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Abstract

One of the numerous characterizations of Sturmian words is based on the
notion of balance. An infinite word x on the {0, 1} alphabet is balanced if, given
two factors of x, w and w’, having the same length, the difference between the
number of 0's in w (denoted by |wl|o) and the number of 0's in w' is at most
1,i.e. |[|w|o — |w'|o] < 1. Tt is well known that an aperiodic word is Sturmian
if and only if it is balanced.

In this paper, the balance notion is generalized by considering the number
of occurrences of a word u in w (denoted by |w|.) and w’. The following is
obtained
Theorem Let x be a Sturmian word. Let u, w and w' be three factors of x.
Then,

ol = [o'] = [[wl — [@'la] < Ju].

Another balance property, called equilibrium, is also given. This notion
permits us to give a new characterization of Sturmian words. The main tech-
niques used in the proofs are word graphs and return words.

1 Introduction

Sturmian words are infinite words over a binary alphabet with exactly n+ 1 factors
of length n, for each n > 0. One of the numerous characterizations of Sturmian
words is based on the notion of balance. An infinite word x on the {0, 1} alphabet is
balanced if, given two factors of x, w and w’, having the same length, the difference
between the number of 0’s in w (denoted by |w]|p) and the number of 0’s in w’ is at
most 1, i.e. ||w|o — |w|o] < 1. Tt is well known that an aperiodic word is Sturmian
if and only if it is balanced (Hedlund and Morse [10]).

The notion of balance is important in Sturmian words theory and in number
theory. In particular, the structure of aperiodic balanced words in a finite alphabet
containing more than 3 letters is closely related to Sturmian words (Graham [9]).
In addition, the covering of integers by more than three disjoint sets of the form

([ain + Bi])nen

(where all the «; are different) leads to periodic balanced words (Tijdeman [18]).
Furthermore, the balanced words appear in computer science for allocation se-
quences of two processes sharing a resource and in the heap model with two pieces
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(Gaujal [8], Mairesse and Vuillon [14]). Recently, a paper of Cassaigne, Ferenczi and
Zamboni [6] illustrates how the presence of balances is intimately connected with
the underlying geometry: an Arnoux-Rauzy sequence which is totally unbalanced
in the sense of Cassaigne-Ferenczi-Zamboni cannot be a natural coding of a rotation
on a torus.

Berthé and Tijdeman [4] consider balance in multi-dimensional words and prove
the associated double sequence to be fully periodic.

A way to extend the balance property is to consider the number of occurrences of
a word u in w (denoted by |w|,) and in w’, both words being factors of a Sturmian
word and having same length. The difference of the numbers of occurrences is
studied and it is shown that it is less than |u|. (see Theorem 12).

More precisely, the following result is obtained (Proposition 11). (Here, we
denote d(u) = max{||v|y — |¢'|u| | v,v" € L(x),|v] = |v'|}.)

Proposition Let x be a Sturmian word and u be a factor of x. Three cases appear.

i. if u is non-overlapping, then §(u) < 2;
i. if v is the period of u, u = v" and v" Tt & L(x), withr > 1 € Q, then

(a) if |v]| =1, then §(u) < 2;
(b) otherwise, j(u) < 3;

ii. if v is the period of u, u = v" and v"T! € L(x), with r > 1 € Q, then

(a) if |v]| =1, then §(u) < max(r,2);
(b) if |v] = 2, then §(u) < r+1;
(¢) otherwise, §(u) < r+ 2.

In this proposition, all the bounds are reached except for the case ii (b). But, we
conjecture that d(u) < 2 in this latter case. Proposition 11 implies, in particular,
that a Sturmian word whose slope has bounded coefficients in its continued fraction,
has a bounded balance too.

A former result of Ostrowski [15, 13] implied that §(u) < 2|u| in the general
case and §(u) < cIn(|ul), with ¢ € N, when the slope has bounded coefficients in its
continued fraction expansion. This result is based on rotations on the unit circle
and continued fraction techniques. We therefore improve these bounds using totally
different means.

The generalized balance property is related to the following notion. Consider
two factors z and z’ of a Sturmian word such that z = uvu, 2/ = wv'u and |z, =
|z'| = n, with n > 2. The difference of lengths, |z|—|2'|, is called the equilibrium of
the factors and Theorem 7 states that the equilibrium is bounded by the length of
u (i.e.||z] = |#'|| € |u]). Furthermore, the equilibrium for the case where w is equal
to the letter 1, permits us to give a new characterization of Sturmian words.

The article is organized as follows. Section 2 contains basic definitions and nota-
tions in combinatorics of words. Section 3 recalls some facts about Sturmian words
and return words. In Section 4, it is shown that the derived word of a Sturmian
word is also Sturmian. Sections 5 deals with the relative lengths of return words.
Section 6 and 7 establish the main theorem using return words and combinatorics
on words.
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2 Definitions and notations

Let A be a finite alphabet {0, 1}. The set of finite words is denoted by A* and the
set of infinite words by A“. The empty word is denoted by ¢. Given u a finite word,
its length is denoted by |u].

Given r € N and u € A*, we denote Pref,(u) the prefix of u of length » if
|u] > r, otherwise u. Likewise, we denote Suff,(u) the suffix of u of length r, if
|u| > r, otherwise w.

Let x = apay - - -an(- - ) be a finite or infinite word over A. For integers ¢ < j, we
define x[, j) = a;@i41 - - - aj_1 and x[¢, j] = a;@i41 - - - @;. The set of all finite factors
of x is denoted by L(x), i.e.

L(x) = {x[1,7) [ 0<i<j}.

Let u be a factor of a word w (finite or infinite). If there exist two words a and
B such that w = auf, then the integer |a] is said to be an occurrence of u in w. The
number of occurrences of a word v in u is denoted by |ul,. An infinite word is said
to be recurrent if for each factor u of x, there are an infinite number of occurrences
of u in x.

We define the shift operator on infinite words, o, as follows. If x = agay - - -a, - - -
is an infinite word, then o(x) = ay ---a, - -. Of course, o (x) = agary1 - ay - -

Let v be a finite word and r be a rational number such that r|v| is an integer.
We denote v” the word vl -v[0, {r}|v|), where |r| denotes the integer part of r and
{r} its fractional part. Let u be a finite word. We say that v is a (rational) period
of wif u = v" for some r € QQ, and v is called the period of u if it 1s the smallest
period of u. If r € N, the word v is said to be a integral period of u.

Let u be a finite word. It is said to be overlapping if there exist two words p
and s such that 0 < |p| = |s| < |u] and pu = us. It is not difficult to see that if a
word u is overlapping, it has a period v with |v| < |u].

Let u be a factor of an infinite word x and a be a letter. We say that ua 1s an
(right) extension of w if ua is also a factor of x. Symmetrically, we say that aw is
an left extension of u if au is also a factor of x. Obviously, if we consider infinite
words over a two-letter alphabet, a factor has one or two extensions.

3 Previous results

3.1 Sturmian words

There are many definitions and properties related to Sturmian words. Here, we
only recall those we are going to use. For more information about Sturmian words
the reader is referred to the survey of Berstel and Séébold [2].

An infinite word on {0, 1} is said to be balanced if, for any two factors v and w,
we have
(lv] = |wl) = (lvlo = |wlo] < 1).
An infinite word x is Sturmean if 1t is balanced and non-periodic.

Let x be a Sturmian word. There exists an integer £ > 1, such that x has one
of the following two forms

x = 0°10F10%2...10%~ ...
orx =— 1i01k101k2...01kp...’
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where 0 <i<k+land bk, =kork, =k+1.

A Sturmian word x is uniformly recurrent, i.e. given any factor u of x, it has an
infinite number of occurrences and the distance between two successive occurrences
of u is bounded. If x is a Sturmian word, then the word y obtained from x by
replacing 0 by 1 and 1 by 0 is also Sturmian.

The slope of a Sturmian word is the real a, 0 < a < 1, defined by

_ . |Xn|1
a= lim ,
n—4o0 |Xn|

where x, = x[0,n). The slope always exists (see [2]).

The factors of a Sturmian word are dependent of its slope. More precisely, we
have the following

Proposition 1 (Berstel and Séébold [2]) If x and y are two Sturmian words of
slopes o and [ respectively, then o = 3 if and only if L(x) = L(y).

Moreover, the partial quotients of the continued fraction of the slope give us
some information on the repetitions in the Sturmian word. Indeed, given an infinite
word x and u a factor of x, we define the index of u in x as the greatest integer d
such that u? is a factor of x. The word x has bounded indez if there exists an integer
d such that for every factor u of x, the index of w is less or equal to d.

Proposition 2 (Mignosi [16]) Let x be a Sturmian word. Let o the slope of x and
let « = [0,a1,as,...,a,,...] be its continued fraction expansion. The word x has
bounded indez if and only if the partial quotients (an)nen are bounded.

Another characterization of Sturmian words is based on complexity, i.e. the
numbers of different factors of a given length.

Proposition 3 (Hedlund and Morse [10]) An infinite word is Sturmian if and only
if for each n € N, there are exactly n + 1 different factors of length n.

Other equivalent characterizations of Sturmian words are mainly about repre-
sentations of straight lines and rotations over the unit circle.

3.2 Return words and derived words

The notions of return words and derived words were introduced by Durand [7] and
Holton and Zamboni [11].

Let x be an infinite word and u be a recurrent factor of x of length /. The
factor v is a return word of u if there exist i,j € N, < j, such that v = x4, j),
x[i,i+0) = x[j,j+£) = wand |x[i,j + £)|, = 2. In other words, we define the set of
return words of u to be the set of all distinct words beginning with an occurrence
of u and ending exactly before the next occurrence of u in the recurrent word x (see
examples below). We denote it by #,(x) as in Durand [7].

J I N B
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= Uy =

For example, if x is the well known Fibonacci word, x = 0100101001001010010100100101001001 - - -,
we have H.(x) = {0, 1}, Ho(x) = {0,01} and Higo1(x) = {100,10010}. In the latter

example, we can see that a return word is not necessarily longer than the factor.

It is not difficult to see that if v is a return word of u, then vu is a factor of x
and has u as prefix.

Obviously, the set H,(x) is finite if and only if the distance between two suc-
cessive occurrences of u is bounded, i.e. if x is uniformly recurrent. Suppose that
Hu(x) = {ur,us,---u,}. There exist a unique sequence of integers (ix)r>1 and a
unique word « such that x = au;, u;, -+ -u;, - - - and such that || is the first occur-
rence of u in x. The word ¢145 - - - i - - - 18 called a derived word of x with respect to
u .

Obviously, the derived word obtained depends on the injective map f : H,(x) —
N. However, as all the derived words are images of each other by a letter-to-letter
bijection and as the roles of 0 and 1 are symmetrical in Sturmian word theory, we
will denote it the derived word Dy, (x) of x with respect to u. In the previous example,

as we have D (x) = x, Dg(x) = 101101011010 - - - and Dyp1(x) = 10110101 - - -

4 Derived words

In this section, we are going to show that deriving a Sturmian word produces a
Sturmian word. To this end, we first remind a previous result due to Berstel and

Séébold.
Take E, ¢ and ¢ the following morphisms on {0, 1}*:

g0 =1 0 = o1 .0 = 10
1 s 00 P oS5 00 PRS0

Proposition 4 (Berstel and Séébold [2]) Let x be an infinite word on {0, 1}.

i. If @(x) is Sturmian and x starts with the letter 0, then x is Sturmian.

ii. Let f be a morphism that is a composition of E and @. If f(x) is Sturmian,
then x is Sturmian.

Now we can state the promised result.

Proposition 5 Let x be an infinite Sturmian word. For each factor u of x, there
are two and only two return words of u. Moreover, the derived word Dy (x) is also
a Sturmian word.

Remark The fact that there are exactly two return words was already shown by
one of the authors in [19].

Proof We show both properties by induction on the length of u in the same time.
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The base case: u = ¢. As both 0 and 1 appear in x, we have H.(x) = {0,1} and
D:(x) = x which is clearly Sturmian too.

Now, let us consider the induction. Let u = va, where a is a letter. There are
two cases:

i.

1.

If v has only one extension, then the occurrences of u are exactly those of
v. Consequently, the return words of u are the same as those of v, i.e.
Hu(x) = Hy(x). Obviously, we have also D, (x) = D, (x) and, consequently,
by induction hypothesis, D, (x) is a Sturmian word.

If both words v0 and v1 are factors of x, let v; and vs be the two return words
of v. By definition viv and vyv are factors of x and have the prefix v. Thus,
there exist two words ¢; and ts such that

v = vl

voUu = vls.

As v has two extensions, we have Prefi(t;) # Prefi(¢2). Suppose that ¢ =
Prefi(¢1). The occurrences of u = wa are thus those of vyv, that is, if to
compute Dy (x) we replace vy by 0 and vz by 1, the occurrences of u correspond
to the 0's in Dy (x).

By induction hypothesis, we know that D,(x) is a Sturmian word. Again
there are two cases:

(a) There exists & > 1 such that D,(x) = 0°10%110%2...10%» ... where

0<i¢<k+1and k) = kor k, = k4 1. Therefore x has the form

wvivzvlflvzv’f . ~v2vlf” -+, where |w| is the first occurrence of v. Then
Hoy(x) = {v1, viv2}. If to compute Dy (x), we replace v by 1 and vyvs by
0, we have D, (x) = 1°7101%1=101%2=1 ... 01k» =1 .. if § > 0, and Dy (x) =
1k1=1g1k2=1 ... 01%» =1 ... otherwise. Then (D, (x)) = (D, (x)) where
p=0or p=1. Since o (D,(x)) is clearly Sturmian, we have by Propo-
sition 4(ii) that Dy (x) is Sturmian too.

(b) There exists k > 1 such that D,(x) = 1901%101%2...01%» ... where
0<i¢<k+1and k) = kor k, = k4 1. Therefore x has the form

wvévlvglvlv’f . ~v1v§p -+, where |w| is the first occurrence of v. Then
Hu( )= {vlvz,vlvz‘l'l} If to compute D, (x) we replace viv§ by 0 and
v1v2+ by 1, we have Dy (x) = xp, &g, - -2k, - - -, where 2, =0 if k) = k

and xy, = 1if ky =k + 1.
Let f be the morphism:

’ 0 — 01*
1 01FFL

We have that f(D,(x)) = ¢*(D,(x)), but we cannot conclude so easily.

Let ¢ and i be the following Sturmian morphisms

pores 3N b 20,
First, we can check that f = g* o h. We have obviously that h(D,(x))
starts with the letter 0, and then for all ¢, the word g* o h(D,(x)) starts
with 0 too.

Thus we have E o (gﬁ 0g* Lo h(Dy(x ))) = f(Du(x)) = ' (Dy(x)) Wthh
implies that gog*~toh(D,(x)) is Sturmian (Proposition 4 (ii)). As ¢*~
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h(Dy(x)) starts with 0 (see below), by Proposition 4 (i), we have that
g~ o h(Dy(x)) is Sturmian. By induction, we can prove similarly that
g“oh(Dy(x)) is Sturmian for £,0 < £ < k. Thus h(D,(x)) is Sturmian and
by Proposition 4 (ii), Dy (x) is Sturmian. This completes the induction.

5 Relative lengths of return words

In this section we use the word graph associated with the factors of a Sturmian word
x (see Arnoux and Rauzy [1], Berstel and Séébold [2], Berthé [3] and Cassaigne [5])
in order to study the relative lengths of return words.

We begin by stating some notations about word graphs (for more information
see Arnoux and Rauzy [1]).

In the graph of length n, the vertices are words of length n. There is an edge
between the vertices u and v if and only if there exist two letters a and b such that
ua and bv are factors of x and ua = bv (we label the edge by a, u —4 v). As x is
a Sturmian word, there exists for each n a unique word R, (resp. L,) of length n
with two right extensions (resp. with two left extensions). The other words have a
unique right extension (resp. left extension).

Consequently, the word graph for Sturmian words is composed by three paths:
the first and the second ones from R, to L, , the third one from L,, to R,, The first
path is

Rn —a, fl —7as f2 — 'fZl—l _>a41 Lna

with length equal to #;.
The second path is

Ry =6, 91 =65 92 = -+ Gia—1 =0, Lin,

with length equal to /5.
The third path is from L, to R, , namely

Ln —recq h1 —reco h2 — - 'hZ3—1 _>Cla Rn

with length equal to /3.
By construction, we have #; > 1 and ¢5 > 1. The third path has length 0

if L, = R, (see [1, 3, 5] for general properties on word graphs associated with
Sturmian words).

Now, we are ready to state the proposition.

Proposition 6 Let x be a Sturmian word. Assume that H, = {uy,us} with u a
factor of x. Then
[Jus] = Juz|| < [ul.

Proof This proof has the same structure as the proof of Proposition 5. (In par-
ticular, we use intermediate results about return words of Proposition 5.)

We show the proposition by induction on the length of u. Let G be the word
graph of length |u.

The base case: u = ¢. By definition, H.(x) = {0, 1}. We find that ||u1| — |us|| =
0] = [1]] = 0 = [e].

Suppose that u = va, where a is a letter.
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e Path 1 L
ag, ar
L,— - - - ———= R,
c Ce,
Path 3
be, by
el Path 2 e

Figure 1: Graph of words.

o If v has only one extension, then M, (x) = #H,(x). Consequently, by induction
hypothesis, [[uy| — [us|| < [v] < |ul.

e If v has two extensions, then both words v0 and vl are factors of x. Let v
and vs the two return words of v. By an argument in the proof of Proposition
5, either My (x) = {v1,viva} or Hy(x) = {vlvg,vlv’;“}. In both cases, we
have |Juy| — |us|| = |vz|. Thus, it is sufficient to show that |ve| < |u] = |v] +1
to prove the statement.

Consider GG the word graph of length |v|. As v has two extensions, we find
that [%,] = v. By construction of the return words, one return word is given
by the concatenation of the labels of the path

Ryy) =ay J1 —as f2o = foy=1 —ay, Lol =ey bt ey ha = - hiy—1 =, Rpy)-
The other return word is given by the concatenation of the label of the path
Riy) =y 91 =05 92 =+ Gio=1 by, Lju| —rer B1 ey ha = g1 —e,, Rjy|

In consequence, |vs| < max(fy + €3, ¢ + £3).

Recall that, in the graph of length |v|, the vertices are words of length |v]
and there are exactly |v|+ 1 such vertices. (Indeed, in a Sturmian word, the
number of distinct words with length n is n 4+ 1.) Furthermore, the number
of edges is |v| + 2. (Because the number of distinct words with length n + 1
is n 4 2.) That is, £1 + €2 + ¢35 = |v| + 2. By construction, ¢; > 1 and £; > 1.

In consequence, |vs| < max(éy + £3, ¢ + €3) < |v] + 1. Thus, we are through.

6 Equilibrium

The following lemma deals with the relative lengths of words z having the following
property: Prefj,|(2) = Suffj,|(2) = w and |z|, = n. The relative lengths [z| — |2/| is
called the equilibrium of the factors.
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Theorem 7 Let x be a Sturmian word. Let u be a factor of x and n > 2 be
an integer. Given two factors z and z' of X such that z = uvu, 2’ = w'u and
|Z|u = |Z/|u =n, then

2] = 12l < Jul.

Proof Let H,(x) = {u1,us}. There are two sequences (ix)1<k<n—1 and (jr)1<k S
z

with i = 1 or 2 and j; = 1 or 2, such that z = w;,u;, - -u;,_,u a and
Uy Ujg - - Uj U
Take
v = (21—1)(22—1)(Zn_1—1)
Vo= (=102 —1) (Jno1 = 1).

Both words v and v are factors of the derived word D, (x) which is a Sturmian
word by Theorem 5. Consequently, they are balanced, i.e.

vl = 10"l = (vl = [v]2] < 1.
Thus, in the one hand,
|tk [in = 1} =k [gr = 1 = [H{k |in = 2} = t{k | jx = 2}/ < 1,
where #4 denotes the cardinal of the set A. In the other hand, we have clearly

|2l = t{k lie = 1} - fua| + 8{k | i = 2} - Jua| + |u]

and
|2 = 8k | gk = 1} - fun] + 8k [ jn = 2} - Jua| + |ul.
Therefore
2] = 12']] < M| = Jual] < ul.
Which is the desired relation. [

We can state a new characterization of Sturmian words based on the equilibrium
property. Let x be a recurrent word in the alphabet {0,1}, let & € I and let
Ty(x) = {z € L(x) | Prefi(z) = Suffi(z) = 1 and |z|; = k}. For example, the words
1000100001 and 1011 are elements of I'5((1000100001011)*)

Theorem 8 Let x be a recurrent non periodic word in the alphabet {0, 1}. The word
x is Sturmian if and only if, for every z and z' in Ty (x) and for every € N,

2l = [l < 1.

Proof Suppose that x is a Sturmian word, then by Theorem 7 with u = 1, we have
the statement.

For the other implication, we reason by contradiction. We use the fact that a
word x is Sturmian if and only if, for each n > 0, there is one and only one factor
of x of length n having two extensions, the others having exactly one (see [10]).

Suppose that, for every z and z’ in T'y(x), we have ||z| — [2/|| < 1 and that x is
not Sturmian.

First case: there exists ng such that each factor of x of length ngy has a unique
right extension. Then the word is periodic, which is in contradiction with the fact
that x is non periodic.
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Second case: there exists ny such that two factors of x of length ny has two
right extensions. Let ng be the smallest one having this property and v, w be the
factors of x of length ng such that v0, v1, w0 and wl are also factors of x and
[v0] = |v1| = |w0| = |wl| = ng + 1 and for n < ng, there exists for each n a unique
word of length n with two right extensions. Thus we have v = av’ and w = bw’
where a and b are letters of the alphabet. As v/ and w’ are factors of length ng — 1
with two right extensions, then v/ = w’. In other word, 0v'0,00'1,12'0, 1v'1 are
factors of x. Let m be the number of 1’s in 1v'1, by definition 1¢’1 is an element
of T'yy(x). Furthermore, the factor 0¢'0 can be extended to the right and to the
left. In general form, we can find p and ¢ positive integers such that 1070v'0091
is an element of T'y,(x). Thus |[10700'0091| — |1¢'1| = 2+ p+ ¢ > 1 and there is a
contradiction because we find two elements of T'y, (x) with equilibrium greater than
1. L]

7 Generalized Balance

Let w, w' and u be factors of x such that |w| = |w'|. We denote
Ay(w, w') = |[wluy = [w'.]
the balance of u upon w and w’ and
§(u) = max{A,(v,v') | v,v" € L(x), |v] = |V'|}
the maximal balance of u.

Proposition 9 Let x be a Sturmian word and u be a factor of x. We have the
following cases.

i. if u is non-overlapping, then §(u) < 2;

. if v is the period of u, u = v" and v"T! ¢ L(x), withr > 1 € Q, then
(a) if |v]| =1, then §(u) < 2;
(b) otherwise, j(u) < 3;

ii. if v is the period of u, u = v" and v"T! € L(x), with r > 1 € Q, then
(a) if |v| =1, then §(u) < max(2,r);
(b) if [v] =2, then 6(u) <r—+1;
(c) otherwise, §(u) < r+ 2.

Remark Most of these bounds are reached. For each example, it is easy to verify
that w and w’ are factors of the same Sturmian word.

i. Let w = a®ba*b, w' = a*~1ba*~1ba? and u = a*b. We have A, (w,w’) = 2.

ii. (a) Let w = a"ba*, w' = a*~ba"~1ha and u = a*. We have A, (w,w’) = 2.

iii. (a) if Jul = 1, let w = a®~! w' = a*"ba*~! and u = a*. We have
Ay(w,w') = k.
(b) Let w = (ab)*"*1b(ab)** 1 w' = b(ab)"b(ab)**b(ab)"ab and u = (ab)"+1.
Then we have A, (w,w') = n+ 1.
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(c) Letw = (akb)2”+1ak_1b(akb)2”+1, w' = ak_lb(akb)”ak_1b(akb)2”ak_1b(akb)”a2
and u = (a®b)"a", with r = n+ kk?, k>2 Ay(w,w')=n+2=|r+2].

The proof of Proposition 9 is an immediate consequence of the combination of
Proposition 10 and Proposition 11 mentioned below. The proof of these two latter
propositions will be given in the appendix.

Proposition 10 Let x be a Sturmian word and u a factor of x. Let Hy(x) =
{uy, us}, with Juy| < |us|. We have the following:
i. if u is non-overlapping, then |ui| > |ul;

. if v is the period of u, u = v" and V"1 ¢ L(x), with r > 1 € Q, then
lu| > max{[v| + 1, (r — 1)|v[ + 1};

ii. if v is the period of u, u = v" and v"*t € L(x), withr > 1 € Q, then u; = v.

Proposition 11 Let x be a Sturmian word and u be a factor of x. Let Hy(x) =
{u1, us}, with |ui| < |us|. We have the following inequality

d(u) < max (2, Jul — 2 —1—2) :

|y |

Proof of Proposition 9 We distinguish the same cases as in the proposition’s
statement. Let Hy (x) = {uy, ua}, with |uy| < |us|. Let us denote e = |TIL:|2 +2. We
have then §(u) < max(2,e).

w2 490 =3 2 <3

Jul ul

Therefore d(u) < 3, and, since d(u) is an integer, we get §(u) < 2.

i. By Proposition 10, we have |uy| > |u]. Thus e <

ii. By Proposition 10, we have |u1| > max{|v| + 1, (r — 1)|v| + 1}. We have also

tvl=2 L 9 and es = —ZU=2 4 9 We have obviously

|U| = 7°|U|. Let €1 = |’U|-|—1 m

e < min(ey,eg).

(a) We have |v] = 1, thus e; = =2 4+ 2 = 3 — 2 < 3. Therefore ¢ < 3 and
d(u) < 3, that is d(u) < 2.

(b) Here we have two sub-cases.

o If » > 2, then ey = E:j;mﬁ (r—|U1|)|_v?|)+1 +2. As r > 2, we have
(T_lvll)ﬁ < 1, then e; < 4. Therefore, d(u) < 4 and then also
d(u) < 3.
o If 1 < r < 2, then g7 < 2||UU||+_12 +2 = 2||UU||_|-_|-12 — |U%I-1 +2<4. Asin
the precedent case, we get d(u) < 3.
iii. Since v is the period of |u| and vu € L(x) , we have |uy| = |v|. Then e =

rlv|—2
[v]

+2=r+2- 2%

[v]

(a) Since |v| = 1, we get e = r, and thus d(u) < max(2,r).

(b) Since here |v| = 2, we get e = r+ 1, and thus d(u) < r+ 1. We need not
a maximum here, because r + 1 > 2.

(c) The general case gives the inequality e < r 4+ 2, and d(u) < r + 2 too.
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We are know ready to state the main theorem.

Theorem 12 Let x be a Sturmian word. Let w, w and w' be three factors of x. We
have
lw| = [w'| = [Jwlu = [w'|u] < |u].

Proof Remark that the main theorem is true for |u| = 1. We suppose that |u| > 2.
In this proof, we use the results and the cases of the Proposition 9.

i. If u is non-overlapping, then, by Proposition 9, ||w|y, — |w']u] < 6(u) < 2 < ul.
The statement 1s true for non-overlapping case.

ii. (a) If || = 1, then, by hypothesis, |u| > 2. Thus by Proposition 9 we have
d(u) < 2 < |u|. This gives the statement.
(b) If |v| > 2 then |u] = r|v| > 3. Thus we have §(u) <3 < |ul.

iii. (a) If |[v| = 1 then |u| = r. In consequence, by Proposition 9, é(u) < r = |u|.

(b) If |v| = 2 then |u| = 2r. Thus we have d(u) < r+4+ 1 = % + 1. Tt is
sufficient to prove that % + 1 < |u|. As |u| > 2 the statement is true in
the case |v| =2

(c) If |v| > 2, as by Proposition 9, §(u) < r + 2, then (5(7‘_11) < @ + % < 3.
This gives the bound d(u) < 3r. In consequence, if |v| > 3, then 6(u) <
3r < |vl|r = |ul.

Remark The reciprocal of Theorem 12 is obvious since, if we take |u] = 1, we get
the classical definition of Sturmian words by balance.

Nevertheless, it would be interesting to study the words such that F(u) < 2 for
every factor u of length 2.

Proposition 9 also permits us to write the following corollary.

Corollary 13 Let x be a Sturmian word. Let o be the slope of x and let o =
[0,a1,as,...,a,,...] be ils continued fraction expansion. If the partial quotients
(an)nen are bounded then (0(u))uer(x) @5 bounded too.

Proof By Proposition 2, there exists an integer d such that for any factor v € L(x),
we have v4t! ¢ L(x). Let u be a factor of x. By Proposition 9, if §(u) > 3, then
we have u = v and v"*! € L(x), and then §(u) < r+ 2. But in this case, we have
r < d and then d(u) is bounded by d + 1. Thus, for any factor v € x, we have
d(u) <max(3,d+1). ]

8 Appendix

Here we will give the proofs of Propositions 10 and 11. Some extra definitions will
be useful.

We denote occ;(u, w) the i* occurrence of u in w, i.e. if w = aup such that
|ovti]y, = 7, then occ;(u, w) = |a|.
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By extension, assuming that we consider a fixed infinite word, we define
occo(u, w) = —min{|e| |« € AT, 38 € A%, aw € L(x), cw = uB}.

Remark Such an a always exists because of the uniform recurrence of x. Similarly,
if w has k occurrences of u, we define

occ41(u, w) = min{|B] | B € A*,Ja € AT, wa € L(x), wa = Pu}.

For example, if x 1s the Fibonacci word,
x = 010010100100101001010 - - -,

then we have occy(01,101001) = —1, occy(01,101001) = 1, occe(01,101001) = 4
and occg(01,101001) = 6.

We can remark that:

Lemma 14 Lel x be a Sturmian word and u be a factor of x with H = {uy, us}.
Let w be another factor of x and k be an integer such that 0 < k < |wl,.

We have either occyy1(u, w) — occy(u, w) = |ur| or occpq1(u, w) — occy (u, w) =
|usl.

Proof It is an immediate consequence of the definition of return words. [

The following lemma will be useful too. It is a classical result of combinatorics

(see [17]).

Lemma 15 Let v be a word such that there exist two non-empty words p and s
such that v = ps = sp. Then v has a integral period strictly smaller than |v|.

Proof of Proposition 10 We will give a different proof for each case.

i. Suppose |ui| < |u|, then, by definition of uy, there exists a word s such that
uiu = us with |s| = |u| < |u]. Thus u will be overlapping which is absurd.

ii. If |ug] > |u], the inequality is satisfied. Suppose, now, that |uj| < |u|. Then,
u is clearly overlapping, consequently, as remarked in Section 2, u; is a period
of u. As v is the period of u, we have |u;| > |v|. Moreover, since v" ! ¢ L(x),
we cannot have the equality, thus |ui| > |v].

Now, let suppose that |v] < |ui| < (r — 1)|v|. Since uwiju has u as prefix
and since |uy| > |u|, the word v is a period of wy, i.e. there exists ¢ €
Q,1 <t < r—1 such that vy = »'. Either ¢ € N (Figure 2), and then
uyu = v € L(x) which is in contradiction with the hypothesis, or ¢ ¢ I
(Figure 3), and then, take s = {t} - |v|, where {t} denotes the fractional part
of t, we have v = v[s, |v|) - v][0, s). Then, by Lemma 15, v is periodic (with an
integral power), which implies that v is not the smallest period of w. This is
also a contradiction to the hypothesis.
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U v v ‘ v ‘ vl .-

Ul (2

Figure 2: case t € N

U v ‘ v ‘ v ‘ vl .-

Ul (2

Figure 3: case t ¢ N

iii. We reason as above: we have that |uy| > |v|. Since vu = v"*! € L(x) and
since we have Prefj,|(vu) = u, we can conclude that u; = u.

Ul (2

UU‘U‘U‘U‘

L u

"
Proof of Proposition 11 Let w and w’ be two factors of x, such that |w| = |w’|.
We can suppose that |w], — |w'|, > 0.
We are going to restrain the study to a subset of {(w,w’) | w,w’ € L(x), |w| =
|w'|}, the underlying idea being that we only need to consider “the worst cases”.
"

Step 1 We can suppose that |w'|, > 1.

Proof Let us suppose that |w'|, = 0. Let k = |w|,. We are going to prove that
k= Ay (w,w') < max(2, lul=2 | 2).

[l

Let w) be the longest word in L(x) such that |wj|, = 0. Obviously, we have

wy = Suffjy,|—1(uz) - Prefj,—1(u). Now let wy be the shortest word such that

1 k-1

|wi]y = k. Assuming that ulf_ wis in L(x), we have wy = u}™ "u, otherwise |wy| is

obviously larger.
Therefore, we must have |wy| < |w] = |w/| < |w]]|. Which leads to the inequality
(k= Dfur| + |ul < Jua| + [u] =2,

or equivalently
fus] > (k = ]| +2.

By using Proposition 6, i.e. |us| < |uy|+ |u|, we can conclude that
jal > (k= 2)uy | + 2

Now, we can see that lllilglz +2> k= Ay(w,w). We are through. n
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Step 2 We can suppose that |w|, > 4.

Proof If |w|, < 3, then we have, using Step 1, Ay (w,w’) <3 —1 = 2. Which is
in accordance with the Proposition. [

Step 3 We can suppose that occy(u, w) = 0.

Proof Suppose that w = auf, with |o| = ocei(u,w) # 0. Let £ = |w| — |af. If
we take wy = Suffy(w) and w) = Suffy(w’), then |wi]y = |w|y and |wi]y < |[W']y
and then A, (wi,w]) > A,(w,w’). So we have no need of considering the couple
(w,w').

— w1 —
w — o ‘ u ‘ 8
w' = 'y‘ u ‘ 7

— w) —

Symmetrically, we suppose that occy (@, w) = 0 (Here, @ is the reversal of u). So
that we have w = uyau or w = usau , with o € A*. (w = u is excluded because
lwly > 4.)

Step 4 We can suppose that we have w' = Bn with n = Prefj,|_1 (u).

Proof If the condition is not right, we have w' = Pref},,,|(fu), with |3| the first
occurrence of u in Fu which is not in w’. If we take w] = Pref}, (Suﬂ|w/|+1(ﬁu)),
then |w]|, < |w'|,, because we are sure to have not added any occurrence of u, but
we can have lost some in the beginning of Su. Then Ay (w,w)) > Ay(w,w'), and
so we can eliminate the couple (w, w’).

Step 5 We can suppose that occy(u, w') > O.

Proof Suppose we have occy(u, w') = 0. We have then w = w;uf, with i = 1 or
i = 2. We have also v’ = uy. Let £ = |w| — |u;|. We take wy; = Suff,(w) and
w) = Suffy(w'). We have |wi]y = |w]y — 1 and |w)|y < 0]y, — 1, s0 Ay (wy, w)) >
Ay (w,w'). Then studying the couple (w, w’) is useless.

— w1 —
w — u ‘ ~
— wh —

Summary: We can restrain the study to couples (w, w') such that
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L Jw] = [w'];
i [l — (0] > 2
. w = uau;

iv. w' = PBuyn , with 8 = Suff;(u.), for some e = 1 or 2 and 0 < ¢ < |u,|, and
n = Prefjy)—1(u).

That is to say, we have the following sketch:

w— U ‘ ey ‘ u
‘ Ug u ~ u ‘
w — ‘ I3 u ~ 7 ‘

Proof of Proposition 11 (continued): As mentioned above, we restrain the

study to couples (w,w') with the properties of the summary. So, we can write w
and w' as follows:

o w = Uy, - ug,u, with either u;, = uy or uy, = us.
r_ ap . : : - - : _
o w' = fuj uj, - -uj,n with either w;, = uy or u;, = ug, with § = Suffy(u.),

for some 0 < £ < |uz|, and 1 = Pref),|_1 (u).

We have then |w|, = p+ 1 and |w'|, = ¢, therefore Ay(w,w’) =p—q+1. As
we suppose Ay (w,w') > 2, we have p > 1+ ¢.
If p = 14¢, then we have Ay (w, w’) = 2 is in accordance with the desired result.

Elsewhere, we suppose that p > 1+ q. We have then

P
lw| = g, ccuig, Y |+ Jul
k=qg+2
W' = Juewg g, g |+ (Jul = 1) = (Juel = [5])
Thus, using the equality |w| = |w'|, we have

4

D luid = Jueug g, g, | = i iy i | (Jul = 1) = (lue] = 181) = Jul.
k=qg+2

By Proposition 6, we have

||ui1ui2 o 'uiq+1| - |u€uj1uj2 o 'ujq|| < |u|

We have also 70—, 1o [ti,| > (p— ¢ — D]us| and Ju| — |5 > 1

u|—2

sl

We can therefore conclude that (p— ¢ — 1)|uy| < |u| —21ie. (p—g¢—1) < |
and thus
|u| — 2

Ay(w,w)=p—q+1<
|y |

+ 2.
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