
Ch. Bussler et al. (Eds.): WES 2002, LNCS 2512, pp. 57–67, 2002.
© Springer-Verlag Berlin Heidelberg 2002

WSOL – Web Service Offerings Language

Vladimir Tosic, Kruti Patel, and Bernard Pagurek

Department of Systems and Computer Engineering, Carleton University
Ottawa, Ontario, Canada

���������	
���
�	�
���
����
�����
������

Abstract. WSOL (Web Service Offerings Language) is an XML (Extensible
Markup Language) notation compatible with the WSDL (Web Services De-
scription Language) standard. While WSDL is used for describing operations
provided by Web Services, WSOL enables formal specification of multiple
classes of service for one Web Service. A service offering is a formal represen-
tation of one class of service for a Web Service. As classes of service for Web
Services are determined by combinations of various constraints, WSOL enables
formal specification of functional constraints, some QoS (a.k.a., non-functional)
constraints, simple access rights (for differentiation of service), price, and rela-
tionships with other service offerings of the same Web Service. Describing a
Web Service in WSOL, in addition to WSDL, enables selection of a more ap-
propriate Web Service and service offering for particular circumstances. Fur-
ther, it supports dynamic adaptation and management of Web Service composi-
tions using manipulation of service offerings.

1 Introduction

Many leading computing companies have recently announced their Web Service
initiatives. These industrial initiatives are accompanied by the corresponding work of
industrial standardization bodies, most notably the W3C (World Wide Web Consor-
tium). Hereafter, by the Web Services framework we mean the set of W3C standards
for Web Services [1]. The goal of the W3C’s Web Services framework is to develop
a standard platform, based on already widely used technologies like XML (Extensible
Markup Language), for distributed application-to-application (A2A) and business-to-
business (B2B) integration [2]. Web Services are envisioned as a mechanism par-
ticularly suitable for establishing temporary, ad hoc business relationships.

Although definitions of a Web Service in different industrial initiatives vary
somewhat, the common idea is that a Web Service is a unit of business, application,
or system functionality that can be accessed over a network by using XML messag-
ing. In principle, a Web Service can provide not only software functionality and data,
but also access to some hardware resources like memory, printing, network band-
width, etc. A Web Service consumes some underlying computing resources and dif-
ferent use of these resources can imply a different price for the Web Service.

58 Vladimir Tosic, Kruti Patel, and Bernard Pagurek

While Web Services can be used for providing services to human end users, the
true power of the W3C’s Web Services framework is leveraged through compositions
of Web Services. This composition can be performed dynamically (i.e., during run-
time). Dynamic service composition was the topic of our past research [3], but in the
research presented in this paper we assume that Web Services are already composed.
Hereafter, by a consumer of a Web Service A we assume another Web Service that is
composed with A and collaborates with it, not an end user (human) using A. One Web
Service can serve many different consumers, possibly at the same time. The com-
posed Web Services can be distributed over the network, running on different plat-
forms, implemented in different programming languages, and provided by different
vendors. The composition provides an added value, either to human end users or for
further A2A integration, when a composition of Web Services can itself become a
higher-level Web Service. Building complex information systems using Web Serv-
ices promises to increase system agility, flexibility, and adaptability. However, there
are still a number of open issues to be researched and solved and we are exploring
some that are not currently addressed by Web Service industrial initiatives and stan-
dardization committees.

The W3C’s Web Services framework includes several completed and in-progress
standards, but for this research the most important one is WSDL (Web Services De-
scription Language) [4]. WSDL is used for describing Web Services in an XML no-
tation. It enables specification of data types (the type element), operation signatures
(the message and operation elements), port types (the portType element), message
format and transport protocol details (the binding element), network addresses of
different ports (the port element), and grouping of different ports into a Web Service
(the service element). However, WSDL does not enable specification of various con-
straints on operations and ports in a Web Service.

In this work-in-progress paper, we present our ongoing work on the concept of
classes of service provided by a Web Service [5] and formal representation of such
classes of service. After a brief introduction to Web Services and WSDL in this sec-
tion, we explain why classes of service are beneficial for Web Services. Then, we
argue for formal specification of classes of service, using formal specification of
several types of constraints – functional, QoS (Quality of Service; a.k.a., non-
functional), simple access rights, price, and others. We use the term ‘service offering’
to denote a formal specification of one such class of service. Further, we present our
work on WSOL (Web Service Offerings Language), a language we are developing
for specification of service offerings for Web Services described in WSDL. Our dis-
cussion of the status of the work on WSOL is illustrated with examples. Next, we
briefly discuss possible applications of WSOL. At the end, we summarize conclu-
sions and challenges for our future research.

2 Service Offerings for Web Services

In certain circumstances, it can be useful to enable a Web Service to offer several
different classes of service to consumers. Note that in this paper we discuss classes of

WSOL – Web Service Offerings Language 59

service at the level of Web Services, not at the level of constraints (e.g., reponse time)
that are part of the overall service and QoS of the Web Service. Consequently, we
define a class of service as a discrete variation of the complete service and QoS pro-
vided by one Web Service. Classes of service can differ in usage privileges, service
priorities, response times guaranteed to consumers, verbosity of response informa-
tion, etc. The concept of classes of service also supports different capabilities, rights,
and needs of potential consumers of the Web Service, including power and type of
devices they execute on. Further, different classes of service may imply different
utilization of the underlying hardware and software resources and, consequently, have
different prices. Additionally, different classes of service can be used for different
payment models, like pay-per-use or subscription-based.

The issues of QoS and balancing of limited underlying resources are particularly
motivating for having multiple classes of service for Web Services. If the underlying
resources were unlimited, all consumers would always get the highest possible QoS.
Unfortunately, this is not the case, so it is suitable to provide different QoS to differ-
ent classes of consumer. Providers of Web Services want to achieve maximal mone-
tary gain with optimal utilization of resources. Providing different classes of service
and their balancing helps in achieving this goal because of the flexibility to accom-
modate several classes of consumer. On the other hand, consumers of such Web
Services can better select service and QoS they need and are willing to pay for, while
minimizing their price/performance ratio.

Which classes of service a given Web Service will support is specific to the Web
Service. In most cases, developers and providers of a Web Service determine classes
of service supported in particular circumstances. In some limited situations, new
classes of service for the Web Service can be created dynamically without direct
human involvement. Later in this paper, we briefly mention our work on this issue,
while more details can be found in [5].

As classes of service of a Web Service can differ in many various aspects, a class
of service is determined by a combination of various constraints. We define a service
offering as a formal representation of one class of service of one Web Service or one
port. Consequently, a service offering is a combination of formal representations of
various constraints that determine the corresponding class of service. Service offer-
ings of one Web Service relate to the same characteristics described in the corre-
sponding WSDL file, but differ in constraints that define classes of service. These
service offerings are specified separately from the WSDL description of the Web
Service. A port-level service offering specifies only constraints upon the constructs in
the referred port. A component-level service offering of a Web Service with multiple
ports describes an allowed combination of port-level service offerings. If a Web
Service has only one port, the component-level service offering is identical to the
corresponding port-level service offering.

Let us now illustrate the previous discussion and potential benefits of service of-
ferings with an e-business example. A financial market analysis Web Service con-
sumes one or several stock market notification Web Services and supplies results of
its analyses (e.g., recommendations) to different consumers. It can provide its results
on request from a consumer (the pay-per-use business model), but a consumer can

60 Vladimir Tosic, Kruti Patel, and Bernard Pagurek

also subscribe for periodic reports from the component (the subscription model).
Service offerings could accommodate different classes of consumer, for example
different classes of consumers that require a slightly different emphasis or depth of
the financial analysis. Also, the service offerings could differ in verbosity of results,
the rate of unsolicited notification to consumers, in priority of notification of signifi-
cant market disturbances, in the guaranteed response time, etc. Service offerings
would differ in price and play an important role in balancing of the resources used by
the Web Service when it processes requests from a large number of different con-
sumers. Examples of these resources are processing power, threads, consumed mem-
ory, and used stock market notification Web Services. The resources are limited and
their use incurs some costs. For example, the used stock market notification compo-
nents from other Web Service vendors have to be paid for, probably according to the
received level of service and QoS. In fact, the stock market notification components
can offer multiple service offerings (differing in the rate of notification, verbosity of
provided information, etc.) with different prices. From the point of view of the finan-
cial analysis component, choosing which stock market notification Web Services and
their service offerings to use is tightly related with the service offerings its own con-
sumers request and with the goal of maximizing the monetary gain for its vendor.

We have conducted a thorough analysis to compare service offerings with relevant
alternatives, including parameterization, multiple ports, multiple Web Services, per-
sonalization techniques like user profiling, etc. The main advantages of having a
relatively limited number of classes of service over other types of service customiza-
tion are limited complexity of required management and relatively low overhead
incurred. For example, we find that personalization techniques aimed at human users
can be too complex for customization of simpler Web Services composed with other
Web Services. We want to limit the complexity and overhead in order to assure solu-
tions are scalable to large compositions of Web Services. In addition, classes of serv-
ice are supported by many underlying technologies, e.g., in telecommunications. Our
approach is an additional and complementary mechanism for discrete differentiation
of service and QoS, not a complete replacement for alternatives. It does not exclude
applying in addition other methods for customization of service and QoS, but in the
latter case management can be more complex. We are also aware that our approach
might not be appropriate for all circumstances, e.g., due to its own overhead.

Note that providing differentiated services and multiple classes of service are well-
known concepts in other areas, like telecommunications. Discussion of service differ-
entiation and classes of service in other areas is out of scope of this paper. Our work
was particularly influenced by the TINA (Telecommunications Information Net-
working Architecture) standard [6]. However, such concepts have not been re-
searched and applied in the area of software-based components like Web Services.
While we have extrapolated and adapted some existing concepts to address issues
relevant for Web Services and their compositions, we are also researching a number
of additional issues, like formal specification of service offerings, representation of
relationships between service offerings, and dynamic adaptation using manipulation
of service offerings.

WSOL – Web Service Offerings Language 61

3 Formal Specification of Different Constraints in WSOL

We specify service offerings for Web Services in a comprehensive XML-based nota-
tion called WSOL (Web Service Offerings Language). The syntax of WSOL is de-
fined using XML Schema. WSOL is a fully compatible extension of WSDL. While
WSDL can (and has to) be extended in several different areas, WSOL extends WSDL
only with capabilities directly relevant to the concept of service offerings. WSOL
currently enables formal specification of functional constraints (pre- and post-
conditions, and invariants), QoS (a.k.a., non-functional) constraints, simple access
rights, price (i.e., cost), entities (the Web Service, the consumer, or some trusted third
party) responsible for monitoring particular constraints in the service offering, and
relationships between service offerings. Constraints in WSOL can be Boolean or
arithmetic expressions. Note that access rights in WSOL describe what subset of Web
Service’s operations a service offering allows to use, i.e., they serve for differentia-
tion of service. Conditions under which particular consumers or classes of consumer
may use a service offering are specified and stored outside the WSOL description of a
Web Service. QoS constraints describe properties like performance, reliability, avail-
ability, etc.

Specifications of different constraints are separated into multiple distinct dimen-
sions to achieve greater flexibility and reusability of specifications. This is a separa-
tion-of-concerns issue. However, to support easier choice by consumers, these con-
straint dimensions are integrated into a service offering. The crucial issue here is that
while many constraints are mutually independent and orthogonal, it is not always the
case. For example, while 'availability' and 'response time' are orthogonal, 'response
time' and 'throughput' are not orthogonal for a given number of operation invocations.
Therefore, separation and integration of constraint dimensions is non-trivial. At a
minimum, it must capture dependencies between non-orthogonal constraint dimen-
sions. We have developed a solution for this issue in WSOL. This solution will be
presented it in a later publication. Another related issue, discussed in [7], is definition
of appropriate ontologies for different QoS constraint dimensions. We are still study-
ing some other issues related to separation and integration of constraint dimensions.
As these issues are out of scope of this work-in-progress paper, we will discuss them
and report our solutions elsewhere.

In Fig. 1, we illustrate WSOL with an example service offering. This service of-
fering buyStockSO1 is defined for the Web Service buyStockService in the buyStock
namespace. Due to space limits, we do not give definition of this Web Service in
WSDL here. It is important to note that this Web Service contains one port type
buyStockPortType, which contains one operation buyStockOperation. This operation
is defined with the input message buyStockRequest and the output message buyStock-
Response. The first message contains the following parts: symbol (string) that repre-
sents a company’s stock symbol, number (nonNegativeInteger) that represents the
number of stocks of the company a consumer wants to buy, and maxPrice (float) that
represents the maximum price at which a consumer wants to buy a stock. The second
message contains one part: buyStockReply (float), which represents the amount of
money spent in buying the number of stocks that the consumer had requested. The

62 Vladimir Tosic, Kruti Patel, and Bernard Pagurek

Fig. 1. An Example Service Offering in WSOL

���������
�������
����
��� �!���
!"#$
��
����
�%� �!���
�� �!���
!
����
%
��������
��� �!���
�� �!���
&������
�'
���������������������
�����
��������%� �!���
�� �!���
"�
������%'
��������������������()��
�����'
����������������*�
���()��
�����'
���������������������
+��

���������+��
�%� �!���
�� �!���
,
���%-'
�������-���������*�
���()��
�����'
��������������������������
�%.��/�%-'
����������������*�
���()��
�����'
���������������������
+��
��+��
�%� �!���
�� ��
�%-'
������������������*�
���"�
���������
�%0%-'
���������������������
+��
��+��
�%� �!���
���)&���
%-'

���������-���������*�
���()��
�����'
�������-���������������()��
�����'

���-������������������'
������������
���
��������%� �!���
�� �!���
"�
������%'
�����������
����
���

��������
+��
����������
� ���!
����
�-'
�������������
'�1�112��-��������
'
���������� ���� ���+��
���������3�������4������-'
���-���������
'
�����������
��,��*��
�����
��������%� �!���
�� �!���
"�
������%'
����������()��
�����'��
�-�����()��
�����'
���-��������
��,��*��'
��������5�!����������6���
�����
��������%� �!���
�� �!���
"�
������%'
����������5�!��������������
��7�),
�����
���
�'
������������5�!���
�8+��
��5�!����
�����
���
�-'
������������5�!���
����
+��
��5�!�����)�-'
������������89��
'�21��-�����89��
'
������������8:���� ���+��
��5�!������-'
�����-�����5�!����������'
���-�����5�!����������6���'
�������������
�
��,
�����������'
������ ����
�,
�����������������
�$����� �!���
!"#%-'
��������
�
��
��,
������������
���������
�$����7�),
�����
���
%�
������$*����--
�����������7����
�
��3����������-��7����
�!
����
%-'
���-����������
�
��,
������������'
���������
���
�!"�6���'
�����������
���
�!"����
������� �!���
!";�
��������
�����������7�),
�����
���
�-'
���-������
���
�!"�6���'
�-��������
�������
'

WSOL – Web Service Offerings Language 63

presented service offering first defines a postcondition that buyStockReply must be
less than or equal to the product of number and maxPrice. Next, the service offering
defines the price of using buyStockOperation in this service offering. In the given
example, if the invocation is successful, the consumer has to pay 0.005 CAN$. Fur-
ther, the service offering defines a simple access right specifying that consumers
using this service offering can use the buyStockOperation. After that, the service
offering defines a QoS constraint defining MaxResponseTime. Note that the meaning
of response time, maximum, and ms (milliseconds) is defined in an external ontology
(namespace QoSns). The managementResponsibility tag specifies that an independent
external entity (with the given URL) is responsible for monitoring response times for
buyStockOperation and informing the Web Service and its consumers if it is greater
than MaxResponseTime. The last constraint in the service offering is specification that
this service offering is related to another service offering, buyStockSO2, through the
MaxResponseTime constraint dimension. This means that if MaxResponseTime can-
not be achieved, the Web Service and a consumer using buyStockSO1 should negoti-
ate switching to buyStockSO2 (in some cases, this switch can be performed automati-
cally by the Web Service).

One of the crucial issues in WSOL is how to represent relationships between
service offerings. These relationships have to be specified for at least three purposes.
The first one is to provide a more straightforward and more flexible specification of
new service offerings. This is needed to specify relatively similar service offerings of
one Web Service, as well as relatively similar service offerings of similar Web Serv-
ices. The second purpose is to enable easier selection and negotiation of service of-
ferings. The third purpose is to support dynamic adaptation of Web Service composi-
tions based on the manipulation of service offerings, which we will briefly discuss in
the next section. We want to find a mechanism or a coherent combination of mecha-
nisms that best supports all three purposes. We have explored several possible alter-
natives for representing these relationships. Our current solution is based on con-
straint dimensions, but a more powerful solution is under development.

In the future, we might extend WSOL with formal specification of dependencies
on other Web Services and infrastructure, which consumers should know about for
successful use and service composition. Other constraints left for future work include:
known relationships that can be formed with other Web Services; potential incom-
patibilities with other Web Services; alternative or similar Web Services from the
same vendor or its business partners; roles that can be played in different patterns and
coordination protocols; synchronization/concurrency and sequencing constraints, etc.
We are also exploring some possible improvements of the WSOL syntax.

We are working intensively on proof-of-concept prototypes for WSOL tools. Most
importantly, development of a prototype WSOL parser with syntax checks and some
semantic checks accompanies development of the WSOL grammar rules. Conse-
quently, the previously given examples can be parsed with the current version of this
parser. Its implementation is based on the Apache Xerces XML Java parser. Second,
we are looking at automatic generation of some constraint-checking code (in Java)
from WSDL and WSOL files. This is a complex issue. As constraint dimensions can
be viewed as aspects of service offerings, we are exploring use of composition filters

64 Vladimir Tosic, Kruti Patel, and Bernard Pagurek

[8] and similar aspect-oriented approaches. We are plan to develop a Java API (Ap-
plication Programming Interface) for generation of WSOL files. The goals of the
prototypes are to check feasibility of the suggested solutions, uncover hidden issues,
demonstrate contributions, check whether the adopted decisions are better than possi-
ble alternatives, and provide new insights and ideas.

The work on WSOL is strongly influenced by the ideas from [9] and a number of
other works on formal specification of particular types of constraints. Further, speci-
fication of different types of constraints in XML makes our work also related to [10]
and [11], but these papers are not in the area of Web Services and they are not com-
patible with WSDL. On the other hand, IBM has been working [12] on WSEL (Web
Services Endpoint Language). One of the goals of WSEL is to enable specification of
some constraints, including QoS, for Web Services described with WSDL. There is
no detailed publication on WSEL to date. If WSEL is fully developed before WSOL,
we will explore making WSOL compatible with WSEL. Further, the DAML
(DARPA Agent Markup Language) initiative includes work on the DAML-S lan-
guage [13] for semantic description of Web Services, including specification of func-
tional and some QoS constraints. However, DAML-S is not compatible with WSDL.
None of these related works enables specification of multiple classes of service for
one Web Service and manipulation of these classes of service, which is the main goal
of WSOL.

4 Applications of WSOL

We believe that as the number of Web Services on the market that offer similar func-
tionality increases, the offered QoS and price/performance ratio, as well as adaptabil-
ity, will become the main competitive advantages. The comprehensive specification
of Web Services and service offerings in WSOL supports selecting appropriate Web
Services and service offerings, e.g., in the process of dynamic service composition.
Consumers get additional flexibility to better choose service and QoS that they will
receive and pay for and minimize thus the price/performance ratio and/or the total
cost of received services. Such comprehensive formal specification also helps reduce
unexpected interactions between the composed Web Services. The need for such
comprehensive formal specification was one of the conclusions of our past project on
dynamic service composition [3]. As already noted, dynamic service composition is
outside the scope of this work-in-progress paper, as are various issues related to Web
Service and service offering discovery, selection, and negotiation.

Composing complex information systems from Web Services, especially during
run-time, can significantly increase system agility, flexibility, and adaptability. How-
ever, to further increase these qualities, such compositions have to be managed and
adapted to various changes, particularly to those changes that cannot be accommo-
dated on lower system levels like communication software, operating system, etc.
This management and adaptation should occur while the information system is run-
ning, with minimal disruption to its operation and with minimal human involvement.
In other words, it should be dynamic and autonomous. We want to achieve manage-
ment by dynamic adaptation of compositions of Web Services without breaking an

WSOL – Web Service Offerings Language 65

existing relationship between a Web Service and its consumer. This goal differenti-
ates our work from the past work on adaptable software, like the architecture-based
approaches based on finding alternative components and rebinding [14]. To achieve
this goal we are researching dynamic adaptation capabilities based on manipulation of
service offerings. Our dynamic adaptation capabilities include switching between
service offerings, deactivation/reactivation of existing service offerings, and creation
of new appropriate service offerings [5]. Compared to finding alternative Web Serv-
ices and rebinding, these dynamic adaptation capabilities enable faster and simpler
adaptation and enhance robustness of the relationship between a Web Service and its
consumer. They enable Web Services to retain existing consumers and do not require
establishment of new trust relationships between Web Services. This is important in
many e- and m-business systems. In some cases, finding and selecting an appropriate
alternative Web Service can turn out to be too slow and its success cannot always be
guaranteed. Further, these capabilities are simple and incur relatively low overhead,
while providing additional flexibility. We find our approach particularly advanta-
geous when dynamic adaptation is required relatively frequently and can be achieved
with a variation, not a drastic modification, of provided services and QoS. Such cir-
cumstances occur in many non-trivial situations, ranging from small temporary dis-
turbances of service and QoS caused by mobility to dynamic evolution of Web Serv-
ices. However, compared to finding alternative Web Services, our dynamic
adaptation capabilities have limitations. Service offerings of one Web Service differ
only in constraints, which might not be enough for adaptation. Further, appropriate
alternative service offerings cannot always be found or created. Manipulation of
service offerings is an additional and complementary approach to dynamic adapta-
tion, not a complete replacement to finding alternative Web Services. Therefore, we
suggest a two-level, integrated, approach to dynamic adaptation. The first step is to
try to adapt using manipulation of service offerings of the same Web Service. The
second step is to try to find an alternative Web Service, if the first step was unsuc-
cessful. In fact, a Web Service can provide a temporary replacement service offering
while the consumer searches for another, more appropriate, Web Service.

We are also developing a corresponding management infrastructure, called
DAMSC (Dynamically Adaptable and Manageable Service Compositions). Among
other issues, DAMSC will enable various manipulations of WSOL descriptions of
Web Services. In our work on WSOL we pay particular attention to issues relevant
for this intended use of WSOL. One example is specification of relationships between
service offerings to support dynamic and automatic switching of service offerings.
The detailed discussion of our dynamic adaptation capabilities and the DAMSC infra-
structure is outside the scope of this work-in-progress paper. More information can be
found in [5].

5 Conclusions and Future Work

The issues of classes of service and formal specification of various constraints have
not been previously addressed for Web Services. Solving these issues has practical
importance for building information systems that use Web Services. Web Services

66 Vladimir Tosic, Kruti Patel, and Bernard Pagurek

are envisioned as a means for more agile, flexible, and adaptable development of
complex B2B and A2A information systems. Our work on the concept of multiple
classes of service for Web Services and WSOL provides some additional flexibility.
Consumers get additional flexibility in selecting appropriate Web Services and their
levels of service and QoS, while their price/performance ratio is reduced. On the
other hand, providers of Web Services have more flexibility in balancing underlying
resources, as well as in covering the Web Service market by addressing the needs of
diverse consumers. The support that service offerings provide for dynamic adaptation
further increases flexibility, adaptability, and agility. Our dynamic adaptation capa-
bilities based on manipulation of classes of service can be a useful complement to
finding alternative Web Services, due to their speed, simplicity, low overheads, and
enhanced robustness of relationships between Web Services (and thus e-business
partners).

Using service offerings has its limitations and it is an additional and complemen-
tary mechanism for discrete differentiation of service and QoS, not a complete re-
placement for alternatives. Its main advantages are limited complexity of required
management and relatively low overhead. Consequently, we find that our approach is
appropriate in many non-trivial situations.
WSOL currently enables formal specification of functional constraints, some QoS
constraints, simple access rights, price, entities responsible for constraint monitoring,
and relationships with other service offerings of the same Web Service. In the future,
we will make specification of these constraints more powerful and we plan to enable
specification of some other constraints. We emphasize here two important open is-
sues. First, we have to work more on separation and integration of constraint dimen-
sions, without conflicts and with straightforward implementation of constraint-
checking code. This work includes a study of applicability of aspect-oriented ap-
proaches like composition filters. Second, we have to improve specification of rela-
tionships between service offerings to support both easier and more flexible specifi-
cation and dynamic adaptation. In parallel, we are continuing our work on prototypes
for WSOL tools. We are also working on using WSOL for dynamic adaptation capa-
bilities in the DAMSC infrastructure, as well as selection and negotiation of service
offerings specified in WSOL.

References

 1. International Business Machines Corporation (IBM), Microsoft Corporation: Web Serv-
ices Framework. In Proc. of the W3C Workshop on Web Services – WSWS’01 (San Jose,
USA, Apr. 2001) W3C. On-line at: http://www.w3.org/2001/03/WSWS-popa/paper51

 2. Curbera, F., Mukhi, N., Weerawarana, S.: On the Emergence of a Web Services Compo-
nent Model. In Proc. of the WCOP 2001 workshop at ECOOP 2001 (Budapest, Hungary,
June 2001) On-line at:
http://www.research.microsoft.com/~cszypers/events/WCOP2001/Curbera.pdf

 3. Mennie, D., Pagurek, B.: A Runtime Composite Service Creation and Deployment and Its
Applications in Internet Security, E-commerce, and Software Provisioning. In Proc. of the
25th Annual International Computer Software and Applications Conference - COMPSAC
2001 (Chicago, USA, Oct. 2001) IEEE Computer Society Press. 371-376

WSOL – Web Service Offerings Language 67

 4. World Wide Web Consortium (W3C): Web Services Description Language (WSDL) 1.1.
W3C note. (March 15, 2001) On-line at: http://www.w3.org/TR/wsdl

 5. Tosic, V., Pagurek, B., Esfandiari, B., Patel, K.: On the Management of Compositions of
Web Services. In Proc. of the OOWS’01 (Object-Oriented Web Services 2001) workshop
at OOPSLA 2001 (Tampa, Florida, USA, Oct. 2001) On-line at:
http://www.research.ibm.com/people/b/bth/OOWS2001/tosic.pdf

 6. Kristiansen L.: (ed.) Service Architecture, Version 5.0. TINA-C (Telecommunications In-
formation Networking Architecture Consortium) specification. (June 16, 1997) On-line:
http://www.tinac.com/specifications/documents/sa50-main.pdf

 7. Tosic, V., Esfandiari, B., Pagurek, B., Patel, K.: On Requirements for Ontologies in Man-
agement of Web Services. In Proc. of the Workshop on Web Services, e-Business, and the
Semantic Web: Foundations, Models, Architecture, Engineering and Applications, (To-
ronto, Canada, May 2002)

 8. Bergmans, L., Aksit, M.: Composing Crosscutting Concerns Using Composition Filters.
Comm. of the ACM, Vol. 44, No. 10. ACM. (Oct. 2001) 51-57

 9. Beugnard, A., Jezequel, J.-M., Plouzeau, N., Watkins, D.: Making Components Contract
Aware. Computer, Vol. 32, No. 7. IEEE. (July 1999) 38-45

 10. Mckee, P., Marshall, I.: Behavioural Specification using XML. In Proc. of the 7th IEEE
Workshop on Future Trends of Distributed Computing Systems - FTDCS’99, (Cape
Town, South Africa, Dec. 1999) IEEE Computer Society Press. 53-59

 11. Jacobsen, H.-A., Karamer, B. J.: Modeling Interface Definition Language Extensions. In
Proc. Technology of Object-Oriented Languages and Systems - TOOLS Pacific 2000
(Sydney, Australia, November 2000) IEEE Computer Society Press. 241-252

 12. Ferguson, D. F.: Web Services Architecture: Direction and Position Paper. In Proc. of the
W3C Workshop on Web Services – WSWS’01 (San Jose, USA, Apr. 2001) W3C. On-line
at: http://www.w3c.org/2001/03/WSWS-popa/paper44

 13. The DAML Services Coalition: DAML-S: Semantic Markup for Web Services. WWW
page. (December 12, 2001) On-line at:
http://www.daml.org/services/daml-s/2001/10/daml-s.html

 14. Oreizy, P., Medvidovic, N., Taylor, R. N.: Architecture-Based Software Runtime Evolu-
tion. In Proc. of the International Conference on Software Engineering 1998 - ICSE'98
(Kyoto, Japan, Apr. 1998) ACM Press. 177-186

	1 Introduction
	2 Service Offerings for Web Services
	3 Formal Specification of Different Constraints in WSOL
	4 Applications of WSOL
	5 Conclusions and Future Work
	References

