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Abstract
Input shaping is a method for reducing residual

vibrations in computer controlled machines.  Vibration is
eliminated by convolving an input shaper, which is a
sequence of impulses, with a desired system command to
produce a shaped input.  The shaped input then becomes the
command to the system.  Requiring the vibration reduction
to be insensitive to modeling errors and system nonlinearities
is critical to the success of the shaping process on any real
system.  Input shapers can be made very insensitive to
parameter uncertainty; however, increasing insensitivity
usually increases system delays.  A design process is
presented that generates input shapers with insensitivity-to-
time-delay ratios that are much larger than traditionally
designed input shapers.  The advantages of the new shapers
are demonstrated with simulations of a simple linear system
and simulations of the MACE experimental apparatus.

Introduction
Input shaping is a method of reducing residual

vibrations in computer controlled machines.  The method
requires only a simple system model consisting of estimates
of the natural frequencies and damping ratios.  Input shaping
is implemented by convolving an input shaper, which is
made up of a sequence of impulses, with a desired system
command to produce a shaped input that is then used to
command the system.

The convolution process lengthens the command signal
by an amount equal to the time duration of the input shaper.
Therefore, it is desirable to make the input shaper as short as
possible, so that system delays are minimized.  However,
traditional design methods require that the input shaper be
lengthened if additional insensitivity to modeling errors is
required.  This paper will present an algorithm for increasing
insensitivity without increasing shaper length.

During its original presentation [13, 14], input shaping
was explained by a variety of methods, including time
domain analysis, vector diagram representation, frequency
domain analysis, phase plane description, and pole-zero
cancellation in the s-plane.  The vector diagram was used to
improve insensitivity [18] and cancel multiple modes of
vibration [15].  The frequency domain and pole-zero
cancellation representations have been investigated in
several papers [2, 8, 10, 12, 16, 21].

Input shaping was shown to reduce residual vibration
and maximum deflections during the slewing of a large
nonlinear space-based antenna [1] and long-reach
manipulators [7, 10].  Two-mode input shapers were used to
increase the throughput of a silicon wafer handling robot
[11].  Input shaping has been extended to systems equipped
only with constant-amplitude actuators [9, 16, 17, 23].
Trajectory-following applications have also been shown to
benefit from input shaping [4, 19].

A brief review of input shaping will be given in the next
section.  The new input shapers are then designed and their
vibration-reducing properties are explained in the s-plane.
Computer simulations are then used to demonstrate the
advantages of the new shapers.  Conclusions will be
presented in the final section.
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Figure 1: Vibration Cancellation Using Two Impulses.

Review of Input Shaping
For more information than this brief review, see [13, 14,

18].  Input shaping reduces residual vibration by generating
an input that cancels its own vibration.  The simplest self-
canceling input consists of two impulses.  The first impulse,
which starts the system vibrating, is located at time zero, and
the second impulse is delayed by one half period of the
system vibration.  The vibration caused by the second
impulse is out of phase with the first vibration, thereby
canceling it.  This result is demonstrated in Figure 1.
Because impulses cannot be used to move real systems, the
two impulses, also known as the input shaper, must be
convolved with a physically realizable input.  The shaped
input that results from the convolution will have the same
vibration-canceling properties as the input shaper [14].

The second impulse must have the proper amplitude if it
is to cancel the vibration from the first impulse. The
amplitude can be determined by forming an expression for
the residual vibration and then setting the expression equal to
zero.  The residual vibration amplitude can be expressed as
the ratio of residual vibration with shaping to that without
shaping.  This percentage vibration can be determined by
using the expression for residual vibration of a second-order
harmonic oscillator of frequency ω radians/sec and damping
ratio ζ, which is given in [3].  The vibration from a series of
impulses is divided by the vibration from a single impulse to
get the percentage vibration:

V(ω)=e−ζωtn Aie
ζωti cos(ωdti)i =1

n∑( )2 + Aie
ζωti sin(ωdti)i =1

n∑( )2  (1)

where Ai and ti are the amplitudes and time locations of the
impulses, n is the number of impulses in the input shaper, tn
is the time of the last impulse, and ωd = ω 1−ζ2 .

When Eq. 1 is set equal to zero, it generates two
constraint equations because both the cosine and sine terms
must equal zero independently for the entire expression to
equal zero.  When these constraints are combined with the
requirements that the impulse amplitudes be positive and
sum to one, the two-impulse, Zero Vibration (ZV) shaper
shown in Figure 1 can be determined.  (The impulses in an
input shaper must sum to one so that the shaped command
will have the same final setpoint as the unshaped command.)
When the ZV shaper is convolved with a step input, the
result is a posicast command signal [20].

The ZV input shaper is often not very effective on real
systems because it is sensitive to modeling errors and system
nonlinearities.  To display this result, we plot the shaper's
sensitivity curve: a plot of vibration versus frequency, (Eq. 1
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Figure 3: Sensitivity Curves of the ZVDD and the
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Figure 4: Vector Diagram Representation of the Two-
Hump EI Input Shaper.

plotted as a function of ω).  Figure 2 shows the sensitivity
curve for the ZV shaper.  Small deviations from the
modeling frequency lead to large amounts of residual
vibration.

To make input shaping effective on real systems,
equations must be added to the problem formulation to
ensure that the vibration will remain at a low level when
there is at modeling error.  Traditionally this has been
accomplished by taking the derivative of Eq. 1 with respect
to ω and setting it equal to zero [14].  In equation form:

0 = d
dω

V(ω)( ) (2)

Solving Eqs. 1 and 2 yields the three-impulse, Zero
Vibration and zero Derivative (ZVD) shaper.

Figure 2 shows that the ZVD shaper is much more
insensitive to modeling errors than the ZV shaper.  However,
the ZVD shaper has a time duration equal to one period of
the vibration frequency, as opposed to the one-half period
length of the ZV shaper.  This trade-off is typical of the input
shaper design process – increasing insensitivity usually
requires increasing the length of the input shaper.

An input shaper with even more insensitivity than the
ZVD can be obtained by setting the second derivative of Eq.
1 with respect to ω equal to zero.  This shaper is called the
ZVDD shaper.  The algorithm can be extended indefinitely
with repeated differentiation of the percentage vibration
equation.  For each differentiation, an additional impulse is
added to the shaper and the shaper is lengthened by one-half
period of the frequency.  Closed-form solutions of the ZV,
ZVD, and ZVDD shapers for damped systems exist [14].

An alternate procedure for increasing insensitivity uses
extra-insensitive (EI) constraints [18].  Instead of forcing the
residual vibration to zero at the modeling frequency, the
residual vibration is only reduced to a low level, V.  The
width of the notch in the sensitivity curve is then maximized
by forcing the vibration to zero at two frequencies, one lower
than the modeling frequency, and the other higher.  The
sensitivity curve for the EI shaper when V=5% is compared
to the ZV and ZVD shapers in Figure 2.  The EI shaper
achieves the added insensitivity while maintaining the same
time duration as the ZVD shaper (one cycle of vibration).
The EI shaper for undamped systems is [18]:
A1= 1+ V

4
    A2 = 1− V

2
       A3= 1+ V

4
t1= 0       t2 = 0.5T         t3= T

(3)

where, T=2π/ω.  See [18] for equations that describe the EI
shaper as a function of damping ratio.  Extending the EI
design algorithm to more insensitive, multi-hump shapers is
the main purpose of this paper.

Undamped Multi-Hump Extra-Insensitive Input Shapers
The EI shaper for undamped systems presented above

contains three-impulses, has a length equal to one period of
vibration, and yields a one-hump sensitivity curve.  A natural
extension would be to design a shaper with two humps in its
sensitivity curve, like the one shown in Figure 3.  We
hypothesize that there exists a shaper containing four evenly

spaced impulses with a duration of one and a half periods
that will form the sensitivity curve of Figure 3.

To simplify the equations in the following derivation,
we will transfer the problem of determining the two-hump EI
input shaper to a vector diagram.  A vector diagram is a
graphical representation of an input shaper in polar
coordinates.  A vector diagram is created by plotting each
impulse as a vector with its tail at the origin.  The length of
the vector is the impulse amplitude, and the angle of the
vector is θ =ωt  , where ω is the frequency and t is the time
location of impulse.  When an input shaper is plotted on a
vector diagram, the amplitude of the resultant from summing
the vectors is proportional to the residual vibration.  To
clarify the distinction between impulses and the vectors used
to represent them, vectors will be denoted as, Âi, while
impulses and vectors lengths will be denoted as Ai.

A modeling error or frequency shift appears on the
vector diagram as a rotation of each vector through an angle
φi = ∆ωti , where ∆ω is the frequency error.  Once the vectors
have been rotated away from their starting positions, their
resultant represents the residual vibration that will occur in
the presence of the modeling error represented by ∆ω.  A
vector diagram of the proposed two-hump EI shaper is
shown in Figure 4.  For more details on the vector diagram
representation of input shapers see [18] or pp. 54-60 of [13].

By examining Figure 3, we can construct the set of
constraint equations that must be satisfied by the shaper in
Figure 4.  The first requirement suggested by Figure 3 is that
the vibration must be zero when the modeling frequency is
exactly equal to the actual frequency.  This means that the
resultant of the vectors shown in Figure 4 must sum to zero
when ∆ω=φi=0:

A1 − A2 + A3 − A4 = 0 (4)
Given that the desired sensitivity curve is symmetrical, the
shaper amplitudes must also be symmetrical.  This yields:

A1 = A4    and A2 = A3 (5-6)
Equations 4-6 are not independent; (5) and (4) yield (6).
Therefore, (6) is not used in the following derivation.

Figure 3 also indicates that at ωH1, a frequency lower
than the modeling frequency, the vibration must equal V and
the derivative must equal zero.  On the vector diagram these
constraints translate to:
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Three-Hump EI Shapers .

V = Aicos((i −1)φ)i=1
4∑( )2 + Aisin((i −1)φ)i=1

4∑( )2 (7)

and:

0 = d
dφ Aicos((i −1)φ)i=1

4∑( )2 + Aisin((i −1)φ)i=1
4∑( )2 (8)

where, φ=∆ωt2, and ∆ ω is the difference between ω and
ωH1.  Equations 7 and 8 contain trigonometric terms with
arguments of (i-1)φ.  This occurs because the first impulse,
Â1, does not rotate in response to a modeling error; it still
occurs at time zero (θ1=0).  However, Â2 rotates φ, Â3
rotates 2φ, and Â4 rotates 3φ; each vector Âi rotates(i-1)φ.

Finally, the impulse amplitudes must sum to one:
Ai = 1i=1

4∑ (9)
The five equations for the two-hump EI shaper (Eqs. 4, 5, 7-
9) contain five unknowns (A1, A2, A3, A4 , φ) and one
parameter, V.  We can solve for the input shaper amplitudes
as a function of V.  Combining (4), (5), and (9) yields:

A1 = (1− A2) 2 (10)
By expanding (7) and (8), combining terms, and using (10),
we obtain:

3sin 3φ( )+ 4sin 2φ( )− sin φ( )[ ]A1
2 − 2sin 2φ( )A1 + sin φ( )

4
= 0 (11)

4 + 2cos φ( )− 4cos 2φ( )− 2cos 3φ( )[ ]A1
2

                               + 2 cos 2φ( )−1[ ]A1 + (1− cos φ( )) 2 − V2 = 0
(12)

Equation 11 can be solved for cos(φ):

cos φ( ) = 1
3

1+ 1
4A1





 (13)

Plugging this into (12) yields:

A1= 3X2 + 2X + 3V2

16X
≡ A12H(V) (14)

where, X = V2 1− V2 +1( )3 (15)

Therefore, the two-hump EI shaper for undamped systems is:
A1= A12H(V)     A2 = 1

2
− A1     A3= A2      A4 = A1

t1= 0                    t2 = 0.5T         t3= T         t4 =1.5T
(16)

Figure 3 compares the two-hump EI shaper to a
traditionally designed shaper (a ZVDD shaper) that also has
a length of one and one-half periods of vibration.

A three-hump EI shaper can be designed by once again,
assuming the shape of the sensitivity curve and establishing
constraint equations based on the sensitivity curve.  The
equations describing the three-hump EI shaper will only be
briefly justified because they are very similar to those for the
two-hump EI shaper.  The amplitude sum constraint is:

Ai = 1i=1
5∑ (17)

Like the one-hump EI shaper, the vibration must equal V
when the model is exact, therefore:

A1 − A2 + A3 − A4 + A5 = V (18)
By symmetry of the sensitivity curve, we get:

A1 = A5    and A2 = A4 (19-20)
At the first hump of the sensitivity curve, the vibration

must be V and the derivative of the vibration expression with
respect to φ must equal zero.  These two constraints yield:

V = Aicos((i −1)φ)i=1
5∑( )2 + Aisin((i −1)φ)i=1

5∑( )2 (21)

0 = d
dφ Aicos((i −1)φ)i=1

5∑( )2 + Aisin((i −1)φ)i=1
5∑( )2 (22)

where, once again, φ is used to represent the frequency shift
(angular rotation on a vector diagram) from the modeling
frequency to the frequency corresponding to the first hump
in the sensitivity curve.

Combining Eqs. 17-20 we find:
A2 = (1− V) 4,       A3 = 1− 2A1− (1− V) 2 (23-24)

Plugging (23) and (24) into (21) and (22) reduces the
problem to two equations with two unknowns (A1 and φ).

The use of several trigonometric identities and many
algebraic manipulations reduces the equations to functions of
A1 and cosφ only.  These equations are:

16 1− cos2(φ)[ ]cos(φ)A1
2 + 3cos2(φ) −1( ) 1− V( )− 2cos(φ) 1+ V( )[ ]A1

          + 1− V2

8
− 1− V( )2

8
cos(φ)









 = 0

(25)

4 1− cos2(φ)( )2 A1
2 + 2 cos2(φ) −1( ) 1−1− V

2
1+ cos(φ)( )[ ]A1

                    + 1− V
4

1− V
4

cos2(φ) + 2cos(φ) − 3( )+ 1− cos(φ)( )[ ]= 0
(26)

Equation 25 is a cubic in cosφ.  The only real solution is:
cosφ = (1− V) (16A1) (27)

Substituting (27) into (26) yields a quartic equation in A1.
Mathematica was used to obtain the four roots.  The solution
we are seeking is the one that maximizes φ (this maximizes
the ∆ω, and therefore, the insensitivity).  From (27) we know
that we should pick the root that gives the largest value for
A1.  This root is:

A1=
1+ 3V + 2 2 V2 + V( )

16
≡ A13H(V) (28)

Therefore, the undamped three-hump EI shaper is:
A1= A13H(V)   A2 = (1− V) 4   A3=1− 2 A1+ A2( )   A4 = A2    A5 = A1
t1= 0                 t2 = 0.5T      t3= T                      t4 =1.5T   t5 = 2T

(29)

Figure 5 compares the three-hump EI shaper to a
traditionally designed shaper (a ZVDDD shaper) that also
has a length of two cycles of vibration.  Figures 2, 3, and 5
demonstrate that the EI design algorithm produces input
shapers that have more insensitivity for a given shaper length
than traditionally designed shapers.

Multi-Hump EI Shapers for Damped Systems
The multi-hump EI design procedure can easily be used

for damped systems.  Three modifications to the above
analysis must be performed.  First, the damped vibration
equation and the derivative of the damped vibration equation
must be used in the set of constraints.  These equations were
given in (1) and (2).  Second, the assumption of a
symmetrical input shaper must be discarded.  The discarded
equations are replaced by constraints describing the
sensitivity curve on both sides of the modeling frequency.
The above undamped procedure only constrained one half of
the sensitivity curve, because the symmetry of the input
shaper ensured the proper shape for the other half of the
sensitivity curve.  (Only constraints at ωH1 of Figure 3 were
used; damping requires that we also form constraint
equations for ωH2.)  Third, the set of constraint equations
must be solved numerically.

We have numerically solved the damped equations for
the two and three-hump EI shapers over a range of damping
ratios.  The amplitudes and time locations of the two-hump
EI V=5% shaper and the three-hump EI V=5% shaper are
given in Table 1.  The curve fits for the two-hump EI shaper
have maximum errors in the impulse times and amplitudes of
less than 0.5% over the range 0≤ζ≤0.3.   The curve fits for
the three-hump EI shaper are accurate to within 0.4% over
the range 0≤ζ≤0.2.
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Table 1: Damped Multi-Hump EI Shapers

 Shaper

 Two- 0.49890 0.16270 -0.54262 6.16180
 Hump 0.99748 0.18382 -1.58270 8.17120
 EI 1.49920 -0.09297 -0.28338 1.85710

0.16054 0.76699 2.26560 -1.22750
0.33911 0.45081 -2.58080 1.73650
0.34089 -0.61533 -0.68765 0.42261
0.15997 -0.60246 1.00280 -0.93145

 Three- 0.49974 0.23834 0.44559 12.4720
 Hump 0.99849 0.29808 -2.36460 23.3990
 EI 1.49870 0.10306 -2.01390 17.0320

1.99960 -0.28231 0.61536 5.40450
0.11275 0.76632 3.29160 -1.44380
0.23698 0.61164 -2.57850 4.85220
0.30008 -0.19062 -2.14560 0.13744
0.23775 -0.73297 0.46885 -2.08650
0.11244 -0.45439 0.96382 -1.46000A5

t2
t3
t4
t5

ti = M0 + M1ζ + M2ζ2 + M3ζ2( )T,     T = 2π ω   

M1 M2 M3
t2
t3
t4

Ai = M0 + M1ζ + M2ζ2 + M3ζ2  

M0

A1
A2

A3
A4

A1
A2

A3
A4
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Figure 7 a, b: Responses with the ZVDD & Two-Hump
EI Shapers (V=0.05) for 1 ≤ k ≤ 1.8

 EI Shapers in the S-Plane
We used the time domain and the vector diagram

throughout the development of the multi-hump EI shapers.
However, a better understanding of the multi-hump EI
shapers can be obtained if we examine them in the s-plane.

The zero locations for the multi-hump EI shapers in the
s-plane are shown in Figure 6.  The two-hump shaper places
three zeros near the system pole.  One zero is directly on top
of the system pole and the others are on either side of the
pole along a line of constant damping.  If the system model
is exact, the first zero completely cancels the pole, leading to
zero residual vibration.  If the pole moves away from its
modeled location due to a modeling error or configuration
change, the residual vibration will increase in value until the
pole is half way between two zeros.  As the pole continues to
move away from the modeled location, attenuation of the
vibration is dominated by the zero the pole is approaching.
If the pole proceeds all the way to one of the outlying zeros,
then the vibration will again go to zero.  If the pole travels
beyond the outer zeros, the vibration will increase steadily.

The three-hump EI shaper places four zeros near the
modeling frequency, two on either side along a line of
constant damping.  This configuration leads to a small
amount of residual vibration when the system model is exact.
However, it allows the vibration to go to zero at four
frequencies near the modeling frequency.

Examining the EI shapers in the s-plane suggests other
possible design strategies.  Instead of placing the zeros along
a line of constant damping, the zeros could be placed at
nearby damping values to achieve added insensitivity to
errors in the damping ratio.  Alternatively, more zeros could
be placed on one side of the pole than on the other, or the

zeros could be unevenly spaced.  These techniques would
result in shapers with skewed insensitivity [18].

Simulation Results
Computer simulations were performed using a simple

spring-mass system.  The nominal mass value, m, and spring
constant, k, were both set equal to one.  Two-hump and
three-hump EI input shapers, with V=5%, were designed for
the resulting frequency of 1/(2π) Hz.  The ZVDD and
ZVDDD shaper were also designed for the nominal
frequency.  The system was given step inputs shaped with
one of the four input shapers and the position of the mass as
a function of time was recorded.

To test the performance of the input shapers in the
presence of modeling errors, k was varied from its nominal
value of one, and the simulations were conducted again.
Figure 7a shows the response of the system with the ZVDD
shaped input as k is varied from 1 to 1.8 in steps of 0.1.  The
envelope containing the residual vibration over this
parameter variation has a width of 0.267.  Figure 7b shows
that the envelope with the two-hump EI shaper over the same
parameter variation is approximately 2.7 times smaller
(0.10).  Even though the two-hump EI and the ZVDD shaper
have the same time duration, the two-hump EI bounds the
residual vibration to a much lower level.

Figure 8a shows the response of the system with the
ZVDDD shaped input as k is varied from 1 to 2.1 in steps of
0.1.  A larger parameter variation is shown because the
ZVDDD shaper is designed to be more insensitive to
modeling errors than the ZVDD shaper.  Figure 8b shows
that the envelope of the residual vibration is 3.5 times
smaller for the same parameter variation when the three-
hump EI shaper is used.

The simulation results shown above confirm the
important theoretical properties of the multi-hump shapers
for use on single-mode systems.  The performance of the
new shapers on more complicated systems was tested using a
multi-mode simulation of the Middeck Active Control
Experiment (MACE), which is orbiting the earth in the space
shuttle Endeavor as of this writing.  MACE is designed to
represent a typical satellite with multiple pointing
mechanisms.  A goal of the experimental program is to
develop control algorithms that allow each of the pointing
mechanisms to operate accurately in the presence of
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disturbances caused by the other pointing mechanism.  For
more details on the MACE program, see [5, 6, 22].

In one set of scheduled experiments, white noise is fed
into the actuator of one of the pointing mechanisms and the
response of the other mechanism is recorded.  Figure 9
compares the frequency response of the MACE structure
without shaping to the case when a two-hump EI shaper is
used to modify the command signal.  The two-hump notch in
the frequency response is readily apparent at the system
frequency near 2 Hz.

Conclusions
A procedure for reducing vibration in computer

controlled machines has been presented.  The procedure
utilizes a series of impulses, an input shaper, to modify the
command signal.  A design method has been developed that
generates input shapers that are significantly more
insensitive to modeling errors than traditionally designed
shapers of comparable duration.  Computer simulations of a
single-mode system and the multi-mode MACE structure
demonstrated the advantages of the new shapers.
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