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Abstract

Microaggregation is a statistical disclosure control technique for mi-
crodata. Raw microdata (i. e. individual records) are grouped into
small aggregates prior to publication. Each aggregate should contain at
least k records to prevent disclosure of individual information. Fixed-
size microaggregation consists of taking fixed-size microaggregates (size
k). Data-oriented microaggregation (with variable group size) was in-
troduced recently. Regardless of the group size, microaggregates on a
multidimensional data set can be formed using univariate techniques on
projected data or using multivariate techniques. This paper presents the
first method for multivariate fixed-size microaggregation. In addition, a
real data set is used to compare the information loss and output data
quality of fixed-size vs. data-oriented, and univariate vs. multivariate
microaggregation.
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1 Introduction

A microdata set is a set of records containing data of individuals being studied,
who can be persons, companies, etc. The individual records of a microdata set
are stored in a microdata file. Each individual j is assigned a data vector Vj ,
also called data record or data set. A data vector is formed by several variables.

Microaggregation is a family of statistical disclosure control techniques for
microdata which belong to the data modification category. The rationale be-
hind microaggregation is that confidentiality rules in use allow publication of
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microdata sets if the data vectors correspond to groups of k or more individuals,
where no individual dominates (i. e. contributes too much to) the group and
k is a threshold value. Strict application of such confidentiality rules leads to
replacing individual values with values computed on small aggregates (microag-
gregates) prior to publication. This is the basic principle of microaggregation.

To obtain microaggregates in a microdata set with n data vectors, these are
combined to form g groups of size at least k. For each variable, the average
value over each group is computed and is used to replace each of the original
averaged values. Groups are formed using a criterion of maximal similarity.
Once the procedure has been completed, the resulting (modified) data vectors
can be published.

The partition problem implicit in microaggregation differs from the classical
clustering problem whose goal is to split a population into a fixed number of
disjoint groups (Hartigan, 1975), regardless of the group size. Partitions re-
sulting from microaggregation cannot consist of groups of size smaller than k;
call such partitions k-partitions. To solve the k-partition problem, a measure
of similarity between data vectors is needed. Each individual data vector can
be viewed as a point and the whole microdata set as a set of multidimensional
points. The dimension is the number of variables in data vectors. If data vectors
are characterized as points, similarity between them can be measured using a
distance.

To be more specific, consider a microdata set with p continuous variables
and n data vectors (i. e. the result of observing p variables on n individuals). A
particular data vector can be viewed as an instance of X′ = (X1, · · · , Xp) where
the Xi are the variables. With these individuals g groups are formed with ni

individuals in the i-th group (ni ≥ k and n =
∑g

i=1 ni). Denote by xij the j-th
data vector in the i-th group; denote by x̄i the average data vector over the i-th
group, and by x̄ the average data vector over the whole set of n individuals.

The within-groups sum of squares SSE is defined as

SSE =
g∑

i=1

ni∑
j=1

(xij − x̄i)′(xij − x̄i)

The between-groups sum of squares SSA is

SSA =
g∑

i=1

ni(x̄i − x̄)′(x̄i − x̄)

The total sum of squares is SST = SSA + SSE or explicitly

SST =
g∑

i=1

ni∑
j=1

(xij − x̄)′(xij − x̄)

The optimal k-partition is the one that minimizes SSE (or equivalently,
maximizes SSA); sums of squares are usual to measure information loss (Gordon
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and Henderson, 1977). A measure L of information loss standardized between
0 and 1 can be obtained from

L =
SSE

SST
(1)

The rest of this paper is organized as follows. In Section 2, previous work
on univariate microaggregation is reviewed (both with fixed-size groups and
variable-size groups). Section 3 deals with multivariate microaggregation tech-
niques; a new concept of multivariate fixed-size microaggregation is presented
and a method to implement it is specified; also recent work of these authors
on multivariate data-oriented microaggregation is briefly recalled. In Section 4,
the information loss and output data quality of microaggregation methods are
compared based on a real data set; four families of methods are considered:
univariate fixed-size, univariate data-oriented, multivariate fixed-size and mul-
tivariate data-oriented. Finally, Section 5 is a conclusion and a sketch of future
research.

2 Univariate microaggregation

Defays and Nanopoulos (1993) proposed a mathematical algorithm to find an
optimal solution for the k-partition problem (minimizing the information loss
L). The idea is to choose a suitable set of hyperplanes separating the n data
vectors into a number of homogeneous groups. As pointed out by its authors, the
proposed algorithm is pretty complicated and difficult to implement in practice.
As an alternative, the same paper presents some of the practical alternatives
described in Subsection 2.1

2.1 Univariate fixed-size microaggregation

Practical heuristic microaggregation methods were proposed in Defays and Nano-
poulos (1993), in Anwar (1993) and in Defays and Anwar (1995). The partition
mechanism is the same in all such methods: first, data vectors are sorted in
ascending or descending order according to some criterion. Then groups of suc-
cessive k vectors are combined. Inside each group, the effect for each variable
is to replace the k values taken by the variable with their average. If the total
number of data vectors n is not a multiple of k, the last group will contain more
than k data vectors.

Instead of using a multidimensional distance to sort data vectors, all practical
methods quoted above perform straightforward one-dimensional sorting (this
fact explains why such methods are called univariate). Two main approaches
exist: single-axis sorting and individual sorting.

Single-axis sorting methods are good if all variables are highly correlated. If
a particular variable is used for sorting, this variable must reflect somehow the
size of the data vector. Vectors are sorted in ascending or descending order by

3



the sorting variable, and then groups of k successive vectors are formed. Inside
each group and for each variable, values are replaced by the group average. A
natural improvement is to sort data vectors by the first principal component of
the microdata set rather than by a particular variable. Principal components are
transformed variables such that the first principal component is highly correlated
with most original variables. An alternative that, like principal components, also
takes all variables into account is based on the sum of z-scores: all variables are
standardized and, for each data vector, the standardized values of all variables
are added. Vectors are subsequently sorted by their sum of z-scores.

If the individual sorting option is chosen, then each variable is considered
independently. Data vectors are sorted by the first variable, then groups of k
successive values of the first variable are formed and, inside each group, values
are replaced by the group average. A similar procedure is repeated for the rest
of variables. Individual sorting usually preserves more information than single-
axis sorting, but has a higher disclosure risk. Indeed, with individual sorting any
intruder knows that the real value of a variable in a data vector in the i-th group
is between the average of the i−1-th group and the average of the i+1-th group;
if these two averages are very close to each another, then a very narrow interval
for the real value being searched has been determined. Individual sorting also
has a conceptual drawback: it does not partition the n data vectors in the
microdata set on a data vector basis; instead, microaggregation is done for each
variable in turn so that a different partition is obtained for each variable in the
microdata set.

2.2 Data-oriented univariate microaggregation

In Domingo and Mateo (1998), microaggregation using variable-sized groups
depending on data (data-oriented microaggregation) is introduced in the uni-
variate case. The idea is that groups need not consist of exactly k data vectors,
but of at least k data vectors. Methods yielding variable-sized groups are a
bit more complex than fixed-size microaggregation (Defays and Nanopoulos,
1993) but they may take advantage from the distribution of original data to
obtain a smaller information loss in comparison with fixed-size microaggrega-
tion. Figure 1 is a simple graphical example that illustrates the advantages of
variable-sized groups. The figure shows two variables and nine data. If fixed-
size microaggregation with k = 3 is used, we obtain a partition of the data into
three groups, which looks rather unnatural for the data distribution given. On
the other hand, if variable-sized groups are allowed then the five data on the left
can be kept in a single group and the four data on the right in another group;
such a variable-size grouping achieves a smaller information loss.

As discussed above, deterministically finding an optimal solution to the k-
partition problem is very difficult. Heuristic methods are the only practical
alternative and they should attempt to minimize the information loss L specified
by expression (1). Since SST is fixed for a given data set, one should attempt
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Figure 1: Variable-sized groups versus fixed-sized groups

to find a grouping that minimizes SSE.
In Domingo and Mateo (1998) two alternative heuristic approaches to variable-

size univariate microaggregation are presented:

• Microaggregation based on genetic algorithms (GA).

• Modified Ward’s Algorithm (k-Ward).

Being univariate, both approaches above must be combined with single-axis or
individual sorting (described in Section 1) to deal with a multivariate microdata
set.

Genetic microaggregation represents k-partitions as binary strings (also called
chromosomes) and combines directed and random search to locate global op-
tima.

Hierarchical classification methods can also be used as building blocks for
heuristic microaggregation methods yielding variable-sized groups. Ward’s meth-
od (Ward, 1963) is attractive because it is stepwise optimal: the two groups or
data elements joined at each step are chosen so that the increase in the within-
groups sum of squares SSE caused by their union is minimal. However, Ward’s
method must be adapted to be useful for microaggregation (k-Ward algorithm).
The standard method just builds up a grouping hierarchy, whereas a k-partition
of the initial data set is desired. As will be shown in this paper, k-Ward can be
naturally turned into a truly multivariate microaggregation method.
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k-Ward is a microaggregation method for quantitative data or for qualitative
data where a distance has been defined. In what follows, k-Ward will be briefly
recalled. The following definitions and results are needed:

Definition 1 For a given data set, a k-partition P is any partition of the data
set such that each group in P consists of at least k elements.

Definition 2 For a given data set, k-partition P is said to be finer than k-
partition P ′ if every group in P is contained by a group in P ′.

It is straightforward to check that “finer than” is a partial order relationship
on the set of k-partitions of a given data set.

Definition 3 For a given data set, a k-partition P is said to be minimal with
respect to the relationship “finer than” if there is no k-partition P ′ 6= P such
that P ′ is finer than P .

Proposition 1 For a given data set, k-partition P is minimal with respect to
the relationship “finer than” if and only if it consists of groups with sizes ≥ k
and < 2k.

Corollary 1 An optimal solution to the k-partition problem of a set of data
exists that is minimal with respect to the relationship “finer than”.

The proofs of the above results can be found in Domingo and Mateo (1998).
Now, Ward’s hierarchical classification method can be modified to provide a
solution that belongs to the set of candidate optimal solutions characterized
by Proposition 1 and Corollary 1. Modified Ward’s algorithm (k-Ward) is as
follows:

Algorithm 1 (k-Ward)

1. Form a group with the first (smallest) k elements of the data set and
another group with the last (largest) k elements of the data set.

2. Use Ward’s method until all elements in the data set belong to a group
containing k or more data elements; in the process of forming groups by
Ward’s method, never join two groups which have both a size greater than
or equal to k.

3. For each group in the final partition that contains 2k or more data ele-
ments, apply this algorithm recursively (the data set to be considered is
now restricted to the particular group containing 2k or more elements).

The following property of the above algorithm is proven in Domingo and
Mateo (1998); its proof is recalled here because it helps understanding the design
of the algorithm.
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Property 1 (Convergence) Algorithm 1 ends after a finite number of recur-
sion steps.

Proof: By Step 1 of the above algorithm each new recursion step starts
splitting the initial data group into at least two groups; the rule in Step 2
ensures that the group formed by the smallest elements and the group formed
by the largest elements are never joined thereafter (because of their sizes). In
this way, at the end of a recursion step, the final k-partition consists of at least
two groups and is therefore finer than the initial k-partition (consisting of a
single group). If there is a group of size ≥ 2k, then the algorithm is recursively
applied to it and strictly smaller groups will be obtained (according to the
previous argument). Thus after a finite number of recursion steps a k-partition
of the initial data set will be obtained such that the maximal group size is less
than 2k. 2

As explained above, Ward’s algorithm is stepwise optimal in what regards
information loss. Stepwise optimality does no longer hold for k-Ward, but a good
behaviour is expected given that k-Ward is built on top of Ward’s method. See
Section 4 for computational results.

3 Multivariate microaggregation

We present in this section the multivariate counterparts of the methods de-
scribed above. We define multivariate microaggregation to be microaggrega-
tion on multivariate unprojected data. Of course, if multivariate data are one-
dimensionally projected using single-axis or individual sorting (see Section 1),
the resulting projected data can be microaggregated with the univariate meth-
ods described in Section 2. However, single-axis sorting is a rather coarse tech-
nique and individual sorting has a higher disclosure risk and does not really
perform microaggregation on a data vector basis.

Work presented in Subsection 3.1 on multivariate fixed-size microaggrega-
tion is new. In Section 3.2, previous work of these authors on data-oriented
multivariate microaggregation is recalled (Mateo and Domingo, 1998; Mateo,
1998).

3.1 Multivariate fixed-size microaggregation: a new pro-
posal

We introduce in this subsection a new family of microaggregation methods.
The idea is to form groups of size k without projecting multivariate data in
one-dimension. Instead, a multivariate distance is used. The basic algorithm
can be described as follows:

Algorithm 2 (Multivariate fixed-size microaggregation)
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1. Form one group with the “first” k data vectors and another group with the
“last” k data vectors.

2. If there are at least 2k data vectors which do not belong to the two groups
formed in Step 1, go to Step 1 taking as new data set the previous data
set minus the groups formed in the previous instance of Step 1.

3. If there are between k and 2k − 1 data vectors which do not belong to the
two groups formed in Step 1, form a new group with those elements and
exit the Algorithm.

4. If there are less than k data vectors which do not belong to the groups
formed in Step 1, add them to the closest group formed in Step 1.

The problem remains of how to decide which are the “first” and “last”
data vectors in Step 1 of the above algorithm. If single-axis sorting is used to
make that decision, Algorithm 2 is equivalent to performing univariate fixed-size
microaggregation on projected multivariate data. A truly multivariate criterion
is as follows. Define as extreme data vectors the two vectors in the data set which
are most distant according to the distance matrix; then, for each of the extreme
data vectors, take the k − 1 data vectors closest to it following the distance
matrix; in this way, a group with the “first” k data vectors and another group
with the “last” data vectors are obtained. This criterion for choosing the “first”
and the “last” data vectors will be called maximum-distance (MD) criterion.
The grouping resulting from MD may depend on which extreme data vector
one starts with, i. e. which extreme data vector is taken as the “first” data
vector. For example, consider the six two-dimensional data vectors in Figure 2
and take k = 3. The two most distant vectors are labeled 2 and 5. Starting from
vector 2, the closest vector is vector 1; now the vector closest to the group (1,2)
is vector 3. So starting from vector 2, we get the groups (1,2,3) and (4,5,6). But
if we choose to start from the other extreme point (vector 5), the closest vector
is vector 4; now the vector closest to the group (4,5) is vector 3. So starting
from vector 5, we get the groups (3,4,5) and (1,2,6). Anyway, the differences
in the information loss resulting from choosing either extreme vector as “first”
or “last” are small (see results in Subsection 4.2). Furthermore, the larger the
data set, the less likely is the kind of pathological situation depicted in Figure 2.

3.2 Multivariate data-oriented microaggregation

A natural way to obtain multivariate data-oriented methods is to generalize
some of the univariate data-oriented methods quoted in Subsection 2.2. Ge-
netic microaggregation methods are not so easy to adapt for dealing with un-
projected multivariate data: the main problem comes from the fact that a mul-
tidimensional space is only partially ordered, which makes properly representing
multivariate k-partitions as binary strings far from obvious.
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Figure 2: Grouping with the maximum-distance criterion

Luckily enough, the strong point of k-Ward is that it can be easily adapted
into a multivariate k-Ward algorithm to directly work with multidimensional
(unprojected) data vectors. The reason is that the underlying Ward’s method
was actually designed as a multivariate clustering algorithm. Thus to obtain a
multivariate version of k-Ward, only Step 1 of Algorithm 1 needs to be adapted.
Basically, what is needed is a multivariate sorting criterion specifying what is
meant by the “first” k data vectors and the “last” k data vectors.

Unlike for multivariate fixed-size microaggregation, it makes sense to use
single-axis sorting to determine which are the first and last k vectors in Step
1 of Algorithm 1. The resulting algorithm is not equivalent to data-oriented
univariate microaggregation on projected data. The multivariate data vectors
can be ranked according to their first principal component, their sum of z-scores
or a particular variable. The maximum-distance criterion may also be used as an
alternative to avoid one-dimensional projection, and then the grouping depends
on which extreme vector is taken as first.

4 Computational results

The performance of the multi-dimensional microaggregation methods discussed
in this work has been compared using a data set of 834 companies in the Tar-
ragona area for which 13 variables have been collected: fixed assets (V1), cur-
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rent assets (V2), treasury (V3), uncommitted funds (V4), paid-up capital (V5),
short-term debt (V6), sales (V7), labour costs (V8), depreciation (V9), oper-
ating profit (V10), financial outcome (V11), gross profit (V12) and net profit
(V13). The data set corresponds to year 1995.

The methods considered in the comparison include univariate fixed-size mi-
croaggregation (denoted by UFS), univariate data-oriented microaggregation us-
ing k-Ward (denoted by UDO), multivariate fixed-size microaggregation (MFS),
and multivariate data-oriented microaggregation using k-Ward (denoted by MDO).
For UFS and UDO (step 1 of k-Ward) several sorting criteria have been con-
sidered: a particular variable (PV), sum of z-scores (SZ) and first principal
component (FPC). For MFS, only truly multivariate sorting criteria such as
maximum-distance (MD) make sense (see Subsection 3.1). For MDO (step 1 of
multivariate k-Ward), the PV, SZ, FPC and MD criteria have been considered.
In the rest of this section, the sorting criterion appears as a subscript of the
microaggregation method. When using the PV criterion, a range of results is
obtained depending on which particular variable is used; if a single result is
reported in what follows, it corresponds to the best variable.

4.1 Computing time

The whole data set of 834 data vectors was microaggregated on a Pentium MMX
at 166MHz running under the Linux operating system. The following results
for the microaggregation time (excluding sorting time) were obtained:

• With UFS, the computing time is negligible for any 3 ≤ k ≤ 5 regardless
of the sorting criterion used.

• With UDO, the computing time is about 25 seconds, regardless of the
group size and the sorting criterion used.

• With MFS, the computing times is also about 25 seconds.

• With MDO, the computing time is between 35 and 39 seconds.

The above results exhibit no significant differences. It should be noted here
microaggregation is usually performed off-line and even a few hundred seconds
of computing time would be acceptable. Thus, it can be concluded that the
computing time is not an issue for either method, even if MDO turns out to be
somewhat slower than the rest of methods. The really interesting comparison
is in terms of information loss and data quality.

4.2 Information loss and data quality

To compare the information loss caused by multivariate fixed-size microaggre-
gation and k-Ward, we have considered the loss L (see expression (1)). It must
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Method 100L (k = 3) 100L (k = 4) 100L (k = 5)
UFSPV 30.11 - 48.48 34.14 - 57.0 37.59 - 60.83
UFSSZ 28.92 32.15 or 32.08 35.20 or 32.56

UFSFPC 23.87 or 23.89 30.62 or 25.99 33.29 or 30.74
UDOPV 31.17 - 53.93 35.28 - 58.23 39.06 - 61.18
UDOSZ 30.13 32.56 34.65

UDOFPC 25.35 31.71 32.08
MFSMD 15.60 19.27 22.67
MDOPV 16.23 - 21.61 20.46 - 29.45 22.38 - 31.77
MDOSZ 19.16 24.31 27.6

MDOFPC 15.87 21.58 23.69
MDOMD 16.01 - 16.75 21.13 - 21.24 21.83 - 22.77

Table 1: Comparison of percentage information loss

be pointed out here that the value of L depends on the units used for the vari-
ables in the microdata set. Such an undesirable property can be neutralized if
all variables are standardized prior to microaggregation: if variable Vi takes a
value x, then x is replaced by (x− v̄i)/svi

, where v̄i and svi
are, respectively, the

average and the standard deviation of the values taken by Vi. Results presented
throughout this section have been obtained on standardized variables. Table 1
shows the percentage values of L obtained for UFS, UDO, MFS and MDO.

For the FPC and SZ sorting criteria, two losses are given (unless both are
very similar). The first one is obtained when data are sorted in ascending order
following the criterion; the second loss is obtained when data are sorted in
descending order.

A range of losses is given for the PV criterion. With this criterion, the
information loss depends on the particular variable chosen for sorting. Thus the
lower limit of the range corresponds to the best variable (leading to a minimal
loss) and the upper limit to the worst variable. It can be seen that the range
for MDO is narrower than for UDO. In this sense, multivariate data-oriented
methods are more robust than their univariate counterparts.

For the MDO method with MD criterion, a range is also given. The reason
is that each time Step 1 of the multivariate k-Ward method is run, one must
decide which of two extreme data vectors is the “first” one and which is the
“last” one. Thus, if Step 1 is run m times, one could in principle obtain as
many as 2m different losses. However, it can be seen that the MD criterion is
pretty robust in that the difference between the worst and best losses is very
small.

Table 2 compares average standard deviations of all variables under each
method and for three group sizes. Original data have been standardized, so
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Method k = 3 k = 4 k = 5
UFSPV .83 .80 .78
UFSSZ .84 .82 .81

UFSFPC .87 .86 .83
UDOPV .83 .80 .77
UDOSZ .83 .81 .80

UDOFPC .86 .82 .82
MFSMD .92 .90 .88
MDOPV .91 .89 .88
MDOSZ .90 .87 .85

MDOFPC .92 .88 .87
MDOMD .92 .89 .88

Table 2: Comparison of average standard deviations

they have standard deviation 1; microaggregated data cannot contain more
information, i. e. more variability, so standard deviations for variables are
less than or equal to 1. The closer the average standard deviation to 1, the
better is a method. It can be seen that multivariate methods perform better
than univariate methods; a closer look reveals that MFS is slightly better than
MDO.

For each method and for each group size k, Table 3 reflects the impact of the
various microaggregation methods on the first principal component. The table
gives:

∆R: Percentage change in the average correlation of variables with the first
principal component. Using the original data set, the percentage change
is 0; therefore, the smaller this figure, the better is a method.

∆W : Percentage change in the average weight of variables on the first principal
component. The smaller this figure, the better is a method.

%FPC: Percentage proportion of variability of the whole microaggregated data
set explained by the first principal component. In the original data set, the
first component explains 63.4% of the total variability. The more similar
the percentage explained to 63.4, the better is a method.

Table 4 summarizes the impact of the various microaggregation methods on
the correlations between variables. With 13 variables, the number of unordered
variable pairs is 13!/(11!2!) = 78. Let rij be the linear correlation coefficient
between variables i and j for original data; let rm

ij be the correlation coefficient
between the same variables once data have been microaggregated using method
m. For each method m, Table 4 gives the average ∆r and the standard deviation
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Method k = 3 k = 4 k = 5
∆R ∆W %FPC ∆R ∆W %FPC ∆R ∆W %FPC

UFSPV 15.8 11.7 81.4 20.2 15.7 85.8 22.0 17.0 87.8
UFSSZ 18.8 14.5 84.3 21.3 15.0 88.0 22.6 16.3 89.4

UFSFPC 16.3 13.1 81.3 17.1 13.4 82.9 21.7 16.1 88.3
UDOPV 16.6 12.3 82.4 21.3 16.6 86.9 23.7 18.4 89.8
UDOSZ 19.8 14.1 86.0 22.1 15.3 88.9 24.4 17.5 91.3

UDOFPC 17.7 14.1 83.0 23.2 16.6 90.0 23.6 17.1 90.4
MFSMD 7.7 7.1 71.9 9.1 8.1 73.7 9.6 8.0 74.3
MDOPV 8.2 8.0 72.6 10.4 9.5 75.1 10.6 9.0 75.5
MDOSZ 10.1 9.1 74.7 13.7 10.6 79.2 14.7 11.5 80.1

MDOFPC 8.2 8.0 72.6 11.4 9.9 76.7 13.2 10.9 78.6
MDOMD 7.8 7.9 72.1 10.7 9.5 75.8 10.5 9.0 75.3

Table 3: Impact of microaggregation on the FPC

s∆r of the 78 discrepancies |rm
ij − rij |. The smaller the average discrepancy and

the smaller the discrepancy variability, the better is a method.

5 Conclusion and future research

The results shown in Tables 1 through 4 for the microdata set tested can be
summarized as follows:

• Multivariate methods behave significantly better than univariate methods.
The reason is that in univariate microaggregation there are two sources of
information loss: one-dimensional data projection and microaggregation.
In multivariate microaggregation, the only source of information loss is
microaggregation itself.

• Among univariate methods, UFSFPC is slightly better than the rest for
this data set.

• Among multivariate methods, the new method MFSMD is better than the
rest for this data set.

• The MD sorting criterion seems to be the best one for multivariate mi-
croaggregation. It is very robust, gives best results and requires little
computation.

An interesting line of future research would be to repeat the comparative
study performed in this paper for a very large data set. Some changes in the
implementation of MFS and MDO may be necessary to deal with very large
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Method k = 3 k = 4 k = 5

∆r s∆r ∆r s∆r ∆r s∆r

UFSPV .20 .08 .26 .12 .28 .13
UFSSZ .24 .10 .28 .11 .29 .12

UFSFPC .20 .09 .22 .10 .28 .11
UDOPV .21 .09 .27 .13 .30 .15
UDOSZ .26 .10 .19 .12 .32 .13

UDOFPC .22 .10 .30 .12 .31 .13
MFSMD .10 .05 .12 .06 .12 .06
MDOPV .10 .06 .13 .07 .14 .07
MDOSZ .13 .06 .18 .07 .19 .08

MDOFPC .10 .06 .15 .07 .17 .07
MDOMD .10 .05 .14 .06 .13 .06

Table 4: Impact of microaggregation methods on correlations

multivariate data sets: the distance matrix between data vectors cannot be
prestored and thus distances between data vectors must be computed when they
are needed. This introduces a considerable overhead and may be a computing
time penalty for MFS. The reason is that MFS normally tends to create more
groups than MDO, and thus requires more distance computations to complete
the microaggregation process.

Other research topics include the development of alternative heuristics for
multivariate microaggregation. For example, one could think of adapting genetic
algorithms to deal with unprojected multivariate data.
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