
An Interval Branch and Bound Algorithmfor Bound Constrained Optimization ProblemsR. Baker KearfottDepartment of MathematicsUniversity of Southwestern LouisianaAbstract. In this paper, we propose modi�cations to a prototypical branch and bound algori-thm for nonlinear optimization so that the algorithm e�ciently handles constrained problemswith constant bound constraints. The modi�cations involve treating subregions of the bound-ary identically to interior regions during the branch and bound process, but using reducedgradients for the interval Newton method. The modi�cations also involve preconditioners forthe interval Gauss{Seidel method which are optimal in the sense that their application selec-tively gives a coordinate bound of minimum width, a coordinate bound whose left endpointis as large as possible, or a coordinate bound whose right endpoint is as small as possible.We give experimental results on a selection of problems with di�erent properties.1. IntroductionInterval branch and bound methods have been recognized for some time as a classof deterministic methods which will, with certainty, �nd the constrained global optimaof a function within a box, even when implemented on a machine with �nite precisionarithmetic. In particular, it is possible with interval arithmetic to(1) Find, with certainty, all global minima of the non-linear objective function�(X) = �(x1; x2; : : : ; xn);where bounds xi and xi are known such thatxi � xi � xi for 1 � i � n:The set of constant bounds in (1) may be succinctly written as the interval vectorX = ([x1; x1]; [x2; x2]; : : : ; [xn; xn])T ;we will denote the vector of midpoints of these intervals bym(X) = ((x1 + x1)=2; : : : ; (xn + xn)=2)TMany interval methods belong to a general class of branch and bound methods; onesuch method, not using interval arithmetic, is as described in Chapter 6 of [17]. Suchmethods have the following components.� A technique for partitioning a region X into smaller regions.� A technique for computing a lower bound � of the objective function � over a regionX.



In such methods, a region is �rst partitioned, and � is computed for the subregion. Thatsubregion (from the list of all subregions which have been produced) corresponding to thesmallest � is then selected for further partitioning. The algorithms terminate when furtherpartitioning does not result in an increase in the underestimate. Such a branch and boundalgorithm in the interval context occurs as a method for computing the range of a functionin [14, p. 49], in [20, x3.2], etc.In such interval branch and bound methods, lower bounds on � are computed in aparticularly natural and general way by evaluating � using interval arithmetic; furthermore,such interval function values also lead to upper bounds on �, which may be used to discardsome of the subregions, and thus decrease the total number of subregions which must beprocessed. Also, interval Newton methods may be used both to reject interior subregionswhich do not contain critical points, and to replace subregions by smaller ones via a rapidlyconverging iteration scheme.The elements of interval arithmetic underlying such methods are explained well in[1], [14], [15], or [20].Moore, Hansen, Sengupta and Walster, Ratschek and Rokne, and others have spentsubstantial e�ort over a number of years in the development of interval methods for globaloptimization; some of the techniques and results appear in [4], [5], [18], [19], and [20]. Testresults which indicate the competitiveness of such algorithms appear in [21] and elsewhere.Treatises on these methods are [20] and a forthcoming book of Hansen.The author and his colleagues have recently developed a technique which, in practice,results in superior behavior of the interval Newton method. The goal of the interval Newtonmethod is to replace the coordinate bounds xi = [xi; xi] of a regionX by coordinate bounds~xi such that the resulting region contains all of the critical points of the original region,but such that the widths of the ~xi are smaller than the corresponding widths of the xi.The author's preconditioning technique gives widths for ~xi which are optimally small fora given interval extension1; cf. [10] and [16]. Related preconditioners can give a minimalright endpoint or a maximal left endpoint for ~xi; see [11] or [16]. The author has usedthis technique in a scheme to reliably �nd all solutions to nonlinear systems of equationswithin a box (ibid.).Interval algorithms for reliably �nding all roots to nonlinear systems of equations havea somewhat similar structure to branch and bound optimization algorithms, but di�er insome important respects. Nonlinear equation solvers also involve a subdivision process anda search; see [7], [9], [15], and others. However, without an objective function more boxes(containing all possible roots) must be considered. Also, nonlinear equation solvers do notneed to consider subregions abutting the boundary of the original region specially, sinceonly roots (i.e. critical points), and not optima occurring on boundaries, are of interest.This paper accomplishes two goals: (i) to indicate how the preconditioning techniquescan be included e�ectively within a global optimization algorithm, and (ii) to develop andtest a prototypical structure for an interval algorithm bound-constrained global optimiza-tion. For clarity and to study the e�ects of various components, we have attempted to1By optimality, we mean that the width of a single coordinate in the Gauss{Seidel sweep is minimizedover all possible preconditioner rows, given the initial guess point and the interval Jacobi matrix (or slopematrix). 2



maintain simplicity in the algorithm; production quality algorithms would include more ofthe techniques in [5], [20], and in Eldon Hansen's upcoming book.In x2, we give an overview of the interval Newton method we use, while we catalogueour preconditioners in x3. The modi�ed global optimization algorithm and the variantsof the interval Newton algorithm embedded in it appear in x4. Results of numericalexperiments are presented in x5, while conclusions appear in x6. Possible future work isoutlined in x7.Throughout, boldface will denote interval scalars, vectors, and matrices. Lower caseletters will denote scalar quantities, while vectors and matrices will be denoted with uppercase. 2. The Interval Gauss{Seidel methodInterval Newton methods are used in general to sharpen bounds on the solutions tosystems of nonlinear equations, and in computational existence and uniqueness tests; see[14, ch. 5], [9], [15], or [20], among others. Here, we will use them to e�ciently reducethe sizes of interior subregions containing critical points, and to reject subregions whichdo not contain critical points.Suppose we have a function F : Rn ! Rn, i.e.(2) F (X) = (f1(x1; x2; : : : ; xn); : : : ; fn(x1; x2; : : : ; xn))T ;suppose F(X) denotes an inclusion monotonic Lipschitz interval extension2 of F on thebox X, and suppose F0(X) denotes an inclusion monotonic Lipschitz interval extension ofthe Jacobi matrix of F on the box X. Then, in an interval Newton method, we �rst formthe linear interval system(3) F0(Xk)( ~Xk �Xk) 3 �F (Xk);where Xk = (x1; x2; : : : ; xn)T 2 Xk represents a predictor or initial guess point. Thereare various methods of formally \solving" (3) using interval arithmetic; in these, the meanvalue theorem implies that the resulting box ~Xk will contain all solutions to F (X) = 0 inXk. Such methods include interval Gaussian elimination, the Krawczyk method, and theinterval Gauss{Seidel method; see [15] for explanations and references.The solution method for (3) is better if the widths of the component intervals of ~Xkare smaller. From this point of view, the interval Gauss{Seidel method is particularlygood; see Theorem 4.3.5 in [15]. Furthermore, the interval Gauss{Seidel method generallyfunctions better if we �rst precondition (3), i.e. if we multiply by a non-interval matrix Yto obtain(3b) Y F0( ~Xk �Xk) 3 �Y F:Here, we denote the i-th row of the preconditioner matrix Y by Yi, we set ki = YiF (Xk),and we set YiF0 =Gi = (gi;1;gi;2; � � � ;gi;n)= ([gi;1; gi;1]; [gi;2; gi;2]; � � � ; [gi;n; gi;n]):We then have2See [14, ch. 3 and ch. 4] [15], or [20 x2.6-x2.7]. 3



Algorithm 2.1. (Simpli�ed preconditioned interval Gauss{Seidel) Do the following fori = 1 to n.1. (Recompute a coordinate.)(a) Compute the preconditioner row Yi.(b) Compute ki and Gi.(c) Compute(4) ~xi = xi � 264ki + nXj=1j 6=i gi;j(xj � xj)375,gi;iusing interval arithmetic.2. (Update the coordinate.) If ~xi \ xi = ;, then signal that there is no root of F in Xk.Otherwise, replace xi by ~xi.The following theorem is part of Theorem 5.18 in [15], and had previously beenobserved in various contexts by various researchers.Theorem 2.2. Suppose F : X � Rn ! Rn is Lipschitz continuous on X, and suppose F0is a componentwise interval extension to the Jacobi matrix of F . If IG(X) is the result ofapplying Algorithm 2.1 to X, then:(i) Every root X� 2 X of F satis�es X� 2 IG(X).(ii) If IG(X) \X = ;, then F contains no root in X.(iii) If Xk is in the interior of X, IG(X) 6= ;, and IG(X) is contained in the interior ofX, then F contains a unique root in X.This theorem provides a computational existence and uniqueness test which is morepractical than the Kantorovich theorem. Also, if IG(X) is contained in the interior of X,then, typically, iteration of Algorithm 2.1 (reinitializing Xk to the midpoint vector of X,and recomputing F0(X) each time through) will result in convergence of X to an approxi-mate point vector which represents sharp bounds on the root. This is an e�cient way ofobtaining global optima which are interior points in our branch and bound algorithm.Remark 2.3. In practice, we replace xi by ~xi \ xi in Step 2 of Algorithm 2.1; it is nothard to show that (i) and (ii) of Theorem 2.2 remain valid when we do so. Property (iii)remains valid under certain conditions; see [8] and the clari�cation thereof in [16].A preconditioner matrix Y commonly recommended in the literature is the inverse ofthe matrix of midpoints of the elements of F0(X); see [15, x4.1]. However, we have devel-oped other preconditioners which in many practical situations have advantages. Moreover,di�erent preconditioners in this class can be used to advantage in handling constrainedglobal optimization problems. We give a brief introduction to these preconditioners in thenext section. 3. Linear Programming PreconditionersIn [10], we introduced the concept of width optimal preconditioner row Yi, and pre-sented a technique for computing preconditioners which were either width optimal or which4



had known small widths. Such computations were based on solving a linear programmingproblem for the components of each preconditioner row. Numerical results in [10] indi-cated that, despite the cost to obtain the Yi, these procedures were bene�cial to the overallinterval Newton method. Subsequent development of low-cost preprocessing ([6]), and re-formulation of the linear programming problem and its method of solution ([16]) led tointerval Newton methods which are in many cases several times faster than even that in[10]. The width optimal preconditioner rows are part of a class of preconditioner rowswhich can be computed as solutions of similar linear programming problems; see [16] and[11]. We de�ne these preconditioners here.We have classi�ed preconditioners into C-preconditioners and S-preconditioners. Here,we consider only C-preconditioners, both for simplicity and since these have been the mostsuccessful in our root-�nding experiments. However, S-preconditioners may eventuallyplay a valid rôle in determining that a global optimum occurs on a boundary.Throughout we will refer to preconditioner rows Yi as preconditioners, since Yi maybe computed independently (and may indeed be of a di�erent type) for each i.Definition 3.1. A preconditioner row Yi is called a C-preconditioner, provided 0 62 gi;iin (4).Thus, requiring a preconditioner to be a C-preconditioner assures that ~xi in (4) is asingle connected interval, and extended interval arithmetic need not be used.Definition 3.2. A C-preconditioner Y CWi is a W-optimal (width-optimal) C-precondi-tioner if it minimizes the width w(~xi�~xi) of the image ~xi in (4) over all C-preconditioners.Definition 3.3. A C-preconditioner Y CLi is an L-optimal (left-optimal) C-preconditionerif it maximizes the left endpoint ~xi of the image ~xi in (4) over all C-preconditioners.Definition 3.4. A C-preconditioner Y CRi is an R-optimal (right-optimal) C-precondi-tioner if it minimizes right endpoint ~xi of the image ~xi in (4) over all C-preconditioners.A situation where a W-optimal preconditioner would be appropriate is illustratedin �gure 1. In this �gure, we expect the image ~xi to lie within xi, so that w(xi \ ~xi)is minimum when w(~xi) is. A situation where an L-optimal preconditioner would beappropriate is illustrated in �gure 2. There, we expect the image ~xi to be shifted to theright of xi, so that w(xi \ ~xi) is minimized when the left endpoint of ~xi is minimized. TheR-optimal preconditioner is similar to the L-optimal .As a simple example of the e�ects of the three di�erent preconditioners, de�ne F (X) :R5 ! R5 by fi(X) = � xi +Pnj=1 xj � (n + 1) for 1 � i � n� 1Qni=1 xi � 1 for i = n5



Figure 1. The width-optimal preconditionerY CWi minimizes w(~xi) over all possible precon-ditioners Yi.
Figure 2. The left-optimal preconditioner Y CLimaximizes the left endpoint ~x over all precon-ditioners Yi. 6



with initial box and initial guess point:X =0BBB@ [0; 2][:5; 1:1][:8; 1:2][:9; 1:5][�2; 2] 1CCCA ; X = 0BBB@ 1:0:81:01:20:01CCCA ;X�X = 0BBB@ [�1; 1][�:3; :3][�:2; :2][�:3; :3][�2; 2] 1CCCAand thus with function and interval Jacobi matrixF (X) = (�1;�1:2;�1;�:8;�1)T ;F0(X) �0BBB@ 2 1 1 1 11 2 1 1 11 1 1 2 11 1 1 1 2[�3:96; 3:96] [�7:2; 7:2] [�6:6; 6:6] [�5:28; 5:28] [0; 3:96]1CCCA :(Note: This is Brown's almost linear function.) Suppose we wish to solve for the �rstcoordinate in the Gauss{Seidel step. Then the L-optimal preconditioner isY CLi = (1; 0; 0;�1; 0);and G1 = (1; 0; 0;�1; 0); k1 = �1� (�:8) = �:2:Applying the preconditioned Gauss{Seidel as in (4) thus gives~x1 = 1� �:2 + (�1)[�:3; :3]1 = [:9; 1:5]:The R-optimal preconditioner is: Y CRi = (1;�1; 0; 0; 0);and G1 = (1;�1; 0; 0; 0); k1 = �1� (�1:2) = :2;and the preconditioned Gauss{Seidel thus gives~x1 = 1� :2 + (�1)[�:3; :3]1 = [:5; 1:1]:The W-optimal preconditioner is Y CWi = (1; 0;�1; 0; 0);7



and G1 = (1; 0;�1; 0; 0); k1 = �1� (�1) = 0:Applying the preconditioned Gauss{Seidel thus gives~x1 = 1� 0 + (�1)[�:2; :2]1 = [:8; 1:2]:The inverse midpoint preconditioner isY � (:8;�:2;�:2;�:2;�:101);and G1 � ([:6; 1:4]; [�:7273; :7273]; [�:6667; :6667]; [�:5333; :5333]:[�:2; :2]);For which preconditioned interval Gauss{Seidel method gives~x1 � [�:3542; 2:684]:In the above example, we see that computing both the right optimal and left optimalpreconditioners, then intersecting the corresponding images, gives a result which is superiorto just applying the width-optimal preconditioner. However, straightforward applicationof this idea results in twice the amount of computation.Linear programming problems whose solutions are often the W-optimal, L-optimal,and R-optimal preconditioners appear in [11] and in [16], while e�cient solution tech-niques for these problems appear in [16]. A solution to one of these LP problems is thecorresponding optimal preconditioner only under certain conditions; however, if these con-ditions are not met, then it can be shown that the resulting preconditioner is still, in acertain sense, good; see [11] and [16].Here, we will not be concerned with the distinction between the solution to thelinear programming problems and the corresponding W-optimal, L-optimal and R-optimalpreconditioners. We will thus denote the solutions to the linear programming problems byY CWi , Y CLi , and Y CRi , and assume that they make the width of ~xi small, the left endpointof ~xi large, and the right endpoint of ~xi small, respectively, and will use these facts in theglobal optimization algorithm.To illustrate, a linear programming problem for the width-optimal preconditioner is(5) minimize W (V ) = n�1Xj=1  � nXl=1 vl+(n�1)f 0l;j0+ nXl=1 vl+(2n�1)f 0l;j0 + vj!w(xj0 )subject to vj � nXl=1 �vl+(n�1) � vl+(2n�1)� �f 0l;j0 + f 0l;j0� ; 1 � j � n� 1;1 = nXl=1 vl+(n�1)f 0l;i � nXl=1 vl+(2n�1)f 0l;i;and 8



vj � 0 for 1 � j � 3n� 1;where Y CWi = (y1; y2; : : : ; yn) is de�ned byyl = vl+(n�1) � vl+(2n�1); 1 � l � n;where j0 = � j if j < ij + 1 if j � i:The left-optimal and right-optimal preconditioners have identical constraints, but a mod-i�ed objective function; see [11] or [16].4. A Variant of the Global Optimization AlgorithmWe present the algorithms, which incorporate the W-optimal, L-optimal, and R-optimal preconditioners as well as our scheme for handling the bound constraints, in thissection. The algorithm borrows from the prototypical algorithm in [14 p. 49].In addition to its basic structure, our branch and bound algorithm requires1. the subdivision scheme;2. bookkeeping to track which of the faces of which sub-boxes lie on the boundary ofthe original region; and3. the interval Newton (interval Gauss{Seidel) method, incorporating the precondition-ers Y CWi , Y CLi , and Y CRi in an appropriate manner.We describe these �rst.Definition 4.1. Our bisection scheme is a function B(X) which, for an interval vectorX = (x1;x2; : : : ;xn)T , returns the triplet (X(1);X(2); i), whereX(1) = (x1; : : : ;xi�1; [xi; (xi + xi)=2];xi+1; : : : ;xn)Tand X(2) = (x1; : : : ;xi�1; [(xi + xi)=2; xi];xi+1; : : : ;xn)T :As mentioned in [20, p. 75], an appropriate bisection scheme (i.e. one which usesan astute choice of i) can make the branch and bound algorithm more e�cient. For therelated algorithm which �nds all roots of a function within X, Moore suggests four possibleB in [14 pp. 78{81]; for the same problem we have found a maximal smear scheme towork well in the software [12]. In [4] as well as throughout [20], it is recommended totake the maximal width coordinate, i.e. that i with (xi�xi) maximal, in the optimizationalgorithm. In the experiments below, we choose i to be the optimization reduced maximalsmear de�ned by i = arg max1�i�nXi 6�@Xw(Xi��X) nmaxn ���r�(X)i��� ; ���r�(X)i��� oo;for some domain tolerance �X. 9



Definition 4.2. Suppose a box ~X has been produced by (possibly iterative) applicationof B, starting with the initial box X of (1). Then, to each coordinate interval ~xj = [~xj ; ~xj ]of ~X is associated a lower boundary ag lj and an upper boundary ag uj such thatlj = \true" if and only if ~xj = xj and uj = \true" if and only if ~xj = xj . We speak of theboundary ag vectors L = (l1; l2; : : : ; ln)T and U = (u1; u2; : : : ; un)T .We also associate a side ag sj to ~xj , such that sj = \true" if and only if(i) lj = \true" or uj = \true",(ii) xj = xj ,(iii) and Xj is a boundary coordinate produced according to the \peeling" process ofDe�nition 4.3 below;we speak of the vector S = (s1; s2; : : : ; sn).For the constrained optimization problem, we must systematically search both theinterior of the original box X, as well as its lower-dimensional faces. In fact, when weeg. compute an interval value for � on a lower dimensional face (on which some of thecoordinates are not intervals), there is less overestimation. Such facts, as well as a strivingto make the algorithm simple, dictate that we treat the lower dimensional faces identicallyto the n-dimensional boxes in the list L of boxes produced by the algorithm. We do thiswith the peeling process as follows.Definition 4.3. Let a ag vector P = (p1; : : : ; pn)T be initially set to (\false"; : : : ; \false")Tfor the initial box, and let X be the current box to be considered in our algorithm, withcurrent ag vector P , current side vector S, and current boundary ag vectors L and U .Let i be the smallest coodinate such that pi = \false". Then the peel operator P(X) isde�ned to be P(X) = � X if i does not existfX(l);X(u);Xg otherwise,where X(l) = (X1; : : : ;Xi�1;Xi;Xi+1; : : : ;Xn)Tand X(u) = (X1; : : : ;Xi�1;Xi;Xi+1; : : : ;Xn)T :The ag pi associated with the image boxes is set to \true", while the ag si is set to\true" only for X(l) and X(u). The ags li and ui are set consistently with De�nition 4.2.Thus, with P, we separate the boundary from boxes which span the entire interior;in the latter we need search only for non-boundary critical points.Definition 4.4. If X has corresponding ag vector P = (\true"; : : : ; \true")T and anarbitrary side vector S, then the reduced system dimension nred is the number ofentries of S which are \false", while the reduced function �R : Rnred ! R is formedfrom �, considering those coordinates Xi with si = \true" to be constant parameters. Wesimilarly de�ne the reduced gradient rR� and reduced Hessian matrix HR. Werefer to the system formed from �R, rR�, and HR as the reduced system.The modi�ed interval Gauss{Seidel method may now be easily described.10



Definition 4.5. Let X be a box with corresponding boundary ag vectors L and U , andassume that pi = \true" for 1 � i � n. Then the operator IG�(X; L; U; S) is de�nedto be the image of X under Algorithm 2.1 in conjunction with Remark 2.3, applied tothe reduced system of De�nition 4.4. Also, in Step 1, a) of Algorithm 2.1, we form thepreconditioner by Yi =8>>>>><>>>>>: Y CLi if li = \true" and ui = \false",Y CRi if li = \false" and ui = \true",Y CWi if li = \false" and ui = \false";Y CWi if li = \true" and ui = \true":The preconditioners in De�nition 4.5 are selected to result in a rapid contraction ofthe subregion to a critical point if the subregion is interior to the constraint set, and whichresult in a rapid contraction away from the boundary if the formally interior subregion ison the boundary of the constraint set. This should reduce redundant calculations (on theboundary and in the interior), and aid in rapid rejection of regions not containing criticalpoints.The list L of boxes and associated ags produced from B, IG�, and P is ordered suchthat the �rst element on the list is the one most likely to contain the global optimum. The\proper order" for this list is de�ned in [14, p. 49] so that a tuplet(X(1); �(X(1)); �(X(1)); L(1); U (1))occurs before a tuplet (X(2); �(X(2)); �(X(2)); L(2); U (2))provided �(X(1)) � �(X(2)).As is done in [5] and [19], we use a point Newton method to attempt to �nd criticalpoints to high accuracy, to get lower upper bounds on the minimal value of the objectivefunction, in order to eliminate boxes from L which cannot contain the global minimum.This technique is based on the fact that the classical Newton method (or \globalized" vari-ants such as trust region algorithms) often converges to an approximation from startingpoints in regions too large for rigorous convergence veri�cation. However, since we aresolving a constrained problem, we must make sure that such approximate critical pointsdo not lie outside the original region. We also wish to apply the technique to the re-duced systems on the boundary. These considerations, combined with a desire to maintainsimplicity, have resulted inAlgorithm 4.6 (for Point Estimates).0. Input the present box X = (x1;x2; : : : ;xn)T , the corresponding boundary indicatorvariable S, a domain tolerance �point, a range tolerance �point, and an iteration limitMit. (Note: It is appropriate that �point be small relative to the minimum box widthin the overall branch and bound algorithm.)1. Form a point vector X 2 Rn whose i-th component is (xi + xi)=2.11



2. Form the reduced point vector Xred 2 Rnred from those entries xi of X for whichsi = \false".3. Compute rR�(Xred).4. For � = 1 to Mit DO;a) Compute HR(Xred).b) Compute the Newton step V = (HR(Xred))�1rR�(Xred).If this step fails (due to singularity of HR), then return the midpoint vectorof X as X.c) If kV k < �point then proceed to step 5.d) For � � 2, if kV k is greater than kV k from the previous iteration, then returnthe midpoint vector of X as X.e) Apply the Newton step: Xred  Xred � V .f) If any coordinate of Xred lies outside the corresponding coordinate bounds of X,then return the midpoint vector of X as X.g) Compute rR�(Xred).h) If krR�(Xred)k < �point then proceed to step 5.END DO.5. (Return an approximate minimizer.)a) Reset those components xi of X with si = \false" to the corresponding compo-nents of the computed Xred.b) Return X and �.We may now present our main global optimization algorithm.Algorithm 4.7 (Branch and bound).0. Inputa) the initial box X,b) a minimum box width �X, andc) a gradient tolerance �r.1. (Initialization)a) bu  �(X).b) (Initialize boundary ags)(i) lj  \true", j = 1; : : : ; n.(ii) uj  \true", j = 1; : : : ; n.(iii) sj  \false", j = 1; : : : ; n.(iv) pj  \false", j = 1; : : : ; n.DO WHILE (L \ fX j max1�j�n w(xj) > �Xg 6= ;).2. IF P(X) 6= X, THENa) Insert X(l), X(u) and X from P in the proper order in L via Algorithm 4.8.b) progress \true".c) Jump to step 4.END IF3. (Interval Newton method)a) Compute rR�(X).IF 0 =2 rR�(X) THEN12



(i) progress \true".(ii) Proceed to step 4.END IFb) Compute HR(X).c) Compute rR�(X), where X is the midpoint vector of X.d) X IG�(X; L; U; S).(Note: We do not apply this operation if the preconditioner as inDe�nition 4.5 cannot be found; thus, this operation will return atmost one box.)e) IF IG� in step 4d) has changed X, THENprogress \true"ELSEprogress \false"END IFf) If X 6= ; then place X into its proper position in L via Algorithm 4.8.4. Pop the �rst box X whose coordinate widths all exceed �X from L and place itin X.Exit if there are no such boxes.5. (Possible bisection) IF progress = \false" THENa) (X(1);X(2); i) B(X).b) For i = 1, 2: If 0 2 rR�(Xi) then place Xi into its proper position in L.c) progress \true".d) Return to step 4.ELSEa) Pop the �rst box X whose coordinate widths all exceed �X from L andplace it in X.Exit if there are no such boxes.b) Return to step 2.END IFEND DOBesides inserting a box in the proper place in L, the following algorithm also updatesthe best computed upper bound bu for the global minimizer and removes boxes whichcannot possibly contain a global minimizer from L.Algorithm 4.8 (List insertion).0. Input the list L, the best computed upper bound bu, the box X to be inserted, andthe corresponding ag vectors L, U , S, and P as in De�nitions 4.2 and 4.3.1. (Update upper bound)a) Apply Algorithm 4.6 to obtain an X 2 X.b) bu  min�bu; �(X); �(X)	.2. (Locate the point of insertion, if insertion is appropriate)Assume the list is of the form �X(k)	qk=1, where �(X(k+1)) � �(X(k)), 1 � k �q � 1, and where we pretend that �(X(q+1)) is in�nite, and where X(0) is simply thebeginning of the list. 13



FOR k = 0 to q WHILE ��(X(k+1)) < �(X)� DO:(Return if box cannot contain a global minimum)If �(X(k)) < �(X) then return to Algorithm 4.7.END DO3. (Actual insertion process)a) Insert X between X(k) and X(k+1) (so that X becomes X(k+1), etc.)b) Insert �(X), �(X), L, U , S, and P in corresponding lists.c) Flag X(k+1) (i.e. X) according to whether its scaled coordinate widths are allless than �X.4. (Cull the list of boxes which cannot contain global minima)FOR j = k + 1 to q: If �(X(j)) > �(X) then delete X(j) from L.In practice, L is a linked list, and the operations in Algorithm 4.8 proceed accordingly.5. Numerical ExperimentsWe used Algorithm 4.7 in conjunction with the interval Gauss{Seidel procedure asimplemented in [12] as a framework for implementation. The resulting Fortran 77 programis available from the author for veri�cation of these experiments, and eventually should bepolished to production quality.We chose the following three types of test problems.(i) A very simple test problem to debug the code.(ii) Problems which have been used previously in testing global optimization methods.Here, we attempted to select di�cult problems which were also fairly easy to program.(iii) A simply programmable problemwhich was previously used to test a bound-constrainedglobal optimization algorithm, but which exhibits a di�cult singularity.(iv) A problem which we designed to highlight the di�erences between the preconditionerswe are testing.Where bound constraints were given previously in the literature, we used these boundconstraints.When the method is generalized to handle more general constraints, (see Section 7below), we will experiment with additional problems from the excellent test set in [3].The problems in our experiments are as follows.1. A simple quadratic, n = 2. �(X) = x21 + (x2 � 1)2=2:Initial box: [�:1; :1]� [:9; 1:1].The gradient system is linear, so the Hessian matrix is a point matrix; the singleoptimum at X = (0; 1)T should thus be obtainable in one application of the precon-ditioned interval Gauss{Seidel algorithm.2. Problem 1 from [21] (three-hump camel back function), n = 2.�(X) = x21(12 � 6:3x21) + 6x2(x2 � x1):Initial box: ([�4; 4]; [�4; 4])T . 14



This problem has two global optima, at X = (�4;�2)T and X = (4; 2)T , at which�(X) = �1444:8. Note the contrast with the optimum X = (0; 0)T , �(X) = 0reported in [21]; the latter represents a local optimum of the constrained problem.3. Problem 8 from [13], n = 3. (This is similar to problem 6 from [21], except for thefactor of 10 in the �rst term.)10 sin2(�x1) + n�1Xi=1 �xi � 1�2�1 + 10 sin2(�xi+1)� + (xn � 1)2:Initial box: ([�1:75; 3:25]; : : : ; [�1:75; 3:25])T .This problem has a global minimum of �(X) = 0 at X = (1; : : : ; 1)T , but a largenumber of local minima which grows exponentially with n. Levy originally proposedthis problem to illustrate the e�ectiveness of his tunneling method at avoiding thenumerous local minima, while Walster, Hansen, and Sengupta used it in [21] to showthat interval methods were also e�ective at that.4. The preceeding problem with n = 4.5. The preceeding problem with n = 5.6. The preceeding problem with n = 6.7. The preceeding problem with n = 7.8. The preceeding problem with n = 8.9. A generalization of Powell's singular function, as given in [2], n = 4.�(X) =Xi2J h (xi + 10xi+1)2 + 5 (xi+2 � xi+3)2+ (xi+1 � 2xi+2)4 + 10 (xi � 10xi+3)4 i;where J = f1; 5; 9; : : : ; n� 3g.Initial box: ([�1; 1]; : : : ; [�1; 1])T .The global optimum is �(X) = 0, attained at X = (0; : : : ; 0)T ; however, the Hessianmatrix is of rank 2 at this point. Note that, for n = 4k, k > 1, the Hessian matrixhas k identical diagonal blocks. Various algorithms may or may not take advantageof this, depending on their sophistication.10. The same as the preceeding problem, but with initial box equal to ([:1; 1:1]; : : : ; [:1; 1:1])T .This problem has a unique global optimum �(X) 2 [2:77; 2:84], attained at a uniquepoint X = (x1; x2; x3; x4)T with x1 2 [:564; :574] and x2 = x3 = x4 = :1. Note thatthis contrasts with the computed \constrained" optimum reported in [2], in whichthe same bound constraints were used.11. A function designed to highlight the di�erence between the inverse midpoint and thelinear programming preconditioners; the gradient is linear in all components exceptthe last one, which is highly nonlinear.�(X) = 12 8<: nXi=1 x2i + nXi=1 xi!29=;+ sin2(1000nxn):15



Initial box: ([�1; 1]; : : : ; [�1; 1])T ; n = 4.The unique global minimum within the box is at X = (0; : : : ; 0)T .The Hessian matrix for this function is constant except for the element in the n-throw and n-th column. This Hessian matrix is a symmetric analogue to the Hessianmatrix for Brown's almost linear function (cf. the experiments in [10]); in the latter,the Jacobi matrix is constant except for the elements in the last row, each of whichis highly nonlinear.In the experiments, �X was taken to be 10�3 and �r was taken to be 0 in Algorithm4.7. In the point estimate algorithm, we took �point = �point = 10�20 and Mit = 20.In addition to the preconditioner choice strategy embodied in De�nition 4.5, we triedthree other strategies, which we enumerate here.Strategy 1: Choose Yi as in De�nition 4.5.Strategy 2: Choose Yi = Y CWi always.Strategy 3: Choose Yi to be the i-th row of the inverse of the midpoint matrix of theHessian matrix. (This has been a common choice throughout the literature.)Strategy 4: Choose Yi the opposite of De�nition 4.5:Yi = 8>>>>><>>>>>: Y CLi if li = \false" and ui = \true"Y CRi if li = \true" and ui = \false"Y CWi if li = \false" and ui = \false";Y CWi if li = \true" and ui = \true":We implemented the algorithms in Fortran 77, borrowing from the algorithms andbasic interval arithmetic package in [10] and [12] where possible; we tried all four strategieson all eleven problems on an IBM 3090. For each problem, we kept a record ofCPU the central processing unit time in seconds to complete Algorithm 4.7;DM the maximum number of boxes in the list L;NFT the number of interval Newton method calls (including steps 2 and 3 of Algorithm4.7);NGCR the number of interval gradient component evaluations to determine the rangeof the gradient;NJR the number of evaluations of a row of the interval Jacobi matrix;NGCN the number of interval gradient component evaluations for the interval Gauss{Seidel method;NPHI the number of interval objective function evaluations;NBIS the number of bisections; andCPP the total CPU time in the point Newton method.The indicator CPP is meant to measure whether a more sophisticated strategy thanapplying the point Newton method to every box and sub-box produced would bene�t thealgorithm. Also, for ease of coding, the gradient and Hessian matrix in the point Newtonmethod were obtained from the interval gradient and interval Hessian routines, and thuswere fairly expensive. However, in no case did the ratio CPP=CPU exceed about 1=3.16



The CPU time should be taken here as a relative measure only, as we were usingportable, software-implemented interval arithmetic which did not utilize modern techniquessuch as in-lining. Performance with machine-optimized interval arithmetic could be anorder of magnitude faster.The results for all eleven problems and Strategy 1 are given in Table 1, while summarystatistics (representing the sum of the above measures over all eleven problems) are givenfor all four strategies in Table 2. Complete statistics for problems 9, 10, and 11 are givenin Table 3. Table 1. Strategy 1.# CPU DM NFT NGCR NJR NGCN NPHI NBIS CPP1 0:0 1 3 8 2 6 7 0 0:02 0:0 4 10 38 10 22 22 3 0:03 10:9 9 61 507 174 447 108 32 4:14 21:6 14 82 908 312 924 146 44 7:85 33:8 15 90 1283 425 1570 171 56 11:96 53:0 20 109 1877 618 2574 208 69 17:77 80:2 21 138 2697 917 4165 254 81 25:18 104:9 33 143 3325 1080 5584 277 94 32:09 35:6 39 2321 21458 9234 27164 3025 497 4:110 0:8 5 62 418 146 521 100 27 0:211 34:3 16 432 5954 1712 2252 1086 419 9:5Tot. 375:1 177 3451 38473 14630 45229 5404 1322 112:4Table 2. Summary for all four strategies.Str. CPU DM NFT NGCR NJR NGCN NPHI NBIS CPP1 375:1 177 3451 38473 14630 45229 5404 1322 112:42 374:0 177 2675 40290 15526 47850 5638 1326 111:93 291:6 213 2245 32007 9392 43784 5069 1954 100:94 378:8 177 3735 40771 15766 48506 5699 1327 112:6Table 3. Strategy comparison on signi�cant problems.# CPU DM NFT NGCR NJR NGCN NPHI NBIS CPP Str.9 35:6 39 2321 21458 9234 27164 3025 497 4:1 138:1 39 2545 23278 10130 29788 3259 501 4:4 217:5 73 1175 15123 4502 22012 2457 1017 3:3 340:1 39 2621 23895 10434 30700 3337 503 4:5 410 0:8 5 62 418 146 521 100 27 0:2 10:8 5 62 415 146 518 100 27 0:2 20:6 5 52 382 103 397 100 36 0:2 30:5 5 46 279 82 262 83 26 0:2 411 34:3 16 432 5954 1712 2252 1086 419 9:5 133:7 16 432 5954 1712 2252 1086 419 9:4 235:3 18 531 7636 2100 10500 1471 525 10:5 334:4 16 432 5954 1712 2252 1086 419 9:5 4In all cases, Algorithm 4.7 completed successfully.The above results lead to the following conclusions.17



The choice of preconditioner is not as important in global optimization prob-lems as in general nonlinear systems.Overall, the experiments seem to refute our thesis that an appropriate preconditionerwill improve the performance of a global optimization algorithm. This is in sharp contrastto experiments reported in [10] and [11], in which optimal preconditioners never apprecia-bly reduced performance (from the point of view of CPU time and other measures), and inmany cases increased performance by orders of magnitude. This is probably partially dueto the symmetry in the interval Hessian matrix. Our optimal preconditioners will avoidworking with a row in which there is a large amount of overestimation in the intervals(due to eg. a highly nonlinear function component). However, such overestimation in arow of an interval Hessian matrix must also occur in the corresponding column; thus, theoverestimation will be present in the sum (4) in Algorithm 2.1 regardless of whether or notthat row is included in the linear combination forming Gi. We do note, however, that, inthe problem we designed to highlight our preconditioners, our preconditioners resulted insigni�cantly less interval Hessian row evaluations than the inverse midpoint preconditioner.A second explanation for the lack of performance improvement is that the intervalNewton method itself is less important in global optimization algorithms than in generalnonlinear system solvers. In particular, use of the upper bound bu on the global opti-mum to eliminate boxes seems to be powerful, and it is enhanced in our context by ourlower-dimensional searches (with correspondingly smaller overestimations in the intervalarithmetic) on boundaries. The relative unimportance of the interval Newton method issuggested by the fact that the total number of bisections and the maximum list size waslarger when the inverse midpoint preconditioner was used. This seems to indicate that, inthat case, the boxes needed to be smaller in order for the interval Gauss{Seidel method tofurther reduce the coordinate intervals. (Also, see the italicized comment below.)Use of the point Newton method (Algorithm 4.6) to improve bu is very worth-while.With a very ine�cient implementation of the point Newton method, and applyingthe point Newton method at every conceivable point where it could bene�t, it took nomore than about 1=3 of the total CPU time. Furthermore, in preliminary experiments inwhich we did not use the point Newton method (not reported here), the algorithm couldnot complete Problem 9 without storing at least 4000 boxes in L; when using the inversemidpoint preconditioner, the algorithm also failed on Problem 11 for the same reason.(It is interesting to note, however, that even without the point Newton method, Strategy1 completed successfully in about 25 CPU seconds, whereas use of the inverse midpointpreconditioner failed in about 708 CPU seconds.)Finally even when the algorithm without the point Newton method completed, the�nal boxes in L were of lower quality in the sense that there were clusters of numerousboxes about global minima, some of which were fairly far from the actual global minimum.Finally, CPU times were much larger.Use of reduced gradients is worthwhile.We do not have solid statistics on this aspect. However, the bound constraints �tvery naturally (without appreciable extra overhead and without complicating the code)into both the interval Newton method and the point Newton method for obtaining point18



estimates. Furthermore, as mentioned, zero-width coordinates lead to less overestimationin the inverval values. Thus, the presence of bound constraints makes the problem easierthan the global unconstrained problem.7. Future ImprovementsIt is also be possible to apply this method to several classes of more general constraintsthan those in (1). For example, di�erentiable nonlinear constraint functions can be handledin two ways as follows. Suppose we have an inequality constraint of the formh(X) � 0:Then we may compute interval extensions h(X) of h over boxes X between steps 2 and3 of the list insertion algorithm (Algorithm 4.8), and return without inserting a box X ifh(X) > 0.We may also include a linear interval equation of the formrh(X)(X �X) = h(X) \ (�1; 0]in the reduced gradient system, as suggested by Novoa ([16]). This transforms the linearinterval system into a system with more equations than unknowns, but our linear program-ming preconditioner technique applies equally well to rectangular systems. In particular,the LP problem (5) may be modi�ed by increasing the index bound on l, and another sim-ple modi�cation allows inclusion of interval right-hand-sides. Any feasible critical pointsmust then necessarily be contained in the box obtained from the resulting preconditionedGauss{Seidel sweep.Finally, standard techniques such as use of Lagrange multipliers or the Kuhn-Tuckerconditions may be used. References1. Alefeld, G�otz, and Herzberger, J�urgen, \Introduction to Interval Computations," Academic Press,New York, etc., 1983.2. Conn, Andrew R., Gould, Nicholas I. M., and Toint, Philippe L., Testing a Class of Methods forSolving Minimization Problems with Simple Bounds on the Variables, Math. Comp. 50 182 (1988),399{430.3. Floudas, C. A. and Pardalos, P. M., \A Collection of Test Problems for Constrained Global Opti-mization Algorithms," Springer-Verlag, New York, 1990.4. Hansen, E., Global Optimization Using Interval Analysis-the Multi-Dimensional Case, Numer.Math.34 3 (1980), 247{270.5. Hansen, E., An Overview of Global Optimization Using Interval Analysis, in \Reliability in Com-puting," Academic Press, New York, 1988, pp. 289{308.6. Hu, C.-Y., Preconditioners for Interval Newton Methods, Ph.D. dissertation, University of South-western Louisiana 1990.7. Kearfott, R. B., Abstract Generalized Bisection and a Cost Bound, Math. Comp. 49 179 (1987),187{202.8. Kearfott, R. B., Interval Newton / Generalized Bisection When There are Singularities near Roots,Annals of Operations Research 25 (1990), 181{196.19



9. Kearfott, R. B., Interval Arithmetic Techniques in the Computational Solution of Nonlinear Systemsof Equations: Introduction, Examples, and Comparisons, in \Computational Solution of NonlinearSystems of Equations," (Lectures in Applied Mathematics, volume 26), American MathematicalSociety, Providence, RI, 1990, pp. 337{358.10. Kearfott, R. B., Preconditioners for the Interval Gauss-Seidel Method, SIAM J. Numer. Anal. 27 3(1990), 804{822.11. Kearfott, R. B., Hu, C. Y., Novoa, M. III, A Review of Preconditioners for the Interval Gauss{SeidelMethod, preprint, 1990, Interval Computations.12. Kearfott, R. B., and Novoa, M., INTBIS, A Portable Interval Newton/Bisection Package, ACM.Trans. Math. Software 16 2 (1990), 152{157.13. Levy, A. V. and Gomez, S., The Tunneling Method Applied to Global Optimization, in \NumericalOptimization 1984," SIAM, Philadelphia, 1984, pp. 213{44.14. Moore, Ramon E., \Methods and Applications of Interval Analysis," SIAM, Philadelphia, 1979.15. Neumaier, A., \Interval Methods for Systems of Equations," Cambridge University Press, Cambridge,England, 1990.16. Novoa, M., Linear Programming Preconditioners for the Interval Gauss{Seidel Method and theirImplementation in Generalized Bisection, Ph.D. dissertation, University of Southwestern Louisiana.17. Pardalos, P. M., and Rosen, J. B., \ConstrainedGlobal Optimization: Algorithms and Applications,"Springer-Verlag, New York, 1987.18. Ratschek, H., Inclusion Functions and Global Optimization, Math. Programming 33 3 (1985).19. Ratschek, H., and Rokne, J. G., E�ciency of a Global Optimization Algorithm, SIAM J. Numer.Anal. 24 5 (1987), 1191{1201.20. Ratschek, H., and Rokne, J., \New Computer Methods for Global Optimization," Wiley, New York,1988.21. Walster, G. W., Hansen, E. R. and Sengupta, S., Test Results for a Global Optimization Algorithm,in \Numerical Optimization 1984," SIAM, 1985, pp. 272{287.Keywords. nonlinear algebraic systems, Newton's method, interval arithmetic, Gauss-Seidelmethod, globaloptimization, singularities1980 Mathematics subject classi�cations: Primary: 65K10; Secondary: 65G10U.S.L Box 4-1010, Lafayette, LA 70504
20


