalence,p0 �l q0. 2
Del is a correct axiom for this alternative characterization and it allows us, combined with the other equivalences of

the structural congruence, to associate to each agent a flat structure of locations. Conceptually, these axioms show that
agents can be seen in location semantics as collections (multisets) of sequential sub-agents acting in different locations.
This intuitive fact, used in [CN94] to represent location agents, gets, in this way, a formal foundation using simple
structural axioms.

We denote with�� the smallest congruence which contains� and which respects equivalencedel.

Proposition 5.5 By exploiting��, every location agentp can be written in the following form:p �� (��1) � � � (��m) (p0jl1 :: p1j � � � jln :: pn)pi = si1j � � � jsini
where locationsli are all distinct andsij are sequential processes.

Lemma 5.6 If p0 �� p, p ��l q andq �� q0 thenp0 ��l q0.
We are ready to map location agents into HD-automata. We can assume that the setLo of locations is used as setN

of global names in the HD-automata. We assume also to have a functionnorm which, given a location agentp, returns a
pair (q; �) defined as follows. Agentq is the representative of the class of agents that differ fromp only by the structural
congruence�� and by a renaming of the locations. Agentq can be obtained by first transformingp in an agentp0 that
is normalized w.r.t.��; for instance, by resorting on Proposition 5.5, we could havep0 = (��1) � � � (��m) (l1 :: p1j � � � jln :: pn):

25

Then the locations ofp0 can be renamed so thatli is thei-th location inLo. Renaming� : lo(p) * lo(q) associates
a location ofp to each location ofq, so thatq �� p�.

When the HD-automaton is built, there is no reason to includeall the transitions that differ just in the name assigned
to the new location; it is sufficient to use representative transitions: a location transitionp a�!ulm q is representativeifm = minfLo n lo(p)g.

The named setLl of the labels in the case of CCS with localities is so defined: the setLl coincides with the set of the
CCS actions. No name is associated to action� , whereas two namesnlo andnnew are associated to the visible actions.

Definition 5.7 (from location agents to HD-automata)The HD-automatonAlp corresponding to the pure CCS agentp, according to the semantics with localities, is the smallest HD-automaton that satisfies the following rules:� letm be a fixed location ofLo; if norm(m :: p) = (q0; �0) then:

– q0 2 Q is the initial state andQ[q0℄ = lo(q0);
– ��10 is the initial embedding;� if t : q 2 Q, q a�!ulm q0 is a representative transition andnorm(q0) = (q00; �), then:

– q00 2 Q andQ[q00℄ = lo(q00);
– t 2 T andT[t℄ = lo(q) [fmg;
– s(t) = q, d(t) = q00, s[t℄ = idlo(q) andd[t℄ = �;

– o(t) = a ando[t℄(l) = nlo, o[t℄(m) = nnew;� if q 2 Q, t : q ��! q0 andnorm(q0) = (q00; �) then:

– q00 2 Q andQ[q00℄ = lo(q00);
– t 2 T andT[t℄ = lo(q);
– s(t) = q, d(t) = q00, s[t℄ = idlo(q) andd[t℄ = �;

– o(t) = � .

Also in this case the HD-automaton corresponding to location agentp is finite whenever agentp is finitary.

Theorem 5.8 Given a pure location agentp, the HD-automatonAlp is finite if and only ifp is finitary according to
Definition 2.6.

The proof is similar to that of Theorem 4.8.
Two pure agents are location bisimilar if and only if the corresponding HD-automata are bisimilar.

Theorem 5.9 Letp1 andp2 be two pure CCS agents. Thenp1 �l p2 iff Alp1 � Alp2 .

Like in the case of the ground semantics of�-calculus, the proof of this theorem relies on the global characterization of
HD-bisimulation. It exploits the following lemma, that is analogous to Lemma 4.20.

Lemma 5.10 Let (q; �) be a global state of the HD-automatonAlp corresponding to a pure location agentp. Then:� if q� a��!umn q00 is a location transition withn 62 lo(q�), and (q0; �0) = norm(q00), then there is some global

transition(t; �) : (q; �) (a;�)�! (q0; �0) ofAlp andq00 = q0�0; and� if (t; �) : (q; �) (a;�)�! (q0; �0) is a global transition ofAlp, then there is some location transitionq� a��!umn q0�0
where in both cases�(nlo) = m and�(nnew) = n. A similar property holds for the� transitions.

26

5.3 Petri nets

In this section we consider an example of history-dependentformalism outside the field of process calculi, namely Petri
nets with labelled transitions. In the case of Petri nets, automata have been used to represent thecase graphsof the nets,
i.e., the graphs of the reachable markings of the nets; a transition of the automaton represents the simultaneous firing of
a set of transitions of the net. Bisimulation can then be applied to the case graphs. In the case of Petri nets, however, a
refined notion of equivalence is preferred, that also considers the causal relations on the firings of the net.

Processeshave been defined in [GR83] to represent concurrent runs of nets. From a process, it is possible to derive
a partial order of the events of the run, which represents thedependencies between them. A notion of bisimulation,
calledhistory-preserving bisimulation, that takes into account the partial order behavior has beendefined in [RT88] for
event structures. The same notion has been introduced before in [DDNM90] for process calculi, using mixed ordering
observations. History-preserving bisimulation has been applied to Petri nets in [BDKP91]: for two nets to be equivalent,
it is required not only that they perform the same sequence ofactions (with the same branching structure), as in ordinary
bisimulation, but also that the partial orders corresponding to two matching computations are isomorphic, i.e., that the
causal dependencies between the actions are the same in the two nets. As we will see, also in this case the definition of
bisimulation is not the standard one, and suffers of problems similar to the ones of history-dependent calculi.

Now we present the basic definitions on Petri nets. Most of thedefinitions and of the notations are from [GR83].

Definition 5.11 (net) A netN is a tuple(S; T; F) where:� S is a set ofplacesandT is a set oftransitions; we assumeS \ T = ;;� F � (S � T) [(T � S) is theflow relation.

If x 2 S [T then�x = fy j (y; x) 2 Fg andx� = fy j (x; y) 2 Fg are called respectively thepre-setand thepost-set
of x. LetÆN = fx 2 S [T j �x = ;g andNÆ = fx 2 S [T j x� = ;g.
A netN is finite if S andT are finite sets.

Definition 5.12 (P/T nets) A (labelled, marked) place/transition net(P/T netin brief) N is a tuple(S; T; F;W; l;m0),
where(S; T; F) is a net and:� W : F ! !+ assigns a positiveweight to each arc of the net; we sometimes assume thatW is defined on(S � T) [(T � S) by requiringW (x; y) = 0 if (x; y) 62 F ;� l : T ! At is thelabeling function, whereAt is a fixed set of action labels;� m0 : S ! ! is theinitial marking.

A markingis a mappingm : S ! !. It represents a distribution of thetokensin the places of the net.
Transitiont 2 T is enabledat markingm if m(s) � W (s; t) for all s 2 �t. In this case, thefiring of t at m produces

the markingm0 withm0(s) = m(s) +W (t; s)�W (s; t), and we writem t�! m0.
Definition 5.13 (n-safe nets)A P/T netN is n-safe if for each reachable markingm (i.e., for eachm such thatm0N �! � � � �! m) we have: m(s) � n 8s 2 SN :
Definition 5.14 (occurrence net)An occurrence net is a netK = (C;E;G) (in this case, states are also calledcondi-
tionsand transitions are also calledevents) such that:� for all 2 C, j�j � 1 andj�j � 1 (conditions are not branching), and� the transitive closureG+ ofG is irreflexive (the net is acyclic).

Definition 5.15 (process)A process� of a P/T netN is a tuple(C;E;G; p), whereK = (C;E;G) is a finite occurrence
net andp : (C [E)! (SN [TN) is such that:� p(C) � SN andp(E) � TN ;� m0(s) = jp�1(s) \ ÆKj for all s 2 SN ;� WN (s; p(e)) = jf 2 �e j p() = sgj andWN (p(e); s) = jf 2 e� j p() = sgj for all e 2 E and alls 2 SN .

27

We writeÆ� for ÆK and�Æ for KÆ.
Theinitial processof netN is the4 process�0(N) with an empty set of events.
Let� = (C;E;G; p) and�0 = (C 0; E0; G0; p0) be two processes ofN . If:� E0 = E [f�eg for some�e 62 E;� C 0 � C;� p0��C[E = p
then we write� �t�! �0, where�t = p0(�e).

Now we define history-preserving bisimulation. We follow a classical characterization, as it appears in [BDKP91]
under the name offully concurrent bisimulation.

Definition 5.16 (event structure) The(deterministic) event structurefor process� = (C;E;G; p) of netN is the tupleev(�) = (E;F+��E ; lN Æp��E). An isomorphismbetween two event structures is a bijective function between their events
which respects ordering and labels.

Definition 5.17 (history-preserving bisimulation) A setR of triples is ahistory-preserving bisimulationfor netsN1
andN2 if:� whenever(�1; f; �2) 2 R then�1 is a process ofN1, �2 is a process ofN2 andf is an isomorphism betweenev(�1) andev(�2);� (�0(N1); ;; �0(N2)) 2 R;� whenever(�1; f; �2) 2 R and�1 t1�! �01 then�2 t2�! �02 with (�01; f 0; �02) 2 R andf 0��ev(�1) = f ;� whenever(�1; f; �2) 2 R and�2 t2�! �02 then�1 t1�! �01 with (�01; f 0; �02) 2 R andf 0��ev(�1) = f .

Two netsN1 andN2 are history-preserving bisimilar, writtenN1 �hp N2, if there is a history-preserving bisimulation
for them.

Notice that the definition of bisimulation which is applied in this case is not the standard one on labelled transition
systems. First of all, the bisimulation must deal with isomorphisms between partial orders and hence it cannot be simply
a relation on states. Moreover, since processes and partialorders grow during a computation, it is possible to associate
finite-state systems only to nets which cannot perform infinite sequences of actions.

5.4 Representing Petri nets as basic HD-automata

Now we show that also the history-preserving semantics for Petri nets can be modeled by HD-automata. In order
to obtain finite HD-automata also for nets with infinite behaviors we propose now an alternative characterization of
history-preserving bisimulation on Petri nets, in which part of the past history can be forgotten, like we have done in the
previous section for CCS with localities.

The first step consists of the definition ofconfigurations, which are suitable to represent in a compact way the relevant
part of the past history for generic P/T nets. We also show howprocesses can be mapped into configurations.

Definition 5.18 (configurations) LetN be a P/T net. Aconfigurationfor N is a tuple = (E;�; �), where:� E � N is a set ofeventsand� � E �E is a partial ordering forE;� � : SN � (E [finitg)! !.

We require that
Ps2SN �(s; e) > 0 for eache 2 E.

Theinitial configurationof netN is configuration0(N) = (;; �0; ;), with �0(s; init) = m0(s) for all s 2 S.
Let = (E;�; �) and0 = (E0;�0; �0) be two configurations forN and�t 2 T be a transition ofN . If5:� E0 � E [f�eg for some�e 62 E;

4Notice that the initial process of a net is unique only up to isomorphism of the set of initial conditions.
5For simplicity, in this definition we suppose that�(s; e) = 0 if e 62 E and, similarly,�0(s; e) = 0 if e 62 E0.

28

�76540123

76540123

76540123

76540123

76540123

at1 bt2 t3
(a)

��

��

��
77

77
77

77
77

77

��

��

�� ����
��

��
��

��
��

��

�76540123

76540123

76540123

76540123

at1 bt2 t3
(b)

��

��

��

��

��

��

Figure 5: Two bisimilar nets with different sets of immediate causes� �0 = ��[f(e; �e) j 9e0 2 IC(�t�!�e 0): e � e0g� \ (E0 �E0);� �(s; e) � �0(s; e) for all s 2 SN ande 2 (E [finitg), and
Pe2(E[finitg)(�(s; e)� �0(s; e)) =WN (s; �t) for alls 2 SN ;� �0(s; �e) = WN (�t; s) for all s 2 SN ;

then we write �t�!�e 0, where the setIC(�t�!�e 0) of theimmediate causesof the transition is:IC(�t�!�e 0) = fe 2 E j 9s 2 S : �0(s; e) < �(s; e)g:
The setMC(�t�!�e 0) of themaximal causesof the transition contains the elements ofIC(�t�!�e 0) which are
maximal w.r.t.�.

The transition �t�!�e 0 is representativeif �e = minfN nEg.
In a configuration, the setE of events represents the past events which are still referenced. Since we are interested

in a partial order semantics, a partial order is defined onE, which represents the causal dependencies between the past
events. Function� represents the current marking of the net; rather than simply defining how many tokens are in each
place of the net, it also remembers which events generated these tokens (init is a special mark used for the tokens in the
initial marking).

We require that in a configuration only the events are remembered which generated tokens still present in the net. This
is important to obtain a finite number of different configurations also for certain classes of nets with infinite behaviors.

A transition between two configurations corresponds to the firing of a transition of the net. A new event�e is gener-
ated: it directly depends on those events of the source configuration which correspond to the tokens consumed by the
transition (these events are called theimmediate causesof the transition) and the partial order in the destination config-
uration respects these dependencies. The marking of the destination configuration is obtained from the marking of the
source by discarding tokens according to the pre-set of the transition and by adding new tokens according to the post-set
(these tokens are associated to the new event�e). Events with no tokens in the marking are discarded and do not appear
in the destination configuration.

It is important to remark that corresponding events of history-preserving bisimilar nets can have different sets of
immediate causes. In fact, if we consider the net in Figure 5(a), we see that botht1 andt2 are immediate causes oft3, whereas in the net in Figure 5(b) t1 is not a direct cause oft3. It is possible to prove, instead, that two matching
events must have the same sets of maximal causes. In fact, notice thatt1 is not a maximal cause oft3 in both nets of our
example.

The transitions between configurations correspond to firings between the corresponding markings:

Definition 5.19 (from configurations to markings) LetN be a P/T net and let = (E;�; �) be a configuration forN . The markingm corresponding to is defined as follows:m(s) = Xe2E �(s; e) for eachs 2 S:
29

Proposition 5.20 Let be a process for netN and letm be the corresponding marking. If t�!�e 0 thenm t�! m0
and, conversely, ifm t�! m0 then there exists some configuration0 such that t�!�e 0 andm0 = m0 .

The transitions between configurations correspond also to the transitions between the processes of the net.

Definition 5.21 (from processes to configurations)LetN be a P/T net and let� = (C;E;G; p) be a process onN .
The configuration corresponding to� is � = (E0;�; �) which is defined as follows:� E0 = fe 2 E j �Æ \ e� 6= ;g and� = G���E0 ;� �(s; e) = jp�1(s)\ �Æ \ e�j for all s 2 SN ande 2 E; moreover�(s; init) = jp�1(s)\ �Æ \ Æ�j for all s 2 SN .

Notice that the configuration corresponding to the initial process forN is precisely the initial configuration forN . The
following proposition shows that the transitions on configurations exactly match the transitions on processes.

Proposition 5.22 Let � be a process for netN and let � be the corresponding configuration. If� t�! �0 then� t�!�e �0 and, conversely, if� t�!�e 0 then there exists some process�0 such that� t�! �0 and0 = �0 .
Now we introduce an alternative notion of history-preserving bisimulation, which is based on configurations rather

than on processes.

Definition 5.23 (incremental history-preserving bisimulation) A setR of triples is anincremental history-preserving
bisimulationfor netsN1 andN2 if:� whenever(1; f; 2) 2 R then1 is a configuration ofN1, 2 is a configuration ofN2 andf : E1 (* E2 is a

partial correspondence between the events of1 and2;� (0(N1); ;; 0(N2)) 2 R;� whenever(1; f; 2) 2 R and1 t1�!�e1 01 then2 t2�!�e2 02 with:

– f(MC(1 t1�!�e1 01)) =MC(2 t2�!�e2 02),
– l1(t1) = l2(t2), and

– (01; f 0; 02) 2 R, andf 0 = (f [(�e1; �e2)) \ (E01 �E02);� the converse, starting from the transitions of2.
Two netsN1 andN2 are incremental history-preserving bisimilar, written N1 ��hp N2, if there is an incremental
history-preserving bisimulation for them.

Proposition 5.24 LetN1 andN2 be two P/T nets. ThenN1 �hp N2 if and only ifN1 ��hp N2.
Proof (Sketch). LetR be a history-preserving bisimulation forN1 andN2; then:R0 = f(�1 ; g; �2) j (�1; f; �2) 2 R; g = f \ (E�1 �E�2)g
is an incremental history-preserving bisimulation. This is sufficient to prove thatN1 �hp N2 impliesN1 ��hp N2.
For the converse, letR be an incremental history-preserving bisimulation. ThenR0 = f(�1; f; �2) j(�1 ; g; �2) 2 R;f is an isomorphism forev(�1) andev(�2) such thatg = f \ (E�1 �E�2)g
is a history-preserving bisimulation. This is sufficient toprove thatN1 ��hp N2 impliesN1 �hp N2. 2

We would like to remark that configurations and incremental history preserving bisimulation are strongly related to
generalized OM-markings and generalized OM-bisimulationdefined in [Vog95]. Also generalized OM-markings are
obtained from processes by discarding most of the past history and by retaining only the information on the events
that are still active, and on their causal relation. In that paper, OM-bisimulation is proved decidable for1-safe nets.
Essentially, what we have done so far in this section is to extend the definitions of [Vog95] to the more general case of
P/T nets.

When a HD-automaton is generated from a net, states of the automaton correspond to configurations of the net.
However, to obtain a compact HD-automaton, it is important to identify configurations which are isomorphic.

30

Definition 5.25 (isomorphic configurations) Two configurations = (E;�; �) and0 = (E0;�0; �0) of a P/T netN
are isomorphicif there exists some bijective functioni : E ! E0 such that:� e � e0 if and only ifi(e) �0 i(e0) for all e; e0 2 E, and� �(e; s) = �0(i(e); s) for all e 2 E, s 2 SN .

We assume to fix a representative for each class of isomorphicconfigurations and to have a functionnorm such thatnorm() = (0; �) where0 is the representative of the class of configurations isomorphic to and� is the bijection
betweenE andE0 .
Let and0 be two isomorphic configurations and let� be the total bijection betweenE andE0 which corresponds to

the isomorphism. Then�() def= 0.
Now we are ready to show how, given a net, it is possible to build the HD-automaton corresponding to it, by exploiting

its behavior on configurations.
In this case, the named setLpn of labels is defined as follows:Lpn = f(�; k) j � 2 At ^ k 2 !g and thek + 1

namesn1; : : : ; nk; nnew correspond to(�; k) for any� 2 At.
Definition 5.26 (from Petri nets to HD-automata) The HD-automatonApnN that corresponds to the P/T netN is the
smallest HD-automaton that satisfies the following rules:� let 0 be the initial configuration forN and(00; �0) = norm(0); then:

– 00 2 Q is the initial state andQ[00℄ = E00 ;
– ��10 is the initial embedding;� if 2 Q, �t�!�e 0 is a representative transition,MC(�t�!�e 0) = fe1; : : : ; ekg, andnorm(0) = (00; �), then:

– 00 2 Q andQ[00℄ = E00 ;
– there is somet 2 T such thatT[t℄ = E [fe0g, wheree0 = minfN nEg; moreover

– s(t) = , d(t) = 00, s[t℄ = idE andd[t℄ = �;

– o(t) = (�; k), where� = lN(t); moreovero[t℄(ej) = nj for j = 1; : : : ; k ando[t℄(�e) = nnew.

For each representative transition �t�!�e 0 there are in general many transitions in the HD-automaton, that differ for the

order of the elements ofMC(�t�!�e 0): if k elements appear inMC(�t�!�e 0), then there arek! ways to assign them
to the namesn1; : : : ; nk of the label. All these different transitions have the same target state, so no grow of the number
of states occurs due to this inefficient encoding of the labels. Moreover, it is possible to generate a single transition in
the HD-automaton, at the cost of changing slightly the definition of HD-bisimulation, so that two transitions are allowed
to match even if their labels differ for a permutation of namesn1; : : : ; nk.

The construction in Definition 5.26 generates finite HD-automata for the finite nets that aren-safe for somen. We
emphasize that it is decidable whether a finite P/T net isn-safe for somen. A possible procedure can be found in [VJ85].

Theorem 5.27 Given a finite P/T netN , the HD-automatonApnN is finite if and only ifN is n-safe for somen.

Proof. We show thatApnN has a finite number of states. Since a finite number of steps is possible in a net from a particular marking,
also the number of transitions exiting from each state of theHD-automaton has to be finite, which concludes the proof.
Each state ofApnN is a configuration = (E;�; �) of N , where:� E � N and� � E �E is a partial ordering;� � : S � (E [finitg)! !.

By Proposition 5.20, moreoverm is a marking ofN which is reachable from the initial marking. Since the net isn-safe for somen,
there can be just a finite number of different markingsm corresponding to reachable configurations.
Since we require that

Ps2S �(s; e) > 0, the number of eventse 2 E cannot be greater than the total number of the tokens inm, so
there is also a bound to the cardinality ofE and also the possible partial orders ofE are finite. Since we work up to isomorphism of
the configurations, this is sufficient to conclude the proof. 2

Two P/T nets are history-preserving bisimilar if and only ifthe corresponding HD-automata are bisimilar.

Theorem 5.28 LetN1 andN2 be two P/T nets. ThenN1 �hp N2 iff ApnN1 � ApnN2 .

31

To prove this result we exploit the global characterizationof HD-bisimulation; it is based on the incremental characteri-
zation of history-preserving bisimulation and on the following lemma, which corresponds to Lemma 4.20 in the case of
the ground semantics of�-calculus.

Lemma 5.29 Let (; �) be a global state of the HD-automatonApnN corresponding to a P/T netN . Then:� if �() t�!�e 00 and(0; �0) = norm(00), then there is some global transition(t0; �) : (; �) (�;�)�! (0; �0) ofApnN
and00 = �0(0); and� if (t0; �) : (; �) (�;�)�! (0; �0) is a global transition ofApnN , then there is some�() t�!�e �0(0)

where in both cases� = lN (t) andod(�) =MC(� t�!�e 0�0) [f�eg.
6 HD-automata with symmetries

Basic HD-automata, presented in Section 4, have some limitations. The most important are that they apply only to
thegroundsemantics of the�-calculus, and do not apply to theearly (andlate) semantics; and that they do not admit
minimal realizations. In order to overcome these limitations, in this section we define an extended class of HD-automata,
namely HD-automata with Symmetries (HDS-automata).

We start by describing the problems of mapping the early�-calculus semantics on Basic HD-automata (Section 6.1).
Then we define symmetries on names (Section 6.2) and, based onthem, HDS-automata (Section 6.3); we also map the
early semantics of�-calculus into HDS-automata. Then we introduce HDS-bisimulation and study its basic properties
(Section 6.4). Finally, we define minimization on HDS-automata (Section 6.5).

6.1 Motivations

The �-calculus semantics provides two ways to introduce fresh names in an agent: name extrusion in bound output
transitions, and fresh name reception in input transitions. These two forms of name generation are similar in the ground
semantics, and we have seen that Basic HD-automata model them in the same way. In the case of the early semantics
instead, input transitions are different, and Basic HD-automata are not able to model them. In fact, in the early�-calculus
we have to take into account that the name received in an inputtransition may be either a name already present in the
source agent or a fresh name. Difficulties occur when two equivalent agents have different sets of free names, since they
do not agree on which names are “already present in the source” and which names are “fresh”. Consider for instance
agents p = x(y):A(x; y; z) and q = x(y):B(x; y; w)
where we assume thatA(x; y; z) � B(x; y; w). The two agents are bisimilar, but they have different sets of free names.
If we want to map these agents on HD-automata, we do not want togenerate all the input transitions: it is sufficient to
consider those corresponding to the reception of a name already present in the source state, and one additional transition
where a fresh name is received. However, since agentsp andq have different sets of free names, this approach leads
to different sets of transitions: the transition corresponding to namez is considered only for agentp, while the one
corresponding to namew is considered only forq. Therefore the two obtained HD-automata are not HD-bisimilar
according to the definition of HD-bisimulation given in Section 4.2.

The fact that Basic HD-automata are not able to distinguish the two forms of fresh name generation of�-calculus
agents is already recognized in [MP98a]. There, this distinction is obtained by typing the fresh names introduced in a
transition: bound-output-like names are typednew, while fresh-input-like names are typeduniversal. HD-bisimulation
has to be complicated to deal with these two different kinds of fresh names; in fact, to be sure that the two agentsp andq above are equivalent, we have to match transitionp xz�! A(x; z; z) of agentp against the transitionq xy�! B(x; y; y)
of q that corresponds to the reception of the universal name. Theintuition is that this transition ofq corresponds to the
reception of any name different fromx andw (that are the free names ofq) and should hence be used to match the
transition ofp for namez.

Here we present a generalization of the approach of [MP98a].The idea is to extend the sets of names that enrich
states, transitions and labels of the HD-automata withname repositories: these are infinite sources, from which it is
possible to extract fresh names when needed. Different classes of fresh names are represented by different repositories,
and the approach of [MP98a] can be seen as a particular case, where only two repositories are allowed, one for the
universal names and one for the new names. In Figure 6 we represent two�-calculus transition: the upper corresponds
to a bound output, while the lower corresponds to an input transition. Two repositories are present in the states, as well

32

u�
� u

� u
u �

� u
� u� u u �

Figure 6: Two transitions with infinite repositories

as in the transitions and in the labels: these are named� andu in figure. In the case of the bound output transitions, fresh
names are taken from the infinite repository�. In the case of the input transitions, instead, the fresh names are taken
from repositoryu.

Repositoryu is used also as a “drain” for the names that are discarded in a transition. To understand why it is correct
to useu as the drain, we have to think at the role that play the two repositories in the�-calculus. Names in� are used
to represent the fresh names that can be generated locally byan agent. Names inu, instead, are those names that can be
sent to the agent by the environment: that is, these names represent channels that already exist in the environment, but
that the agent does not know. If an agent forgets a name, that name is still available in the environment, and the agent
can receive it back in a successive input action. Hence, it iscorrect to put this names among those that can be received
in an input transition.

In the Basic HD-automata of Section 4, only a finite set of names is associated to a state of a HD-automaton.
In the extended model that we are defining, the whole set of names is represented; however, many of these names
are indistinguishable and are represented in a compact way by means of the infinite repositories. According to this
interpretation, in the case of a�-calculus agent the names are divided in the parts:� a finite set of names that appear syntactically in the agent — these appear explicitly in the corresponding state of

the HD-automaton;� an infinite set of names that exist in the environment, but that are not known by the agent — these are represented
by repositoryu;� an infinite set of names that can be generated locally, when the agent performs a bound output — these are

33

represented by repository�.

In this chapter we implement this idea by means ofHistory Dependent Automata with Symmetries, in brief HDS-
automata. The names that appear in their states, transitions, and labels are defined up to asymmetry— that is, a set of
bijective functions, or permutations, on these names. These symmetries are used to identify the infinite subsets of these
names that correspond to the different repositories. The symmetry of a state can be thought as a declaration that the
behavior from that state is not altered by applying to the names of the states any of the corresponding permutations.

In the case of infinite name repositories, all the names in thesame repository are interchangeable, so, in this case the
symmetry is used to define an equivalence on the names. Symmetries can be used to represent more complex behaviors,
though; for instance, in the case of agentp = A(w; x; y) +A(w; y; z) +A(w; z; x);
we can use them to declare that the behavior of agentp is left unchanged by a shiftx '' y && zhh : in this way, it is
sufficient to represent explicitly only the transition of, say,A(w; x; y).

Another important aspect of symmetries it that they make it possible to define minimal HD-automata. As we will see,
minimization is not possible in the case of Basic HD-automata precisely since it is not possible to represent explicitly
the symmetries defined by HD-bisimulation on the names of thestates of the automata.

6.2 Symmetries on Names

In this section we definesymmetrieson names and functions between them.

Definition 6.1 (symmetries) LetN be a infinite, denumerable set of names. Asymmetry� onN is a set of bijections
onN that is a group for composition; that is:� idN 2 � (i.e.,� contains the identity bijection);� if �; �0 2 � then�;�0 2 � (i.e.,� is closed for composition);� if � 2 � then there is some�0 2 � such that�;�0 = idN (i.e.,N is closed for inversion).

We denote the set of all the symmetries onN with Sym(N).
While generic symmetries may appear in the HDS-automata, inmost of the examples we use infinite repositories of

names. Here we introduce some notations for them.

Notation 6.2 We denote with
n���d1; : : : ; dm; s107162534; : : : ; sn8?9>:=;<

���o the symmetry whered1; : : : ; dm are thedistinct namesands1; : : : ; sn denote theinfinite repositories. More precisely,D = fd1; : : : ; dmg � N is the finite subset of the names that
are neutral for the permutations in the symmetry, i.e., namedh for h = 1 � � �m is left unchanged by all the symmetries.
Names inN nD are split inton infinite setsS1; : : : ; Sn, that correspond to the infinite repositoriess1; : : : ; sn; all the
names in setSi are considered indistinguishable by the symmetry. Clearly, there are infinite many different ways to split
setN nD into then subsetsS1; : : : ; Sn: here we assume to fix one of these split as the canonical one.6 Therefore, iffS1; : : : ; Sng is the canonical split ofN nD in n infinite sets, thenn���d1; : : : ; dm; s107162534; : : : ; sn8?9>:=;<

���o = f� j �(dh) = dh for h = 1 � � �m and�(Sk) = Sk for k = 1 � � �ng:
With some abuse of notation, in the following we denote withsk07162534 the setSk corresponding to the names of the infinite

repositorysk. So, for instance, to represent the fact thatn is a name of infinite repositorysk we will write n 2 sk07162534

rather thann 2 Sk.

As we will see in the following section, each state, label, and transition of a HDS-automaton is enriched by a
symmetry onN . Moreover, the HDS-automaton defines the correspondences between the symmetry that enrich a
transition and those that enrich its source state, target state, and label. This is similar to what happens in the case of
Basic HD-automata: in that case the correspondences are defined by means of inverse injections; in the case of HDS-
automata they are defined byembeddings on symmetries.

6For instance, by exploiting the fact thatN is countable, and by denoting withni thei-th name inN , we can defineSk = fni j ni 62 D andk = imod n+ 1g. In any case, since all the splits give rise to isomorphic symmetries, it is not important which split is taken as the canonical one.

34

Let� and�0 be two symmetries onN and let� be a bijective function onN . Assume that all the permutations of�
also appear in�0 via the function�, i.e., that� � �; �0; ��1, where�; �0; ��1 def= f�;�0; ��1 j �0 2 �0g:
Then� is an embedding of� into �0. Notice, however, that the same embedding is defined, in general, by more than
one bijection. In fact, we do not want to distinct between twobijections� and�0 if there is some symmetry� 2 �0 such
that�0 = �;�. Hence, we define anembeddingfrom� to�0 as a class of those equivalent bijections.

Definition 6.3 (embeddings on symmetries)Let � and�0 be two symmetries onN . An embeddingf of � into �0
(writtenf : �! �0) is a set of bijections onN such that:� if � 2 f , then� � �; �0; ��1 (i.e., all the permutations of� also appear, viaf , in �0); and� if � 2 f thenf = �; �0 (i.e.,f contains all the variants of the same embedding).

If symmetry� contains an infinite repositorys, an embeddingf has to map the names of repositorys into the names
of a repositorys0 of �0: this is necessary to guarantee that all the symmetries thatexist among the names ofs in � are
reflected in�0. Moreover, for each distinct named0 of �0 there must be exactly one distinct named of � that is mapped
to d0. However, it is possible that also some distinct names of� are mapped intos0, or that two repositoriess1 ands2 of� are mapped into the same repositorys0 of �0: all these cases respect the rule that�0 can have more permutations than�.

We introduce with an example some useful notation for the embeddings between symmetries. Let us consider� = n���d1; d2; d3; s107162534; s207162534
���o and�0 = n���d01; d02; s0(/).*-+,

���o. The embedding from� to �0 that maps distinct namesd1 andd2
of � into distinct namesd01 andd02 of �0 respectively, and all the other names of� into repositorys0 of �0 is represented
as follows: 8>>>>><>>>>>:����������� d1 7! d01d2 7! d02d3 7! s0(/).*-+,s107162534 7! s0(/).*-+,s207162534 7! s0(/).*-+,

�����������9>>>>>=>>>>>; def= f� j �(d1) = d01; �(d2) = d02; ��fd3g [s107162534 [s207162534
� = s0(/).*-+,g:

6.3 HDS-automata

Now we definenamed sets with symmetries: they are similar to named sets (Definition 4.2), but in this case the elements
are enriched with symmetries on names, rather than by sets ofnames. Based on named sets with symmetries, we then
defined HDS-automata.

Definition 6.4 (named sets with symmetries)A named set with symmetriesE is a set denoted byE, and a family of
symmetries onN , indexed byE, namelyfE[e℄ 2 Sym(N)ge2E , or, equivalentlyE[℄ is a map fromE to Sym(N).
Given two named sets with symmetriesE andF, a named function with symmetriesm : E ! F is a function on the setsm : E ! F and a family, indexed bym, of embeddings on symmetries, namelyfm[e℄ : E[e℄! F[f ℄g(e;f)2m:

Definition 6.5 (HD-automata with Symmetries) A HD-automaton with Symmetries(or HDS-automaton)A is defined
by: � a named set with symmetriesL of labels;� a named set with symmetriesQ of states;� a named set with symmetriesT of transitions;� a pair of named functions with symmetriess; d : T ! Q, which associate to each transition thesourceand

destinationstates respectively (and embed the symmetry of the transition into the symmetries of the source and of
the destination states);� a named function with symmetrieso : T ! L, which associates a label to each transition (and embeds the
symmetry of the transition into the symmetry of the label);

35

x xnq1

q1

q01

q01t1
t1l
l

q2

q2 q02
q02

t2
t2

l
lx� �� n x��� ��

Figure 7: Wrong translation from HD-automata to HDS-automata� an initial stateq0 2 Q and aninitial embeddingf0 : fidN g ! Q[q0℄, that gives a global identity to the local
names ofq0.

In the initial embedding,fidN g is the symmetry onN that is composed only by the identity permutation. We remark
that the initial embeddingf0 gives a global meaning to the names of the initial stateq0 only up to the symmetryQ[q0℄
that is defined on these names.

6.3.1 From Basic HD-automata to HDS-automata

Now we show that Basic HD-automata are just a particular subclass of HDS-automata. To this purpose, we show how a
HDS-automaton can be obtained from a HD-automaton.

The first idea that comes to mind is to add to all the states, thetransitions and the labels of the HD-automaton
one infinite repository of names, that represents all the names that do not appear explicitly in the HD-automaton: an
example of such translation is represented in Figure 7, where the repository is called�(/).*-+,. Unfortunately, this simple
translation is not correct. In fact, at the level of HD-automata, the left and right transitions of Figure 7 perform the same
action: both of them have labell and generate a new namex in the target state. At the level of the HDS-automata,
however, the two transitions have a different meaning: in the left transition, namex can correspond to any name; in the
right transition, it can correspond to any nameexceptnamen of the source state. A HDS-automaton with one infinite
repository implements a mechanism for generating fresh names that resembles the fresh-input transitions of�-calculus,
while a HD-automaton implements a mechanism that resemblesthe bound-output transitions, and, as we have discussed
in Section 6.1, the two mechanisms are quite different. To simulate the form of name generation that is realized by the
HD-automata, two infinite repositories of names are necessary in the HDS-automata: we denote them with�(/).*-+, and !(/).*-+,.
When a fresh name is generated in a transition of the HD-automaton, then a name is taken from the repository�(/).*-+, in the
corresponding transition of the HDS-automaton. Instead, when a name is forgotten in a transition of the HD-automaton,
then that name is put into repository!(/).*-+, in the HDS-automaton. This correct translation is illustrated in Figure 8: here
the two transitions match also in the case of the HDS-automata, if we assume that namen of the source state of the right
transition corresponds in the left transition to a name in repository !(/).*-+,, that is, if we assume that the left HDS-automaton
has already forgotten namen.

Finally, we assume that the set of namesN associated to the HDS-automata is split in two infinite subsetsNHD andN�. We assume thatNHD contains all the global names used in the HD-automata (that is, if �0 is the initial embedding
of a HD-automaton, thenod(�0) � NHD). This split in the names of HDS-automata is necessary to guarantee that all
the HDS-automata associated to HD-automata agree on the namesN� that are initially reserved for repository�(/).*-+,.

Definition 6.6 (from HD-automata to HDS-automata) The HDS-automatonB corresponding to HD-automatonA is
defined as follows:� LB = LA and, for eachl 2 LB, LB[l℄ = ���n 2 L[l℄; �(/).*-+,; !(/).*-+,

��	;

36

x n xq1

q1

q01

q01t1
t1l
l

�� ! ! �x� q2

q2 q02
q02

t2
t2

l
l

! ! �
�� ! ! �n x! !

Figure 8: Correct translation from HD-automata to HDS-automata� QB = QA and, for eachq 2 QB, QB[q℄ = ���n 2 Q[q℄; �(/).*-+,; !(/).*-+,
��	;� TB = TA and, for eacht 2 TB, TB[t℄ = ���n 2 T[t℄; �(/).*-+,; !(/).*-+,

��	;� sB = sA, and, ift 2 TB then sB[t℄ = 8>>><>>>:��������� n 7! sA[t℄(n) if n 2 dom(sA[t℄)n 7! �(/).*-+, otherwise�(/).*-+, 7! �(/).*-+,!(/).*-+, 7! !(/).*-+,

���������9>>>=>>>;� dB = dA, and, ift 2 TB then dB[t℄ = 8>>><>>>:��������� n 7! dA[t℄(n) if n 2 dom(dA[t℄)n 7! !(/).*-+, otherwise�(/).*-+, 7! �(/).*-+,!(/).*-+, 7! !(/).*-+,

���������9>>>=>>>;� oB = oA, and, ift 2 TB then oB[t℄ = 8>>><>>>:��������� n 7! oA[t℄(n) if n 2 dom(oA[t℄)n 7! !(/).*-+, otherwise�(/).*-+, 7! �(/).*-+,!(/).*-+, 7! !(/).*-+,

���������9>>>=>>>;� q0B = q0A, and f0B = 8><>:������� n 7!��10A(n) if n 2 od(�0A)n 7! !(/).*-+, if n 2 NHD n od(�0A)n 7! �(/).*-+, if n 2 N� �������9>=>;
By exploiting this encoding, all the formalisms that we havemapped into Basic HD-automata in Section 4 can be

mapped as well into HDS-automata. In the case of the history-preserving semantics of Petri nets, moreover, the possi-
bility of using symmetries in the label is particularly convenient; according to Definition 5.26, in fact, each transition on
the net configurations is mapped into a set of transitions of the HD-automaton: these transitions differ for a permutation
of the names that represent the past causes. By exploiting the symmetries, a single transition is required, where all the
names that represent the past clauses are declared indistinguishable.

37

l 2 L� tau in in2 out out2 boutL�[l℄ fj � '!&"%#$; u '!&"%#$ jg�����nsub; nobj;� '!&"%#$; u '!&"%#$

���������� n;� '!&"%#$; u '!&"%#$

����������nsub; nobj;� '!&"%#$; u '!&"%#$

���������� n;� '!&"%#$; u '!&"%#$

����������nsub; nobj;� '!&"%#$; u '!&"%#$

�����
Table 7: The named set of labels for early�-calculus

6.3.2 From early�-calculus to HDS-automata

Now we map theearly semantics of�-calculus agents (see Section 3.2) into HDS-automata. As wehave already
discussed in the introduction of this chapter, two infinite repositories of names are used in this case. The first one, that
we denote with� '!&"%#$, is used for the names that are generated by the agent in the bound output transitions. The other one,
denoted withu '!&"%#$, is used for the names that exist in the environment but that are not known by the agent; fresh names are
taken from here in the case of input transitions, and names that are forgotten in the transitions of the agent are collected
in this infinite repository.

Now we define the named set with symmetriesL�e of the labels for the�-calculus (see also Table 7). Differently
from the labels defined in Section 4.1 for the ground semantics, here we have free input actionsin andin2 instead of
bound input actionbin. L�e = ftau; in; in2; out; out2; boutg:
No distinct name is associated totau, one distinct name (n) is associated toin2 andout2, and two distinct names (nsub
andnobj) are associated toin, out andbout. In all these labels, then, there are the two infinite repositories � '!&"%#$ and u '!&"%#$.
Labelsin2 andout2 are used when subject and object names of inputs or free outputs coincide.

As we have done in Section 4 for the ground semantics of�-calculus, we assume to have a functionnorm that
selects the representative of each class of agents differing for a renaming. Onlyrepresentative transitionsare used when
building a HDS-automaton from a�-calculus agent. Representative transitions are defined asfor the ground semantics
(Definition 4.4). According to that definition, a single transition is taken from a bunch of bound outputs that differ
only for the extruded name, and from a bunch of input transitions that differ in the fresh name that is received from the
environment. In the case of the input transitions, all the names that appear in the source state have to be considered as
other possible input values.

Finally, we assume that the set of namesN is split in two infinite subsetsN � andN u. NamesN � are reserved: they
are used when a name is created during the bound output transition. Hence, we assume that, initially, all the free names
of �-calculus agents are inN u.

Definition 6.7 (from �-calculus agents to HDS-automata)Letp be a�-calculus agent withfn(p) � N u.
The HDS-automatonA�ep corresponding top is the smallest HDS-automaton that respects the following rules:� if norm(p) = (q; �) then:

– q 2 Q is the initial state andQ[q℄ = fjn 2 fn(q); � '!&"%#$; u '!&"%#$ jg;
– the initial embedding is defined as follows:f0 = 8<:������ n 7!�(n) if n 2 fn(p)n 7! u '!&"%#$ if n 2 N u n fn(p)n 7! � '!&"%#$ if n 2 N � ������9=;� if q 2 Q, q ��! q0 is a representative transition andnorm(q0) = (q00; �), then:

– q00 2 Q andQ[q00℄ = fjn 2 fn(q00); � '!&"%#$; u '!&"%#$jg;
– there is somet 2 T such thatT[t℄ = ���n 2 � fn(q) [n(�)�; � '!&"%#$; u '!&"%#$

��	; moreover

38

� � xy xx �xy �xx �x(y)l 2 L� tau in in2 out out2 bout2 = �(3) 2 n(�) = x y x x y x x y3 = �(2) 2 L�[l℄ = nsub nobj n nsub nobj n nsub nobj
Table 8: Relations between early�-calculus labels and labels of HDS-automata

– s(t) = q, d(t) = q00, s[t℄ =8>>>>><>>>>>:����������� n 7!n if n 2 fn(q)n 7! � '!&"%#$ if � = x(y) andn = yn 7! u '!&"%#$ if � = xy, y 62 fn(q) andn = y� '!&"%#$ 7! � '!&"%#$u '!&"%#$ 7! u '!&"%#$

�����������9>>>>>=>>>>>;d[t℄ =8>><>>:�������� n 7!�(n) if n 2 fn(q0)n 7! u '!&"%#$ if n 2 (fn(q) [n(�)) n fn(q0)� '!&"%#$ 7! � '!&"%#$u '!&"%#$ 7! u '!&"%#$

��������9>>=>>;
– o(t) = l and o[t℄ =8>><>>:�������� n 7!�(n) if n 2 n(�)n 7! u '!&"%#$ if n 2 fn(q) n n(�)� '!&"%#$ 7! � '!&"%#$u '!&"%#$ 7! u '!&"%#$

��������9>>=>>;
wherel and� are related to� as defined in Table 8.

Definition 6.7 gives rise in general to infinite HDS-automata. However, there are classes of�-calculus agents that
generate finite HDS-automata. This is case offinitary �-calculus agents (Definition 4.7).

Theorem 6.8 Letp be a finitary�-calculus agent. Then the HD-automatonA�ep is finite.

Proof. The proof of Theorem 4.8 can be reused, with small changes, also in this case. 2
We recall that it is not decidable whether an agent is finitary; however, there are subclass of finitary agents which can be
characterized syntactically. The most well-known is the class of the agents withfinite control.

6.4 Bisimulation on HDS-automata

Now we introduce bisimulation on HDS-automata and describesome of its basic properties. We also show that early
bisimulation on�-calculus agents is captured by bisimulation on HDS-automata.

Similarly to what happens for HD-bisimulation (Section 4.2), also a HDS-bisimulation is a set of triples of the formhq1; Æ; q2i whereq1 andq2 are states of the automata andÆ is a correspondence between the names of the states; in this
case, however, the correspondence between the names in total, i.e., Æ : N ! N is a total bijection between the names
of q1 and those ofq2.

Let us consider the HDS-automata in Figure 9. We want to checkif statesq1 andq2 are bisimilar via the bijectionÆ.
Stateq1 can perform a transitiont1 : q1 l�! q01. We cannot requite that this transition is matched by a single transition
of q2: in fact, in stateq1 there is a symmetry between names1 and2, so, in transitiont1 the name in the label can
correspond both to name1 and to name2 of the source state. In stateq2 there is no symmetry between names1 and2, but there are two transitions, that use name1 and2, respectively. We consider bisimilar these two HDS-automata,
proviso the target states are bisimilar according to the correspondencesÆ0 andÆ00 represented in figure; in fact, we do not
want to distinguish between the symmetries in the behaviorsthat are “declared” in the states and those that are implicit
in the transitions of the HDS-automaton. So, transitiont1 to be matched by the pair of transitionst2 andt02, one for
each of the symmetric behaviors oft1. This is obtained in the definition of HDS-bisimulation by requiring that, given

transitiont1 : q1 l�! q2, for each bijection7 �1 2 s1[t1℄ there exist a transitiont2 from q2 and a bijection�2 2 s2[t2℄ so
7It is worth remind that, according to Definition 6.3, all the permutations in the symmetry ofq1 are reflected in the bijections that form the

embeddings1[t1℄.
39

t1
l q01

ll

q1

q2
t2

t02 q002

q02Æ Æ00
Æ0

12

21

Figure 9: A step of bisimulation on HDS-automata

40

thatt1 andt2 match w.r.t. bijections�1 and�2. This behavior works correctly also in the case of the input transitions in
the HDS-automata obtained from�-calculus agents. In this case, in fact, if stateq1 has a distinct namen that does not
appear in stateq2, this name is mapped byÆ in repository u '!&"%#$ of stateq2. The specific transition ofq1 that corresponds to
the reception of namen is correctly matched inq2 by the “default” transition that corresponds to the reception of a fresh
name taken fromu '!&"%#$. In the general case, we have to take into account not only thesymmetries of the source state, but

also those of the label and of the target state of a transition. So, a matching has to be found for a transitiont1 : q1 l�! q01
and three bijections�1 2 s1[t1℄, 1 2 l1[t1℄ and�1 2 d1[t1℄.
Definition 6.9 (HDS-bisimulation) LetA1 andA2 be two HDS-automata. AHDS-simulationfor A1 andA2 is a set
of triplesR � fhq1; Æ; q2i j q1 2 Q1; q2 2 Q2; Æ : N ! Ng such that, wheneverhq1; Æ; q2i 2 R then:

for each transitiont1 : q1 l�! q01 in A1 and bijections�1 2 s1[t1℄, 1 2 o1[t1℄ and�1 2 d1[t1℄, there

exist some transitiont2 : q2 l�! q02 in A2 and bijections�2 2 s2[t2℄, 2 2 o2[t2℄ and�2 2 d2[t2℄,
such that�1; Æ;��12 = 1; �12 = �1; Æ0;��12 andhq01Æ0; q02i 2 R.

(�)
A HDS-bisimulationfor A1 andA2 is a set of triplesR such thatR is a HD-simulation forA1 andA2 andR�1 =fhq2; Æ�1; q1i j hq1; Æ; q2i 2 Rg is a HD-simulations forA2 andA1.
A HDS-bisimulation forA is a HDS-bisimulation forA andA.
The HDS-automataA1 andA2 areHDS-bisimilar(writtenA1 � A2) if there exists some HDS-bisimulation forA1 andA2 such thathq01; Æ; q02i 2 R for Æ = �01;��102 .

If R is a HDS-bisimulation forA1 andA2, and a pair of transitionst1 in A1 and t2 in A2 satisfy condition (�) in
definition above holds, then we write, with a light abuse of notation, thatht1; �; t2i 2 R, where� = �1; Æ;��12 .

6.4.1 Some basic properties of HDS-bisimulation

In this section we present some basic properties of HDS-bisimulations. First of all, similarly to HD-bisimulations
(Subsection 4.2.1), also HDS-bisimulations are closes w.r.t. union and concatenation.

Proposition 6.10 Let fRi j i 2 Ig be a (finite or infinite) set of HDS-bisimulations forA1 andA2. Then
Si2I Ri is a

HDS-bisimulation forA1 andA2.
If R is a HDS-bisimulation forA1 andA2 andS is a HDS-bisimulations forA2 andA3 thenR_ S is a HDS-

bisimulation forA1 andA3, where:R_ S def= fhq1; (Æ; Æ0); q3i j hq1; Æ; q2i 2 R; hq2; Æ0; q3i 2 Sg:
As a consequence, greatest HDS-bisimulations exist: we denote withRA1;A2 the greatest HD-bisimulation forA1 andA2, and withRA the greatest HD-bisimulation forA. Moreover, relation� is an equivalence on HDS-automata.

In the case of HDS-bisimulation, operatorb� has no meaning: the name correspondence in a triple of a HDS-
bisimulation is a total bijection, and it is not possible to extend it to new pairs of names. In the case of HDS-bisimulations,
however, a new operator can be defined, that closes a bisimulation w.r.t. all the symmetries that are present in the states
of the HDS-automata.

Proposition 6.11 If R is a HDS-bisimulation forA1 andA2 then eR is a HDS-bisimulation forA1 andA2, where:eR def= fhq1; Æ0; q2i j hq1; Æ; q2i 2 R; Æ0 = �1; Æ;�2 and�1 2 Q1[q1℄; �2 2 Q2[q2℄g:
Proof. We prove thateR is a HDS-simulation wheneverR is a HDS-simulation.
Assumehq1; Æ0; q2i 2 eR. Then, by definition ofeR, hq1; Æ; q2i 2 R withÆ0 = �1; Æ;�2 (25)

for some�1 2 Q1[q1℄ and�2 2 Q2[q2℄.
Let t1 : q1 l�! q01 and�01 2 s1[t1℄, 1 2 o1[t1℄, �1 2 d1[t1℄.
Now, let �1 def= �01;�1: (26)

Then, according to definition of embedding on symmetries,�1 2 s1[t1℄.
41

Sincehq1; Æ; q2i 2 R andR is a HDS-bisimulation, then there existt2 : q2 l�! q02 and�2 2 s2[t2℄, 2 2 o2[t2℄, �2 2 d2[t2℄ such
that �1; Æ;��12 = 1; �12 = �1; Æ00; ��12
andhq01; Æ00; q02i 2 R.
Moreover, let �02 def= �2;�2: (27)

Then, applying equations (26), (25) and (27) to�1; Æ;��12 = 1; �12 , we obtain�01; Æ0;�02�1 = 1; �12 :
Moreover,R � eR, sohq01; Æ00; q02i 2 R implies hq01; Æ00; q02i 2 eR. This proves thatt2 is a good matching transition fort1 also for
relation eR.
This concludes the proof thateR is a HDS-simulation wheneverR is a HDS-simulation. To prove thateR is a HDS-bisimulation

wheneverR is a HDS-bisimulation it is sufficient to notice that
� eR��1 = gR�1. 2

6.4.2 Global states and global bisimulation

Now we define global bisimulation on HDS-automata; the intuition is similar to the one applied in Subsection 4.2.2 for
HD-automata: we enrich states and transitions with a mapping from their local names into the global names.

Definition 6.12 (global states and global transitions)A global stateof a HDS-automatonA is a pairg = (q; �), whereq 2 Q and� : N ! N . The set of all the global states ofA is denoted byG.
A global transitionis a pair u = (t; �), wheret 2 T and� : N ! N . The set of all the global transitions ofA is
denoted byU .

If t : q l�! q0 then we write(t; �) : (q; �) (l;�)�! (q0; �0), where� = ��1; �, and� = �1; �, and�0 = ��1; � for some� 2 s[t℄, 2 o[t℄ and� 2 d[t℄.
We remark that this definition is different in many aspects from the definition of global states and global transitions on
Basic HD-automata (Definition 4.17). First of all, global states and global transitions are not named sets with symme-
tries: it is meaningless to define symmetries on global names, since this is contrary to the intuition that global names,
differently from local names, have a precise identity. Global states and global transitions can be seen better as a con-
venient notation: this interpretation is enforced by the fact that different repositories, labels and targets can be assigned

to the same global transition(t; �): in fact, it holds that(t; �) : (q; �1) (l;�1)�! (q0; �01) and(t; �) : (q; �2) (l;�2)�! (q0; �02)
whenever�1 and�2 differ for a permutation in the symmetry ofq (and similarly for the labels and the targets).

Now we give the definition of global bisimulation on HDS-automata.

Definition 6.13 (global bisimulation) LetA1 andA2 be two HDS-automata. Aglobal simulationfor A1 andA2 is a
relationR � G1 �G2 such that wheneverg1 R g2 then:

for all u1 : g1 k�! g01 in U1 with there exist someu2 : g2 k�! g02 in U2 such thatg01 R g02.
A global bisimulationfor A1 andA2 is a relationR � G1 �G2 such thatR is a global simulation forA1 andA2 andR�1 is a global simulation forA2 andA1.
The HDS-automataA1 andA2 are global-bisimilariff there exists some global bisimulation forA1 andA2 such that(q01; �01) R (q02; �02) for each�01 2 f01 and�02 2 f02.

In the definition of global bisimulation for Basic HD-automata, clause “U1[u1℄new \ G2[g2℄ = ;” was added to
guarantee the freshness for of the new names introduced in a transition. This clause is not necessary in the case of
HDS-automata, since the mechanism of infinite repositoriesis sufficient to guarantee the correspondence of the new
names.

Proposition 6.14 Two HDS-automata are HDS-bisimilar iff they are global bisimilar.

Proof. We show that ifR is a HDS-bisimulation thenR0 def= fh(q1; �2); (q2; �2)i j hq1; (�1;��12); q2i 2 Rg
42

is a global bisimulation, and, conversely, that ifR0 is a global bisimulation thenR def= fhq1; (�1;��12); q2i j (q1; �2) R0 (q2; �2)g
is a HDS-bisimulation.
We proof only the first implication: the second can be recovered easily by reverting the steps of the proof.

Assume that(q1; �1) R0 (q2; �2). By definition of global bisimulation, we want to prove that for each(t1; �1) : (q1; �1) (l;�)�! (q01; �01)
there is some(t2; �2) : (q2; �2) (l;�)�! (q02; �02) such that(q01; �01) R0 (q02; �02).
By definition of global transitions this corresponds to prove that for eacht1 : q1 l�! q01, �1 2 s1[t1℄, �1 2 d1[t1℄, 1 2 o1[t1℄ there

existt2 : q2 l�! q02, �2 2 s2[t2℄, �2 2 d2[t2℄, 2 2 o2[t2℄ such that�11 ;�1;�1 = � = �12 ;�2;�2 (28)

and(q01; �01) R0 (q02; �02) with �01 = ��11 ;�1;�1 and �02 = ��12 ;�2;�2: (29)

Now, (28) and (29) are equivalent to require that�1; Æ;��12 = 1; �12 = �1; Æ0; ��12
for Æ def= �1;��12 andÆ0 def= �01;�02�1.
That is, it is equivalent to require that transitionst1 andt2 match according to HDS-bisimulationR. 2
6.4.3 Relating HD-bisimulation and HDS-bisimulation

In Subsection 6.3.1 we have seen a mapping from HD-automata to HDS-automata. Here we show that, according to this
map, HDS-bisimilar HDS-automata are associated to, and only to, HD-bisimilar HD-automata.

Theorem 6.15 LetA1 andA2 be two Basic HD-automata, and letB1 andB2 be the corresponding HDS-automata,
according to Definition 6.6. ThenA1 � A2 if and only ifB1 � B2.
Proof (Sketch). If R is the greatest HD-bisimulation betweenA1 andA2, thenR0 is a HDS-bisimulation betweenB1 andB2,
where R0 def= fhq1; Æ0; q2i j hq1; Æ; q2i 2 R ^ Æ0 : N ! N ^ Æ0 extendsÆg
and whereÆ0 extendsÆ if the following conditions hold:� Æ � Æ0 (i.e., all the name correspondences inÆ are also inÆ0),� n 2 � '!&"%#$ if and only if Æ0(n) 2 � '!&"%#$ (i.e., the names in sinks� '!&"%#$ in q1 andq2 correspond throughÆ0),� if n 2 QA1 [q1℄ n dom(Æ) thenÆ0(n) 2 !(/).*-+,[(QA2 [q2℄ n od(Æ)) and ifÆ0(n) 2 QA2 [q2℄ n od(Æ) thenn 2 !(/).*-+,[(QA1 [q1℄ ndom(Æ)) (i.e., all the distinct names ofq1 that are not in relationÆ are mapped into names of sink!(/).*-+,, and vice-versa).

For the converse, ifR0 is the greatest HDS-bisimulation betweenB1 andB2, thenR is a HD-bisimulation betweenA1 andA2,
where: R def= fhq1; Æ; q2i j hq1; Æ0; q2i 2 R0 ^ Æ = Æ0 \ (QA1 [q1℄�QA2 [q2℄)g: 2
6.4.4 Relating�-calculus early bisimulation and HDS-bisimulation

Now we show that two�-calculus agents are bisimilar, according to the early semantics, if and only if the corresponding
HDS-automata are bisimilar.

Theorem 6.16 LetA�e1 andA�e2 be the HDS-automata that correspond to�-calculus agentsp1 andp2, according the
earlysemantics. Thenp1 �e p2 iff A�e1 � A�e2 .

Proof (Sketch). For the “if” implication, we show that, ifR is a HDS-bisimulation forA�e1 andA�e2 , thenR0 = fhp1�1; p2�2i j �1; �2 : N ! N ; hp1; (�1;��12); p2i 2 Rg
is a�-calculus early bisimulation.
Assumeq1 R0 q2. Thenhp1; (�1;��12); p2i 2 R andq1 = p1�1, q2 = p2�2.
Assumeq1 ��! q01 with bn(�) \ fn(q1jq2) = ;. Then we want to prove thatq2 ��! q02 andq01 R0 q02.
The proof proceeds by cases, considering the different kinds of �-calculus transitions. Here we consider only the input transitionsq1 xy�! q01.
We distinguish five sub-cases:

43

1. x 6= y, y 2 fn(q1) andy 2 fn(q2);
2. x 6= y, y 2 fn(q1) andy 62 fn(q2);
3. x 6= y, y 62 fn(q1) andy 2 fn(q2);
4. x 6= y, y 62 fn(q1) andy 62 fn(q2);
5. x = y (hencey 2 fn(q1) andy 2 fn(q2)).

Let us consider sub-case 1.
Since�1 is a bijection onN , q1 xy�! q01 impliesp1 ab�! p01 with x = �1(a), y = �1(b) andq01 = p01�1: (30)

Clearly, b 2 fn(p1), sop1 ab�! p01 is a representative transition. By Definition 6.7,t1 : p1 in�! p001 is a transition ofA�e1 , wherenorm(p01) = (p001 ; �001).
Let us fix any�1 2 s1[t1℄, 1 2 o1[t1℄ and�1 2 d1[t1℄.
Then there are somet2 : p2 in�! p002 , �2 2 s2[t2℄, 2 2 o2[t2℄, and�2 2 d2[t2℄, such that�1; (�1;��12);��12 = 1; �12 = �1; Æ0; ��12 (31)

andhp001 ; Æ0; p002 i 2 R for someÆ0.
Now, sincet2 : p2 in�! p002 , there must be some representative transitionp2 d�! p02 such that(p002 ; �002) = norm(p02).
Thenq2 wz�! q02, wherew = �2(), z = �2(d) and q02 = p02�2: (32)

Now we show thatw = x. In fact,1(a) = nsub = 2(). By applying (31) this implies�1(�1(a)) = �2(�2()). However, sincea 2 fn(p1), by constriction�1(a) = a. Similarly,�2() = . So,x = �1(a) = �2() = w.
Analogously,y = z holds.
It remains to show thatq01 R0 q02. To this purpose, we show thatq01 = p001�01 and q02 = p002�02 (33)

for some�01 and�02 such that�01;�02�1 = Æ0. Then,q01 R0 q02 derives. by definition ofR0, from hp001 ; Æ0; p002 i 2 R.

Let �01 def= �001�1;�1 and�02 def= Æ0�1;�01. Then, clearly,�01;�02�1 = Æ0.
Now we show that (33) holds. First of all,q01 = p01 by (30)= p001�001�1�1 sincenorm(p01) = (p001 ; �001);
which proves the first equivalence of (30). For the second equivalence, we observe thatq02 = p02�2 by (32)= p002�002�1�2 sincenorm(p02) = (p002 ; �002):
It is hence sufficient to prove that�02(n) = �2(�002�1(n)) for eachn 2 fn(p002).
By definition of�01 and of�02, this amounts to require that�1(�001�1(Æ0�1(n))) = �2(�002�1(n)): (34)

Letm def= �001�1(Æ0�1(n)). Then we can rewrite (34) as follows:��12 (�1(m)) = �002�1(Æ0(�001 (m))): (35)

This is a consequence of�1; (�1;��12);��12 = �1; Æ0; ��12 , since by constructionidfn(p01) � �1, �001 � �1, and similarly for�2 and�2.
This completes the proof of sub-case 1. The other cases of theinput transitions, as well as the other kinds of transitions, follow similar
patterns.
The proof of the “only if” implication is similar. 2

44

1 2

Amin t p�
Figure 10: A minimal HDS-automaton for the HD-automata of Figure 4.

6.5 Minimizing HDS-automata

In this section we show that, given a HDS-automatonA, it is possible to minimize it, i.e., to define a HDS-automatonAmin that is bisimilar toA and that is “minimal” in the class of HDS-automata bisimilartoA— we define below what
is the meaning of “minimal”.

We start by showing that the counter-example presented in Section 4.3 on the existence of minimal HD-automata
does not apply to the case of HD-automata with Symmetries. The minimal HDS-automaton corresponding to the two
HD-automata in Figure 4 is represented in Figure 10. HDS-automatonAmin has a single statep, with one infinite
repository and two distinct names1 and2. Moreover the symmetry associated to statep declares that names1 and2
can be switched without affecting the behavior. HDS-automatonAmin has one transitiont, that exhibits one of the two
names in the label�. Also the transition and the label have one infinite repository. In the figure, we have not represented
explicitly that the infinite repositories ofp, t and� are in correspondence along the transition.

The possibility of declaring the symmetry on the two names1 and2 of statep is the key feature for obtaining a
canonical minimal HDS-automaton. Indeed, this symmetry makes it possible to use a single transitiont of Amin to
represent both transitions ofA andB — the two transitionst1 andt2 in the HD-automata differ only for the choice of
the name to exhibit in the action. Moreover, the symmetry between1 and2 makes ephemeral the fact that the two names
are exchanged or not along transitiont.

We start by describing the fine structure ofRA. This will be useful to guide the construction of the minimalautoma-
ton. First of all, relationRA is closed for concatenation, so it defines a partition on the statesQ of A; that is, relation�A is an equivalence, where p �A q iff hp; Æ; qi 2 RA for someÆ.
Consider two statesp; q 2 Q, and let�A(p; q) be the set of correspondences that exist, according toRA, between the
names ofp and ofq: �A(p; q) def= fÆ j hp; Æ; qi 2 RAg:
The following proposition shows that:1. �A(q; q) is a symmetry onN andQ[q℄ is a subset of�A(q; q); that 2.�A(p; q) can be recovered, starting from any of its elements, sayÆ, by composingÆ with all the elements of�A(q; q);
and that3. if two statep andq are equivalent, then�A(p; p) are�A(q; q) are isomorphic.

Proposition 6.17 LetA be a HD-automaton. Then:

1. �A(q; q) is symmetry onN such thatQ[q℄ � �A(q; q);
2. if Æ 2 �A(p; q) then�A(p; q) = fÆ; Æ0 j Æ0 2 �A(q; q)g = fÆ0; Æ j Æ0 2 �A(p; p)g;
3. if p �A q andÆ 2 �A(p; q), then�A(q; q) = fÆ�1; �; Æ j � 2 �A(p; p)g.

Proof.

1. The proof that�A(q; q) is a symmetry is easy: clearlyidN 2 �A(q; q); moreover, ifÆ 2 �A(q; q) andÆ0 2 �A(q; q) thenÆ; Æ0 2 �A(q; q) by Proposition 6.10. Finally, ifÆ 2 �A(q; q) thenÆ�1 2 �A(q; q) sinceRA is symmetric.

AssumeÆ 2 Q[q℄. SinceidN 2 �A(q; q) andidN 2 Q[q℄, then by Proposition 6.11Æ = Æ; idN ; idN 2 �A(q; q).
45

2. LetÆ 2 �A(p; q).
By Proposition 6.10, ifÆ0 2 �A(q; q) thenÆ; Æ0 2 �A(p; q). This proves that�A(p; q) � fÆ0; Æ j Æ0 2 �A(p; p)g.
Conversely, assumeÆ00 2 �A(p; q). By symmetry ofRA, Æ�1 2 �A(q; p). Hence, by settingÆ0 def= Æ�1; Æ00 we obtainÆ0 2 �A(q; q). Clearly,Æ00 = Æ; Æ0, and this proves that�A(p; q) � fÆ0; Æ j Æ0 2 �A(p; p)g.

3. LetÆ 2 �A(p; q) (set�A(p; q) is not empty sincep � q). ThenÆ�1 2 �A(q; p) by symmetry ofRA.

If �0 2 �A(q; q) then� def= Æ; �0; Æ�1 2 �A(p; p) by Proposition 6.10.

Conversely, if� 2 �A(p; p) then�0 def= Æ�1; �; Æ 2 �A(p; p). 2
Also the transitions can be partitioned in a similar fashion. So, on the transitions we definet �A t0 iff ht; �; t0i 2 RA for some�.

This relation turns out to be an equivalence. Moreover, by defining�A(t; t0) = f� j ht; �; t0i 2 RAg;
the results of Proposition 6.17 also hold for transitions.

Now we are ready to define the minimal HDS-automaton corresponding to a given HDS-automatonA. It is obtained
by replacing each class of equivalent states and transitions of A with a single state or transition. The symmetries
associated to states and transitions of the minimal HDS-automaton are those defined by�A: these, in fact, express all
the symmetries that exist between the names, not only those “declared” in HDS-automatonA. We remark that it is the
possibility of representing the symmetries defined by the HDS-bisimulations directly in the states of an automaton that
allows for the definition of minimal HDS-automata.

In the definition of the minimal HDS-automaton, we denote with [q℄�A the equivalence classes of the states w.r.t.�A; that is,[q℄�A = fq0 j q �A q0g. We also assume that a canonical representative is defined for any such class, and
we denote withbq�A the canonical representative of class[q℄�A ; that is,bq�A 2 [q℄�A and wheneverq �A q0 thenbq�A = bq0�A . Similar notations are used for the transitions.

A HDS-automaton may contain states and transitions that arenot reachable from the initial state. These states
and transitions should not appear in the minimal HDS-automaton, since they do not contribute to the definition of the
behavior of the automaton. We start by defining formally reachable states and transitions.

Definition 6.18 (reachable states)Reachable states and reachable transitions of HDS-automatonA are the smallest
sets of states and transitions that are closed for the following rules:� q0 is a reachable state;� for all t 2 T , if s(t) is a reachable state, thent is a reachable transition;� for all t 2 T , if t is a reachable transition, thend(t) is a reachable state.

The definition of minimal HDS-automaton follows.

Definition 6.19 (minimal HDS-automaton) The minimal HDS-automatonAmin forA is defined as follows:� Lmin = L andLmin[l℄ = L[l℄ for eachl 2 Lmin;� Qmin = fbq�A j q 2 Q; q reachable stateg andQmin[q℄ = �A(q; q) for eachq 2 Qmin;� Tmin = fbt�A j t 2 T; t reachable transitiong andTmin[t℄ = �A(t; t) for eacht 2 Tmin;� omin(t) = o(t) andomin[t℄ = o[t℄ for eacht 2 Tmin;� smin(t) = bs(t)�A and smin[t℄ = �� j � = �0;�00 for �0 2 s(t) and�00 2 �A(s(t); bs(t)�A)	 for eacht 2 Tmin;� dmin(t) = bd(t)�A and dmin[t℄ = �� j � = �0;�00 for �0 2 d(t) and�00 2 �A(d(t); bd(t)�A)	 for eacht 2 Tmin;� q0min = bq0�A andf0min = �� j � = �0;�00 for �0 2 f0 and�00 2 �A(q0; qmin0)	.

A first, important property of minimal HDS-automata is thatAmin is HDS-bisimilar to the original HDS-automatonA.

46

Proposition 6.20 LetA be a HDS-automaton. ThenA � Amin.

Proof (Sketch). It is easy to prove thatR def= fhq; �; bq�Ai j q 2 QA reachable statê � 2 �A(q; bq�A)g
is a HDS-bisimulation. 2

Now we show that minimal HDS-automata are unique, up to isomorphism, for each class of bisimilar HDS-automata.
We start by defining isomorphic HDS-automata.

Definition 6.21 (isomorphic HDS-automata)An isomorphismbetween two HDS-automataA andB is a pair of named
functions with symmetries(iQ; iT) with iQ : QA ! QB andiT : TA ! TB such that:� iQ : QA ! QB and, for eachq 2 QA, holdsQB[iQ(q)℄ = iQ[q℄�1;QA[q℄; iQ[q℄;� iT : TA ! TB and, for eacht 2 TA, holdsTB[iT (t)℄ = iT[t℄�1;TA[t℄; iT[t℄;� for all t 2 TA holdoA(t) = oB(iT (t)) andoA[t℄ = iT[t℄; oB[iT (t)℄;� for all t 2 TA hold iQ(sA(t)) = sB(iT (t)) andsA[t℄; iQ[sA(t)℄ = iT[t℄; sB[iT (t)℄;� for all t 2 TA hold iQ(dA(t)) = dB(iT (t)) anddA[t℄; iQ[dA(t)℄ = iT[t℄; dB[iT (t)℄.
It is easy to see that, by changing the canonical representatives bq�A of the states of HDS-automatonA, isomor-
phic minimal HDS-automata are obtained. Moreover, isomorphic HDS-automata are HDS-bisimilar, as shown by the
following proposition.

Proposition 6.22 LetA andB be two isomorphic HDS-automata. ThenA andB are HDS-bisimilar.

Proof (Sketch). Let (iQ; iT) be an isomorphism betweenA andB. It is easy to prove thatR def= fhq; iQ[q℄; iQ(q)i j q 2 QAg
is a HDS-bisimulation. 2

The next lemma shows that two equivalent statesq1 andq2 in two bisimilar HDS-automataA1 andA2 have isomor-
phic symmetries�A1(q1; q1) and�A1(q2; q2). This lemma will be used in the proof that two bisimilar HDS-automata
have isomorphic minimal realizations.

Lemma 6.23 Letq1 2 Q1 andq2 2 Q2 be two states of two HDS-automataA1 andA2 and let�A1;A2(q1; q2) def= fÆ jhq1; Æ; q2i 2 RA1;A2g. Then, for anyÆ 2 �A1;A2(q1; q2):�A1;A2(q1; q2) = �A1(q1; q1); Æ = Æ; �A2(q2; q2):
Moreover,�A1;A2(q1; q2) is an embedding of symmetry�A1(q1) into symmetry�A2(q2).
Proof. Let Æ 2 �A1;A2(q1; q2). We prove that�A1;A2(q1; q2) = �A1(q1; q1); Æ. By Proposition 6.10, ifÆ1 2 �A1(q1; q1) thenÆ1; Æ 2 �A1;A2(q1; q2). This proves that�A1;A2 (q1; q2) � fÆ1; Æ j Æ1 2 �A1 (q1; q1)g. Conversely, assumeÆ0 2 �A1;A2(q1; q2).
Let Æ1 def= Æ0; Æ�1. By Proposition 6.10 we haveÆ1 2 �A1 (q1; q1). Clearly,Æ0 = Æ1; Æ, and this proves that�A1;A2(q1; q2) �fÆ1; Æ j Æ1 2 �A1(q1; q1)g.
The proof that�A1;A2(q1; q2) = Æ; �A2 (q2) for anyÆ 2 �A1;A2(q1; q2) is similar.
Finally, from �A1(q1; q1); Æ = Æ; �A2 (q2; q2) we obtainÆ�1; �A1(q1; q1); Æ = �A2 (q2; q2). This concludes the proof that�A1;A2(q1; q2) is a symmetry embedding. 2
Proposition 6.24 LetA andB be two HDS-automata such thatA � B. ThenAmin andBmin are isomorphic.

Proof. Let iQ � QAmin �QBmin be defined as follows:(qa; qb) 2 iQ iff hqa; Æ; qbi 2 RA;B for someÆ:
Now we prove thatiQ : QAmin ! QBmin, namely thatqa in QAmin there is one, and only one,qb in QBmin such thathqa; Æ; qbi 2RA;B for someÆ. The fact that there is (at least) oneqb depends on the fact thatqa is reachable inA, and hence a matching stateqb
should exist inB according to the definition of HDS-bisimulation. On the other hand, ifqb andq0b are two states ofQBmin that can
matchqa, thenqb �B q0b, and henceqb = q0b by definition of minimal HDS-automaton. By the symmetry in the definition ofiQ we
deduce thati�1Q : QBmin ! QAmin , and henceiQ : QAmin ! QBmin.

47

Let us extend functioniQ to a named function with symmetries Let us defineiQ : QAmin ! QBmin as follows:iQ[qa℄ = fÆ j hqa; Æ; qbi 2 RA;Bg:
The fact thatiQ[qa℄ is indeed an embedding ofQA[qa℄ intoQB[iQ(qa)℄ is a consequence of Lemma 6.23.
Finally, again by Lemma 6.23 applied toiQ[qa℄�1, we haveQB[iQ(q)℄ = iQ[q℄�1;QA[q℄; iQ[q℄.
We defineiT : TAmin ! TBmin similarly to iQ, namely:(ta; tb) 2 iT iff hta; Æ; tbi 2 RA;B for someÆ:
and iT[ta℄ = fÆ j hta; Æ; tbi 2 RA;Bg:
Also in this case,iT is well defined, andTB[iT (t)℄ = iT[t℄�1;TA[t℄; iT[t℄.
To conclude the proof we have to show that(iQ; iT) is an isomorphism betweenAmin andBmin. We have already proved the first two
items in the definition of HDS-isomorphism. The other items follow easily by the definition of HDS-bisimulation. 2
Theorem 6.25 LetA andB be two HDS-automata. ThenA � B if and only ifAmin andBmin are isomorphic.

Proof. The “only if” implication consists of Proposition 6.24.
For the “if” implication, assume thatAmin andBmin are isomorphic. Then, by Proposition 6.22, we haveAmin � Bmin. By
Proposition 6.20 we also have thatA � Amin and thatBmin � B. By transitivity of� we conclude thatA � B. 2

The obtained HDS-automatonAmin is minimalsince it has the minimum number of states and of transitions among
the HDS-automata that are bisimilar toA; moreover, it has the maximum set of symmetries in these states and transitions.
Notice that increasing the symmetries in states and transitions is considered a step toward minimization: in fact, if larger
symmetries are present, then a smaller number of transitions is sufficient to represent the same behaviors. If we collapse
further states and transitions ofAmin, or if we enlarge symmetries of its states and transitions, anon-equivalent HDS-
automaton is obtained: this is a consequence of Proposition6.24.

7 A categorical approach to history dependent automata

In this section we give an alternative characterization of HD-automata and of HD-bisimulation in a categorical setting.
This approach works both for Basic HD-automata and for HD-automata with Symmetries.

We start by defining HD-automata by extending a classical categorical definitions of ordinary automata. (Section
7.1). Then, we exploit open maps [JNW96] to define HD-bisimulation on these categories of HD-automata (Section
7.2); we also show that, in the case of HD-automata with Symmetries, the minimal HDS-automaton, that we have built
explicitly in Section 6.5, is reobtained in the categoricalsetting.

7.1 The categories of HD-automata

In a categorical setting, an ordinary automaton is classically defined as a diagramL Tooo d 55

s
)) Q Iioo

in the categorySet of (small) sets. Usually, setI is a singletonf�g and the initial stateq0 of the automaton is designated
asi(�); we only consider such single-pointed automata in this chapter.

Given two automataA1 andA2 on the same setL of labels, amorphismm : A1 ! A2 is a pair of arrowsmQ : Q1 ! Q2 andmT : T1 ! T2 that respect sources, destinations, labels, and the initial state.
Automata and morphisms between automata form a categoryAut. It is often useful to consider the full subcategory

of Aut whose automata have the same setL of labels: this category is denoted byAutL.

7.1.1 Categories of enriched sets

Basic HD-automata and HD-automata with Symmetries can be defined in a similar way; we have just to replace the
categorySet with a category of “sets enriched with names” and of “sets enriched with symmetries”. Now we show that
also these “enriched sets” can be defined by exploiting a standard categorical construction, namely thè̀̀-construction.

Definition 7.1 (̀̀̀ -construction) Given a categoryC, thefree coproduct completionofC is the categorỳ̀̀ C defined
as follows:

48

� its objects are families (i.e., indexed sets) of objects ofC; more precisely, each objectA of
`̀̀C is a pair(A; (A[a℄)a2A), whereA is a set and, for eacha 2 A, A[a℄ is an object ofC;� its arrowsf fromA to B are pairs(f; (f[a℄)a2A), wheref : A ! B and, for eacha 2 A, f[a℄ : A[a℄ ! B[f(a)℄is

an arrow inC;� identity arrows and composition are defined as usual.

Notice that̀̀̀ C = �QQQ(Cop)�op, where
QQQ(D) is the free product completion of categoryD.

Now we revise the definitions of named sets (Definition 4.2) and of named sets with symmetries (Definition 6.4) in
a categorical setting, by using thè̀̀-construction.

Definition 7.2 (categoryNSet of named sets)LetN be an infinite, denumerable set ofnames.
CategoryJ of injective functions on namesis defined as follows:� objects ofJ are the subsets ofN ;� arrows ofJ are the injective functions between the subsets ofN ;� identity and composition are defined as usual.

CategoryNSet of named setsis defined as follows:NSet = `̀̀(Jop).
We would like to remark that categoryJ is similar to categoryI of injective functions on finite sets that has been used in
[Sta96], [FMS96], and [CSW97] as the category of names in semantic models of�-calculus. The difference is that sets
of cardinality! are allowed inJ, while they are not inI.

Notice that named sets are built on the top of categoryJop, rather than ofJ: in fact, according to Definition 4.2, in a
function between named sets, inverse injective functions are used on the names.

Definition 7.3 (categorySym of named sets with symmetries)CategorySym of thesymmetries onN is defined as
follows:� objects ofSym are the symmetries onN (Definition 6.1);� arrows ofSym are the embeddings on symmetries onN (Definition 6.3);� if � is an object ofSym, then the identity arrow for� is defined asid� = �;� if f : � ! �0 andf 0 : �0 ! �00 are two arrows ofSym, then their compositionf ; f 0 : � ! �00 is defined asf ; f 00 = f�;�0 j � 2 f; �0 2 f 0g.
CategorySymSet of named sets with symmetriesis defined as follows:SymSet = `̀̀ Sym.

7.1.2 Defining the enriched automata

Enriched automata on a base categoryC are defined by taking states, transitions, labels (and the morphisms between
them) from categorỳ̀̀ C.

Definition 7.4 (category of enriched automata)LetC be a base category. Anenriched automatononC is a diagramL Tooo d 55

s
)) Q Iioo

in categorỳ̀̀ C.
LetA1 andA2 be two enriched automata onC with the same labelsL and initial pointsI . A morphismm : A1 ! A2
is a pair of arrowsmQ : Q1 ! Q2 andmT : T1 ! T2 that respect sources, destinations, labels, and the initial states,
i.e., such that the two overlapped diagrams T1o1

zztttttt d1 44

s1
**mT

��

Q1mQ
��

L Ii1ddJJJJJJi2zzttttttT2o2ddJJJJJJ d2 44

s2
** Q2

49

in categorỳ̀̀ C commute in the obvious way. The identity morphism and the composition of two morphisms are defined
component-wise.
We denote withAut(C) the category of enriched automata on categoryC. Moreover, we denote withAut(C)L;I the
full subcategory of the enriched automata on categoryC with labelsL and initial pointsI . SubcategoriesAut(C)I
andAut(C)L are defined similarly.

The general definition of enriched automata can be specialized to obtain Basic HD-automata and HD-automata with
Symmetries.

Definition 7.5 (Basic HD-automata) Let I be the named set with� as singleton element and withI[�℄ = N .
CategoryHD of the(Basic) HD-automatais the category ofAut(Jop)I.
Moreover, letL be a named set. CategoryHDL is the full subcategory ofAut(Jop)L;I whose objects respect the
observation condition.

Definition 7.6 (HDS-automata) Let I be the named set with symmetries that has� as singleton element and such thatI[�℄ = fidN g.
CategoryHDS of theHD-automata with Symmetriesis the category ofAut(Sym)I.
Moreover, letL be a named set with symmetries. CategoryHDSL of the HD-automata with Symmetries on labelsL is
the categoryAut(Sym)L;I.

We would like to remark that the approach followed above to define Basic HD-automata and HDS-automata in
a categorical framework is quite general. To define a category of enriched automata, it is sufficient to give the base
categoryC that defines the information that enriches the automata. Then,

`̀̀(C) defines the sets enriched with the
information inC, andAut(C) defines the category of enriched automata onC.

A comment is in order on the choice of the enriched setI of initial points. We remark that, for the case of HD-
automata, setN is the onlyweak initial object8 in categoryJop. Similarly, symmetryfidN g is the onlyweak initial
object in categorySym. In general, we propose to take asI the singleton setf�g, and to letI[�℄ be the weak initial
object0 of the base categoryC. In this way, object0 represents the case of maximal information on the state of the
system (e.g., all names known, no symmetry on the names), andarrow i : I ! Q models the correspondencei[�℄ that
exists between this maximal, global information and the “local” information associated to the initial stateq0 = i(�).

It is interesting to observe that ordinary automata can be obtained by applying definition 7.4 to the category1 (we
recall that category1 has a single object, and the identity arrow for it).

Fact 7.7 CategorySet is isomorphic to categorỳ̀̀ 1. As a consequence, categoryAut of the automata is isomorphic
to categoryAut(1) of the enriched automata on category1.

7.2 Open maps and bisimulations

Consider a morphismm : A1 ! A2 in the category of automata. RelationR = fhq1; q2i 2 Q1 �Q2 j q2 = mQ(q1)g
is a simulation forA1 andA2. In fact, assumeq1 R q2 andt1 : q1 l�! q01; then we havet2 : q2 l�! q02 andq01 R q02 by
takingt2 = mT (t1) andq02 = mQ(q01). Moreoverq01 R q02, sinceq02 = mQ(q01).

Therefore, a morphismm : A1 ! A2 expresses the fact that all the transitions ofA1 can be simulated inA2, starting
from the initial states. In general, however, it is not true that all the transitions ofA2 can be simulated inA1.

Nevertheless, it is possible to define a particular class of “bisimulation” morphisms, such that the existence of such a
morphism fromA1 toA2 guarantees not only that the transitions ofA1 can be adequately simulated inA2 but also the
converse; i.e., the existence of a “bisimulation” morphismguarantees thatA1 andA2 are bisimilar.

There exist bisimilar automataA1 andA2 such that no “bisimulation” morphism (nor generic morphisms) can be
found between them. However, whenever two automataA1 andA2 are bisimilar, it is possible to find a common
predecessorA and a span of “bisimulation” morphismsm1 : A ! A1 andm2 : A ! A2 between them:Am1

~~||
|| m2

!!B
BB

BA1 A2
The span of morphisms is necessary for being able to define generic relations between the states of the two automata.

8We recall that object0 is weak initial in categoryC if for any other objectx ofC there is some (not necessarily unique) arrow from0 to x.

50

These “bisimulation” morphisms have been defined in variousmanner in the literature, and different names have been
given to them. They are calledabstraction homomorphismsin [Cas87] and in [MS89],zig-zag morphismsin [vB84],
transition preserving homomorphismsin [FM90] and in [FMM97], andopen mapsin [JNW96]. Here we consider
the approach based on open maps; this approach has the advantage of being general enough to be applied not only to
automata, but also to other models of concurrency, like Petri nets and event structures.

Assume a categoryM of models. Let E be the subcategory ofM whose objects are theexperimentsthat can be
executed onM and whose arrows express how the experiments can be extended. If X is an object ofE andM is an
object ofM, an arrowx : X !M of M represents the execution of the experimentX in the modelM .

Consider an arrowm : M ! N in M. We can see this arrow as a simulation of modelM in modelN . Hence,
correctly, if an experimentX can be executed inM (there exists an arrowx : X ! M) andN can simulateM (there
exists an arrowm : M ! N) then the experimentX can be executed inN (via the arrowx;m : X ! N).

Suppose now to extend the experimentX to an experimentY (via an arrowf : X ! Y in E) and that an arrowy : Y ! N exists such that the following diagram commutes inM:X x //f
��

Mm
��Y y

// N (�)
This means that the execution of the experimentX inN (viax;m) can be extended to an execution of the experimentY in N (via y).
This does not imply in general that also the execution ofX in M can be extended to an execution ofY in M . We

can make this sure by requiring that there is an arrowy0 such that the diagramX x //f
��

Mm
��Y y

//

y0 >>}}}}}}}} N (��)
commutes. Givenm : M ! N , if for each commuting diagram (�) there is an arrowy0 such that also (��) commutes,
we say thatm is anE-open map.

It is easy to check that the open maps form a subcategory ofM (i.e., identities are open and open maps are closed
for composition).

Definition 7.8 (open bisimulation) We say that two objectsM1 andM2 ofM are open-bisimilarwith respect toE if
and only if there is a span ofE-open mapsm1;m2. Mm1

||zz
zz m2

""DD
DDM1 M2

In [JNW96] it is shown that, if the categoryAutL is used as the category of the models and the full subcategoryBranL of thebranches(i.e., of those finite automata which consist of a linear sequence of transitions) is used as the cat-
egory of experiments, then two automata are open-bisimilarif and only if they are bisimilar according to Definition 2.3.

Now we apply open maps to Basic HD-automata and to HD-automata with Symmetries.

7.2.1 Application to basic HD-automata

In the case of Basic HD-automata, an experiment is a finite sequences of transitions and an extended experiment can be
obtained by adding new transitions. Moreover, we require that no name is forgotten during an experiment, since this
models the idea that the observer can remember all the names previously used in the experiment.

Definition 7.9 (category of HD-experiments)A HD-automatonX is aHD-experimentif:� Q = fq0; q1; : : : ; qng are the states andT = ft1; : : : ; tng are the transitions, ands(ti) = qi�1 andd(ti) = qi;� for all t 2 T , d[t℄ : T[t℄ ! Q[q℄ is a bijection.

51

A morphismhmQ;mTi : X ! X 0 is name preservingif mQ andmT are bijections on the names, i.e.,mQ[q℄ is a bijection
betweenQ0[mQ(q)℄ andQ[q℄ for all q 2 Q, and similarly formT.
ThecategoryHD-Exp of HD-experimentsis the subcategory ofHD with HD-experiments as objects and name pre-
serving morphisms as arrows.
CategoryHD-ExpL is the full subcategory ofHD-Exp whose objects areHDL-automata.

Now we show that the notion of HD-bisimulation given in Definition 4.10 is also obtained by the uniform technique of
the open maps.

Theorem 7.10 Two Basic HD-automata on the same labelsL are HD-bisimilar iff they are open-bisimilar w.r.t. experi-
mentsHD-ExpL.

Proof. We prove the two implications separately.
Proof of the “if” implication. We show that, ifm : A ! B in aHD-Exp-open map, thenA andB are HD-bisimilar. From this, by
transitivity of HD-bisimilarity, it is easy to conclude that two HD-automata are HD-bisimilar if there is a span of open maps for them.
We show thatR is a HD-bisimulation forA andB, whereR def= fhq1; Æ; q2i j q1 reachable; q2 = mQ(q1); Æ = mQ[q1℄g
Suppose thathq1; Æ; q2i 2 R and thatt1 : q1 l�! q01. It is easy to check thatt1 is matched bymT (t1) = t2 : q2 l�! q02, choosing� = mT[t1℄ and� = ���TA[t1℄new .

Suppose, conversely, thatt2 : q2 l�! q02. Sinceq1 is reachable, there is an experimentX and a morphismx : X ! A so that
experimentX terminates onq1. Via x;m, experimentX can be executed inB, ending in stateq2.
Now we extend experimentX to an experimentY, obtained by adding a transition corresponding tot2. Let the last state ofX beqn.

ThenY is obtained fromX by adding a stateqn+1 and a transitiontn+1 : qn l�! qn+1. Let us defineTY [tn+1℄ = QY [qn+1℄ =QX [qn℄ ℄ T2[t2℄new (we assume, without loss of generality, thatQY [qn℄ andT2[t2℄new are disjoint). MapssY [tn+1℄ anddY [tn+1℄
are defined in the obvious way, whereas mapoY [tn+1℄ = �; o2[t2℄, with � : TY [tn+1℄ * T2[t2℄ defined as follows:� if n 2 T2[t2℄new then�(n) = n;� if n 2 QX [qn℄ then�(n) = s2[t2℄�1(mQ[q1℄(xQ[qn℄(n))).
The definition of the name-preserving morphismf : X ! Y is obvious, sinceX is a prefix ofY.
Let us define morphismy : Y ! B as follows: onX , morphismy is defined byx;m. Moreover transitiontn+1 is mapped tot2 so
thatyT[tn+1℄ = �. Finally, stateqn+1 is mapped onq02 so thatyQ[qn+1℄ = s2[t2℄; yT[tn+1℄.
It is easy to check that diagram X x //f

��

Am
��Y y // B

commutes. Sincem is an open map, a morphismy0 : Y ! A exists so that diagramX x //f
��

Am
��Y y //

y0 ??~~~~~~~ B
commutes. Let us defineq01 = y0Q(qn+1) andt1 = y0T (tn+1); thent1 : q1 l�! q01. Let us define� = mT[t1℄ and� = ���T1[t1℄new .
Then it is easy to check that:� � = (s1[t1℄; Æ; s2[t2℄�1) [�,� o1[t1℄ = �; o2[t2℄,� hq01; Æ0; q02i 2 R whereÆ0 = mQ[q01℄�1; moreover,Æ0 = d1[t1℄�1; �; d2[t2℄.
This concludes the proof of the first implication.
Proof of the “only if” implication. We show that, ifA andB are HD-bisimilar automata, then here exist a HD-automatonC and a
span of open maps Cm

����
��

��
� m0

��
??

??
??

?A B
Suppose thatA andB are HD-bisimilar via the HD-bisimulationR; by Proposition 4.15 we can assume thatR = bR.
The HD-automatonC andm andm0 are defined as follows:

52

� QC = R; for eachr = hqa; Æ; qbi 2 R we havemQ(r) = qa andm0Q(r) = qb. MoreoverQ[r℄ = �QA[qa℄ n dom(Æ)� ℄ Æ ℄ �QB[qb℄ n od(Æ)�;
i.e., the names of stater in C are the union of the names ofqa and ofqb, where the names related byÆ are identified. Finally,mQ[r℄ andm0Q[r℄ are defined as follows:

– if n 2 QA[qa℄ n dom(Æ) thenmQ[r℄(n) = n andm0Q[r℄(n) is undefined;

– if (n; n0) 2 Æ, thenmQ[r℄(n; n0) = n andm0Q[r℄(n; n0) = n0;
– if n0 2 QB[qb℄ n od(Æ) thenmQ[r℄(n) is undefined andm0Q[r℄(n) = n.� TC = S, wherehta; �; tbi 2 S if ta andtb are matching transitions according to� : TA[ta℄ (* TB[tb℄. For eacht 2 TC, the

set of namesTC[t℄ and the embeddingsmT[t℄ andm0T[t℄ are defined as the corresponding components for the states.� The starting state ofC is hq0A; (�0A;��10B); q0B; i 2 R.

It is easy to show thatm andm0 are morphisms. Now we show thatm is an open map (the proof form0 is similar). Suppose then
that diagram X x //f

��

Cm
��Y y // A

commutes, withf : X ! Y is a morphism between experiments. We have to show that thereexists somey0 : Y ! A such thatX x //f
��

Cm
��Y y //

y0 ??~~~~~~~~ A
commutes. It is sufficient to consider the cases in whichY is obtained fromX by adding just a stateqn+1 and a transitiontn+1 :qn l�! qn+1. On the prefixX of Y, morphismy0 is defined as morphismx (this assures that the upper triangle commutes). Now we
define how transitiontn+1 and stateqn+1 are mapped intoC.
Suppose thatyT (tn+1) = ta : qa l�! q0a with qa = yQ(qn) andq0a = yQ(qn+1). ThenxQ(qn) = hqa; Æ; qbi 2 R. SinceR is
a HD-bisimulation, there must be some transitiontb of B that matchesta according to some�, i.e., there is somet = hta; �; tbi :hqa; Æ; qbi l�! q0 = hq0a; Æ0; q0bi of C. By definition ofC, we know thatmT (t) = ta andmQ(q0) = q0a. Let us definey0T (tn+1) = t
andy0Q(qn+1) = q0. Then it is easy to show that also the lower triangle commutes. 2
7.2.2 Application to HDS-automata

In the case of HD-automata with Symmetries, an experiment isa finite sequences of transitions and an extended experi-
ment can be obtained by adding new transitions. Moreover, werequire that no symmetries are defined on the names of
states and transitions of the experiments: the intuition isthat the observer can distinguish all the names.

Definition 7.11 (category of HDS-experiments)A HDS-automatonX is aHDS-experimentif:� Q = fq0; q1; : : : ; qng are the states andT = ft1; : : : ; tng are the transitions, ands(ti) = qi�1 andd(ti) = qi;� for eachq 2 Q, Q[q℄ = fidN g; similarly, for eacht 2 T , T[t℄ = fidN g.
ThecategoryHDS-Exp of HD-experimentsis the full subcategory ofHDS with HDS-experiments as objects.
CategoryHDS-ExpL is the full subcategory ofHDS-Exp whose objects areHDSL-automata.

Theorem 7.12 Two HDS-automata on the same labelsL are HDS-bisimilar iff they are open-bisimilar w.r.t. experimentsHDS-ExpL.

Proof (Sketch). We prove the two implications separately.
Proof of the “if” implication. This proof is similar to the proof of the “if” implication of Theorem 7.10.
It consists of showing that, ifm : A ! B in aHD-Exp-open map, thenA andB are HDS-bisimilar via HDS-bisimulationR def= fhq1; Æ; q2i j q1 reachable; q2 = mQ(q1); Æ 2 mQ[q1℄g:
We omit the details.
Proof of the “only if” implication. This proof is similar to the proof of the “only if” implication of Theorem 7.10.
It consists of showing that, ifA andB are HD-bisimilar automata, then here exist a HDS-automatonC and a span of open mapsm : C ! A andm0 : C ! B.
Suppose thatA andB are HDS-bisimilar via the HDS-bisimulationR. The HDS-automatonC andm andm0 are defined as follows:

53

� QC = R; for eachq = hqa; Æ; qbi 2 R we havemQ(q) = qa andm0Q(q) = qb. MoreoverQ[q℄ = fidN g, i.e., all the names
of stateq in C are distinguished. Finally,mQ[q℄ = f� j � 2 QA[qa℄g andm0Q[q℄ = fÆ; � j � 2 QA[qa℄g.� TC = S, wherehta; �; tbi 2 S if ta andtb are matching transitions according to� : N ! N . For eacht 2 TC, we defineTC[t℄ = fidN g. EmbeddingsmT[t℄ andm0T[t℄ are defined as for the states.� The starting state ofC is hq0A; (�0A;��10B); q0B; i 2 R for some�0A 2 f0A and�0B 2 f0B.

We omit the proofs thatm andm0 are open maps. 2
7.2.3 Minimal HDS-automata

We have seen in Section 2.1 that minimal automata exist in each class of bisimilar automata. In Section 6.5 a similar
result has been given for HDS-automata. Now we show that minimal automata and minimal HDS-automata can be
defined also in the categorical setting.

LetAutr� be the subcategory ofAut that is defined as follows:� the objects ofAutr� are thereachable automata, i.e., all the state are reachable from the starting state via some
sequence of transitions;� the arrows ofAutr� are the open maps ofAut.

Clearly, categoryAutr� consists of different connected components, that correspond to the different classes of bisimilar
automata.

Theorem 7.13 Every connected component of categoryAutr� has a terminal object.9

Therefore, in each class of bisimilar automata there is a particular automaton that is terminal with respect to bisimu-
lation morphisms. Standard categorical results guaranteethat the terminal object is unique up to isomorphisms. So,
Theorem 7.13 defines an unique canonical representative foreach class of bisimilar automata. It is easy to prove that
this canonical automaton coincides with the minimal automaton that we have defined explicitly in Section 2.1.

The same result also hold for HDS-automata. In fact, letHDSr� be the category of reachable HDS-automata and of
theHDS-Exp-open morphisms on them. Then the following theorem holds:

Theorem 7.14 Every connected component of categoryHDSr� has a terminal object.

Proof. Let A be a reachable HDS-automaton and letAmin be the minimal HDS-automaton corresponding toA according to
Definition 6.19.
Now we show that there exists one and only one open mapm : A ! Amin. This is sufficient to conclude the proof, since by
Proposition 6.24 ifB � A thenAmin andBmin are isomorphic, and hence there is one and only one open map also fromB toAmin.
Let us define morphismm : A ! Amin as follows:� if q 2 Q thenmQ(q) = bq 2 Qmin; moreovermQ[q℄ = �A(q; bq);� if t 2 T thenmT (t) = bt 2 tmin; moreovermT[t℄ = �A(t; bt).
It is easy to check thatm is a morphism between HDS-automata, and that it is an open maps.
Conversely, letm0 : A ! Amin be an open map; we show thatm0 = m.
Let q 2 Q and letq0 = m0Q(q); we remark that, by definition ofAmin, q0 2 Q.
It is easy to prove that, for eachÆ 2 m0Q[q℄, hq; Æ; q0i 2 RA;Amin . By definition ofAmin, this implies thathq; Æ; q0i 2 RA. Hence,q � q0, which impliesq0 � bq by definition ofbq, and this in turn impliesq0 = bq by definition ofAmin. So,m0Q(q) = mQ(q).
Let Æ 2 m0Q[q℄. We have already seen that it holdshq; Æ; q0i 2 RA, i.e.,Æ 2 �(q; q0) = mQ[q℄. Let Æ0 2 �(q; q0) = mQ[q℄. ThenÆ�1; Æ0 2 �(q0; q0) and, by definition ofAmin, Æ�1; Æ0 2 Qmin[q0℄. Hence,Æ0 = Æ; (Æ�1; Æ0) 2 m0Q[q℄ by definition of embedding on
symmetries. So,m0Q[q℄ = mQ[q℄ for anyq 2 Q.
This concludes the proof thatmQ = m0Q. We omit the proof thatmT = m0T , which is similar. 2
8 Possible extensions and other work

In this section we discuss some possible extensions of the approach described in the paper. In particular, we present
some other examples of formalisms that could be mapped into HD-automata. We also discuss a verification environment
that exploits HD-automata to verify history dependent formalisms.

9An objectt of a (sub)categoryC is terminal if, for any other objectx ofC there exists exactly one arrow fromx to t.
54

8.1 CCS with causality

In Section 5.1 we have presented the location semantics of CCS as a way to define a truly concurrent behavioral equiva-
lence for this language. Thecausal semanticsrepresents another possible approach to obtain this result: in this case, the
causality relations between the actions of an agent are taken into account, as we did in the history-preserving semantics
of Petri nets.

In agent�j� the two actions� and� are independent: in fact, the meaning of the parallel composition is that the two
subagents are in two distinct computation threads. In agent�:� + �:�, instead, the two actions can occur in any order,
however they are not independent: the second action is sequential to the first one and is enabled only by the occurrence
of the first.

There are many ways to formalize this idea. For instance, in [DDNM90] CCS agents are mapped into Petri nets, so
that the history preserving semantics of the nets can be usedto give a causal semantics to the agents. In [DD89, Kie94]
the causal dependencies between the actions of an agent are observed directly in the labels of the transition system. Here
we follow the approach of [Kie94], which is similar to the location approach of Section 5.1. Also in this case we extend
the language with prefixes of the form :: p; here, however, is acauserather that a location. Transitions are of the formp ��!C; p0
whereC is the set — not a sequence as in the location approach — of the causes that enabled action� and represents
the new name that will be used in the following transitions torefer to this action.

The main difference between the location and the causal approach is in the synchronization: consider the agentp = (��) (�:�j��:):
In the case of the location semantics we observe the computationp ��!l1 (��) (l1 ::�j��:) ��! (��) (l1 ::0j) �!l2 (��) (l1 ::0jl2 ::0)
and in the case of the causal approach we observe:p ��!;;1 (��) (1 ::�j��:) ��! (��) (1 ::0j1 ::) ���!f1g;2 (��) (1 ::0j1 :: 2 ::0):
Action depends on action� (there is no way to execute without first executing�), and this is represented by requiring
that the synchronization transition on� extends also to the subagent the causes of�.

In general, a synchronization “mixes” the causes of the two complementary actions. As a consequence, the structure
of the causes is not a tree, as it was for the structure of location paths; rather, it is a partial order, as it was in the case of
the Petri nets. Hence, to map CCS with causality on Basic HD-automata we can use techniques similar to the ones for
nets.

First of all, we define an alternative semantics where only the maximal causes that enable an action are observed
in the transition. In this way, causes can be removed from an agent when there are no more processes which depend
directly on them10. This “incremental” causal semantics for CCS is equivalentto the classical one, but allows for
discarding unused causes. A mapping to Basic HD-automata can now be defined so that the obtained HD-automata are
finite whenever the agents are finitary. Moreover, HD-bisimulation exactly matches causal bisimulation:

Theorem 8.1 Letp1 andp2 be two CCS agents and letA1 andA2 be the corresponding HD-automata according to the
causal semantics. Thenp1 �au p2 iff A1 � A2.
8.2 The late�-calculus semantics

In Section 3 we have presented thegroundand theearly semantics of the�-calculus. However, these are not the only
semantics that has been proposed for this language. For instance, the semantics that was proposed from the very begin-
ning for the�-calculus waslate [MPW92]. The difference with respect to the early semanticsis in the input transitions:
in the early approach, the label of the transition carries the actual channel name which is received in the communication;
in the late context, instead, the label carries just a “placeholder” for the received name and the instantiation takes place
in a successive step11. Agentp = a(x):p0 performs the bound input transitionp a(x)�! p0

10Notice that to remember the partial order of the causes it is necessary to add a new structure to the agents. In fact, it was possible to represent the
tree structure of the location directly in the syntax of the agents; however, it is quite more complex to represent a partial order in this way.

11The namesearly andlate refer to the time of the instantiation of the received name.

55

where namex is the placeholder. If the received name will beb, then the effective obtained agent will bep0fb=xg. This
instantiation is performed in the definition of bisimulation, where a specific clause for input actions is present: ifR is a
bisimulation andp R q, then

wheneverp a(x)�! p0 andx 62 fn(pjq), thenp a(x)�! q0 andp0fb=xg R q0fb=xg for each nameb.
We denote with�l the late bisimulation equivalence.

In [FMQ96] a different approach has been proposed for the late semantics. The input transition is split in two steps,
the first which announces an input on a given channel, and the second which corresponds to the reception of the input
value: so, for instance, the input of the agentp = a(x):p0 is modeled as follows:p a�! �x:p0 [b℄�! p0fb=xg
whereb is the effectively received name. The two steps have to be considered atomic, i.e., when an agent perform the
first step, the second step has to follow immediately.

Since the instantiation of the received name is performed inthe transition system, no special clause for the input
transition has to appear in the definition of bisimulation. In [FMQ96] it is proved that this approach coincides with the
original late semantics of [MPW92].

We can exploit this idea also to capture the late semantics ofthe �-calculus within the framework of the HDS-
automata. We have to replace the two labelsin andin2, used for the early input actions, with the labelsinstart andinend, corresponding to the two steps

a�! and
[b℄�! respectively; one distinct namensub is associated to labelinstart,

whereas one distinct namenobj is associated to labelinend. Also the definition of the mapping from�-calculus agents
to HDS-automata has to be changed accordingly.

All the results we have presented for the early semantics canbe restated for the late approach. Also in this case the
HDS-automata corresponding to agentp is finite whenever agentp is finitary. Finally:

Theorem 8.2 Letp andq be two�-calculus agents and letA�lp andA�lq be the corresponding HDS-automata, according
to the late translation. Thenp �l q iff A�lp � A�lq .

8.3 Causality/localities and the�-calculus

In [San96a] a localities semantics is proposed for the�-calculus: the approach is very similar to the one describedin
Section 5.1 for CCS. [San96a] also shows that it is possible to “codify” the location semantics into the�-calculus: there
exists a fully abstract mapping from the�-calculus with localities to the bare�-calculus. In [BS98] similar results are
obtained for the�-calculus with causality. The usage of names in the�-calculus is, hence, general enough to represent
the tree-like structure of localities and the partial orderstructure of causes. However, the encodings defined in [San96a]
and in [BS98] do not preserve finitary agents: the obtained agents are not finitary whenever the starting agents can
perform infinite computations.

HDS-automata can be exploited also to capture the localities and the causal semantics of�-calculus. In the case
of the localities semantics, for instance, it is sufficient to combine the techniques described in Section 6.3.2 and in
Section 5.2. The obtained HDS-automata have four infinite repositories; two of them are the repositories� '!&"%#$ and u '!&"%#$ that
are necessary to deal with�-calculus names; the other two repositories are used as source and drain for the localities:
they play the same role of repositories�(/).*-+, and !(/).*-+, in Section 6.3.1.

The approaches of [San96a] and [BS98] and the approach basedon HDS-automata that we have just sketched have
different aims and use different techniques. The translations of [San96a] and [BS98] are syntactic (and hence they
always terminate), while our translations generate an operational model for the agents (and hence they terminate only
for certain classes of agents). On the other hand, the fact that the obtained HDS-automata are finite whenever the starting�-calculus agents are finitary shows that HDS-automata offermore freedom in handling names than�-calculus.

8.4 The weak semantics

In this paper we have presented thestrongsemantics of CCS,�-calculus and CCS with localities. These process calculi
are equipped also with aweaksemantics.

Differently from the strong approach, where� actions are dealt with as other actions, in the weak approachthey are
considered internal actions which cannot be observed from the outside. Weak transitions are defined to this purpose:� �=) def= (��!)�, and� �=) def= �=) ��! �=) for � 6= � .

56

q qtq�
�

�
��

�
�
�

q
q

q
q

q0 q00
q00

q000q00q0
q000

t t0
t; t0

t t0 t00
t; t0; t00

R2R1
R3

Figure 11: Weak transitions of HD-automata

Notice thatp �=) p0 means thatp can evolve inp0 by making just internal actions, i.e., by not communicatingwith the
outside; in particular, we can havep = p0. Also, visible transitions can be preceded and followed by any unobserved
internal computation.

The “weak” automaton can be built by first building the automaton according to the strong operational semantics
and then by adding to it the weak transitions according to therules above. A weak behavioral equivalence is obtained
by exploiting the ordinary bisimulation on these weak automata. Whenever the strong automaton is finite, also the
corresponding weak automaton is finite — but possibly much larger [PT87, KS90] — so the standard algorithms can be
used also in this case.

Two different approaches are possible for building a “weak”HD-automata for the calculi considered in the paper.
The first approach is simply to use the weak transitions of these calculi in the construction of the automaton. The second
approach consists of building the strong HD-automaton and then of generating the weak transitions directly on the HD-
automaton. A graphical representation of the rules for generating the weak transitions in the case of Basic HD-automata
is given in Figure 11. The first two rules are for the� transitions, that correspond to a sequence of� transitions: ruleR1
is for the empty sequence of� transitions, while ruleR2 shows how this sequence can be extended by adding a new�
transition. RuleR3 is for the visible transitions: it shows that these can absorb sequences of� transitions that precede
and follow them. Similar rules exist for HD-automata with Symmetries.

It is possible to prove that equivalent “weak” HD-automata are obtained by using the weak transitions of the calculus,
and by first building the “strong” HD-automaton and then generating the weak transitions with the rules in Figure 11.

8.5 A verification environment based on HD-automata

TheHD-Automata Laboratory(HAL) is an integrated tool-set for the specification, verification and analysis of concur-
rent and distributed systems. The core ofHAL are the HD-automata: here they are used as a common format forthe
various history-dependent languages. TheHAL environment includes modules which implement decision procedures
to calculate behavioral equivalences, and modules which support verification of behavioral properties expressed as for-
mulae of suitable temporal logics. The environment has beensuccessfully applied to the specification and verification
of mobile processes defined as�-calculus agents. In particular, the verification of the handover protocol for mobile
telephones [OP92] has been carried out within theHAL environment. Here we provide a short overview of the current
implementation of theHAL environment. A fuller account of this and of other case studies may be found in [FFG+97]
and [GR97].

57

Petri netslocalities logic�-calculus
CCS with �-calculus

locality logic

mapmap map mapmap

HD-automata HD-logic

unfold.unfold. model and
equivalence

check

ordinary automata logic for ordinary automata

JACK

Figure 12: TheHAL environment: an overview

TheHAL environment allows�-calculus agents to be translated into ordinary automata, so that existing equivalence
checkers can be used to calculate whether the�-calculus agents are bisimilar. The environment also supports verification
of logical formulae expressing desired properties of the behavior of �-calculus agents. To this purpose, we found
convenient to exploit a logic with modalities indexed by�-calculus actions, and to implement a translation of this�-
logic into a logic for ordinary automata. Hence, existing model checkers can be used to verify whether or not a formula
holds for a given�-calculus agent.

Figure 12 presents an overview of theHAL environment. The dashed boxes indicate work-in-progress,i.e., modules
which are under development. In the current implementationtheHAL environment consists essentially of five modules:
three modules perform the translations from�-calculus agents to HD-automata, from HD-automata to ordinary automata,
and from�-logic formulae to ordinary ACTL formulae. The fourth module provides routines that manipulate the HD-
automata in order to reduce their size. The fifth module is basically the JACK system [BGL94] which works at the level
of ordinary automata and performs the standard operations on them like behavioral verification and model checking. The
JACK environment combines different specification and verification tools, independently developed, around a common
format for representing ordinary automata: the FC2 file format [BRRdS96]. TheHAL environment supports also a
textual user interface to invoke the commands in the modulesof the system and graphical user interface, that allows for
a user-friendly invocation of the basic functionalities ofHAL.

8.6 HD-automata with negative transitions

Basic HD-automata and HD-automata with Symmetries are not suitable for the open semantics [San96b] and the asyn-
chronous semantics [HT91, ACS98] of�-calculus. These definitions of bisimulation are quite different from the classical
one. When two agentsp andq are bi-simulated, not all the transitions ofp are matched by corresponding transitions ofq
(and vice-versa). Some of the transitions ofp areredundant, i.e., they are covered by more general transition ofp itself,
andq is required to match only theirredundanttransitions ofp. (See [PS01] and [MP99] for a detailed description of
the open and asynchronous bisimulation, respectively.)

In [Pis99, MP99] HD-automata with Negative transitions (HDN-automata) have been defined. They extend Basic
HD-automata by allowing for definingirredundancyof transitions in a quite general way. In particular they areable to

58

capture the open and asynchronous semantics of�-calculus. An interesting direction of further investigation is the inte-
gration of negative transitions and symmetries. This combination will open the possibility of having minimal realizations
also for HDN-automata.

8.7 A coalgebraic definition of HD-automata

In [MP00] a variant of HD-automata with Symmetries is definedin a coalgebraic setting. In that paper, the transition
system of�-calculus is modeled as a coalgebra on a category of name permutation algebras. The role of permutations
in that context is very similar to that of permutations in HDS-automata, namely, they allow for an explicit representation
of the distinguished names of the agents, and of the generation of fresh names during the evolutions of the agents. The
classical results of the coalgebraic theory for ordinary transition systems [Rut00], and notably the existence of a final
coalgebra, apply also to this extended case.

In [MP00] the coalgebraic semantics is also linked to HD-automata. It is shown that (a variant of) HD-automata with
Symmetries are in bijective correspondence, up to isomorphism, with the coalgebraic transition systems built on the top
of the permutation algebra, and that minimal HD-automata correspond to minimal transition systems. Therefore, HDS-
automata can be seen as a concrete and compact representation of coalgebras built on the top of permutation algebras,
precisely in the same way as ordinary automata can be seen as the concrete representation of standard coalgebras [Rut00].
This result is particularly interesting, as it shows that the definitions of HDS-automata and of HDS-bisimulation givenin
this paper are not arbitrary: rather, they derive naturallyfrom the more primitive concept of coalgebras on permutation
algebras.

9 Concluding remarks

We have presented History-Dependent Automata and we have shown that they are an operational model particularly
adequate for history-dependent calculi. We have considered different kinds of history-dependent calculi, that imple-
ment different phenomena of concurrent systems: these phenomena include mobility (�-calculus), locality (CCS with
localities), and causality (Petri nets).

We have defined two variants of HD-automata. Basic HD-automata are, as their name suggests, the simplified
version: they are automata whose states, transitions, and labels are enriched with sets of local names. Basic HD-
automata are well suited to model the creation of fresh namesin the evolution of a system. CCS with localities, Petri
nets and the ground�-calculus are mapped into this family of HD-automata. In HDS-automata, symmetries among
the names are added to the model. These symmetries have been particularly useful for the representation of history-
dependent calculi with more sources of fresh names: the mostimportant example is the (early and late)�-calculus. The
two families of HD-automata come equipped with a bisimulation-based observational semantics. HD-bisimulation on
HD-automata corresponds to the ordinary bisimulation semantics for history-dependent calculi.

An important property that holds only for HDS-automata is the existence, in each class of equivalent HD-automata,
of a minimal representative. As it happens for ordinary automata, this minimal HDS-automaton can be considered the
semantic object corresponding to the class of equivalent HDS-automata.

We have also revisited the definitions of HD-automata and of HD-bisimulation in a categorical framework. Classical
categorical definitions of automata and of bisimulations are extended to deal with Basic HD-automata and with HDS-
automata. The possibility of using uniform techniques for defining HD-automata and HD-bisimulation enforces our
confidence in the approach.

HD-automata provide the core ofHAL [FFG+97, GR97], a verification environment for concurrent systems de-
scribed in history-dependent formalism: HD-automata allow for a compact representation of the behaviors of these
concurrent systems, and can be used in the algorithms as a common format for the history-dependent calculi.

The approach proposed in this paper can be extended in different directions. Clearly, new history-dependent for-
malisms can be represented by means of HD-automata. Particularly interesting would be the application of HD-automata
to the join calculus [FGL+96, BFL98], the fusion calculus [PV98, Vic98], and the spi calculus [AG99, AG98]; the ex-
isting definitions of bisimulations for these calculi are very specific, and HD-automata could allow for describing then
in a clean and uniform way.

More interesting is the extension of the approach from HD-automata to different classes of enriched automata.
Enriched automata and enriched bisimulation can be defined in a parametric way with respect to the information that
enriches the automata. It would be useful to see if the approach can be applied, for instance, to symbolic transition
graphs [HL95], or to concurrent constraint programming [Sar93].

Another interesting research direction consists of extending to HD-automata the meta-theory of process calculi based
on formats [DS85, GV92, BIM95]. This meta-theory is advantageous from a theoretical point of view — it allows the

59

development of theories that can be applied to different languages — and for a practical point of view — it would be
possible to implement tools that work for all the languages defined in these formats. While some extensions of the theory
of formats to richer families of calculi have been already appeared in the literature [WB96, Ber98], we feel that the idea
of multiple repositories of names introduced in Section 6 could be particularly interesting for the development of formats
for �-calculus-like calculi.

References

[Ace94] L. Aceto. A static view of localities.Formal Aspects of Computing, 6(2):201–222, 1994.

[ACS98] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous�-calculus.Theoretical
Computer Science, 192(2):291–324, 1998.

[AG98] M. Abadi and A. D. Gordon. A bisimulation method for cryptographic protocols in the spi calculus. In
Proc. ESOP’98, volume 1381 ofLNCS. Springer Verlag, 1998.

[AG99] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: the spi calculus.Information and
Computation, 148:1–70, 1999.

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer Science, 96(1):217–248,
1992.

[BCHK93] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities.Theoretical Computer Science,
114(1):31–61, 1993.

[BDKP91] E. Best, R. Devillers, A. Kiehn, and L. Pomello. Concurrent bisimulations in Petri nets.Acta Informatica,
28(3):231–264, 1991.

[Ber98] K. Bernstein. A congruence theorem for structured operational semantics of higher-order languages. In
Proc. LICS’98, 1998.

[BFL98] M. Boreale, C. Fournet, and C. Laneve. Bisimulations for the join-calculus. InProc. PROCOMET’98.
Chapman & Hall, 1998.

[BGL94] A. Bouali, S. Gnesi, and S. Larosa. The integration project for the JACK environment.Bullettin of the
EATCS, 54, 1994.

[BIM95] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced.Journal of ACM, 42:232–268, 1995.

[BRRdS96] A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The FC2Tools set. InProc. CAV’96, volume 1102 of
LNCS. Springer Verlag, 1996.

[BS98] M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the�-calculus.Acta Informatica,
35, 1998.

[Cas87] I. Castellani. Bisimulation and abstraction homomorphisms.Journal of Computer and System Sciences,
34(2/3):210–235, 1987.

[Cas93] I. Castellani. Observing distribution in processes. In Proc. MFCS’93, volume 711 ofLNCS. Springer
Verlag, 1993.

[CN94] F. Corradinio and R. De Nicola. Distribution and locality of concurrent systems. InProc. ICALP’94,
volume 920 ofLNCS. Springer Verlag, 1994.

[CSW97] G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for the pi-calculus. InProc. CTCS’97, volume
1290 ofLNCS. Springer Verlag, 1997.

[Dam97] M. Dam. On the decidability of process equivalencesfor the�-calculus. Theoretical Computer Science,
183(2):215–228, 1997.

[DD89] Ph. Darondeau and P. Degano. Causal trees. InProc. ICALP’89, volume 372 ofLNCS. Springer Verlag,
1989.

60

[DDNM90] P. Degano, R. De Nicola, and U. Montanari. A partialordering sematics for CCS.Theoretical Computer
Science, 75:223–262, 1990.

[DS85] R. De Simone. Higher level synchronizing devices in MEIJE-SCCS. Theoretical Computer Science,
37(3):245–267, 1985.

[FFG+97] G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore,and G. Ristori. An automata based verification
environment for mobile processes. InProc. TACAS’97, volume 1217 ofLNCS. Springer Verlag, 1997.

[FGL+96] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D.Rémy. A calculus of mobile agents. InProc.
CONCUR’96, volume 1119 ofLNCS. Springer Verlag, 1996.

[FM90] G. Ferrari and U. Montanari. Towards the unification of models for concurrency. InProc. CAAP’90, volume
431 ofLNCS. Springer Verlag, 1990.

[FMM97] G. Ferrari, U. Montanari, and M. Mowbray. Structured transition systems with parametric observations:
observational congruences and minimal realizations.Mathematical Structures in Computer Science, 7:1–
42, 1997.

[FMQ96] G. Ferrari, U. Montanari, and P. Quaglia. A�-calculus with explicit substitutions.Theoretical Computer
Science, 168(1):53–103, 1996.

[FMS96] M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the�-calculus. InProc. LICS’96. IEEE,
Computer Society Press, 1996.

[GR83] U. Goltz and W. Reisig. The non-sequential behaviourof Petri nets.Information and Control, 57(2/3):125–
147, 1983.

[GR97] S. Gnesi and G. Ristori. A model checking algorithm for �-calculus agents. InProc. ICTL’97. Kluwer
Academic Publishers, 1997.

[GV92] J. F. Groote and F. Vaandrager. Structured operational semantics and bisimulation as a congruence.Infor-
mation and Computation, 100(2):202–260, 1992.

[HL95] M. Hennessy and H. Lin. Symbolic bisimulation.Theoretical Computer Science, 138:353–389, 1995.

[HT91] K. Honda and M. Tokoro. On asynchronous communication semantics. InProc. ECOOP’91, volume 612
of LNCS. Springer Verlag, 1991.

[IP96] P. Inverardi and C. Priami. Automatic verification ofdistributed systems: The process algebras approach.
Formal Methods in System Design, 8(1):1–37, 1996.

[JNW96] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps.Information and Computation,
127(2):164–185, 1996.

[Kie94] A. Kiehn. Comparing locality and causality based equivalences.Acta Informatica, 31(8):697–718, 1994.

[KS90] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and three problems of equiva-
lence.Information and Computation, 86(1):43–68, 1990.

[Mad92] E. Madelaine. Verification tools for the CONCUR project. Bullettin of the EATCS, 47:110–126, 1992.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil93] R. Milner. The polyadic�-calculus: a tutorial. InLogic and Algebra of Specification, volume 94 ofNATO
ASI Series F. Springer Verlag, 1993.

[MP95] U. Montanari and M. Pistore. Checking bisimilarity for finitary�-calculus. InProc. CONCUR’95, volume
962 ofLNCS. Springer Verlag, 1995.

[MP97a] U. Montanari and M. Pistore. History dependent verification for partial order systems. InPartial Order
Methods in Verification, volume 29 ofDIMACS Series. American Mathematical Society, 1997.

[MP97b] U. Montanari and M. Pistore. Minimal transition systems for history-preserving bisimulation. InProc.
STACS’97, volume 1200 ofLNCS. Springer Verlag, 1997.

61

[MP98a] U. Montanari and M. Pistore. History dependent automata. Technical Report TR-11-98, Università di Pisa,
Dipartimento di Informatica, 1998.

[MP98b] U. Montanari and M. Pistore. An introduction to history dependent automata. InProc. Second Workshop
on Higher-Order Operational Techniques in Semantics (HOOTS II), volume 10 ofENTCS. Elsevier, 1998.

[MP99] U. Montanari and M. Pistore. Finite state verification for the asynchronous�-calculus. InProc. TACAS’99,
LNCS. Springer Verlag, 1999.

[MP00] U. Montanari and M. Pistore.�-calculus, structured coalgebras and minimal hd-automata. In Proc. MFCS
2000, volume 1893 ofLNCS. Springer Verlag, 2000.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and II).Information and
Computation, 100(1):1–77, 1992.

[MPW93] R. Milner, J. Parrow, and D. Walker. Modal logic for mobile processes.Theoretical Computer Science,
114(1):149–171, 1993.

[MPY96] U. Montanari, M. Pistore, and D. Yankelevich. Efficient minimization up to location equivalence. InProc.
ESOP’96, volume 1058 ofLNCS. Springer Verlag, 1996.

[MS89] U. Montanari and M. Sgamma. Canonical representatives for observational equivalence classes. InReso-
lution Of Equations In Algebraic Structures, volume 1: Algebraic Techniques. Academic Press, 1989.

[OP92] F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal Aspects of Computing,
4(5):497–543, 1992.

[Par80] D. Park.Concurrency and Automata on Infinite Sequences, volume 104 ofLNCS. Springer Verlag, 1980.

[Pis99] M. Pistore. History Dependent Automata. PhD thesis, Università di Pisa, Dipartimento di Informatica,
1999. Available athttp://www.di.unipi.it/phd/tesi/tesi 1999/TD-5-99.ps.gz.

[PS01] M. Pistore and D. Sangiorgi. A partition refinement algorithm for the�-calculus.Information and Compu-
tation, 164(2):264–321, 2001.

[PT87] R. Paige and R. E. Tarjan. Three partition refinement algorithms.SIAM Journal of Computing, 16(6):973–
989, 1987.

[PV98] J. Parrow and B. Victor. The fusion calculus: Expressiveness abd symmetry in mobile processes. InProc.
LICS’98, 1998. To appear.

[RT88] A. Rabinovich and B. A. Trakhtenbrot. Behaviour structures and nets. Fundamenta Informaticae,
11(4):357–404, 1988.

[Rut00] J.J.M.M. Rutten. Universal coalgebra: a theory of systems.Theoretical Computer Science, 249(1):3–80,
2000.

[San93a] D. Sangiorgi.Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD
thesis, University of Edinburgh, 1993.

[San93b] D. Sangiorgi. From�-calculus to higher-order�-calculus – and back. InProc. TAPSOFT’93, volume 668
of LNCS. Springer Verlag, 1993.

[San96a] D. Sangiorgi. Locality and interleaving semantics in calculi for mobile processes.Theoretical Computer
Science, 155(1):39–83, 1996.

[San96b] D. Sangiorgi. A theory of bisimulation for�-calculus.Acta Informatica, 33:69–97, 1996.

[Sar93] V. A. Saraswat.Concurrent Constraint Programming. MIT Press, 1993.

[Sta96] I. Stark. A fully abstract domain model for the pi-calculus. InProc. LICS’96. IEEE, Computer Society
Press, 1996.

[vB84] J. van Bentham. Correspondence theory. InHandbook of Philosophical Logic, volume II. Reidel, 1984.

62

[Vic98] B. Victor. The Fusion Calculus: Expressiveness and Symmetry in MobileProcesses. PhD thesis, Depart-
ment of Computer Systems, Uppsala University, 1998.

[VJ85] R. Valk and M. Jantzen. The residue vector sets with applications to decidability problems in Petri nets.
Acta Informatica, 21:643–674, 1985.

[Vog95] W. Vogler. Generalized OM-bisimulation.Information and Computation, 118:38–47, 1995.

[Wal95] D. Walker. Objects in the�-calculus.Information and Computation, 116(2):253–271, 1995.

[WB96] S. Weber and B. Bloom. Metatheory of the�-calculus. Technical Report TR96-1564, Cornell University,
1996.

63

