
Studies of Efficiency and Integrity in the OpenORB Reflective
Middleware Architecture

Gordon S. Blair1, Geoff Coulson2, Michael Clarke2 and Nikos Parlavantzas 2

1Department of Computer Science, University of Tromsø, N-9037 Tromsø, Norway (On leave from Lancaster
University).

E-mail: gordon@cs.uit.no
2Distributed Multimedia Research Group, Department of Computing, Lancaster University, Bailrigg, Lancaster, LA1

4YR, U.K.
E-mail: {geoff, mwc, parlavan}@comp.lancs.ac.uk

Abstract. Middleware has emerged as an important architectural component in modern distributed systems.
However, it is now recognised that established middleware platforms such as CORBA, DCOM and .NET are
not flexible enough to meet the needs of emerging distributed applications, featuring for example access to
multimedia services and also support for mobile users. In particular, they are not sufficiently configurable
and they do not support reconfiguration or longer-term evolution of architectures. Recently, a number of
reflective middleware platforms have emerged in an attempt to overcome such problems. Considerable
progress has been made, particularly in terms of support for configuration. Major problems remain however,
especially in terms of performance and integrity. This paper presents a study of OpenORB v2 with emphasis
on these issues. In terms of performance, the design is based on a lightweight reflective component model,
based on Microsoft’s COM. It is shown that the resultant OpenORB implementation performs at least as
well as commercial ORBs. In terms of integrity, the design also features the use of component frameworks
offering a domain specific approach to reconfiguration management. Early experiences indicate that this is a
highly promising approach for maintaining integrity of the un derlying middleware platform. Ongoing
research is investigating further extensions to the platform including support for group communications.

1. Introduction

Middleware has emerged as an important architectural component in modern distributed systems. The role of
middleware is to offer a high-level, platform -independent programming model (e.g. object -oriented or
component-based) to users, and to mask out problems of distribution. Examples of key middleware platforms
include CORBA, DCOM, .NET, and the Java-based series of technologies (RMI, JINI, EJB).

Traditionally, such platforms have been deployed (with considerable success) in application domains such as
banking and finance as a means of tackling problems of heterogeneity, and also supporting the integration of
legacy systems. However, more recently, middleware technologies have been applied in a wider range of areas
including safety critical systems, embedded systems, mobile and ubiquitous systems, real-time systems, the
computational GRID, etc. Unfortunately, as this diversification proceeds, it is becoming ever more apparent that
the middleware technologies mentioned above are not able to support such a diversity of application domains.

The main reason for this is the black -box philosophy adopted by existing platforms. In particular, existing
middleware platforms offer a fixed service to their users, and it is not possible to view or alter the
implementation of this service, i.e. they are closed systems. Inevitably, the platform architecture represents a
compromise featuring, e.g. general-purpose protocols and associated management strategies. It is then not
possible to configure platforms to meet the needs of more specific target domains. Similarly, it is not possible to
reconfigure platforms at run-time as, for example, the underlying environmental conditions fluctuate. Equally, it
is difficult to evolve such architectures in the longer-term to meet new application requirements.

Middleware designers are aware of this problem and have responded with a number of initiatives. Focusing
on CORBA for example, the OMG have introduced a series of platform specifications including Real-time
CORBA [OMG01] and Minimal CORBA [OMG01]. These are however specific solutions to specific domains
and are not a general solut ion to this problem. In addition, the Portable Interceptors specification [OMG99]
enables the customisation of CORBA platforms by allowing the interception of invocations or replies via pre- or
post- processing. Portable interceptors also enable the interception of IOR (Interoperable Object Reference)
creation. This is a useful but limited mechanism. For example, it is not possible to add interceptors at arbitrary
points in the ORB implementation. Similarly, there is no native support for structured composition or for the
dynamic installation of interceptors. It could be argued that the interceptor programmer can enhance the system
with such functionality, but this would inevitably result in a proprietary solution. The other notable

2

customisation feature in CORBA is the use of policy objects[OMG01], which allow a level of control over
particular internal services of the ORB. Such policies can be used for example to customise aspects such as the
POA (Portable Object Adapter), asynchronous messaging, security and real-time functionality. However, once
the policies are installed (e.g. at the time an object reference is created), the set of potential policies are fixed
and cannot be changed, thus not fully supporting dynamic adaptation. Other middleware standards and
platforms also offer similar degrees of flexibility, e.g. custom marshalling in COM [Microsoft00a], interception
in COM+ [Microsoft00b] and dynamic proxies in Java [Sun00]. These, however, all suffer from similar
problems to those described above. In general, such mechanisms can be viewed as ad-hoc and incomplete in
terms of support for openness and adaptation. They are certainly insufficient to meet the considerable demands
of next generation distributed applications.

Recently, a number of reflective middleware technologies have emerged in response to such requirements.
Reflection is a technology that has previously been deployed successfully in the design of programming
languages and operating systems (among other areas). The key to the approach is to offer a meta-interface
supporting the inspection and adaptation of the underlying virtual machine. In terms of middleware, this implies
that the meta-interface should support operations to discover the internal operation and structure of the platform
(e.g. protocols and management structures being deployed) and to make changes at run-time. This paper
presents the design and implementation of OpenORB , a reflective middleware platform developed at Lancaster
University. More specifically, the paper focuses on OpenORB v2, a significant re-design building on our
experiences from the use of our first implementation of the platform (descriptions of this earlier version of the
platform can be found in the literature [Blair98, Costa98, Costa00, Andersen00]).

The paper is structured as follows. Section 2 presents an analysis of the state of the art in reflective
middleware, highlighting the problems relating to performance and integrity. Section 3 then presents the
approach adopted in OpenORB with regard to these two issues. In particular, we describe a lightweight
component model, OpenCOM, and also our use of component frameworks to manage integrity. Following this,
section 4 discusses the implementation of OpenORB with emphasis on the role of such frameworks. Section 5
offers an initial performance evaluation of OpenORB, with some overall conclusions drawn in section 6.

2. Reflective Middleware: An Analysis of the State of the Art

2.1. Motivation

The main motivation for this research is to provide a principled (as opposed to ad hoc) means of achieving
openness. For example, reflection can be used to inspect the internal behaviour of a platform (introspection). By
exposing the underlying implementation, it becomes straightforward to insert additional behaviour to monitor
the implementation, e.g. performance monitors, quality of service monitors, or accounting systems. Reflection
can also be used to alter the internal behaviour of the underlying middleware (adaptation). Examples include
replacing or changing the implement ation of the underlying transport protocol to operate more optimally over a
wireless link, introducing an additional level of distribution transparency in a running computation (e.g.
migration transparency), or inserting a filter to reduce the bandwidth requirements of a media stream.

There are also strong arguments that middleware is the most appropriate locus to offer such capabilities.
Offering such functionality in the underlying operating system is dangerous and can compromise the overall
integrity of the system. Considerable advantages have been gained from supporting reflection in programming
languages but, with this approach, the benefits are obviously restricted to that particular language. It is also
clearly inappropriate to leave support for adaptation to the application, as application writers would not have
available the necessary levels of openness to implement their desired policies. In reflective middleware, the role
of the middleware platform is to offer a language and operating system independent framework for managing
adaptation on behalf of the application, thus extending the benefits of portability and interoperability to adaptive
applications and systems.

2.2. Reflection and Middleware

2.2.1. Styles of Reflection
Middleware platforms offer two (complementary) styles of reflection, i.e. structural and behavioural reflection:
• Structural reflection is concerned with the underlying structure of objects or components, e.g. in terms of

interfaces supported (c.f. introspection features found in Java [Sun00]). More advanced features may also be
offered such as the ability to adapt the structure of an object, e.g. to add new behaviour at run-time.
Similarly, some systems provide architectural reflection, whereby the software architecture of the system,
e.g. in terms of components and connectors, can be reified and altered [Blair01, Cazzola99]. This can be

3

applied to the very structure of the middleware platform itself, allowing the customisation of the architecture
to current environmental conditions.

• Behavioural reflection is concerned with activity in the underlying system, e.g. in terms of the arrival and
dispatching of invocations. Typical mechanisms provided include the use of interceptors that support the
reification of the process of invocation and the subsequent insertion of pre - or post - actions (as mentioned
above). Other systems provide similar capabilities through dynamic proxies [Sun00]. Finally, some research
has been carried out on providing access to underlying resources and associated resource management, e.g.
through the reification of a set of logical tasks and enabling the customisation of resource allocation and
management policies [Duran-Limon00a, Duran-Limon00b].

In our own research, we have also combined both forms of reflection into an overall architecture [Blair98,
Blair01] (c.f. the work on AL-1/D [Okamura92]).

2.2.2. Examples of Reflective Middleware Platforms
As mentioned above, a significant number of experimental platforms have now emerged including:
• mChaRM from the University of Genova which focuses on the use of architectural reflection in terms of

topological reflection, involving the manipulation of structure (in terms of components and connectors) and
strategical reflection involving the manipulation of behaviour [Cazzola99];

• DynamicTao from the University of Illinois at Urbana-Champaign, an extension to TAO offering
configurators that maintain dependencies between components and provide a set of hooks for the attachment
or detachment of components dynamically [Kon00];

• FlexiNet from APM Ltd in Cambridge (now Citrix) which exploits reflection in Java to enable the
programmer to tailor the underlying communications infrastructure by inserting/ removing protocol layers
[Hayton98];

• Experiments at Trinity College Dublin on the use of the reflective language Iguana to develop more open
and extensible middleware platforms, including implementations of minimum CORBA [Dowling00,
Dowling01];

• LegORB (now UIC), also from the University of Illinois at Urbana-Champaign, applying similar ideas as in
DynamicTao (above) but for the customisation of platforms for mobile computing and, more generally, what
they refer to as active spaces [Kon00];

• OpenCorba, developed by researchers at the Ecole des Mines de Nantes, which is an open, dynamically
adaptable ORB that depends on a reflective language (NeoClasstalk), especially in terms of exploiting class-
based reflection as offered by this language [Ledoux99];

• OOPP from the University of Tromsø, which is closely based on OpenORB but focusing on the area of
quality of service management in reflective middleware platforms [Andersen00].

Other middleware platforms featuring aspects of reflection include Jonathan [Dumant98], QuO [Zinky01] and
TAO [Schmidt99] (including recent work on extending the latter with an open implementation of the CORBA
Component Model [Wang01]). Finally, a number of researchers have carried out more specific and indeed
complementary experiments on the use of reflection in key areas such as transactions [Barga98] and fault-
toler ance [Fabre98, Killijian00].

2.3. Overall Analysis

Overall, middleware plays an increasingly central role in the design of modern computer systems and will, we
believe, continue to enjoy this prominence in the future. There is however a demonstrable need for more
openness and flexibility in middleware. We argue strongly that reflective middleware is the right technology to
meet these demands. Indeed, there is growing evidence that such platforms are more configurable,
reconfigurable, and also offer support for software evolution generally [Blair01]. As an example, a minimal
configuration of LegORB, targeted at palm devices, has been created with a footprint of 16kbytes [Roman01].

While great progress has been made in the reflective middleware community, many outstanding issues
remain. Firstly, it is not clear if reflective middleware technologies can achieve acceptable performance when
compared to more traditional platforms. Secondly, the issue of integrity is not yet resolved. This is crucial if
such technologies are to be fully deployed. The main goal of OpenORB v2 is to address these limitations. More
specifically, we have the following key objectives:
• In the worst case, performance should be on a par with that of conventional middleware platforms, and in the

best case (e.g. in the case of cut -down configurations) it should be significantly better;
• While permitting maximal reconfigurability, it should be possible to control and constrain the scope of

reconfigurations so that damaging changes are discouraged and/ or disallowed.
We report on the results of this work in the rest of this paper.

4

3. Overall Approach

3.1. Overview

The OpenORB architecture builds on two complementary technologies; namely components and reflection.
More specifically, in OpenORB we provide a component model [Szyperski98] not just at the application level,
but also for the construction of the middleware platform itself. Thus, an instance of OpenORB is a particular
configuration of components, which can be selected at build-time and reconfigured at run-time (full details of
the component model, including its intrinsic support for multimedia, can be found in the literature [Blair01]).
Access to the underlying platform, and by implication the associated component structure, is provided through
reflection. In particular, every application-level component offers a meta-interface providing access to an
underlying meta-space that is in effect the support environment for this component (c.f. the middleware
platform). Crucially, meta-space is itself composed of components. Such (meta-level) components also have a
meta-interface, offering access to their support environment. This approach is therefore recursive, leading to an
infinite tower of reflection. In order to render this implementable, meta-components are instantiated on demand;
unless accessed, they exist in theory but not in practice. In OpenORB, meta-space is partitioned into distinct
meta-models offering both structural and behavioural reflection (again, further details can be found in the
literature [Blair01]).

The architecture described above has evolved through a series of prototypes written in the scripting language
Python. Python was a natural choice for this prototyping work given its intrinsic support for rapid prototyping
and also the underlying reflective capabilities of the language. Nevertheless, because of the interpreted nature of
this language, it is not possible to fully investigate the performance characteristics of a reflective middleware
platform. Consequently, we initiated a parallel activity to investigate the efficient implementation of OpenORB
using C++. In more detail, the approach adopted is to define a base reflective component model, OpenCOM, as
an extension to Microsoft’s COM architecture, and then to use this to implement a component -based
middleware platform. In addition, to address the issue of integrity, we reply heavily on the concept of
component frameworks. We look at these two key underlying technologies below.

3.2. OpenCOM

As mentioned above, OpenCOM is closely based on Microsoft’s COM but enhanced with richer reflective
facilities. OpenCOM relies only on the core of COM, i.e. i) the basic binary -level interoperability standard (the
vtable data structure), ii) Microsoft’s Interface Definition Language (IDL), iii) COM’s globally unique
identifiers (GUIDs), and iv) the IUnknown interface (for interface discovery and reference counting); it avoids
dependencies on other features of COM such as distribution (via DCOM), persistence, security and transactions.
Crucially, we retain interoperability with other COM components. Moreover, the binary-level nature of
interconnections promises considerable performance benefits over other component models such as JavaBeans.

One limitation of COM is that there are no mechanisms to make the connections between components
explicit. If one component depends upon the interface of another (we term this a required interface of the
component) then it is accessed through a simple pointer variable, the type and location of which is lost at
compile time. This clearly makes it impossible to track dependencies between components at run-time and
consequently means that COM components cannot be dynamically reconfigured. In our model, we define the
receptacle data structure as a first class run-time entity that maintains pointer and type information for a
connection between a component and a required interface. Connections are established explicitly so that they
can be made known to the system. The component developer implements an interface (IReceptacles) in order to
allow the system to access the component's receptacles. Receptacles also contain other elements, e.g. locks, to
allow the system to prevent invocations through a receptacle when a reconfiguration on the connection is taking
place. O penCOM also deploys a standard run-time that is available in every OpenCOM address space. This run-
time manages a repository of available component types for lifecycle management, and also maintains an
overall system graph in support of the IMetaArchitecture interface (see below).

Crucially, OpenCOM also provides a number of meta-interfaces providing low -level support for
introspection and adaptation:
1. The IMetaInterface interface provides meta-information relating to the interface and receptacle types of a

component (this interface can also be used to support dynamic invocation of arbitrary methods as in Java
core reflection);

2. The IMetaArchitecture interface provides access to the underlying graph structure of components and their
connections (assuming the component is not primitive);

3. The IMetaInterception interface enables the dynamic attachment or detachment of interceptors.
The overall architecture of OpenCOM is summarised in figure 1 below.

5

IMetaArchitecture

Receptacles

Custom Service

MetaInterception

IUnknown

IMetaInterception
IMetaInterception

An OpenCOM enabled component

IUnknown

Pointer variables

IMetaArchitecture2

OpenCOM

IUnknown

System Graph

Type Libraries

The OpenCOM component

MetaArchitecture

IUnknown

MetaInterface

IUnknown

IMetaArchitecture

Custom Interface

IOpenCOM

IMetaInterface2

IReceptacles

ILifeCycle

IMetaInterface

IMetaInterface

Fig. 1. The Architecture of OpenCOM

Further details on all aspects of OpenCOM can be found in [Coulson01c].

3.3. Component Frameworks

The second key technology underpinning OpenORB is an instantiation of the concept of component frameworks
(CFs). This term was originally defined by Szyperski [Szyperski98] to refer to “collections of rules and
interfaces (contracts) that govern the interaction of a set of components plugged into them”. They are targeted at
a specific domain and embody rules and interfaces that make sense in that domain.

In OpenORB, we specialise the generic CF notion in a number of key ways. Most importantly, CFs in
OpenORB are not just a design concept. Rather, they are reified as run-time software entities (packages of
components) that support and police components plugged into the CF to ensure that they conform to its rules
and contracts. CFs therefore are given the important role of maintaining the overall integrity of that part of the
component architecture through reconfiguration management. This has the advantage that CFs can exploit
domain-specific knowledge and built-in constraints to enforce the desired level of integrity across
reconfiguration operations (in terms of both functional and non-functional concerns), and also perform domain
specific trade-offs between flexibility and consistency. In more general terms, CFs aim to establish architectural
properties and invariants by constraining the design space of inserted (i.e. plug-in) components.

The fundamental issues in reconfiguration management are: i) to control and constrain the scope of
reconfiguration operations, ii) to separate concerns between reconfiguration operations and core middleware
functionality, and iii) to maintain integrity in the face of dynamic change. To address the first of these issues,
we employ nesting as a means of providing hierarchical scoping and structure. For example, the top -level
structure of OpenORB is itself a CF (see below). We then address the second and third issues by applying a
manager / managed pattern within the resultant hierarchical scopes. In the manager / managed pattern, managers
collect events and issue management operations (i.e. implement management policies). Conversely, managed
entities accept management operations and issue event notifications (i.e. implement management mechanisms).

More specifically, CFs take the manager role: they monitors events emitted by their plug-ins, maintain meta-
information representing the current configuration, and effect changes on this configuration. These changes may
involve the invocation of management operations on plug-ins, the setting of attributes, or modification of the
plug-in configuration (i.e., adding/ deleting/ connecting/ disconnecting plug-ins using OpenCOM primitives).
At the same time, CFs are responsible for exposing themselves as managed entities with respect to higher-level
CFs or other manager components (e.g., application components). Thus, each CF provides a meta-interface
offering adaptation operations and also possibly generates events.

6

4. The Design and Implementation of OpenORB v2

4.1. Overview

The implementation of OpenORB v2 is structured as a top-level CF that is then composed of three layers of
further CFs. The top level CF enforces the three-layer structure by ensuring that each component/CF only has
access to interfaces of fered by components/CFs in the same or lower layers. Furthermore, it imposes policies
concerning dynamic changes in layer composition. The second level CFs address more focused sub-domains of
middleware functionality (e.g., binding establishment and thread management) and enforce appropriate sub-
domain specific policies.

This hierarchical structure opens up two distinct dimensions of flexibility. Firstly, the top level CF can be
configured by selecting the set of CFs that will initially populate the layers (together with their inter-
connections and their associated policies). This configuration defines the middleware architecture as published
to developers who want to use, configure or extend the platform. Different architectures can be defined for
different platforms or application domains. Secondly, a particular instance of the middleware architecture is
dynamically configurable in terms of introducing new CFs (as long as they conform to the policies of the top-
level CF) and by customizing or extending the existing second-level CFs (both statically and dynamically).

The current OpenORB architecture consists of 6 CFs and is seen in figure 2. However, we should stress
again that this is only one possible configuration, and that many other architectures can equally well be created.

Transport plug-ins

Binding
Layer

Comms
Layer

Resource
Layer

Binding
CF

Protocol
CF

Buffer
Mgt. CF

BT implementations

Protocols Filters

Buffer policies

Transport
Mgt. CF

Thread
Mgt. CF

Schedulers

Multimedia
Streaming
CF

...

Middleware Top CF

Fig. 2. Top level architecture of OpenORB

The resources layer currently contains buffer, transport, and thread management CFs that respectively manage
buffer allocation policies, transport protocols and thread schedulers. Next, the communication layer contains
protocol and multimedia streaming CFs. The former accepts plug-in protocol components and the latter accepts
filter components. Finally, the binding layer contains the binding CF that accepts binding type implementations
(e.g., remote object invocation, streaming connections or publish/subscribe etc.). This is a crucial part of the
architecture because it determines the programming model offered to middleware users.

The following sections present the architecture in more detail. The resources and communications layers are
covered in section 4.2, and the binding layer is discussed in detail in section 4.3.

4.2. The Resources and Communications Layers

Our current implementation of these two layers consists of 50,000 lines of C++ (including the OpenCOM
runtime) divided into about thirty components and five CFs. The bulk of the code is derived from GOPI, a
CORBA compliant, multimedia capable, middleware platform that we have developed previously [Coulson99].

Each CF in the resource and communications layers follows a similar pattern: it defines an abstract interface
and manages different implementations of this interface, which are plugged in as separate components and are
selectable at run-time. In addition, the CFs all offer meta-interfaces for domain specific dynamic
reconfiguration. For example, there are operations to ensure that that managed components can be dynamically
loaded and unloaded without disruption to currently executing applications.

7

The thread management CF multiplexes user-level threads over kernel threads (referred to as virtual
processors), and supports the dynamic selection of scheduler components, each of which manages its own
threads and dedicated virtual processors [Coulson01a]. The thread CF’s dynamic reconfiguration interface
enables the dynamic loading/ unloading of these schedulers. Currently there are three scheduler
implementations: a simple priority based policy, an earliest deadline first policy, and a ‘native’ policy (which
maps every user level thread to a single kernel thread).

Also in the resources layer, the buffer management CF defines an abstract interface that enables developers
to write their own tailored buffer allocation policies using a common buffer abstraction. Currently there are two
buffer implementations, a malloc() based implementation that maps directly down to OS level memory
management routines, and a more efficient buddy scheme [Knuth73]. Similarly, the transport CF defines an
abstract interface that enables developer s to add transport protocols. Currently, we support TCP, UDP, multicast
IP, and IPC (i.e. pipes on UNIX and memory mapped files on Windows). In addition, the transport CF supports
another type of plug-in that supports the definition of alternative message detection strategies for incoming
messages. The default strategy only looks for new messages when all threads in the address space are currently
blocked. Other strategies rely on various combinations of server threads, thread pools and signal driven I/O
notification. Further details are available in [Coulson99] and [Coulson01b].

Finally, in the communications layer, the protocol and multimedia streaming CFs define a plug-in
environment for stacked communications protocols and composable media processing filters. Currently, four
protocol implementations exist: a CORBA GIOP v1.2 object request protocol implementation, a protocol that
implements simple fragmentation services over any underlying transport, a protocol that efficiently passes data
between end-points in the same address space, and a protocol that employs shared memory for communication
and the IPC transport for synchronisation. These CFs also maintain information about the current protocol/ filter
configurations (organized as a graph of instances) and offer meta-interfaces with specialised operations to
reconfigure the graph in such a way that rules constraining permissible configurations are obeyed.

4.3 The Binding Framework

The binding layer is arguably the most interesting feature of this architecture. In contrast to most existing
middleware platforms, OpenORB supports an extensible set of binding types including remote method
invocation, publish/ subscribe, message queuing and media streaming. By capturing diverse forms of interaction
as middlew are-provided binding types (BTs), the binding CF significantly simplifies application development
and promotes the reuse of interaction mechanisms over multiple applications. BTs effectively realise software
architecture connectors, thus bridging the gap to software architecture research.

The binding CF specifies two contracts (as shown in figure 3): i) the binding API, which defines the view of
BTs seen by binding users, and ii) the BT contract, which governs the collaboration between BT
implementations and the binding CF itself.

Binding CF
BT contract

Binding
User

Binding API

BT
Implementation

Fig. 3. The Binding CF Contracts

The binding API is based on a small number of generic entities and interactions designed to capture
commonalities across various BTs. It does not attempt to specify a uniform int erface for all BTs (this is clearly
unfeasible) but rather it defines generic COM interfaces and rules and guidelines that provide consistency for
binding users and guidance for BT implementers.

Briefly, the API model assumes that bindings are established between participants and the responsibility for
binding establishment is assigned to binders. Binders take as input a number of objects representing participants
together with related attributes, verify that the supplied participant objects conform to role s specified in the
associated BT, establish the binding and return (if nothing goes wrong) a binding control object. Participants
that are remote with respect to a binder’s location are represented by rep objects. The process of creating a rep
falls into two stages as follows. First, a generator is used at the participant’s (remote) site to generate both an

8

iref and an associated communications infrastructure. Second, the iref is transferred to the binder’s site (by
some means or other) where it is passed t o a resolver that is responsible for creating a corresponding rep.

The BT contract defines interactions that enable the binding CF to expose BT implementations to binding
users, manage their lifecycle and provide them with access to both other BTs and services in the lower platform
layers (communications and resources). The set of available BTs can be configured statically and also changed
at run-time by dynamic loading when an iref of a specific type arrives. The reconfiguration of established
bindings is achieved by building on both binding control objects provided by other BTs and meta-interfaces
offered by the lower layers and the component model. Further details of the binding CF can be found in a
forthcoming paper [Coulson01c].

5. Performance Evaluatio n

Our expectation is that OpenORB should perform as well as existing ORBs while simultaneously providing
dynamic reconfigurability through componentisation, reflection and CFs. To evaluate this expectation we
compared the performance of OpenORB with two other ORBs: GOPI v1.2 and Orbacus 3.3.4. As stated, GOPI
provides much of the source code for OpenORB v2 but is written in C and implemented in a single library. A
direct performance comparison should therefore yield insight into the overhead of our component model.
Orbacus is well known as one of the fastest and most mature CORBA-compliant commercial ORBs available.

The OpenORB configuration used was that shown in figure 2 above with a binding type that implements
remote method invocation on top of the CORBA GIOP protocol (and without locks on receptacles). Our tests
compared raw method invocations per second over loopback on a Dell Precision 410 workstation equipped with
256Mb RAM and an Intel Pentium III processor rated at 550Mhz. The operating system was Windows 2000
and the compiler was Microsoft’s cl.exe version 12.00.8804 with flags /MD /W3 /GX /FD /O2. An IDL
interface was employed that supported a single operation that took as its argument an array of octets of varying
size. The implementation of this method at the server side was null.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 32 64 256 1024 2048 4096 8192 16384

Bytes per RPC

R
P

C
s

p
er

 s
ec

o
n

d

Orbacus

GOPI

OpenORB

Fig. 4. Performance of OpenORB versus GOPI and Orbacus

The results of timing a large number of round-trip invocations using this setup are shown in figure 3. It can be
seen that OpenORB performs about the same as Orbacus, with GOPI running around 10% faster. As might be
expected, there is a diminishing difference between all three systems as packet size increases; this is presumably

9

because the overhead of data copying begins to outweigh the cost of call processing. The relative overhead of
OpenORB compared to GOPI can be attributed to COM’s use of indirection (through the vtable) and also to the
former’s use of receptacles. The OpenORB configuration involved 67 receptacle-interface connections on the
data path per RPC (32 on the client-side and 35 on the server side). In the GOPI case, a method call is
implemented as an immediate register load followed by a call through that register. In the OpenORB case, on
the other hand, an interface pointer must first be extracted from the target receptacle (involving a memory
access to locate the receptacle in the current component and a call to the overloaded dereference operator
followed by a memory access within the receptacle), and then a C++ virtual method call on the interface pointer
(involving a memory access to get the current component’s appropriate interface vtable pointer, a register
indirect operation to acquire a pointer to that interface’s table of function pointers, an addition to work out the
method’s offset within the interface, a push of “this” and finally, the actual method call). Despite this additional
work, it can be seen that the performance of OpenORB is entirely comparable to the non-componentised ORBs.

6. Conclusions

This paper has discussed the design and implementation of OpenORB, an experimental reflective middleware
architecture intended to provide a high degree of configurability, reconfigurability and support for longer-term
evolution. The approach is based on a marriage of component technology and reflection. In particular, through
reflection, the component -based approach pervades both the application level and indeed the implementation of
the platform itself. Crucially, reflection allows this underlying structure to be accessed and indeed altered
dynamically.

More specifically, the paper has described an implementation of the OpenORB architecture using C++
together with a lightweight and reflective component model based on COM (OpenCOM). In addition, the
implementation features the use of domain specific component frameworks supporting reconfiguration
management and integrity. Our experiences from this work are summarized below:
1. We believe that the combination of a reflective component model and the CF-based structuring principle

represents a highly promising basis for the construction of configurable and reconfigurable ORBs. While the
reflective component model provides a powerful basis for maximal flexibility and reconfigurability, on its
own it is too expressive, and its unconstrained use can easily lead to chaos. The presence of CF-based
structuring tempers this expressiveness by imposing domain specific constraints on the reconfiguration
process.

2. We also believe that the three-layer structure of our top -level CF represents a generic and future-proof basis
for the expansion, extension and evolution of OpenORB v2. We are encouraged in this belief by the fact that
we have been able to easily accommodate several components and CFs that were not initially envisaged. For
example, we have recently accommodated thread pool and operating system abstraction components in the
resources layer and plan the introduction of a group communications CF in the communications layer. As for
the binding CF, we have not yet encountered a binding style that it could not accommodate, although we
have less implementation experience in this area than in the other layers.

3. Our implementation efforts have also validated other aspects of our design. For example, we have discovered
that the co mponent model supports the construction of ORB functionality that is at least as efficient as
conventional object -based ORBs (see section 5). Furthermore, we have confirmed that the component model
scales well in terms of its explicit enumeration of per-component dependencies. This is primarily due to the
use of CFs which reduce dependencies by forbidding connections between plug-in components and
components outside the CF. In our current implementation, the maximum number of dependencies in any
single component is just seven and the average figure is just four. This leaves considerable scope for further
reducing the granularity of componentisation that, if carried out with care, should correspondingly increase
the ORB’s potential for reconfigurability.

Currently, our efforts are focusing on the further development of the OpenORB environment. For example, we
are adding a plug-in component type to the protocol CF that will enable the configuration of a range of
demultiplexing strategies (that have previously been implemented in the GOPI platform [Coulson01a] although
with limited scope for run-time reconfiguration). We are also adding support for group communications via an
additional communications layer CF as mentioned above [Saikoski00].

Acknowledgements

T he research described in this paper is partly funded by France Telecom R&D (CNET Grant 96-1B-239).
Particular thanks are due to Jean-Bernard Stefani and his group at France Telecom for many useful discussions

10

on reflection and distributed systems. The work is also partly funded by the EPSRC together with BT Labs
through grant GR/M04242). In particular, we would like to acknowledge the contributions of the following
people from BT: Steve Rudkin, Alan Smith, Paul Evans, Kashaf Khan and Benjamin Bappu.

Thanks also to the other members of the reflection team at Lancaster who have contributed greatly to the
ideas presented in this paper, in particular Lynne Blair, Fabio Costa, Hector Duran-Limon, Tom Fitzpatrick, Lee
Johnston, Rui Moreira and Katia Saikoski.

Finally, we would like to acknowledge the contributions of our partners on the CORBAng project (next
generation CORBA) at UniK, and the Universities of Oslo and Tromsø (all in Norway). Particular thanks to
Anders Andersen, Frank Eliassen, Vera Goebel, Oyvind Hanssen and Thomas Plagemann.

References

[Andersen00] Andersen, A., Eliassen, F., Blair, G.S., “A Reflective Component-Based Middleware with Quality of Service
Management”, Proceedings of PROMS’2000 (Protocols for Multimedia Systems), Cracow, Poland, 2000.

[Barga98] Barga, R., “A Reflective Framework for Implementing Extended Transactions”, PhD Dissertation, Oregon
Graduate Institute, Portland, Oregon, 1998.

[Blair98] Blair, G.S., Coulson, G., Robin, P., Papathomas, M., “An Architecture for Next Generation Middleware”, Proc.
IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing (Middleware’98),
Springer, 1998.

[Blair01] Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H., Fitzpatrick, T.,
Johnston, L., Moreira, R., Parlavantzas, N., Saikoski, K., “The Design and Implementation of OpenORB v2”, To appear
in in IEEE DS Online, Special Issue on Reflective Middleware, 2001.

[Cazzola99] Cazzola, W., Savigni, W., Sosio, A., Tisato, F., “Rule-based Strategic Reflection: Observing and Modifying
Behaviour at the Architectural Level, Proc. 14 th IEEE International Conference on Automated Software Engineering
(ASE’99) Cocoa Beach, Florida, USA, October 1999.

[Costa98] Costa, F., Blair, G.S., Coulson, G., “Experiments with Reflective Middleware”, Proceedings of the ECOOP’98
Workshop on Reflective Object-Oriented Programming and Systems, ECOOP’98 Workshop Reader, Springer-Verlag,
1998.

[Costa00] Costa, F. Duran-Limon, H., Parlavantzas, N., Saikoski, K., Blair, G.S., Coulson, G., “The Role of Reflective
Middleware in Supporting the Engineering of Dynamic Applications”, In Reflection and Software Engineering, Cazzola,
W., Stroud, R. and Tisato, F. (Eds), Springer-Verlag, LNCS Vol. 1826, pp 79-98, 2000.

[Coulson99] Coulson, G., “A Configurable Multimedia Middleware Platform”, IEEE Multimedia, Vol 6, pp 62-76, No 1,
January - March 1999.

[Coulson01a] Coulson, G., and Mounian, O., “A Quality of Service Configurable Concurrency Framework for Object Based
Middleware, Lancaster University Internal Report, submitted for publication, 2001.
(Available from http://www.comp.lancs.ac.uk/computing/research/mpg/reflection/papers/ASC_paper_submitted.pdf)

[Coulson01b] Coulson, G., and Baichoo, S., “Implementing the CORBA GIOP in a High-Performance Object Request
Broker Environment”, to appear in Distributed Computing Journal, 2001.

[Coulson01c] Coulson. G., Blair, G.S., Clarke, M., Parlavantzas, N., “The Design of a Reconfigurable and Efficient
Middleware Platform”, In Preparation, 2001.

[Dowling00] Dowling, J., Schäfer, T., Cahill, V., Haraszti, P, Redmond, P., “Using Reflection to Support Dynamic
Adaptation of System Software: A Case Study Driven Evaluation”, In Reflection and Software Engineering, Cazzola,
W., Stroud, R. and Tisato, F. (Eds), Springer-Verlag, LNCS Vol. 1826, 2000.

[Dowling01] Dowling, J., Cahill, V., “Building a Dynamically Reconfigurable minimumCORBA Platform with
Components, Connectors and Language-Level Support”, Proceedings of the Workshop on Reflective Middleware
(RM’2000), IBM Palisades, New York, USA, April 2000.

[Dumant98] Dumant, B., Horn, F., Dang-Tran, F. and Stefani, J.-B., "Jonathan: an Open Distributed Processing
Environment in Java", Proc. Middleware '98, The Lake District, England, November 1998.

[Duran-Limon00a] Duran-Limon, H., Blair, G.S., “The Importance of Resource Management in Engineering Distributed
Objects”, Proc. 2nd International Workshop on Engineering Distributed Objects (EDO’2000), California, USA,
November 2000.

[Duran-Limon00b] Duran-Limon, H., Blair, G.S., “Specifying Real-time Behaviour in Distributed Software Architectures”,
Proc. 3rd Australasian Workshop on Software and System Architectures, Sydney, Australia, November 2000.

[Fabre98] Fabre, J.-C., Pérennou, T., "A Metaobject Architecture for Fault Tolerant Distributed Systems: The FRIENDS
Approach", IEEE Trans. on Computers, Special Issue on Dependability of Co mputing Systems, vol.47, no.1, pp. 78-95,
1998.

[Hayton98] Hayton, R., Herbert, A., Donaldson, D., “FlexiNet: A Flexible Component-oriented Middleware System”, Proc.
8th ACM SIGOPS European Workshop on Support for Composing Distributed Applications, Sintra, Portugal, September
1998.

[Killijian00] Killijian, M.-O. , Fabre, J.-C., “Implementing a Reflective Fault-Tolerant CORBA System”, Proc. of the 19th
Symposium on Reliable Distributed Systems (SRDS2000), Nurnberg, Germany, pp. 154-163, Oct. 2000.

[Knuth73] Knuth, D.E., “The Art of Computer Programming, Volume 1: Fundamental Algorithms”, Second Edition,
Reading, Massachusetts, USA, Addison Wesley, 1973.

11

[Kon00] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L.C., Campbell, R.H., “Monitoring, Security and
Dynamic Configuration with the dynamicTAO Reflective ORB”, Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms and Open Distributed Processing (Middleware’2000), IBM Palisades, New York, April
2000.

[Ledoux99] Ledoux, T., “OpenCorba: A Reflective Open Broker”, Proc. Reflection’99, Saint-Malo, France, Springer-
Verlag, LNCS, Vol. 1616, 1999.

[Microsoft00a] Microsoft, “COM: Delivering on the Promises of Component Technology”, URL:
http://www.microsoft.com/com/default.asp, 2000.

[Microsoft00b] Microsoft, “COM Technologies - COM+”, URL: http://www.microsoft.com/com/tech/complus.asp , 2000.
[Okamura92] Okamura, H., Ishikawa, Y., Tokoro, M., “AL-1/D: A Distributed Programming System with Multi-Model

Reflection Framework”, Proceedings of the Workshop on New Models for Software Architecture, November 1992.
[OMG99] OMG, “Portable Interceptors - Joint Revise d Submission”, Object Management Group, TC Document orbos/99-

12-02, 1999.
[OMG01] OMG, “ Common Object Request Broker Architecture and Specification - Revision 2.4.2, Object Management

Group, 2001.
[Roman01] Roman, M., Kon, F., Campbell, R.H., “Reflective Middleware: From the Desk to your Hand”, To appear in

IEEE DS Online, Special Issue on Reflective Middleware, 2001.
[Saikoski,00] Saikoski, K. B. and Coulson G., “Configurable and Reconfigurable Group Services in a Component Based

Middleware Environment”, Proc. International SRDS (Symposium on Reliable Distributed Systems) Workshop on
Dependable and Group Communication (DSMGC 2000), October 2000.

[Schmidt99] Schmidt, D.C., and Cleeland, C., “Applying Patterns to Develop Extensible ORB Middleware”, IEEE
Communications Magazine Special Issue on Design Patterns, April, 1999.

[Sun00] Sun Microsystems, “Java Reflection”, URL: http://java.sun.com/j2se/1.3/docs/guide/reflection/index.html, 2000.
[Szyperski98] Szyperski, C., “Component Software: Beyond Object -Oriented Programming”, Addison-Wesley, 1998.
[Wang01]Wang, N., Parameswaran, K., Schmidt, D.C., Kircher, M., “Towards a Reflective Middleware Framework for

QoS-Enabled CORBA Component Model Applications”, DS Online, This Special Issue, 2001.
[Zinky01] Zinky, J., Shapiro, R., Loyall, J., Anderson, K., Schantz, R., Pal, P., “The Use of Reflectivity in the QuO 3.0
Framework”, To appear in IEEE DS Online, Special Issue on Reflective Middleware, 2001.

