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ABSTRACT 
Sensor in-range fault accommodation is a fundamental challenge of 
dual channel control systems in modem aircraft gas turbine engines. 
An on-board real-time engine model can be used to provide an 
analytical third sensor channel which may be used to detect and 
isolate sensor faults. A fuzzy logic based accommodation approach is 
proposed which enhances the effectiveness of the analytical third 
channel in the control system's fault isolation and accommodation 
scheme. Simulation studies show the fuzzy accommodation scheme 
to be superior to current accommodation techniques. 

INTRODUCTION 
Modem aircraft gas turbine engines are often equipped with dual 
channel (duplex) control systems. This differs greatly from flight 
control systems which are typically either triplex or quadruplex. 
There are a number of reasons for this disparity, including: 
• Inherent reliability of the engine system is limited by the failure 

rate of the rotating machinery - driving the control system to 
zero failures has limited benefits. Duplex provides sufficient 
fault coverage (typically 95% to 99+%) to balance the control 
system failure rate with that of the other engine subsystems. 

• Cost, weight and space requirements are all significantly less for 
a duplex system than a triplex or quadruplex system. 

• Engine control system failures do not often result in loss of 
vehicle control, which is often the case for most flight control 
failures. In single engine aircraft, engine shutdowns can cause 
loss of the vehicle, but usually not the pilot. In dual engine 
aircraft, engine shutdowns usually result in loss of mission 
capability. 

With the exception of certain "prime reliable" components, such as 
fuel pumps and actuator pistons, which have negligible failure rates, 
the duplex system provides sufficient redundancy such that no single 
failure can cause loss of system functionality. In order to provide 
fault coverage, however, the control system must detect and isolate 
the fault, then perform the appropriate accommodation. For the large 
majority of faults, detection and isolation are one and the same. 
Processors can fail memory, check-sum or timer checks. Servo 
valves can show shorts or opens via current checks. Sensors can fail 
rate or range checks or have shorts or opens. 

One category of faults which provides a significant fault isolation 
challenge in duplex systems is in-range sensor faults. If both 
channel's sensors pass range and rate checks, but disagree, the 
question of which value to use poses a dilemma. If both channels 
agree within the tolerance of the sensing system's accuracy, then the 
two sensors can be averaged to get a "good" value. Once the 
disagreement becomes gross, however, one value must be considered 
"good", and the other discarded. 

One approach for selecting the "good" sensor is to look at failure 
modes. A thermocouple which is inserted into the engine hot section 
will read a much cooler temperature if a short occurs in the wires 
leading to the probe. Failure modes that will cause the thermocouple 
to read high are rare. Therefore, selecting the high channel for this 
type of sensor would be a reasonable approach. Since many types of 
sensors do not have a "most likely" failure direction, another 
approach is to select "safe". A speed sensor, which counts magnetic 
pulses, can fail either high if a chafed cable generates spurious 
pulses, or low if a short-circuit eliminates some of the pulses. The 
consequences of picking an erroneously low speed signal may 
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Figure 1- Median Versus Mean Value Voting 

include catastrophically overspeeding the engine. The consequences 
of picking an erroneously high signal are usually limited to a 
performance loss which results from unnecessarily limiting engine 
speed. By this logic, the obvious choice for a select "safe" strategy is 
to choose the high signal. This strategy falls apart however, if the 
speed error is high enough, since this error drives the engine to 
shutdown, a highly undesirable result for a single engine aircraft. 

Recent advances in the technology of modeling Gas Turbine engines 
has produced accurate, rell-time engine models which are suitable for 
incorporation in the engine control system's embedded software 
(Kerr, 1992). The real time models are constructed using a simplified 
analytical model of the engine to minimize on-board computing 
requirements and allow for real-time execution. In order to provide 
accurate predictions, a state observer is employed which causes the 
model to "track" the sensors and thereby provide more accurate 
predictions for synthesized engine variables. 

An on-board model provides an alternative approach to the in-range 
sensor fault isolation problem, since it can effectively provide an 
analytical third channel of a sensor. This third channel can referee 
the disputes between the duplex channels and greatly improve the 
chances of selecting the sensor which is providing the most correct 
value to the control system. The state observer feature of the model 
complicates the implementation of the third channel approach, since 
the model tends to "track" the voted sensor value, and can thereby 
lose its ability to provide a discriminator between the two sensors. 

Triplex redundancy management  
Several viable options exist for handling triplex sensors. Either the 
mean of the three channels or the median value can be used by the 
control system as the "voted" value. Using the mean has the 
advantage that it is statistically the closest approximation to the "true" 
value of the sensed parameter when all three sensors are functioning 

properly. The mean, however is corrupted when a sensor is faulty, 
but has not yet been detected and isolated. The median is normally 
quite close to the mean and has the advantage that it is not corrupted 
when one sensor drifts or provides erratic readings. Figure 1 
illustrates these two approaches. 

Fault detection and isolation is usually accomplished by a parity 
space approach (Patton, 1992) Parity is examined by comparing the 
relative errors between each of the three sensors. If two of the errors 
become large relative to the third, the parity vector becomes large and 
points to the erroneous sensor. Figure 2 illustrates this approach. 
These approaches assume that the three sensors are essentially 
identical, and that their values should all be given equal weight in 
"voting" the value to be used by the control system. With an 
analytical third channel, the model value may need to be considered 
differently than the values given by the sensors. 

For most sensors, the sensed value would be given precedence over 
the model predictions. Under this scenario, the voted value could be 
the average of the two sensors, providing they agree with each other. 
If a disagreement occurs, the model would be consulted to pick the 
correct sensor (the one which agrees most closely to the model), and 
the voted value would then become that sensor. The disadvantage of 
this approach is that the control system must abide the corrupted 
average until the faulted sensor exceeds a tolerance limit which must 
be sufficiently wide to preclude false alarms. 

This paper will offer a simple, fuzzy logic based approach which 
weights the sensor average based on the sensors agreement with the 
other channel and the model. This approach attempts to use the 
relative agreement of the three inputs to provide a robust dual 
channel / analytical triplex voting scheme. 
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APPLICATION OF FUZZY LOGIC TO REDUNDANT 
SENSOR SELECTION 
The problem of redundant sensor selection is particularly suited to 

the calculus of fuzzy if/then rules as described by Zadeh (1992) for 

several reasons. First, the fuzzy if/then paradigm along with the 
concept of linguistic variables (a variable whose values are linguistic 
terms rather than numbers) (Zadeh, 1973) provides a structure with 
which to capture human intuition and experience in the form of 

if/then rules. As we (humans) look at the data of various redundant 

sensor failure scenarios it is very easy for us to choose an appropriate 
voted value at any time during and after the failure. It is this ability 
we wish to capture in the sensor selection algorithm. Second, the use 
of fuzzy sets to represent our input/output variables (through 

fuzzification / defuzzification) provides precision at the set level 
which allows us to write fuzzy rules at a very high level of 
abstraction. This makes populating the fuzzy rulebase a very simple 
and straight forward process. Third, the structure of the fuzzy system 
allows for any number of antecedents in each of the rules which make 
up the fuzzy rulebase. This allows us to simply generate 
multidimensional non-linear relationships between inputs and 
output(s). These relationships make up a response surface referred to 

as a hazy associative memory or FAM (Kosko, 1992) which would 
otherwise be very difficult to visualize or create. 

The operation of any fuzzy logic if/then system can be broken down 
into three primary functions as follows. 

• Fuzzification of inputs: Conversion of the "crisp" (or real) 

inputs into fuzzy variables. 

• Fuzzy inferencing: Evaluation of the fuzzy if/then rules. 

• Defuzzification: Conversion of the output fuzzy variable(s) to 

"crisp" output(s). 
The specifics of a fuzzy system for redundant sensor selection are 
detailed below. 

Futtification (Puny Membership Functional 
Our fuzzy system will be based on a series of if/then rules in which 
the antecedent and consequent parts are linguistic variables which are 

fuzzy rather than crisp. The meaning of these linguistic variables is 
defined by their membership functions. As mentioned previously we 

have chosen to use a parity space approach in which the "crisp" 
inputs to our system will be the relative errors between each of the 
three sensors: 

512 = ABS(S I-S2) 

EIM = ABS(S1-SM) 
E2M = ABS(S2-SM) 

where SI is the value from sensor #1,52 is the value from sensor #2, 

and SM is the model predicted value. A conscious decision was made 
to consider the absolute values of these errors since the goal of the 
Fault Detection and Accommodation (FDA) system is to isolate the 
faulted sensor, not determine if it is faulted high or low. The 
inclusion of the sign of the error adds complexity to the algorithm, 
with no benefit to its effectiveness. Figure 3 shows a typical 
triangular membership function which could be used to fuzzify the 
crisp inputs. The scale of the abscissa axis is dependent upon the 
particular sensor in question and is influenced by experience / 

knowledge of that sensor's most likely failure mode. A logical choice 
for a scale factor is the expected variability of the sensor. The 
granularity of the linguistic variables was chosen as shown to be 
three (small, medium, large). 

-oust" cart 

Figure 3- Typical Membership Functions 
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In this example the crisp input shown is considered 'small' to the 
degree 0.1 and 'medium' to the degree 0.6. For the fuzzy sensor 
selection system each of the sensor errors (El 2, El M, E2M) are 
fuzzified using the same set of membership functions. Some 
investigation was done into the effect of using differently shaped 
membership functions (such as sinusoidal) with no discernible effect 
on the outcome. The overlap of the membership functions can be 
used to tune the overall input/output response surface while the 
granularity or number of membership functions can be used to 
provide more flexibility in the accommodation of particular 
combinations of sensor values. 

Fuzzy Inferencina (Fuzzy Rulebasel 
Once the inputs are fuzzified they can be used to evaluate the fuzzy 
if/then rulebase. Again it is the precision of the fuzzy membership 
function which defines the linguistic variable that allows the use of 
highly abstract if/then rules. Since the order of our input (n) is three 
and the granularity of our membership functions (m) was chosen to 
be three there are exactly n al  =(3) 3 = 27 possible combinations of 
inputs which make up the fuzzy "possibility space" (Kang, 1993). 
Therefore we must come up with re' rules to completely fill the fuzzy 
if/then rulebase. It should be recognized that depending upon the 
membership functions not all of these combinations are physically 
possible and therefore require no rule to be generated yet are 
included for completeness. Figure 4 shows a sample fuzzy if/then 
rulebase for the redundant sensor selection system. The antecedent 
portions of the rules depicted in figure 4 are the fuzzy representations 
of the three input sensor errors. 

The consequent portion of the rules are any of a number of 
sensor/model average values (Al2=AVE(SI,S2), 
A1M=AVE(SI,SM), A2M=AVE(S2,SM), 
Al2M=AVE(SI,S2,SM)). In this example we have chosen to ignore 
the model predicted value when the two sensor inputs agree (El 2 
small). As the error between sensor #1 and #2 increases (E12 
medium) we begin to use the model predicted value to influence the 
selected value. And as the error grows even larger (E12 large) we use 
the model predicted value and our knowledge of the relative errors to 
choose an appropriate average. For example, one of the rules states: 

IF (E12 is medium) AND (EIM is small) AND (E2M is large) 
THEN use AIM 

The rule selection allows incorporation of experiential knowledge of 
the particular sensor and it's typical failure modes. The rulebase may 
vary significantly depending on the expected accuracy of the 
particular model estimated parameter, the most likely failure mode of 
the sensor, or the relative consequences of an erroneously selected 
value. 

Each antecedent of each rule in the rulebase is evaluated using the 
fuzzified inputs and will result in a degree of fulfillment between 0.0 
and 1.0. The antecedents are then combined using the logical product 
or minimum function (the fuzzy equivalent to the logical AND) 
(Schwartz, 1994) to produce a resultant degree of fulfillment for each 
rule. Consider the previously mentioned rule and suppose the values 
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Figure 4- Sample Fuzzy If/Then Rulebase 

of the errors are such that E12 is considered medium to the degree 
0.7 while E1M is considered small to the degree 0.3 and E2M is 
considered large to the degree 0.4. The resultant degree of fulfillment 
of this rule will be MIN(0.7,0.3,0.4) = 0.3. 

Defuzzlfication  
Once the degree of fulfillment of each rule in the rulebase has been 
determined all that remains is to defuzzify the output value. The 
result of the rulebase evaluation is a fuzzy set which must be 
converted into an appropriate crisp value (a voted sensor value). A 
simple defuzzification method is to use the degree of fulfillment 
weighted average of the rulebase consequent blocks. We define 

Voted value = ( c1*d4 ) / TAofi 

where c1 is the consequent part of the ith rule and dof1 is the degree of 
fulfillment of the ill  rule. This method of defuzzification is equivalent 
to the "mean of maxima" method summarized by Filev (1991) with 
the consequent part of the Oh  rule corresponding to the maxima of a 
fuzzy membership function. The boundedness of this defuzzification 
method (and most methods) is guaranteed since the output can only 
be weighted averages of the inputs. 

Response Surface  
The overall relationship between inputs and output(s) can be mapped 
as an 'n+ I' dimensional response surface referred to as a fuzzy 
associative memory or FAM. For the fuzzy sensor selection system 
this 4-dimensional surface can only be visualized in part. Figure 5 
represents a portion of this surface that was generated by holding El2 
constant and large while varying E1M and E2M over their respective 
ranges of possibility and holding the consequent averages constant. 
The ultimate implementation of the fuzzy sensor selection system 
would be in the form of a trivariate look-up table representing the 
entire response surface. 
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Figure 5- A Portion of the Response Surface 

EXPERIMENTAL RESULTS 
The fuzzy logic approach to redundant sensor selection was 

demonstrated using the simulation of an advanced gas turbine engine 
control system. This control system features an on-board, real-time 

engine model which is utilized for parameter synthesis as well as 
FDA. 

Figure 6 shows the Test Configuration for this study. For 
convenience the model and FDA logic were implemented as a piece 

of software separate from the rest of the control system. This allowed 
for easy fault implementation and minimized the computing time 
required to conduct the tests. 

Simulated faults were implanted into engine temperature, pressure 
and rotor speed sensors. The faults were implemented as either slow 

drifts (no fault to threshold in 5 seconds) or sudden shifts (no fault to 
threshold in 0.15 seconds). The sudden shift time was chosen to 
implement the fault in a small number of algorithm compute cycles, 
minimizing the ability of the model to track the faulted input. The 
slow drift allows ample time for the model to track the signal. The 
faults were implanted singly and in combinations of sensors. Each 

test case was started with the values from each of the two simulated 
sensors being set equal. One channel's value was drifted beyond the 
in-range threshold value. The test cases were presented to both the 
baseline FDA scheme and the fuzzy FDA scheme. 

Figure 6 - Fuzzy FDA Test Configuration  

Figure 7 shows a representative test case in which one of the sensor 
values is forced to drift out of range (high). It can be seen that with 
the baseline FDA approach, the "voted" sensor value follows the 

average of the two sensors until the fault threshold is reached. At this 
level, the sensor in closest agreement with the model is selected, and 
the "voted" value becomes that sensor's output. The disadvantage of 
this approach is evident in the large error that the system must 
tolerate prior to failure declaration, and the rapid transient which 

occurs when the fault declaration is declared. By comparison, the 
fuzzy logic based FDA approach minimizes the error and gently 
returns the voted value to it's final level. 
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Figure 7 - Fuzzy Versus Mean Value Voting 

Twenty two (22) fault cases were tested. In cases where the faults 
were implanted into pressure or temperature signals, the fuzzy 

approach reduced the error of the voted signal by up to 5%. In all 

cases, the performance of the fuzzy FDA was superior to the baseline 
approach. When faults were implanted into rotor speed signals, there 
was no difference between the fuzzy FDA and baseline FDA scheme. 

Analysis showed that the real-time engine model's filter tunes so 
closely to the Low Rotor Speed and High Rotor Speed sensors that 
the model does not generate an "independent" value for these 
parameters. Expected "sensor noise" values for the speed signals 
used in designing the Kalman Filter gains for the state observer were 
extremely low. As a result, the model output tracks the voted sensor 

value extremely well, and the model does not provide an independent 
estimate. Experience has shown that tight tracking of the rotor speed 
signals has a beneficial effect on model accuracy, and therefore this. 
problem is inherent in this type of model. 
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CONCLUSION 
This paper has presented a simple and robust fuzzy logic based 
approach for redundant sensor selection. The methodology enhances 
the capability of self-tuning, on-board, real-time engine models to 
provide an analytical third channel for dual channel electronic control 
systems. 

The simulation test results show that the technique minimizes sensor 
fault effects when compared to a conventional approach based on 
averaging the dual sensor values until a fault is declared. The 
reduction in corruption of the voted value enhances the effectiveness 
of the FDA system, since the model has less tendency to track the 
faulted sensor. Reduced errors in the voted sensor values has 
obvious benefits to the control system. 

One area where the fuzzy approach showed no improvement over the 
baseline was in accommodating speed sensor faults. This resulted 
from the tight tracking of the state observer to the speed signal. One 
possible approach for overcoming this problem could be to have an 
"untuned" version of the model running which would be dedicated to 
providing inputs to the FDA. 
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