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Abstract. Middleware has emerged as an important architectural component in modern distributed systems. 
However, it is now recognised that established middleware platforms such as CORBA, DCOM and .NET are 
not flexible enough to meet the needs of emerging distributed applications, featuring for example access to 
multimedia services and also support for mobile users. In particular, they are not sufficiently configurable 
and they do not support reconfiguration or longer-term evolution of architectures. Recently, a number of 
reflective middleware platforms have emerged in an attempt to overcome such problems. Considerable 
progress has been made, particularly in terms of support for configuration. Major problems remain however, 
especially in terms of performance and integrity. This paper presents a study  of OpenORB v2 with emphasis 
on these issues. In terms of performance, the design is based on a lightweight reflective component model, 
based on Microsoft’s COM. It is shown that the resultant OpenORB implementation performs at least as 
well as commercial ORBs. In terms of integrity, the design also features the use of component frameworks 
offering a domain specific approach to reconfiguration management. Early experiences indicate that this is a 
highly promising approach for maintaining integrity of the un derlying middleware platform. Ongoing 
research is investigating further extensions to the platform including support for group communications.  

1. Introduction 

Middleware has emerged as an important architectural component in modern distributed systems. The role of 
middleware is to offer a high-level, platform -independent programming model (e.g. object -oriented or 
component-based) to users, and to mask out problems of distribution. Examples of key middleware platforms 
include CORBA, DCOM, .NET, and the Java-based series of technologies (RMI, JINI, EJB). 

Traditionally, such platforms have been deployed (with considerable success) in application domains such as 
banking and finance as a means of tackling problems of heterogeneity, and also supporting the integration of 
legacy systems. However, more recently, middleware technologies have been applied in a wider range of areas 
including safety critical systems, embedded systems, mobile and ubiquitous systems, real-time systems, the 
computational GRID, etc. Unfortunately, as this diversification proceeds, it is becoming ever more apparent that 
the middleware technologies mentioned above are not able to support such a diversity of application domains. 

The main reason for this is the black -box philosophy adopted by existing platforms. In particular, existing 
middleware platforms offer a fixed service to their users, and it is not possible to view or alter the 
implementation of this service, i.e. they are closed systems. Inevitably, the platform architecture represents a 
compromise featuring, e.g. general-purpose protocols and associated management strategies. It is then not 
possible to configure platforms to meet the needs of more specific target domains. Similarly, it is not possible to 
reconfigure platforms at run-time as, for example, the underlying environmental conditions fluctuate. Equally, it 
is difficult to evolve such architectures in the longer-term to meet new application requirements. 

Middleware designers are aware of this problem and have responded with a number of initiatives. Focusing 
on CORBA for example, the OMG have introduced a series of platform specifications including Real-time 
CORBA [OMG01] and Minimal CORBA [OMG01]. These are however specific solutions to specific domains 
and are not a general solut ion to this problem. In addition, the Portable Interceptors specification [OMG99] 
enables the customisation of CORBA platforms by allowing the interception of invocations or replies via pre- or 
post- processing. Portable interceptors also enable the interception of IOR (Interoperable Object Reference) 
creation. This is a useful but limited mechanism. For example, it is not possible to add interceptors at arbitrary 
points in the ORB implementation. Similarly, there is no native support for structured composition or for the 
dynamic installation of interceptors. It could be argued that the interceptor programmer can enhance the system 
with such functionality, but this would inevitably result in a proprietary solution. The other notable 
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customisation feature in CORBA is the use of policy objects[OMG01], which allow a level of control over 
particular internal services of the ORB. Such policies can be used for example to customise aspects such as the 
POA (Portable Object Adapter), asynchronous messaging, security and real-time functionality. However, once 
the policies are installed (e.g. at the time an object reference is created), the set of potential policies are fixed 
and cannot be changed, thus not fully supporting dynamic adaptation. Other middleware standards and 
platforms also offer similar degrees of flexibility, e.g. custom marshalling in COM [Microsoft00a], interception  
in COM+ [Microsoft00b] and dynamic proxies  in Java [Sun00]. These, however, all suffer from similar 
problems to those described above. In general, such mechanisms can be viewed as ad-hoc and incomplete in 
terms of support for openness and adaptation. They are certainly insufficient to meet the considerable demands 
of next generation distributed applications. 

Recently, a number of reflective middleware technologies have emerged in response to such requirements. 
Reflection is a technology that has previously been deployed successfully in the design of programming 
languages and operating systems (among other areas). The key to the approach is to offer a meta-interface 
supporting the inspection and adaptation of the underlying virtual machine. In terms of middleware, this implies 
that the meta-interface should support operations to discover the internal operation and structure of the platform 
(e.g. protocols and management structures being deployed) and to make changes at run-time. This paper 
presents the design and implementation of OpenORB , a reflective middleware platform developed at Lancaster 
University. More specifically, the paper focuses on OpenORB v2, a significant re-design building on our 
experiences from the use of our first implementation of the platform (descriptions of this earlier version of the 
platform can be found in the literature [Blair98, Costa98, Costa00, Andersen00]).  

The paper is structured as follows. Section 2 presents an analysis of the state of the art in reflective 
middleware, highlighting the problems relating to performance and integrity. Section 3 then presents the 
approach adopted in OpenORB with regard to these two issues. In particular, we describe a lightweight 
component model, OpenCOM, and also our use of component frameworks to manage integrity. Following this, 
section 4 discusses the implementation of OpenORB with emphasis on the role of such frameworks. Section 5 
offers an initial performance evaluation of OpenORB, with some overall conclusions drawn in section 6. 

2. Reflective Middleware: An Analysis of the State of the Art 

2.1. Motivation 

The main motivation for this research is to provide a principled (as opposed to ad hoc) means of achieving 
openness. For example, reflection can be used to inspect the internal behaviour of a platform ( introspection). By 
exposing the underlying implementation, it becomes straightforward to insert additional behaviour to monitor 
the implementation, e.g. performance monitors, quality of service monitors, or accounting systems. Reflection 
can also be used to alter the internal behaviour of the underlying middleware (adaptation ). Examples include 
replacing or changing the implement ation of the underlying transport protocol to operate more optimally over a 
wireless link, introducing an additional level of distribution transparency in a running computation (e.g. 
migration transparency), or inserting a filter to reduce the bandwidth requirements of a media stream. 

There are also strong arguments that middleware is the most appropriate locus  to offer such capabilities. 
Offering such functionality in the underlying operating system is dangerous and can compromise the overall 
integrity of the system. Considerable advantages have been gained from supporting reflection in programming 
languages but, with this approach, the benefits are obviously restricted to that particular language. It is also 
clearly inappropriate to leave support for adaptation to the application, as application writers would not have 
available the necessary levels of openness to implement their desired policies. In reflective middleware, the role 
of the middleware platform is to offer a language and operating system independent framework for managing 
adaptation on behalf of the application, thus extending the benefits of portability and interoperability to adaptive 
applications and systems. 

2.2. Reflection and Middleware 

2.2.1. Styles of Reflection 
Middleware platforms offer two (complementary) styles of reflection, i.e. structural and behavioural reflection: 
• Structural reflection is concerned with the underlying structure of objects or components, e.g. in terms of 

interfaces supported (c.f. introspection features found in Java [Sun00]). More advanced features may also be 
offered such as the ability to adapt the structure of an object, e.g. to add new behaviour at run-time. 
Similarly, some systems provide architectural reflection, whereby the software architecture of the system, 
e.g. in terms of components and connectors, can be reified and altered [Blair01, Cazzola99]. This can be 
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applied to the very structure of the middleware platform itself, allowing the customisation of the architecture 
to current environmental conditions. 

• Behavioural reflection is concerned with activity in the underlying system, e.g. in terms of the arrival and 
dispatching of invocations. Typical mechanisms provided include the use of interceptors that support the 
reification of the process of invocation and the subsequent insertion of pre - or post - actions (as mentioned 
above). Other systems provide similar capabilities through dynamic proxies [Sun00]. Finally, some research 
has been carried out on providing access to underlying resources and associated resource management, e.g. 
through the reification of a set of logical tasks and enabling the customisation of resource allocation and 
management policies  [Duran-Limon00a, Duran-Limon00b]. 

In our own research, we have also combined both forms of reflection into an overall architecture [Blair98, 
Blair01] (c.f. the work on AL-1/D [Okamura92]). 

2.2.2. Examples of Reflective Middleware Platforms 
As mentioned above, a significant number of experimental platforms have now emerged including: 
• mChaRM from the University of Genova which focuses on the use of architectural reflection in terms of 

topological reflection, involving the manipulation of structure (in terms of components and connectors) and 
strategical reflection involving the manipulation of behaviour [Cazzola99];  

• DynamicTao from the University of Illinois at Urbana-Champaign, an extension to TAO offering 
configurators that maintain dependencies between components and provide a set of hooks for the attachment 
or detachment of components dynamically [Kon00]; 

• FlexiNet from APM Ltd in Cambridge (now Citrix) which exploits reflection in Java to enable the 
programmer to tailor the underlying communications infrastructure by inserting/ removing protocol layers 
[Hayton98]; 

• Experiments at Trinity College Dublin on the use of the reflective language Iguana to develop more open 
and extensible middleware platforms, including implementations of minimum CORBA [Dowling00, 
Dowling01]; 

• LegORB (now UIC), also from the University of Illinois at Urbana-Champaign, applying similar ideas as in 
DynamicTao (above) but for the customisation of platforms for mobile computing and, more generally, what 
they refer to as active spaces  [Kon00]; 

• OpenCorba, developed by researchers at the Ecole des Mines de Nantes, which is an open, dynamically 
adaptable ORB that depends on a reflective language (NeoClasstalk), especially in terms of exploiting class-
based reflection as offered by this language [Ledoux99]; 

• OOPP from the University of Tromsø, which is closely based on OpenORB but focusing on the area of 
quality of service management in reflective middleware platforms [Andersen00]. 

Other middleware platforms featuring aspects of reflection include Jonathan [Dumant98], QuO [Zinky01] and 
TAO [Schmidt99] (including recent work on extending the latter with an open implementation of the CORBA 
Component Model [Wang01]). Finally, a number of researchers have carried out more specific and indeed 
complementary experiments on the use of reflection in key areas such as transactions [Barga98] and fault-
toler ance [Fabre98, Killijian00]. 

2.3. Overall Analysis 

Overall, middleware plays an increasingly central role in the design of modern computer systems and will, we 
believe, continue to enjoy this prominence in the future. There is however a demonstrable need for more 
openness and flexibility in middleware. We argue strongly that reflective middleware is the right technology to 
meet these demands. Indeed, there is growing evidence that such platforms are more configurable, 
reconfigurable, and also offer support for software evolution generally [Blair01]. As an example, a minimal 
configuration of LegORB, targeted at palm devices, has been created with a footprint of 16kbytes [Roman01]. 

While great progress has been made in the reflective middleware community, many outstanding issues 
remain. Firstly, it is not clear if reflective middleware technologies can achieve acceptable performance when 
compared to more traditional platforms. Secondly, the issue of integrity is not yet resolved. This is crucial if 
such technologies are to be fully deployed. The main goal of OpenORB v2 is to address these limitations. More 
specifically, we have the following key objectives: 
• In the worst case, performance should be on a par with that of conventional middleware platforms, and in the 

best case (e.g. in the case of cut -down configurations) it should be significantly better; 
• While permitting maximal reconfigurability, it should be possible to control and constrain the scope of 

reconfigurations so that damaging changes are discouraged and/ or disallowed. 
We report on the results of this work in the rest of this paper.  
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3. Overall Approach 

3.1. Overview 

The OpenORB architecture builds on two complementary technologies; namely components and reflection.  
More specifically, in OpenORB we provide a component model [Szyperski98] not just at the application level, 
but also for the construction of the middleware platform itself. Thus, an instance of OpenORB is a particular 
configuration of components, which can be selected at build-time and reconfigured at run-time (full details of 
the component model, including its intrinsic support for multimedia, can be found in the literature [Blair01]). 
Access to the underlying platform, and by implication the associated component structure, is provided through 
reflection. In particular, every application-level component offers a meta-interface providing access to an 
underlying meta-space that is in effect the support environment for this component (c.f. the middleware 
platform). Crucially, meta-space is itself composed of components. Such (meta-level) components also have a 
meta-interface, offering access to their  support environment. This approach is therefore recursive, leading to an 
infinite tower  of reflection. In order to render this implementable, meta-components are instantiated on demand; 
unless accessed, they exist in theory but not in practice. In OpenORB, meta-space is partitioned into distinct 
meta-models offering both structural and behavioural reflection (again, further details can be found in the 
literature [Blair01]). 

The architecture described above has evolved through a series of prototypes written in the scripting language 
Python. Python was a natural choice for this prototyping work given its intrinsic support for rapid prototyping 
and also the underlying reflective capabilities of the language. Nevertheless, because of the interpreted nature of 
this language, it is not possible to fully investigate the performance characteristics of a reflective middleware 
platform. Consequently, we initiated a parallel activity to investigate the efficient implementation of OpenORB 
using C++. In more detail, the approach adopted is to define a base reflective component model, OpenCOM, as 
an extension to Microsoft’s COM architecture, and then to use this to implement a component -based 
middleware platform. In addition, to address the issue of integrity, we reply heavily on the concept of 
component frameworks. We look at these two key underlying technologies below. 

3.2. OpenCOM 

As mentioned above, OpenCOM is closely based on Microsoft’s COM but enhanced with richer reflective 
facilities. OpenCOM relies only on the core of COM, i.e. i) the basic binary -level interoperability standard (the 
vtable data structure), ii) Microsoft’s Interface Definition Language (IDL), iii) COM’s globally unique 
identifiers (GUIDs), and iv) the IUnknown interface (for interface discovery and reference counting); it avoids 
dependencies on other features of COM such as distribution (via DCOM), persistence, security and transactions. 
Crucially, we retain interoperability with other COM components. Moreover, the binary-level nature of 
interconnections promises considerable performance benefits over other component models such as JavaBeans. 

One limitation of COM is that there are no mechanisms to make the connections between components 
explicit. If one component depends upon the interface of another (we term this a required interface of the 
component) then it is accessed through a simple pointer variable, the type and location of which is lost at 
compile time. This clearly makes it impossible to track dependencies between components at run-time and 
consequently means that COM components cannot be dynamically reconfigured. In our model, we define the 
receptacle data structure as a first class run-time entity that maintains pointer and type information for a 
connection between a component and a required interface. Connections  are established explicitly so that they 
can be made known to the system. The component developer implements an interface (IReceptacles ) in order to 
allow the system to access the component's receptacles. Receptacles also contain other elements, e.g. locks, to 
allow the system to prevent invocations through a receptacle when a reconfiguration on the connection is taking 
place. O penCOM also deploys a standard run-time that is available in every OpenCOM address space. This run-
time manages a repository of available component types for lifecycle management, and also maintains an 
overall system graph in support of the IMetaArchitecture interface (see below).  

Crucially, OpenCOM also provides a number of meta-interfaces providing low -level support for 
introspection and adaptation: 
1. The IMetaInterface interface provides meta-information relating to the interface and receptacle types of a 

component (this interface can also be used to support dynamic invocation of arbitrary methods as in Java 
core reflection); 

2. The IMetaArchitecture interface provides access to the underlying graph structure of components and their 
connections (assuming the component is not primitive); 

3. The IMetaInterception interface enables the dynamic attachment or detachment of interceptors. 
The overall architecture of OpenCOM is summarised in figure 1 below. 
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Fig. 1. The Architecture of OpenCOM 

Further details on all aspects of OpenCOM can be found in [Coulson01c]. 

3.3. Component Frameworks 

The second key technology underpinning OpenORB is an instantiation of the concept of component frameworks  
(CFs). This term was originally defined by Szyperski [Szyperski98] to refer to “collections of rules and 
interfaces (contracts) that govern the interaction of a set of components plugged into them”. They are targeted at 
a specific domain and embody rules and interfaces that make sense in that domain. 

In OpenORB, we specialise the generic CF notion in a number of key ways. Most importantly, CFs in 
OpenORB are not just a design concept. Rather, they are reified as run-time software entities (packages of 
components) that support and police components plugged into the CF to ensure that they conform to its rules 
and contracts. CFs therefore are given the important role of maintaining the overall integrity of that part of the 
component architecture through reconfiguration management. This has the advantage that CFs can exploit 
domain-specific knowledge and built-in constraints to enforce the desired level of integrity across 
reconfiguration operations (in terms of both functional and non-functional concerns), and also perform domain 
specific trade-offs between flexibility and consistency. In more general terms, CFs aim to establish architectural 
properties and invariants by constraining the design space of inserted (i.e. plug-in) components. 

The fundamental issues in reconfiguration management are: i) to control and constrain the scope of 
reconfiguration operations, ii) to separate concerns between reconfiguration operations and core middleware 
functionality, and iii) to maintain integrity in the face of dynamic change. To address the first of these issues, 
we employ nesting as a means of providing hierarchical scoping and structure. For example, the top -level 
structure of OpenORB is itself a CF (see below). We then address the second and third issues by applying a 
manager / managed pattern within the resultant hierarchical scopes. In the manager / managed pattern, managers  
collect events and issue management operations (i.e. implement management policies ). Conversely, managed 
entities  accept management operations and issue event notifications (i.e. implement management mechanisms). 

More specifically, CFs take the manager role: they monitors events emitted by their plug-ins, maintain meta-
information representing the current configuration, and effect changes on this configuration. These changes may 
involve the invocation of management operations on plug-ins, the setting of attributes, or modification of the 
plug-in configuration (i.e., adding/ deleting/ connecting/ disconnecting plug-ins using OpenCOM primitives). 
At the same time, CFs are responsible for exposing themselves as managed entities with respect to higher-level 
CFs or other manager components (e.g., application components). Thus, each CF provides a meta-interface 
offering adaptation operations and also possibly generates events.  
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4. The Design and Implementation of OpenORB v2 

4.1. Overview 

The implementation of OpenORB v2 is structured as a top-level CF that is then composed of three layers of 
further CFs. The top level CF enforces the three-layer structure by ensuring that each component/CF only has 
access to interfaces of fered by components/CFs in the same or lower layers. Furthermore, it imposes policies 
concerning dynamic changes in layer composition. The second level CFs address more focused sub-domains of 
middleware functionality (e.g., binding establishment and thread management) and enforce appropriate sub-
domain specific policies.  

This hierarchical structure opens up two distinct dimensions of flexibility. Firstly, the top level CF can be 
configured by selecting the set of CFs that will initially populate the layers (together with their inter-
connections and their associated policies). This configuration defines the middleware architecture as published 
to developers who want to use, configure or extend the platform. Different architectures can be defined for 
different platforms or application domains. Secondly, a particular instance of the middleware architecture is 
dynamically configurable in terms of introducing new CFs (as long as they conform to the policies of the top-
level CF) and by customizing or extending the existing second-level CFs (both statically and dynamically). 

The current OpenORB architecture consists of 6 CFs and is seen in figure 2. However, we should stress 
again that this is only one possible configuration, and that many other architectures can equally well be created. 

Transport plug-ins

Binding
Layer
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Layer
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Binding
CF

Protocol
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Buffer
Mgt. CF

BT implementations

Protocols Filters

Buffer policies

Transport
Mgt. CF

Thread
Mgt. CF

Schedulers

Multimedia
Streaming
CF

...

Middleware Top CF
 

Fig. 2. Top level architecture of OpenORB 

The resources layer currently  contains buffer,  transport, and thread management CFs that respectively manage 
buffer allocation policies, transport protocols and thread schedulers. Next, the communication layer  contains 
protocol and multimedia streaming CFs. The former accepts plug-in protocol components and the latter accepts 
filter  components. Finally, the binding layer  contains the binding CF that accepts binding type implementations  
(e.g., remote object invocation, streaming connections or publish/subscribe etc.). This is a crucial part of the 
architecture because it determines the programming model offered to middleware users.  

The following sections present the architecture in more detail. The resources and communications layers are 
covered in section 4.2, and the binding layer is discussed in detail in section 4.3. 

4.2. The Resources and Communications Layers 

Our current implementation of these two layers consists of 50,000 lines of C++ (including the OpenCOM 
runtime) divided into about thirty components and five CFs. The bulk of the code is derived from GOPI, a 
CORBA compliant, multimedia capable, middleware platform that we have developed previously [Coulson99]. 

Each CF in the resource and communications layers follows a similar pattern: it defines an abstract interface 
and manages different implementations of this interface, which are plugged in as separate components and are 
selectable at run-time. In addition, the CFs all offer meta-interfaces for domain specific dynamic 
reconfiguration. For example, there are operations to ensure that that managed components can be dynamically 
loaded and unloaded without disruption to currently executing applications. 



7 

The thread management CF multiplexes user-level threads over kernel threads (referred to as virtual 
processors), and supports the dynamic selection of scheduler  components, each of which manages its own 
threads and dedicated virtual processors [Coulson01a]. The thread CF’s dynamic reconfiguration interface 
enables the dynamic loading/ unloading of these schedulers. Currently there are three scheduler 
implementations: a simple priority based policy, an earliest deadline first policy, and a ‘native’ policy (which 
maps every user level thread to a single kernel thread).  

Also in the resources layer, the buffer  management CF defines an abstract interface that enables developers 
to write their own tailored buffer allocation policies using a common buffer abstraction. Currently there are two 
buffer implementations, a malloc() based implementation that maps directly down to OS level memory 
management routines, and a more efficient buddy scheme [Knuth73]. Similarly, the transport CF defines an 
abstract interface that enables developer s to add transport protocols. Currently, we support TCP, UDP, multicast 
IP, and IPC (i.e. pipes on UNIX and memory mapped files on Windows). In addition, the transport CF supports 
another type of plug-in that supports the definition of alternative message  detection strategies for incoming 
messages. The default strategy only looks for new messages when all threads in the address space are currently 
blocked. Other strategies rely on various combinations of server threads, thread pools and signal driven I/O 
notification. Further details are available in [Coulson99] and [Coulson01b]. 

Finally, in the communications layer, the protocol and multimedia streaming CFs define a plug-in 
environment for stacked communications protocols and composable media processing filters. Currently, four 
protocol implementations exist: a CORBA GIOP v1.2 object request protocol implementation, a protocol that 
implements simple fragmentation services over any underlying transport, a protocol that efficiently passes data 
between end-points in the same address space, and a protocol that employs shared memory for communication 
and the IPC transport for synchronisation. These CFs also maintain information about the current protocol/ filter 
configurations (organized as a graph of instances) and offer meta-interfaces with specialised operations to 
reconfigure the graph in such a way that rules constraining permissible configurations are obeyed.  

4.3 The Binding Framework  

The binding layer is arguably the most interesting feature of this architecture. In contrast to most existing 
middleware platforms, OpenORB supports an extensible set of binding types including remote method 
invocation, publish/ subscribe, message queuing and media streaming. By capturing diverse forms of interaction 
as middlew are-provided binding types (BTs), the binding CF significantly simplifies application development 
and promotes the reuse of interaction mechanisms over multiple applications. BTs effectively realise software 
architecture connectors, thus bridging the gap to software architecture research.  

The binding CF specifies two contracts (as shown in figure 3): i) the binding API, which defines the view of 
BTs seen by binding users, and ii) the BT contract, which governs the collaboration between BT 
implementations and the binding CF itself.  

Binding CF
BT contract

Binding
User

Binding API

BT
Implementation

 
Fig. 3. The Binding CF Contracts 

The binding API is based on a small number of generic entities and interactions designed to capture 
commonalities across various BTs. It does not attempt to specify a uniform int erface for all BTs (this is clearly 
unfeasible) but rather it defines generic COM interfaces and rules and guidelines that provide consistency for 
binding users and guidance for BT implementers.  

Briefly, the API model assumes that bindings are established between participants  and the responsibility for 
binding establishment is assigned to binders. Binders take as input a number of objects representing participants 
together with related attributes, verify that the supplied participant objects conform to role s specified in the 
associated BT, establish the binding and return (if nothing goes wrong) a binding control object. Participants 
that are remote with respect to a binder’s location are represented by rep objects. The process of creating a rep  
falls into two stages as follows. First, a generator is used at the participant’s (remote) site to generate both an 
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iref and an associated communications infrastructure. Second, the iref  is transferred to the binder’s site (by 
some means or other) where it is passed t o a resolver that is responsible for creating a corresponding rep. 

The BT contract defines interactions that enable the binding CF to expose BT implementations to binding 
users, manage their lifecycle and provide them with access to both other BTs and services in the lower platform 
layers (communications and resources). The set of available BTs can be configured statically and also changed 
at run-time by dynamic loading when an iref of a specific type arrives. The reconfiguration of established 
bindings is achieved by building on both binding control objects provided by other BTs and meta-interfaces 
offered by the lower layers and the component model. Further details of the binding CF can be found in a 
forthcoming paper [Coulson01c]. 

5. Performance Evaluatio n 

Our expectation is that OpenORB should perform as well as existing ORBs while simultaneously providing 
dynamic reconfigurability through componentisation, reflection and CFs. To evaluate this expectation we 
compared the performance of OpenORB with two other ORBs: GOPI v1.2 and Orbacus 3.3.4. As stated, GOPI 
provides much of the source code for OpenORB v2 but is written in C and implemented in a single library. A 
direct performance comparison should therefore yield insight into the overhead of our component model. 
Orbacus is well known as one of the fastest and most mature CORBA-compliant commercial ORBs available. 

The OpenORB configuration used was that shown in figure 2 above with a binding type that implements 
remote method invocation on top of the CORBA GIOP protocol (and without locks on receptacles). Our tests 
compared raw method invocations per second over loopback on a Dell Precision 410 workstation equipped with 
256Mb RAM and an Intel Pentium III processor rated at 550Mhz. The operating system was Windows 2000 
and the compiler was Microsoft’s cl.exe version 12.00.8804 with flags /MD /W3 /GX /FD /O2. An IDL 
interface was employed that supported a single operation that took as its argument an array of octets of varying 
size. The implementation of this method at the server side was null. 
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Fig. 4. Performance of OpenORB versus GOPI and Orbacus 

The results of timing a large number of round-trip invocations using this setup are shown in figure 3. It can be 
seen that OpenORB performs about the same as Orbacus, with GOPI running around 10% faster. As might be 
expected, there is a diminishing difference between all three systems as packet size increases; this is presumably 
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because the overhead of data copying begins to outweigh the cost of call processing. The relative overhead of 
OpenORB compared to GOPI can be attributed to COM’s use of indirection (through the vtable) and also to the 
former’s use of receptacles. The OpenORB configuration involved 67 receptacle-interface connections on the 
data path per RPC (32 on the client-side and 35 on the server side). In the GOPI case, a method call is 
implemented as an immediate register load followed by a call through that register. In the OpenORB case, on 
the other hand, an interface pointer must first be extracted from the target receptacle (involving a memory 
access to locate the receptacle in the current component and a call to the overloaded dereference operator 
followed by a memory access within the receptacle), and then a C++ virtual method call on the interface pointer 
(involving a memory access to get the current component’s appropriate interface vtable pointer, a register 
indirect operation to acquire a pointer to that interface’s table of function pointers, an addition to work out the 
method’s offset within the interface, a push of “this” and finally, the actual method call). Despite this additional 
work, it can be seen that the performance of OpenORB is entirely comparable to the non-componentised ORBs.  

6. Conclusions 

This paper has discussed the design and implementation of OpenORB, an experimental reflective middleware 
architecture intended to provide a high degree of configurability, reconfigurability and support for longer-term 
evolution. The approach is based on a marriage of component technology and reflection. In particular, through 
reflection, the component -based approach pervades both the application level and indeed the implementation of 
the platform itself. Crucially, reflection allows this underlying structure to be accessed and indeed altered 
dynamically. 

More specifically, the paper has described an implementation of the OpenORB architecture using C++ 
together with a lightweight and reflective component model based on COM (OpenCOM). In addition, the 
implementation features the use of domain specific component frameworks supporting reconfiguration 
management and integrity. Our experiences from this work are summarized below: 
1. We believe that the combination of a reflective component model and the CF-based structuring principle 

represents a highly promising basis for the construction of configurable and reconfigurable ORBs. While the 
reflective component model provides a powerful basis for maximal flexibility and reconfigurability, on its 
own it is too expressive, and its unconstrained use can easily lead to chaos. The presence of CF-based 
structuring tempers this expressiveness by imposing domain specific constraints on the reconfiguration 
process. 

2. We also believe that the three-layer structure of our top -level CF represents a generic and future-proof basis 
for the expansion, extension and evolution of OpenORB v2. We are encouraged in this belief by the fact that 
we have been able to easily accommodate several components and CFs that were not initially envisaged. For 
example, we have recently accommodated thread pool and operating system abstraction components in the 
resources layer and plan the introduction of a group communications CF in the communications layer. As for 
the binding CF, we have not yet encountered a binding style that it could not accommodate, although we 
have less implementation experience in this area than in the other layers. 

3. Our implementation efforts have also validated other aspects of our design. For example, we have discovered 
that the co mponent model supports the construction of ORB functionality that is at least as efficient as 
conventional object -based ORBs (see section 5). Furthermore, we have confirmed that the component model 
scales well in terms of its explicit enumeration of per-component dependencies. This is primarily due to the 
use of CFs which reduce dependencies by forbidding connections between plug-in components and 
components outside the CF. In our current implementation, the maximum number of dependencies in any 
single component is just seven and the average figure is just four. This leaves considerable scope for further 
reducing the granularity of componentisation that, if carried out with care, should correspondingly increase 
the ORB’s potential for reconfigurability.  

Currently, our efforts are focusing on the further development of the OpenORB environment. For example, we 
are adding a plug-in component type to the protocol CF that will enable the configuration of a range of 
demultiplexing strategies (that have previously been implemented in the GOPI platform [Coulson01a] although 
with limited scope for run-time reconfiguration). We are also adding support for group communications via an 
additional communications layer CF as mentioned above [Saikoski00]. 
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