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Received: 31 August 2009 / Accepted: 31 December 2009 / Published online: 2 February 2010

� Springer Science+Business Media B.V. 2010

Abstract Landscape genetics plays an increasingly

important role in the management and conservation of

species. Here, we highlight some of the opportunities and

challenges in using landscape genetic approaches in con-

servation biology. We first discuss challenges related to

sampling design and introduce several recent methodo-

logical developments in landscape genetics (analyses based

on pairwise relatedness, the application of Bayesian

methods, inference from landscape resistance and a shift

from population-based to individual-based analyses). We

then show how simulations can foster the field of landscape

genetics and, finally, elaborate on technical developments

in sequencing techniques that will dramatically improve

our ability to study genetic variation in wild species,

opening up new and unprecedented avenues for genetic

analysis in conservation biology.
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Introduction

Habitat fragmentation and climate change have negative

impacts on populations, and they are considered to be main
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UMR 151 UP/IRD, Université de Provence,
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causes of biodiversity loss and therefore a major issue of

conservation biology (Fischer and Lindenmayer 2007;

Lindenmayer et al. 2008; Heller and Zavaleta 2009). Thus

there is a growing need for natural resource managers to

evaluate the impact of proposed management actions on

the extent of habitats and the degree of fragmentation of

these habitats (Fahrig and Merriam 1985). Habitat loss and

fragmentation create discontinuities (i.e. patchiness) in the

distribution of critical resources (e.g. food, cover, water) or

environmental conditions (e.g. microclimate). From the

perspective of an organism, such discontinuities in the

distribution of suitable habitat lead to a reduction of con-

nectivity among population fragments (Kindlmann and

Burel 2008). As habitat is lost and populations fragmented,

functional connectivity through individual exchange and

gene flow becomes critically important (Fischer and Lin-

denmayer 2007). Specifically, subdivision and isolation of

populations leads to reduced dispersal success and patch

colonization rates, which may result in a decline in the

persistence of populations and an enhanced probability of

regional extinction across a landscape (Lande 1987; With

and King 1999). In addition, metapopulation theory shows

that population extinction and recolonization has sub-

stantial effects on the genetic differentiation of populations

(Wade and McCauley 1988).

Gene flow among populations, either by exchange of

individuals in animals, pollen and seed in plants or spores in

cryptogams, is necessary to maintain the long-term viability

of populations. Gene flow maintains local genetic variation

by counteracting genetic drift and spreads potentially adap-

tive genes. From the perspective of conservation biology, it

is thus essential to infer the functional connectivity of pop-

ulations across landscapes (Van Dyck and Baguette 2005).

While there are a number of approaches that have been used

to estimate functional connectivity (O’Brien et al. 2006; Fall

et al. 2007), its ultimate validation is based on gene flow

estimation (Cushman 2006; Cushman et al. 2009a).

Molecular methods offer an increasingly powerful

approach to quantifying gene flow across landscapes. A

number of tools are currently available to investigate

genetic variation in space and time, as well as its rela-

tionships to environmental conditions. This has led to the

research field of landscape genetics, which integrates

population genetics, landscape ecology and spatial statis-

tics (Manel et al. 2003; Storfer et al. 2007; Holderegger and

Wagner 2008). Landscape genetics seeks to elucidate how

genetic variation (i.e. neutral and adaptive component) is

affected by landscape and environmental variables. Taking

advantage of recent statistical developments (e.g. in the

field of spatial statistics or Bayesian analysis) it aims to

detect the impact of fragmentation on gene flow and to

determine how selection and environmental variation

shapes adaptive genetic variation in natural populations.

Applications of landscape genetics to conservation typi-

cally employ spatial statistical analysis of genetic structure

to infer gene flow in space and time (i.e. as a spatial–

temporal process, Epperson 2003; Storfer et al. 2007;

Anderson et al. 2010). Although landscape genetics is

gaining increasing interest, there are still few examples

where landscape genetic approaches have been success-

fully applied to the practical conservation management of

species (but see e.g. Epps et al. 2005; Vignieri 2005; Riley

et al. 2006; Segelbacher et al. 2008).

In general, landscape genetics often involves spatial and

temporal processes that differ significantly from those

modelled in population genetics (Epperson et al. 2010).

Existing population genetic models assume large popula-

tion sizes, have high degrees of spatial symmetry and are

characterised by many simplifications regarding the life

history of species. Appropriate landscape genetic models

will need to deal with less symmetry and often greater

detailed realism of life history and movement behaviour.

However, even in symmetrical space–time processes such

as two-dimensional isotropic isolation by distance, there is

a high level of stochasticity in the spatial genetic structure

created. Hence appropriate models need to maintain some

spatial replication (i.e. multiple spatial comparisons) as

well to average over multiple genetic markers for adequate

statistical power (Epperson 2004, 2007; Cushman et al.

2009b). Effects of spatial scale (i.e. study area extent,

spatial sampling design and scale of the processes studied)

are critical (Anderson et al. 2010) as the spatial autocor-

relation of allele frequencies generally decreases as

distance increases (Vekemans and Hardy 2004). Temporal

scale, in particular the length of time that a process or the

effect of a landscape feature (the term is used here for any

heterogeneity in landscape or environmental factors) has

been acting is another important determinant of spatial

genetic structure. In large populations, for example, it takes

about 20–50 generations for most short distance spatial

autocorrelation to build up under isolation by distance, and

further back in time coalescent events become nearly

independent of spatial location (Barton and Wilson 1995).

Spatial dimensionality, i.e. the number of spatial dimen-

sions that a studied process effectively acts in, is also

critical. For example, populations of a riparian plant spe-

cies located along a river effectively exist in only one

spatial dimension. Generally, one-dimensional systems have

greater stochasticity than two-dimensional systems, as well

as different amounts of autocorrelation (Epperson 2003).

In the present article, we highlight some of the oppor-

tunities and challenges in using landscape genetic approa-

ches in conservation biology. We first discuss challenges

related to sampling design and recent methodological

developments in landscape genetic analysis, i.e. analyses

based on pairwise relatedness, the application of Bayesian
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methods, inference from landscape resistance and the shift

from population-based to individual-based analyses. We

then show how simulations can foster the field of landscape

genetics and, finally, we briefly elaborate on technical

developments in sequencing techniques that will dramati-

cally improve our ability to study genetic variation in wild

species.

Problems of sampling design

Most research projects start with a particular problem or a

distinct question, which should be developed in the form of

a statistically falsifiable hypothesis. Yet in the published

landscape genetic literature, distinct questions, let alone

proper hypotheses, have rarely been stated. In a recent

review of 174 landscape genetics studies published from

1998 to 2008, only one-third had an explicit study design

(Storfer et al. 2010). One explanation for this shortcoming

is that there is usually only limited information available

on how landscape features influence the movement and

behaviour of animals or on how they affect dispersal in

plants. For example, while it may be reasonable to assume

that a six-lane, fenced motorway acts as a barrier to animal

movement, we may know almost nothing about the effects

of open fields, different forest types or varying river cur-

rents on animal movement or plant dispersal. Most land-

scape genetic studies simply ask general questions such as:

‘‘Which landscape elements influence the movement or

dispersal of animals and plants?’’ In the absence of any

prior knowledge, landscape geneticists therefore tend to

sample data on many environmental factors or landscape

features. As a null hypothesis, they assume that only geo-

graphic distance determines genetic affinity and that an

isolation by distance pattern is present (Hutchison and

Templeton 1999). However, many applications of land-

scape genetics in conservation biology will require the

development of more sophisticated alternative hypotheses.

Recently, Cushman and Landguth (in press b) showed that

a naive correlational approach can lead to strong spurious

correlations leading to false inferences. They emphasized the

importance of explicit sampling designs and more sophisti-

cated methods that reject incorrect causal models and provide

increased support for the correct driving processes.

It appears that landscape geneticists often only intui-

tively think about appropriate scales of sampling and

the pattern in which genetic samples should be taken

(Muirhead et al. 2008). However, there is another, often

neglected facet to landscape genetic sampling, namely the

resolution in terms of scale and content of the landscape

ecological data to be gathered. When investigating the

influence of landscape features on gene flow, there is

general agreement that the scale at which genetic samples

should be taken must be at least as large as the movement

distance of the animal species studied or the dispersal

distance of seed and pollen in plants. However, which type

of animal movement should be considered? Is it the every-

day movement within home-ranges or the episodic move-

ment during dispersal (Baguette and Van Dyck 2007)? Is it

the seasonal migration among habitat patches? Clearly, the

answer depends on the particular research question to be

answered. To define the appropriate spatial scale, research-

ers mostly rely on available ecological and demographic

information on movement and dispersal distances

(Sutherland et al. 2000; Bowman et al. 2002). However,

caution is needed here. Recent genetic studies investigating

contemporary gene flow and migration have often found

that pollen and seed dispersal in plants as well as move-

ment in animals far exceed estimates from ecological or

demographic studies (both with respect to distance and

frequency (Holderegger and Wagner 2008). Landscape

geneticists therefore need to take into account that they

might infer gene flow over unexpectedly large distances

and that they need to consider landscape features and

their configuration over extended spatial scales. This

problem of defining the appropriate scale are less critical

when testing the genetic effects of a single explicit land-

scape structure such as a road or a mountain ridge, rather

than searching for the general effects of a landscape (Marsh

et al. 2008).

Another important consideration in landscape genetic

studies is the replication of study areas. The effects of

landscape patterns on population genetic processes are a

classic example of a landscape-level process (McGarigal

and Cushman 2002). To obtain rigorous inferences about

pattern-process relationships it would be essential to a pri-

ori select a representative sample of study landscapes.

Through sampling multiple representative landscapes and

treating them as independent observations of the pattern-

process relationship, it is possible to rigorously test for the

generality of landscape genetic inference. However, nearly

all past landscape genetic studies have been based on

associations between gene flow estimates and landscape

structure in a single species within a single landscape.

Historically, population genetics has sampled individu-

als that were grouped according to pre-defined, spatially

delimited populations and used classical population

genetics models such as Wright’s Island model to analyse

the data (Wright 1943). However, during the past few

years, landscape genetics has developed into a field pro-

gressively adopting individual-based statistical analysis

(Manel et al. 2005). Landscape genetics studies now often

apply Bayesian clustering techniques to group samples into

populations in a more objective way (Storfer et al. 2010).

Schwartz and McKelvey (2009) recently investigated the
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effects of sampling design (e.g. random, stratified or tran-

sect sampling) on the performance of STRUCTURE

(Pritchard et al. 2000), the most widely applied Bayesian

clustering approach. They showed that in situations where

near-neighbour mating creates patterns of long range

isolation-by distance, STRUCTURE identifies different

numbers of clusters depending on the sampling scheme

applied. As genetic gradients are probably common in

nature, STRUCTURE may thus provide misleading popu-

lation circumscriptions. Unfortunately, the effects of

sampling scheme on individual-based landscape genetic

analyses are yet largely unknown and substantial simula-

tion experiments are required to evaluate their potential

impact. Further, in reality and especially so in conservation

biology, many landscape genetic studies rely on opportu-

nistic sampling, e.g. samples are obtained from hunters or

harvesters in the case of larger vertebrates (Schwartz and

McKelvey 2009). Alternatively, samples are often taken at

locations where animals are most easily caught or trapped,

e.g. ponds in the case of anurans (Angelone and Holde-

regger 2009). Hence, the corresponding sampling is largely

non-random. In contrast, it should be possible to apply

more regular sampling schemes for smaller animals such as

ground-dwelling common insects or for many sessile plant

species. A useful recommendation is that, prior to analyz-

ing population structure, researchers should determine the

patterns of local autocorrelation and then carefully con-

siders how these patterns may influence the results (Fortin

and Dale 2005; Schwartz and McKelvey 2009).

Other critical attributes of scale in landscape genetics

that have been largely overlooked are the grain, extent and

thematic resolution at which the landscape is represented

(Anderson et al. 2010). These factors together define the

spatial pattern of landscape features to which spatial pat-

terns of genetic distance or differentiation among individ-

uals or populations is correlated. A mismatch of the scale at

which data are analyzed and the scale at which pattern-

process relationships function can readily lead to incorrect

inferences (Wiens 1989; Dungan et al. 2002; Thompson

and McGarigal 2002). In landscape genetics spatial reso-

lution is still an almost unexplored area. Often, landscape

information is gathered from existing GIS data bases that

have fixed resolution (grid-cell size or grain), a fixed

number of landscape features or environmental factors

considered and a given known level of uncertainty.

A spatial resolution of 25 9 25 m grid size, coarse infor-

mation on topography and climatic conditions and a simple

categorisation of the land cover into open land, forest,

settlements, roads etc. can be sufficient to study landscape

effects on movement and gene flow in larger vertebrates

such as mountain lions or roe deer. On the other hand such

a low resolution of landscape data is probably inappropri-

ate for the analysis of small mammals such as mice and

voles, let alone insects, which might be affected by subtle

changes in habitats at very small spatial scales. Simulation

models can be used to evaluate the sensitivity of pattern-

process inferences in landscape genetics to misspecifica-

tion of the extent, grain and thematic resolution of the

landscape. Cushman and Landguth (in press b) demonstrate

very high sensitivity to incorrect specification of landscape

resistance hypotheses (thematic resolution), but apparently

much lower sensitivity to incorrect landscape grain. Thus,

to obtain reliable inferences about relationships between

landscape patterns and gene flow processes it is essential to

carefully consider the thematic resolution of landscape data.

It is surprising that the effects of the resolution of landscape

data have received so little attention in the landscape genetic

literature. Successful future application of landscape genet-

ics to conservation biology requires that these problems of

resolution be addressed in much more detail.

Inferring isolation by distance and dispersal barriers

using pairwise relatedness between individuals

Within a homogeneous habitat spatial genetic structure

(SGS) arises whenever gene dispersal distances are limited

due to local genetic drift. Wright (1943) called this

phenomenon ‘‘isolation by distance’’ and showed that

the neighbourhood size, defined as Nb = 4pDr2 where

D is the effective population density and r2 is half of the

mean square parent-offspring distance, largely determines

the intensity of genetic differentiation. Malecot (1948)

addressed the question of how relatedness between indi-

viduals decreases with spatial distance under isolation by

distance. His approach was refined in subsequent works,

leading to methods able to infer Nb from spatial genotypic

data (e.g. Rousset 1997, 2000; Hardy and Vekemans 1999;

Epperson 2007). Hence, SGS can provide information on

gene dispersal distances through synthetic parameters, Nb

and r, leading to so called ‘‘indirect’’ estimates. Because

SGS builds up over several generations before reaching a

quasi-equilibrium state, SGS-based inferences of gene

dispersal refer to past dispersal and assume drift-dispersal

equilibrium, isotropic dispersal and constant density in

space and time.

Several methods have been used to characterize SGS

using genotypic data. For example, Rousset (2000) intro-

duced a genetic distance metric between individuals (ar)

analogue to pairwise FST/(1 - FST) measures between

populations. He quantified SGS by the rate of increase of ar

with the logarithm of distance, showing that, in a two-

dimensional population, the rate is inversely proportional

to Nb. As Nb = 4pDr2, r can then be extracted if the

value of D is known (Epperson 2007). SGS has often been

characterized by spatial autocorrelograms using Moran’s I
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statistic applied on allele frequencies measured at the

individual level (Sokal and Wartenberg 1983; Epperson

1995, 2003). Hardy and Vekemans (1999) showed that

Moran’s I statistic estimates the mean relatedness between

individuals separated by a given distance class. They

adapted the approach proposed by Rousset (2000) to esti-

mate Nb using the distance decay of pairwise kinship

coefficients, a metric that can be applied to selfing organ-

isms, haploid genomes, or using dominant markers, unlike

the ar metric (Hardy and Vekemans 1999; Hardy et al.

2006). Two free software programs implement these

approaches: GENEPOP (Rousset 2008) uses the ar metric

or an alternative estimator (er) with better statistical prop-

erties (Watts et al. 2007), and SPAGeDi (Hardy and

Vekemans 2002), which applies the ar metric or other

estimators of kinship coefficients.

SGS-based estimates are valuable for a first estimation

of gene dispersal distances (through the synthetic param-

eter r) while other methods are required to obtain exact

details on patterns of gene flow (shape of dispersal curves,

anisotropy, asymmetrical contributions of fathers to off-

spring etc.). Most comparisons between SGS-based esti-

mates and direct estimates of gene flow (e.g. using

parentage analysis) find that they are congruent within a

factor of two (Rousset 2000; Fenster et al. 2003; Oddou-

Muratorio et al. 2004). However, they are only reliable if

gene dispersal processes are sufficiently homogenous

throughout the landscape (i.e. no major barriers). There-

fore, Born et al. (2008) suggest to apply a Bayesian clus-

tering technique first to identify potential discontinuities

that might reflect major barriers or historical effects and to

only then estimate gene dispersal distances within genetic

clusters.

Most applications of landscape genetics to conservation

biology involve heterogeneous landscapes, seeking to

detect genetic discontinuities reflecting major barriers to

gene flow diverging populations. Once pre-defined

hypotheses are formulated regarding the location of phys-

ical barriers, pairwise relatedness measures between indi-

viduals can be used to test these hypotheses by contrasting

kinship among pairs of individuals belonging to the same

putative gene pool (‘‘intra-group’’) versus individuals

belonging to separated gene pools (‘‘inter-group’’), or for

pairs of individuals located on the same side of a putative

barrier versus individuals from different sides of the barrier

(Hardy and Vekemans 2002). Such contrasts can be applied

to situations relevant to conservation, such as roads,

streams or mountain ranges.

It should be noted that formal testing for differences

between intra-group and inter-group curves is challenging.

While randomization of the spatial positions of individuals

provides an adequate way to test the slope of the intra-

group curve (test of isolation by distance), it is not

adequate to test the slope of the inter-group curve. The

problem arises because an ideal randomization test should

separate the spatial correlation of allele frequencies

between putative gene pools from the spatial structure

within each gene pool, whereas randomization of spatial

positions only separates the latter. As a result, such tests

can produce many false negatives, a problem similar to

problems associated with partial Mantel tests (Raufaste and

Rousset 2001). Alternative testing procedures, such as

restricted randomization procedures (Fortin and Dale 2005)

are clearly needed.

A limitation of inferences based on isolation by distance

mathematical models is that the results strongly depend on

the assumption of migration-drift equilibrium (Rousset

1997). However, applications of landscape genetics to

conservation biology will often deal with non-equilibrium

situations, because of the highly dynamic nature of modern

human influenced landscapes (Lindenmayer et al. 2008).

Both theory and simulations (the latter rely not on equi-

librium, but ‘‘quasi-equilibrium’’ from recent generations)

have shown that the patterns of isolation by distance

expected under scenarios of range expansion or other non-

equilibrium models can differ dramatically from those

under equilibrium models (Slatkin 1993). As a conse-

quence, a future field of investigation for landscape

geneticists is the study of population genetic structure and

isolation by distance under computer-simulated dynamical

models of spatial expansion, contraction, fusion and fission

of populations.

Bayesian methods

The Bayesian approach shows promise for addressing con-

servation biology issues (Ellison 2004). Briefly, Bayesian

statistics is a framework of statistical inference which aims

at calculating posterior probability distributions for param-

eters of interest, using prior distributions for these parame-

ters, updated based on the data. The characteristics of

Bayesian analysis that are attractive to landscape genetics

include their ability to be used to (1) tackle complex infer-

ence problems using computationally intensive techniques,

(2) model individual genetic variability with hierarchical

individual-based approaches, and (3) incorporate back-

ground information into the specification of population

structure models via spatially explicit priors.

An example of a hierarchical individual-based Bayesian

model that has been successfully applied in landscape

genetics is the algorithm implemented in the program

STRUCTURE (Pritchard et al. 2000). The program esti-

mates admixture coefficients representing the proportions

of each individual genome originating from a number of

unknown source populations. Correctly assessing admixture
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is a fundamental step in understanding the short-term evo-

lution of species and the relative influence of landscape

features on population structure. Since admixture may

result from processes that are intrinsically spatial, for

example following regional migration of populations,

recent improvements of Bayesian assignment methods have

incorporated geographically explicit prior distributions in

their models (see Chen et al. 2007). Landscape ecologists

have long understood that spatial autocorrelation and geo-

graphic trends in the data could bias parameter inference

(Lichstein et al. 2002). To overcome this issue, Durand et al.

(2009) have proposed an algorithm that includes spatial

autocorrelation and geographic trends within an individual

model of admixture. Implemented in the program TESS,

their algorithm has been used to document the existence of a

contact zone for the killifish Fundulus heteroclitus (Durand

et al. 2009), study the population structure of caribou

(Rangifer tarandus) in the Rocky Mountains and evaluate

the permeability of rivers to racoon (Procyon lotor) gene

flow in Ontario (Cullingham et al. 2009; McDevitt et al.

2009).

Bayesian methods have also been proposed for inferring

contemporary or recent migration rates using individual

multilocus genotypes (Wilson and Rannala 2003). An

important aspect of these models is that they can incor-

porate the effects of environmental or landscape variables

(Foll and Gaggiotti 2006; Faubet and Gaggiotti 2008).

Bayesian population genetic methods can also be applied to

describe potential adaptations in species, by identifying

outlier loci physically linked to genes under selection

through separating neutral effects from adaptive effects

based on locus-specific population differentiation coeffi-

cients (Beaumont and Balding 2004). For instance, Foll

and Gaggiotti (2008) applied this method it to the peri-

winkle Littorina saxatilis and identified 21 molecular

markers of adaptive relevance.

Another important class of Bayesian methods deals with

the inference of demographic parameters using genealogy

(Kuhner 2009). Coalescent genealogy samplers are

Bayesian programs that aim to estimate parameters influ-

encing the demographic history of species. Such parame-

ters include effective population sizes, growth rates,

migration rates or divergence times between populations.

Coalescent genealogy sampler approaches are particularly

useful in landscape genetics and conservation because they

can consider non-equilibrium dynamics and recent diver-

gence of populations. For example, the program BEAST

has a nonparametric model of population growth based on

a Bayesian skyline plot, which is a graph showing the curve

of inferred population size over time (Drummond and

Rambaut 2007). The software IM considers two popula-

tions that have recently diverged from a common ancestor.

This program estimates the divergence time and migration

rates between the diverging populations (Hey and Nielsen

2004).

Although sophisticated models of population structure

and demography can be implemented by coalescent

genealogy samplers, they are currently restricted to a

particular set of scenarios. Hence, there is a need to

consider more flexible methods. One of these methods,

Approximate Bayesian Computation (ABC) is well-suited

to complex problems (e.g. a large number of markers),

which would be intractable using likelihood methods

(Beaumont et al. 2002). ABC is based on simulations of

population genetic models using parameters drawn from

prior distributions. A set of summary statistics is then

calculated for each simulated sample and compared with

the values for the observed sample. Parameters generating

summary statistics close enough to the observed data are

retained to form an approximate sample from the pos-

terior distribution (Marjoram and Tavare 2006; Blum and

Francois 2010).

ABC approaches can estimate effective population sizes

(Tallmon et al. 2004, 2008), migration rates after spatial

expansion (Hamilton et al. 2005), levels of genetic intro-

gression and admixture (Excoffier et al. 2005) or diver-

gence time and gene flow in phylogeographic models

(Hickerson et al. 2006). ABC has been successfully applied

to inferring the demographic history of the cane toad Bufo

marinus (Estoup et al. 2004), Drosophila melanogaster

(Thornton and Andolfatto 2006), the model plant Arabid-

opsis thaliana in Europe (Francois et al. 2008) or the

bullhead Cottus gobio in the Swiss Rhine basin

(Neuenschwander et al. 2008b). The latter two studies used

individual-based simulation programs designed for the

study of the evolution of life history traits and population

genetics in a spatially explicit framework (Currat et al.

2004; Guillaume and Rougemont 2006; Strand and

Niehaus 2007). ABC analyses are greatly facilitated by the

availability of powerful coalescent simulation programs

such as MS (Hudson 2002) or SIMCOAL (Laval and

Excoffier 2004).

An increasing use of Bayesian methods in landscape

genetic applications to conservation biology is expected

because of their flexibility in developing solutions for the

complexity of processes in species of conservation concern

such as small populations size and complex patterns of

dispersion (Beaumont and Rannala 2004; Storfer et al.

2007). Individual-based simulation is also becoming

increasingly useful in landscape ecology and genetics (e.g.

(Dunning et al. 1995; Wagner et al. 2006). However, the

use of Bayesian approaches also generates problems. For

instance, the interpretation of a high number of parameters

fixed by the user to reach convergence is not always easy

and may require caution and eventually the help of an

experimented user.
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Inference from landscape resistance:

from populations to individuals

In the past, most landscape analyses have represented

landscapes as mosaics of categorically different patches.

However, in conservation biology it is important to rec-

ognize that ecological systems are often more accurately

described as multi-scale gradient systems than as categor-

ical hierarchies (Evans and Cushman 2009). In some cases,

such as pond and lake systems, oceanic islands or strongly

isolated fragmented populations classic Wright-Fisher

population genetic models are appropriate. In other cases

where the population is continuously distributed in a uni-

form environment, an isolation by distance model is

appropriate (Wright 1943). In many cases however, pop-

ulations have marked internal structure, and it is often

difficult to define discrete boundaries among populations.

In such cases, it may be desirable to adopt a gradient

perspective on population structure that allows flexible

analysis of pattern-process relationships across multiple

spatial scales (Anderson et al. 2010). Cushman and Land-

guth (in press a) used an individual-level, gradient frame-

work for landscape genetics that allows the integration of

Wright-Fisher discrete, panmictic populations and isolation

by distance (Wright 1943) as special cases in a generalized

model of population structure in complex landscapes. This

integration allows the use of idealized simple models when

they match the pattern-process relationship of a study

system, while simultaneously allowing analysis of spatially

more complex pattern-process relationships within the

same analytical framework. By representing both the

genetic dependent variables and the landscape resistance

variables as continuous gradients, it is then possible to test

competing hypotheses of the effects of landscape structure

on gene flow in one synthetic analysis.

Hypothesis testing in landscape genetics entails large

risks of incorrect attribution of causality behind observed

genetic patterns (Cushman and Landguth in press a). A few

authors have tested one or a few landscape resistance

models against global panmixia, barriers or isolation by

distance. These studies usually interpret the higher support

for one of their models as definitive evidence that the model

is correct and reflects the factors affecting population con-

nectivity. On the other hand, using a multi-hypothesis, causal

modeling approach Cushman et al. (2006) showed that gra-

dients of landscape structure were the predominant drivers of

gene flow in a study population of black bears and neither a

classic Wright-Fisher discretely bounded, panmictic popu-

lation structure nor a simple alternative of isolation by

distance could be supported.

Moving from representing populations as discrete, non-

overlapping patches to gradients of differentially related

individuals in complex landscapes should improve our

ability to understand population structure and gene flow in

complex and dynamical landscapes. There is a need to

predict regional conservation corridors and quantify the

degree of expected connectivity between specific areas

(e.g. Fall et al. 2007; McRae and Beier 2007). Rigorous

identification of the factors that drive gene flow in complex

landscapes and the scales at which they are operative is a

foundation of reliable mapping of conservation corridors.

Specifically, reliable mapping of corridors must be based

on a correct representation of the local resistance of the

landscape relative to the organism of focus (Cushman et al.

2009a). With such understanding it becomes possible to

predict optimal movement corridors for species of concern.

This is essential for informed management and conserva-

tion planning, as corridors built from false assumptions

regarding landscape resistance will likely fail to deliver the

desired conservation benefits.

Simulation modelling

In landscape genetic applications to conservation biology, a

key approach is the combination of empirical analyses of

genetic patterns with computer simulation to identify rel-

evant processes (Cushman 2006; Epperson et al. 2010).

This increases our criterion for validation, as a relevant

process would have to be supported by both empirical

analysis and theory. Specifically, simulations allow the

formal exploration of how predictions of classical popu-

lation genetics regarding drift, selection, genetic diversity

and effective population size change as a function of

increasingly complex landscapes.

Recently the development of new simulation programs

opens new perspectives of investigation. For example, it is

possible to simulate the evolution of populations and esti-

mate gene flow in complex landscapes. Currat et al. (2004)

introduced the software SPLATCHE (http://cmpg.unibe.

ch/software/splatche/) that allows the incorporation of vari-

ous effects of the environment in simulations of migration in

the case of population expansion and generates the molecular

genetic diversity of one or several samples drawn from the

simulated species.

Landguth and Cushman (2010) have developed the

software CDPOP as an individual-based spatially explicit

population dynamics and population genetic program that

simulates mating, dispersal and genetic exchange as prob-

abilistic functions of cost distance among individuals within

the context of complex resistant landscapes. This model has

been utilized to explore a number of pattern-process issues

central to the reliable application of landscape genetics to

conservation biology as e.g. the evaluation of the power of

statistical methods to infer relationships between landscape

patterns and gene flow or the sensitivity of landscape
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genetic inference to the scale of landscape data (Cushman

and Landguth in press a, b).

Another approach is used by IBDSIM (Leblois et al.

2009), a package for the simulation of genotypic data under

isolation by distance. It is based on a backward ‘‘generation

by generation’’ coalescent algorithm allowing the consid-

eration of various isolation-by-distance models with dis-

crete populations as well as continuous populations.

Landscape genetics simulation would be of particular

relevance if natural selection could be added to the simu-

lation as evolutionary processes are driven by the combi-

nation of selection, gene flow, drift and mutation, with

selection playing the dominant role in adaptation. Without

a spatially explicit model of selection within complex

landscapes it is difficult to explore the interactions between

different evolutionary processes. One of the programs

implementing such a model is QUNTINEMO (http://www2.

unil.ch/popgen/softwares/quantinemo/ (Neuenschwander et al.

2008a), which is an individual-based, genetically explicit

stochastic simulation program. It was developed to

investigate the effects of selection, mutation, recombi-

nation and drift on quantitative traits with varying

architectures in structured populations connected by gene

flow and located in a heterogeneous habitat. The

implementation of a generalized spatially landscape

explicit evolution model is an exciting undertaking that

is currently the focus of much research, and we hope-

fully anticipate that such models will be available for

broader use by conservation planning within the next few

years.

Perspectives of upcoming sequencing technologies

New DNA sequence technologies will have a number of

implications for studies of genetic variation, gene flow,

mutation and selection in an explicit spatial manner over

entire landscapes. Since 2005, several sequencing plat-

forms have become available, reducing the cost of DNA

sequencing by over two orders of magnitude (Shendure and

Ji 2008). The 454 system (Roche) was the first of the

second-generation sequencing platforms available as a

commercial product (Margulies et al. 2005). More recently,

two other second-generation DNA sequencers are

increasingly attracting attention from the scientific com-

munity: the Genetic Analyzer/Solexa (Illumina) and the

Solid DNA Sequencer (Applied Biosystems). In the next

few years, other sequencing systems (i.e. ‘‘next next’’

generation sequencers) based on nanotechnologies will

become available, even opening the door for low cost

whole genome sequencing. The approaches developed by

Visigen Biotechnologies (visigenbio.com) and Pacific

Biosciences (www.pacificbiosciences.com; Eid et al. 2009)

appear to be particularly attractive and have the goal of

sequencing whole mammalian genomes within minutes.

The new sequencing technologies have already made it

possible to generate massive amounts of DNA sequence

data for non-model species. For instance, the search for

DNA regions of adaptive relevance, the identification of

SNP markers for massive genotyping exercises is now

possible even in rare species of conservation importance,

with relatively low expenses in costs and time. These

new sequence technologies also replace the tedious and

expensive identification of microsatellite markers using

traditional cloning methods (Abdelkrim et al. 2009). Even

low coverage whole genome data can identify a large

number of suitable microsatellite loci; the most commonly

used molecular marker type in landscape genetics (Storfer

et al. 2010).

A larger coverage of the genome will enable us to get a

far better understanding of the genetic variation of indi-

viduals and populations. High resolution will also enhance

our understanding of the effects of gene flow and the

demographic history of populations, both critical parame-

ters in small endangered populations. Additionally, large

datasets will allow the identification of genomic regions

under selection. Comparing neutral and adaptive genetic

variation then would give us insight into the impact of drift

and selection in natural populations, and we could improve

our understanding of local adaptation in both individuals

and populations.

If this becomes possible, then the sampling of study

individuals, bioinformatics, computing time and data stor-

age will replace genotyping as the limiting factors in

genetic analysis (Manel and Segelbacher 2009). With

respect to landscape genetics and conservation biology,

sampling and field work might then become the restricting

parts of an investigation, while genetic analysis no longer

exerts relevant limits. In any case, we believe that, in the

near future, genetic investigations will play an even more

important role in conservation biology and practical man-

agement. The next technical revolution will complement

our increasingly varied and powerful analytical approaches

to analyze genetic variation, both neutral and adaptive,

within landscapes.

Conclusions

Landscape genetic methods provide a powerful framework

for directly analyzing relationships between population

processes and landscape structure at relevant spatial and

temporal scales. For instance, it enables researchers to test

multiple competing hypotheses about the role of specific

landscape features and environmental conditions in affect-

ing population connectivity. More generally, it increases
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our ability to make detailed inferences about movement and

gene flow and potentially adaptation at the landscape level.

These advances will prove to be exceptionally valuable to

efforts in applied conservation biology. For example,

understanding the landscape features that drive gene flow,

the spatial scales at which they act, and the temporal

dynamics of their effects on population substructure is

essential to effectively use genetic data as a tool for eval-

uating population status and fragmentation. In addition,

using this understanding to predict, localize and implement

empirically based conservation corridors should greatly

improve the successfulness of efforts to promote landscape

connectivity of species at risk due to fragmentation. The

potential of landscape genetics to address large-scale connec-

tivity questions is particularly important in the face of global

climate change, which is coupled with accelerating habitat loss

and degradation. Finally, it is the combination of various

analytical approaches with simulation modeling, which will be

of particular help to interpret landscape genetic results and to

infer adequate strategies in conservation management.
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