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Abstract – Biometric authentication of gait, anthropometric data, human activities and 

movement disorders are presented in this paper using the Continuous Human Movement 

Recognition (CHMR) framework introduced in Part I. A novel biometric authentication of 

anthropometric data is presented based on the realization that no one is average sized in as 

many as 10 dimensions. These body part dimensions are quantified using the CHMR body 

model. Gait signatures are then evaluated using motion vectors, temporally segmented by 

gait dynemes, and projected into a gait space for an eigengait based biometric 

authentication. Left-right asymmetry of gait is also evaluated using robust CHMR left-right 

labeling of gait strides. Accuracy of the gait signature is further enhanced by incorporating 

the knee-hip angle-angle relationship popular in biomechanics gait research, together with 

other gait parameters. These gait and anthropometric biometrics are fused to further 

improve accuracy. The next biometric identifies human activities which requires a robust 

segmentation of the many skills encompassed. For this reason, the CHMR activity model is 

used to identify various activities from making a coffee to using a computer. Finally, human 

movement disorders were evaluated by studying patients with dopa-responsive 

Parkinsonism and age matched normals who were video taped during several gait cycles to 

determine a robust metric for classifying movement disorders. The results suggest that the 
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CHMR system enabled successful biometric authentication of anthropometric data, gait 

signatures, human activities and movement disorders.  

 

 

1. Introduction 

 

Although there is a large body of work describing computer vision systems for 

modeling and tracking human bodies (see [21] for a review), the vision research 

community has only recently begun to investigate gait as a biometric. Now, identifying 

humans from their gait is an extremely active area of computer vision [2, 4, 12, 15, 18, 

19, 22, 23, 24, 30, 33]. This paper describes a robust gait metric with a novel left-step-

right-step vector of spatial-temporal parameters to capture the left-right gait asymmetry 

of the population.  

Collins recently combined body shape and gait into a single biometric applied to 

the gait databases from CMU (25 subjects), U.Maryland (55 subjects), U.Southampton 

(28 subjects) and MIT (25 subjects). Phillips reported a good 73% recognition rate on a 

larger sample of 74 subjects [28]. Instead of using a 2D shape based pose [6], this 

research employs a novel application of anthropometric dimensions from a 3D body used 

to uniquely identify individuals from the variability of physical proportions. Although 

previous work has been done on body-model acquisition from multiple cameras [20, 29], 

the clone-body-model was sized by the monocular CHMR system described in paper I. 

Part II of this paper presents the biometric authentication of anthropometric data, 

gait signatures, human activities, and human movement disorders. These four biometrics 

depend on accurately quantifying and recognizing human body movement using a precise 

model of the body being tracked. This biometric authentication process is enabled with 

data from the CHMR system described in Part I of this paper which is used to non-

invasively quantify and temporally segment continuous human motion in monocular 

video sequences. Relative dimensions from the CHMR body model support biometric 

identification from a library of anthropometric signatures. Gait signatures are correlated 

using dyneme segmented left-step-right-step motion vector arrays. General human 



movement activity identification is demonstrated using the CHMR activity model 

discussed in Part I of this paper.  

 

Video image analysis is also able to provide quantitative data on postural and movement 

abnormalities and thus has an important application in neurological diagnosis and 

management. This paper describes an approach to classifying the gait of Parkinsonian 

patients and normal subjects using video image analysis results from the CHMR system. 

 

2.  Anthropometric Biometric 

Vitruvius from 1st century B.C. Rome assumed all men were identically 

proportioned [34], as did Leonardo da Vinci with his famous drawing of the human 

figure, based on the Vitruvian norm-man (Figure 1). Later, more than 2000 years after 

Vitruvius wrote his ten books on architecture, Le Corbusier[7] revived interest in the 

Vitruvian norm with his mapping of human proportions (Figure 2) onto the Golden 

Section developed by Euclid in 300 B.C. Greece which Euclid had named the extreme 

and mean ratio. 

             

       Figure 1. The Vitruvian man           Figure 2. Le Modulor man 

by Leonardo da Vinci.        by Le Corbusier. 

However, this “average sized human” model assumed by Vitruvius, Leonardo da 

Vinci and Le Corbusier is a fallacy as there is no average sized person. A human with 



average proportions does not exist. More recent anthropometric data [27] shows that 

people who are average in two dimensions constitute only about 7% of the population; 

those in three, only about 3%; those in four, less than 2%. Since there is no-one who is 

average in 10 dimensions [13], a ten dimensional space of physical proportions can be 

used as a reasonably accurate biometric. What is not clear from anthropometric data is 

the natural asymmetry of the human body, which can also be utilized to further improve 

the accuracy of anthropometric authentication. This anthropometric asymmetry becomes 

apparent with one foot fitting a pair of shoes better that the other. This novel biometric 

promises maximal between-person variability while supporting minimal within-person 

variability across time within the adult population. 

    

Figure 3. Front and side views of the 50th percentile proportions.  

Drawings from H. Dreyfuss, The Measure of Man, 1978. 

 

From initial 50th percentile anthropometric proportions (Figure 3), the body model 

used in the tracking process is automatically normalized and sized to the relative 

proportions of the person being tracked providing at least a ten dimensional space of 

physical proportions for this biometric measure. Anthropometric data [27] is also used to 

threshold variance from average body-part proportions allowing for age, race and gender. 

Each individual is represented by a normalized vector of physical proportions with 

associated accuracy weights from the CHMR clone-body-part averaged radius accuracy. 



The tracking process maps each person into the training set with this anthropometric 

vector. The weights enable a confidence measure to be calculated and thresholded for a 

match.  

 

 

Figure 4. Turning and gait step overlaid, 58 frames apart. 

 

Angular displacement of DOFs during gait enable ongoing improvement in body 

model accuracy as joint locations and body-part lengths become further revealed through 

the temporal resolution of self-occlusions. For example, turning 180o to pace back 

significantly improves the accuracy of frontal dimensions as shown above in Figure 4. 

 

3.  Gait Signature 

 

Approaches to gait recognition can traditionally be divided into two categories: 

model based and holistic. Holistic methods [28] derive statistical information directly 

from the gait image and attempt to correlate various features for biometric authentication. 

Initial results from holistic approaches are promising with recognition rates as high as 

100% for small databases of hundreds of subjects. However, no research has been done to 

establish if these high recognition rates will translate to larger databases with thousands 

of subjects as in face-recognition or even millions of subjects as in iris-recognition [9]. 

Model based approaches rely on a model being fitted to the image data. Cunado [8] 

proposed a method for gait recognition based on moving feature analysis. The gait 

signature was extracted by using a Fourier series to describe the motion of the leg and 



temporally correlate this to determine the dynamic model from a sequence of images. 

Performance of this technique was also promising, with recognition rates of up to 90%, 

however the test sample was small.  

Engaging a model based approach, the CHMR system is used to temporally 

segment step dynemes for which data from the motion vectors are analyzed to determine 

a unique gait signature. Similar to the static anthropometric left-right asymmetry of the 

body is the dynamic left-right asymmetry of gait. Accurate temporal segmentation and 

identification of the left and right steps is required to fully exploit this asymmetrical 

parametric diversity of gait populations. In a new approach to biometric authentication of 

gait, this asymmetry is quantified using the motion vectors given the differentiated left 

and right step segmentation from the CHMR system. 

A gait pattern classifier takes a temporally normalized sequence of gait delimited 

motion vectors as the input feature vector – essentially two alternate step dynemes. An 

eigengait approach [3] is employed in which a similarity plot is treated the same way that 

a face is recognized in the eigenface approach by Pentland et al. [26] with a similar novel 

eigenspike approach applied successfully by one of the authors to identify epileptic spikes 

[10,17]. The motion vectors of left-right step dyneme pairs are found to be the principal 

components of the distribution of the feature space. This is followed by standard pattern 

classification of new feature vectors in the lower-dimensional space spanned by the 

principal components. 

Normalized left and right stride-dyneme motion vectors are concatenated into one 

single vector. The right stride is appended to the left stride to form a single gait vector g 

for each person. For recognition, a gait vector is projected into a reduced set of basis 

vectors. These basis vectors are the global eigenvectors associated with the largest 

eigenvalues of a covariance matrix of the training set of N people (g1..gN) found by the 

eigenvalue decomposition of their covariance matrix: 
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where g  is the mean of the training set. Each gait vector gi is approximated by an n-

dimensional vector wi obtained by projecting it into the space spanned by the n most 

significant eigenvectors, u1..un: 
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Of particular interest is the knee-hip angle-angle relationship popular in 

biomechanics gait research especially since the minimum possible gait DOFs would 

include only the hip and knee flexions. In this research, left-right gait asymmetry as a gait 

feature is explored by using the robust CHMR left-right labeling of gait strides to enable 

a robust phase alignment of the alternating steps, further enhancing the accuracy of this 

metric. 

Gait and anthropometry have the advantage over other biometrics such as 

fingerprint and iris in that they are non-invasive to the extent that the subject may not 

know they are being recognized in security and surveillance applications. The gait and 

anthropometric biometrics also have the proximity advantage over face detection since 

they can operate on a lower resolution image. With the CHMR approach, it is possible to 

fuse the gait and anthropometric biometrics to improve the accuracy.  

 

4.  Activity Identification 

 

Research into human activities generally represents an activity as a single skill 

such as walk, run, turn, sit, and stand [31]. This is problematic since human activities are 

often more complex consisting of a sequence of many possible skills. An activity can be 

more accurately defined as a sequence of one or more core skills. This research seeks to 

broaden the distinction between activity and skill. The CHMR activity model in Part I 

defines possible human movement activities that the search can hypothesize, representing 

each activity as a sequence of one or more core skills.  

For example, making a coffee consists of the minimum sequence “spoon-coffee, 

pour-water”. Many other potential skills exist in the make-coffee sequence with pre-skills 

such as “boil-water, get-cup, get-spoon” and post-skills such as “stir-coffee, carry-cup”.  

Therefore a set of zero or more related pre and post skills are associated with each 

activity to enable the temporal grouping of skills relating to a particular activity. In this 



way, not only are a sequence of motion vectors temporally segmented into a skill, but a 

sequence of skills can be temporally segmented into an activity. 

Five activities were performed, each by three people: 

1. coffee: making a coffee 

2. computer: entering an office and using a computer 

3. tidy: picking an object off the floor and placing it on a desk 

4. snoop: entering an office, looking in a specific direction and exiting 

5. break: standing up, walking around, sitting down 

 

Although an attempt was made to track lifting a coffee pot, carried objects are not 

recognized as separate from the human body and so tend to destabilize the human body, 

depending on their size. This research does not cover models beyond a human body 

model. Consequently, holding large objects such as a coffee pot destabilizes the tracking 

due to the body part holding the object being dimensioned beyond an acceptable 

anthropometric threshold. Hence, the activities were defined in this paper did not involve 

carrying objects larger than a small coffee cup. 

The CHMR system is utilized to recognize various activities from making a 

coffee to using a computer. The CHMR activity model defines the possible human 

movement activities that the search can hypothesize, representing each activity as a linear 

sequence of skills. This activity biometric is discussed and tested further in this paper. 

 

5.  Movement Disorders 

 

Patients with neurological disorders frequently show some degree of gait 

abnormality. A typical example is Parkinson’s disease (PD). Common motor symptoms 

of PD include: rhythmic shaking of one or occasionally more limbs (tremor), slowness in 

movement (bradykinesia), stiffness of joints (rigidity), slightly bent and flexed posture, 

and failure of the arms to swing freely when walking [25]. 

Walking is a highly refined, remarkable and automatic skill of humans which is 

easily taken for granted. The basic reflex for walking, which is probably located in the 



spinal cord, is present at birth. Parents, relatives and friends are all very pleased, excited 

and proud when an infant takes the first steps. At the other end of the time spectrum, 

abnormalities of gait and falling tend to be problems of the elderly. Disorders of gait and 

mobility are second only to impaired mental function as the most frequent neurological 

effects of aging. Normal gait, stance and balance require precise input from 

proprioceptive (position sense), vestibular (inner ear mechanisms and their connections 

within the brain stem) and visual pathways as well as auditory and tactile information. 

Two of the three major afferent systems (proprioceptive, vestibular and visual) must be 

intact to maintain balance. Afferent data must be integrated in the brain stem and brain 

through motor (pyramidal and extrapyramidal) and cerebellar pathways, which then serve 

as the efferent arc of the important skill of walking. Dysfunction in the afferent or 

efferent systems or in the central integrating centers can lead to gait problems. Gait 

disorders in the elderly are frequently heterogeneous and often multi-factorial in origin. 

The function of the extrapyramidal system is to modulate posture, right reactions 

and associated movements. The Parkinsonian gait is characterized by a flexed posture, 

diminishing arm swing and rigid, small-stepped, shuffling gait. Arising from a sitting 

position may be slow or impossible. Patients often have difficulty with initiation of 

movement and turns. Disturbances of balance are often present (impairment of postural 

reflexes). The legs are stiff and bent at the knee and hips. As the patient walks, the upper 

part of the body gets ahead of the lower part and the steps become smaller and more rapid 

(festination). Turning is accomplished with multiple unsteady steps, with the body 

turning as a single unit (en bloc).  

The clinical approach to gait analysis is heavily dependent on subjective 

observation of the patient’s gait. Although the reliability of subjective observation may 

be improved by systematic procedures and rating scales, the asynchronous series of 

changes in the complex articulated assembly of the human body presents such a maze of 

data that few persons could assimilate them all. This limitation may be minimized by 

quantitative documentation of the patient’s performance with reliable instrumentation to 

provide a permanent record of fact. Quantitative gait analysis is an important clinical tool 

for quantifying normal and pathological patterns of locomotion and has been shown to be 



useful for prescription of treatment as well as in the evaluation of the results of such 

treatment [1].  

Commercial quantitative video analysis techniques require patients to be video 

taped while wearing joint markers in a highly structured laboratory environment with 

extensive set-up procedures. This limits the usefulness of video based analysis in routine 

clinical practice and so it is rarely used in this capacity. Current video analysis would also 

be unable to analyze existing video tape libraries1. Based on the CHMR model discussed 

in Part I, this paper presents a video analysis system, free of markers and set-up 

procedures, which quantitatively identifies gait abnormalities in real-time. The aim in this 

research is to develop a system able to meet the needs of a busy movement disorders 

clinic in both on-line and off-line analysis and diagnosis.  

 

6.  Performance 

 

Gait sequences and activity skills were tracked and classified using a 1.8GHz, 

640MB RAM Pentium IV platform processing 24 bit color within the Microsoft DirectX 

8.1 environment under Windows XP. The video sequences were captured with a JVC 

DVL-9800 digital video camera at 30 fps, 720 by 480 pixel resolution. 

Each person moved in front of a static blue-screen background with constant 

lighting conditions and no foreground object occlusion. Only one person was in frame at 

any one time. Tracking began when the whole body was visible which enabled 

initialization of the body model. Each person walked parallel to the image plane in front 

of a stationary camera, and then turned to walk back again, repeating this sequence five 

times on average. The body model accuracy was significantly improved by the first turn. 

The first turn also enabled accurate texture mapping of the occluded side and the varying 

perspectives of the body enabled radii to be more accurately determined as shown in 

Figure 5. The large number of frames available in a single turn is of considerable benefit 

to accurately dimensioning the body model. 

                                                
1 Such as the Westmead Hospital Movements Disorders Clinic in Sydney which has accumulated a large 
patient library. 



       

 

Figure 5   Tracking the combined average clone-body-part radius (∑ar/∑b) and color 

accuracy (∑ahsi/∑b) over 17 frames during a turn phase illustrates more dimensions being 

revealed to further increase clone-body-model accuracy. 

 

For completeness, biometric results are less ambiguously quantified using five 

categories: correctly recognized (true positive), incorrectly recognized, correctly rejected 

(true negative), false negatives and false positives. False negatives represent incorrectly 

rejected candidates from the training set and false positives are incorrectly recognized 

candidates not present in the training set. The performance of the anthropometric and gait 

biometrics is presented in the following sections using these five categories of results. 
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6.1   Anthropometric Biometric 

 

Training samples of 48 people in tight clothing are represented by vectors of 

physical proportions with associated accuracy weights. The tracking process also 

attempted to recognize 10 people who were not present in the training gallery. The 

weights enable a confidence measure to be calculated and thresholded for a match. 

Based on the training data, a recognition rate of 92% was achieved for the 

anthropometric biometric for a confidence threshold of 99% with one false positive. 

Dimension inaccuracies were reduced by tight fitting clothes being worn by the training 

and test samples. Accuracy of body proportions was significantly improved by the first 

turn due to varying perspectives of the body which enabled radii to be more accurately 

determined. 

 

Correct 

recognition 

Incorrect 

recognition 

False 

negative 

 Correct 

rejection 

False 

positive 

92% 2% 6%  90% 10% 

      

Table 1. Biometric authentication of anthropometric data. 

 

In Table 1, false negatives represent incorrectly rejected candidates from the 

training set and false positives are incorrectly recognized candidates not present in the 

training set. It was found that dimension inaccuracies are introduced by hair, footwear 

and thick clothes such as heavy woolen sweaters. Consequently, some head dimensions 

were weighted low due to hairstyle induced inaccuracies. Similarly, foot dimension 

weights were also low due to adverse footwear influence. It was found that large loose 

clothes such as coats, skirts and dresses occluded body parts causing the body model to 

fail to initialize for tracking due to the variance of body-part proportions exceeding an 

acceptable threshold. 

 



6.2   Gait Signature 

 

A sample of 48 people walking in a sagittal plane became the training gallery, 

with an additional 10 unknowns. Reasonably tight fitting clothes were worn by all 58 

people with no severe self-occlusions of both legs, which would cause this approach to 

fail. The two most significant gait biometric predictors were found to be the knee-hip 

angle-angle relationship and the left-right asymmetry of that relationship, being a subset 

of the left-right step-dyneme vector. Figure 6 illustrates the uniqueness of these angle-

angle relationships by overlaying the knee-hip diagrams of four different people. 

 

 

Figure 6. Hip-knee angle-angle relationships 

of four different people. 

 

Gait specific features were normalized with respect to the gait cycle. The 

principal components were found for the distribution of the feature space of gait-step 

dyneme pairs by standard pattern classification of new feature vectors in the lower-

dimensional space spanned by the principal components. This eigengait analysis yielded 

the same recognition rate of 88% as the hip-knee angle and asymmetry fusion. 
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Gait feature 

% 

Correct 

recognition 

Incorrect 

recognition 

False 

negative 
 

Correct 

rejection 

False 

positive 

Gait period 48 32 20  60 40 

Arm swing amplitude 64 14 22  70 30 

Stride amplitude 66 22 12  60 40 

Arm swing asymmetry 76 6 18  80 20 

Hip-knee angle-angle 82 6 12  90 10 

Hip-knee left-right asym. 86 4 10  90 10 

Hip-knee angles & asym. 88 2 10  100 0 

Eigengait analysis 88 0 12  100 0 

       

Table 2.  Gait signature recognition results. 

 

In Table 2, false negatives represent incorrectly rejected candidates from the 

training set and false positives are incorrectly recognized candidates not present in the 

training set. Interestingly, the fusion of both the anthropometric biometric and gait 

biometric raised the accuracy from 92% and 88% respectively, to 94%.  

About 30% of subjects moved their arms minimally causing the far arm to be 

occluded during the gait cycle, to be accurately measured only when walking back in the 

opposite direction. It was assumed that the near side visible arm swung identically when 

it was occluded. The large number of small arm swing amplitudes accounts for the low 

64% gait signature recognition based on arm amplitude and 76% recognition based on 

arm swing asymmetry. In future studies involving carried objects [6], arm swing will 

become less relevant to the gait signature. 

 

6.3   Activity Identification 

 

The activity error rate quantifies CHMR system performance by expressing, as a 

percentage, the ratio of the number of activity errors to the number of activities in the 

reference training set. The CHMR system was tested on a training set of five activities 



with an activity error rate of 0%. However the sample size is too small for this result to 

be significant. 

 

Activity             % Recognition False negative 

Coffee 100 0 

Computer 100 0 

Tidy 100 0 

Snoop 100 0 

Break 100 0 

Table 3. Activity recognition results. 

 

Results for the following activities are detailed in Table 3 above. 

•  coffee: making a coffee 

•  computer: entering an office and using a computer 

•  tidy: picking an object (pen) off the floor and placing it on a desk 

•  snoop: entering an office, looking in a specific direction and exiting 

•  break: standing up, walking around, sitting down 

With such a small sample of activities, the activity recognition results reflect the skill 

recognition results of 4.5% skill error rate in Part I.  

 Although carrying a spoon in coffee and a pen in tidy caused no tracking 

problems, attempts to carry objects such as a large mug caused the arm to permutate 

through unexpected angles within an envelope sufficiently large as to invalidate the 

tracking and recognition. Carrying even larger objects such as a brief-case caused the 

body model to fail. With no valid body to track, tracking and recognition did not proceed. 

It is intended to extend the tracking process to recognized carried objects as separate from 

the human body for a more useful activity recognition biometric. 

 

 

 



6.4   Movement Disorders 

 

The gaits of twenty patients with dopa-responsive Parkinsonism (PD) and fifteen 

aged matched normals were tracked and classified. The PD video data analyzed in this 

paper was validated in a previous study [14,32,5]. 

 

 

Figure 6. PD gait samples illustrating characteristic body  

flexion with asymmetrical or minimal arm swing. 

 

A number of gait parameters were analysed to determine their significance to the 

correlation of PD gait. These features included: leg swing, arm swing, gait period and 

shape of the gait cycle limb swing waveform. The PD limb swing amplitude was 

generally less than that of normals, but it was found to vary among both PDs and age 

matched normals enough to result in about 11% false positives and so was not a useful 

feature (refer to Table 4). The period of the gait was also unable to reliably classify PD 

gait. The most useful feature proved to be the left-right asymmetry of waveform shape 

due to a significant asymmetry in the PD gait arising from the deterioration of one side 

more quickly than the other. Using this feature, the system correctly classified 95% of 

subjects with one false negative. 

 

% Correct PD False negative  Correct normal False positive 

Amplitude: leg 90 10  80 20 

                   arm 85 15  73 27 

Gait period 55 45  88 12 

Gait asymmetry 95 5  93 7 

Table 4: Correlation of limb swing amplitude, period and left-right asymmetry. 

C E F G I L 



The two graphs in Figure 7 illustrate this PD asymmetry by contrasting an 

irregular PD gait with the regular leg swing of a normal gait. PD patients in Figure 6 

show either no arm swing (subjects C, G and L) or the significant asymmetry typical of 

PD gait (subjects E, F and I). Also visible was the flexed body and limb shape (subjects 

C, E, F and G) common in PD. This contrasts with the somatotype and age matched 

normals in Figure 8. The degree to which body and limbs were flexed was not addressed 

by this study. 

 

 

PD gait                               Normal gait 

Figure 7. Graphs contrasting an asymmetrical leg swing typical of PD gait  

with a normal symmetrical gait. 

 

The single PD gait sample not detected by this system had a gait similar to normal 

but some tremor was visible. However, due to the low resolution images and low frame 

rate, tremor was not able to be analysed. Another problem arose from the minimal arm 

swing common in PD gaits. With minimal arm swing in many PD gaits, tracking the far 

arm caused problems because it was occluded during entire gait passes. To stabilise 

tracking in this case, the location of the far arm was assumed to be near vertical or similar 

to the location of the near arm.  

    

Figure 8.  Aged matched normal gait samples. 
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The subjects used in this study had been used in a previous study and were 

therefore established as known PDs and normals. The classification accuracy was 

improved in this study by analysing entire gait cycles rather than a static gait snapshot of 

each subject as in the previous study. 

 

7.  Conclusions and future research 

 

This research has demonstrated that the proposed CHMR system, presented in 

Part I, tracked and recognized not only hundreds of skills, but also successfully applied 

biometric authentication to anthropometric data, gait signatures, human activities and 

movement disorders. In this paper these biometrics were recognized free of joint markers, 

set-up procedures and hand-initialization. CHMR body model data was successfully 

applied as a biometric for body proportions and gait dyneme segmented motion vectors 

successfully supported a biometric for gait signatures. 

A novel biometric authenticating anthropometric data was presented in this paper 

based on a maximal between-person variability of about ten dimensions of body 

proportions with promising minimal within-person variability across time. A recognition 

rate of 92% was achieved with one false positive supporting this anthropometric 

signature as a valid biometric 

Biometric authentication of gait signatures achieved 88% recognition with no 

false positives using the eigengait approach Although this is better than the 73% reported 

by Phillips [28], it is not as good as others have achieved for smaller sample sizes [3]. 

The most significant gait feature was found to be the left and right hip-knee angle-angle 

relationship encompassing a left-right asymmetry. Fusion of anthropometric and gait 

biometrics raised the accuracy from 92% and 88% respectively, to 94%. These results 

indicate that applying a fused anthropometric-gait biometric authentication could form 

the basis for a security application. Future studies will extend to fast and slow gaits of 

each subject and include carried items. 



Human movement activities were identified with no activity error. Various 

activities from using a computer to making a coffee were successfully tracked and 

recognised. However the number of activities in the sample were too small for this result 

to be conclusive. 

In this paper, it was also demonstrated that this approach was able to successfully 

track and classify gait to detect PD with a success rate of 95% with one false positive. 

The results suggest that this approach has the potential to guide clinicians on the relative 

sensitivity of specific postural/gait features in diagnosis and quantifying progress. 

However, detecting the small rapid motion of tremor would necessitate a higher frame 

rate and resolution than was used in this study. 

Future studies aim to extend the skill, semantic and activity models and also to 

improve the robustness and accuracy of the system, especially the poorly observable 

depth DOFs, by applying to the Particle filter, inflated posteriors and dynamics for 

sample generation and then reweighing the results. Future research will adopt Receiver 

Operating Characteristic (ROC) methodology using ROC curves to present results for 

more clarity. 

Loose clothing and carried items which occluded body parts reduced the 

effectiveness of these biometrics. An improvement can be achieved by modeling the 

draping of loose clothing to more fully reveal the true body shape [16]. The body model 

also needs to be extended to allow for the wide variety of loose clothing encountered in 

general situations. Tracking stability can also be increased by enhancing the body model 

to include degrees of freedom supporting radioulnar (forearm rotation), interphalangeal 

(toe), metacarpophalangeal (finger), and carpometacarpal (thumb) joints to further 

stabilize the hand and feet positions.  

Future studies also aim to further improve the accuracy of the biometric 

authentications presented in this paper by increasing sample sizes and both the spatial and 

temporal resolutions. 
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