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Abstract—We propose in this paper a general analytic scheme
based on Gauss principle of least constraint for the derivation
of the Lagrangian dynamics equation of motion of arbitrarily
parameterized free-floating-base articulated mechanisms. The
free-floating base of the mechanism is a non-actuated rigid
object evolving in the 6D Lie group SE(3), the SO(3) component
of which can be parameterized using arbitrary coordinate
charts with equality constraints, for instance unit quaternions
(also known as Euler parameters). This class of systems
includes humanoid robots, and the presented formalism is
particularly suitable for the whole-body dynamics modeling and
control problem of such humanoid systems. Example motions
of humanoid in arbitrary contact states with the environment
demonstrate the originality of the approach.

I. INTRODUCTION

In [1] an elegant scheme for the derivation of the equation
of motion of a humanoid robot is presented. This scheme
allows for an analytic expression of the Lagrangian dynamics
of humanoid robots, and more generally of any free-floating-
base articulated mechanism (such as those studied in space
robotics [2]–[5] before being applied to humanoids [6]), that
contrasts with other algorithmically-oriented Newton-Euler
recursive schemes, e.g. [7]. The analytic scheme directly
considers the whole humanoid system, including its free-
floating base, as one Lagrangian system with generalized co-
ordinates that are simply time-differentiated once and twice
in order to yield the equation of motion, rather than using
specific kinematic quantities such as the angular velocity
vector and its time derivative, that are not obtained through
the time-differentiation of the generalized coordinates of the
systems [8] [9] [10].

Advantages of this analytic approach are multiple. First
it allows us to model the entire humanoid system without
pre-specification of a particular contact state. The same
model can thus be used for a humanoid in single-support
stance on either foot, in double-support stance on both feet,
or in any other stance on hands, knees, or elbows, with
or without using the feet for support, see Fig. 1. It also
allows for simple-to-implement yet general dynamics model
algorithm provided that a sub-algorithm for the computation

of basic geometric Jacobian matrices between two bodies of
a kinematic chain is available, see [11] [12]. The dynamics
model algorithm here just consists in the straightforward im-
plementation of the presented analytic expressions. Finally,
as opposed to classical treatments of Lagrangian dynamics,
and as stressed by the author in [1], the proposed approach
does not require the computation of the Christoffel sym-
bols that need a powerful symbolic (algebraic) computation
framework in order to be general enough to encompass more
than one particular robot model.
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Fig. 1. Examples of fixed-base mechanism and free-floating-base mecha-
nisms in various contact configurations.

However, the author in [1] does not tackle the problem of
manifold parameterization of the rotation group for the free-
floating base. This parameterization will result in additional
Lagrange multipliers associated with the equality constraints
acting on the set of generalized coordinates, for instance
the unit-norm constraint for the 4-dimensional quaternion
parameterization (Euler parameters), or the orthogonality
constraints for the 9-dimensional rotation matrix parameteri-
zation. Our contribution in this paper is to take into account
these constraints, proposing elementary linear algebra calcu-
lation schemes that do not necessitate the recourse to tensor
analysis tools.

The rest of the paper is organized as follows. We first
introduce notations and preliminary computations of certain



Jacobian matrices and push-forward mappings in Section II.
We then apply Gauss principle to derive the equation of
motion in Section III, and summarize our computations in
the algorithm that we present in Section IV. The dynamics
equation is then used in the control scheme of Section V, and
Section VI demonstrates some example humanoid motions
synthesized through this scheme. We conclude the paper in
Section VII. In the Appendix Section, a synthetic view of all
the notations of the paper is provided.

II. PRELIMINARY COMPUTATIONS

Let us consider an articulated mechanism made of n + 1
rigid bodies (links) indexed by the variable k in {0, . . . , n},
the body k = 0 being the free-floating base link of the
mechanism, and that are articulated through m revolute or
prismatic joints indexed by the variable j in {1, . . . ,m}.
The general contact state of the mechanism is modeled as
follows. On each body k ∈ {0, . . . , n} a set of nk contact
forces fk,1, . . . , fk,nk

are applied at the respective body-
frame-expressed1 contact points ak,1, . . . , ak,nk

belonging to
the surface cover of the body (nk = 0 if there is no contact
on body k). We emphasize here the fact that, in the case
of an anthropomorphic system, these contact forces are not
restricted to be applied on the foot bodies.

We then consider the following generalized coordinates
of the system (for convenience, we will use throughout the
paper the same notations as in [1] when applicable). The base
link of the system, k = 0, is parameterized with a global
position variable x0 ∈ R3 and a global orientation variable
θ0 ∈ Rd, d being the dimensionality of the parameterization
we choose for the SO(3) manifold, see Table I.

TABLE I
PARAMETRIZATION OF THE ORIENTATION OF THE BASE LINK.

θ0 d = dim(θ0)
Euler angles (roll-pitch-yaw) d = 3

Unit quaternion (Euler parameters) d = 4
Rotation matrix d = 9

Finally the rest of the articulated configuration of the
mechanism forms the internal joint angle vector q̂ ∈ Rm. All
in all, the generalized coordinates of the system are expressed
in the concatenated vector

q = (x0, θ0, q̂) ∈ R3+d+m (1)

Let Rk denote the orientation matrix of the body k, ωbody

k

be its body-frame-expressed angular velocity with respect to
the inertial frame, and xk the inertial-frame-expressed global
(i.e. relative to the inertial frame) position of the origin of the
body frame. In particular, R0 denotes the orientation matrix
of the base link. Let ωglobal

0 and ωbase
0 denote, respectively,

the global-frame-expressed and base-link-frame-expressed
angular velocity vector of the base link body with respect

1in the paper we use the expression “A-frame-expressed quantity v” to
mean “the vector of coordinates of the quantity v expressed in the frame
A”

to the inertial (global) frame. These vectors are related to
the time derivative of θ0 through the two following linear
mappings

ωglobal
0 = J global

ω0
θ̇0 and ωbase

0 = J base
ω0
θ̇0 (2)

We now propose a calculation method for the two matrices
J global
ω0

and J base
ω0

, for any arbitrarily chosen parameterization θ0.
The angular velocity vector ωglobal

0 can be defined as the vector
ωglobal
0 ∈ R3 such that

[ωglobal
0 ×] = Ṙ0R

T
0 , (3)

where, for a vector u ∈ R3, we use the notation

[u×] =

 0 −u3 u2

u3 0 −u1
−u2 u1 0

 . (4)

Moreover, we can show that the following fundamental
relation holds, ∀u ∈ R3:

∂(R0u)

∂θ0
= −[(R0u)×]J global

ω0
= −R0[u×]RT0 J global

ω0
. (5)

By applying eq.(5) on the canonical basis vectors of R3, we
get, denoting R0,i the ith column of R0 for i ∈ {1, 2, 3},

∂R0,i

∂θ0
= −[R0,i×]J global

ω0
. (6)

Let now (e1, e2, e3) be any orthonormal basis of R3, from
the properties of the scalar triple product it follows that, for
any vector u ∈ R3,

u = (u× e1|e2)e3 + (u× e2|e3)e1 + (u× e3|e1)e2. (7)

This identity is extendible to any 3× 3 matrix M ,

M = −e3eT2 [e1×]M − e2eT1 [e3×]M − e1eT3 [e2×]M. (8)

R0 being an orthogonal matrix, its columns form an or-
thonormal basis of R3, thus we can apply eq.(8) to get

J global
ω0

= −R0,3R
T
0,2[R0,1×]J global

ω0
−R0,2R

T
0,1[R0,3×]J global

ω0

−R0,1R
T
0,3[R0,2×]J global

ω0
.

(9)

Finally, replacing the corresponding expressions from eq.(6),
we get our final expression

J global
ω0

= R0,3R
T
0,2

∂R0,1

∂θ0
+R0,2R

T
0,1

∂R0,3

∂θ0
+R0,1R

T
0,3

∂R0,2

∂θ0
(10)

Note that the latter expression requires the computation of
the derivatives ∂R0,i

∂θ0
, which can be easily obtained from the

mapping ρ : θ0 → R0 that can be found in introductory
kinematics textbooks (writing a rotation matrix as a function
of the rotation parameterization). For instance, let us consider



a unit quaternion parameterization, θ0 = (α, β, γ, δ), then the
expression of the mapping ρ is given as R0 = ρ(θ0) = 2(α2 + β2)− 1 2(βγ − αδ) 2(βδ + αγ)

2(βγ + αδ) 2(α2 + γ2)− 1 2(γδ − αβ)
2(βδ − αγ) 2(γδ + αβ) 2(α2 + δ2)− 1


(11)

And the ∂R0,i

∂θ0
can be derived as

∂R0,1

∂θ0
=

 4α 4β 0 0

2δ 2γ 2β 2α

−2γ 2δ −2α 2β

 ,

∂R0,2

∂θ0
=

 −2δ 2γ 2β −2α
4α 0 4γ 0

2β 2α 2δ 2γ

 ,

∂R0,3

∂θ0
=

 2γ 2δ 2α 2β

−2β −2α 2δ 2γ

4α 0 0 4δ

 .

(12)

Now that we have computed J global
ω0

in eq.(10), we have

J base
ω0

= RT0 J
global
ω0

. (13)

Back to our free-floating-base mechanism. For a body k ∈
{0, . . . , n} and a point belonging the body with coordinates
p ∈ R3 expressed in the body frame, we denote Jtk(p),
J global

rk , J local
rk , respectively, the translational Jacobian matrix

at p, the body-frame-expressed rotational Jacobian matrix,
and the inertial-frame-expressed rotational Jacobian matrix,
of the body k relative to the inertial frame with respect
to q. Similarly, Ĵtk(p), Ĵ base

rk , Ĵ local
rk , denote, respectively,

the translational Jacobian matrix at p, the base-link-frame-
expressed rotational Jacobian matrix, and the body-frame-
expressed rotational Jacobian matrix, of the body k relative
to the base link body with respect to q̂ (in other words,
hatted Jacobian matrices are for the articulated motion with
respect to the base link, non-hatted Jacobian matrices are
for the free-floating-base articulated motion with respect to
the inertial frame, thus the latter taking into account the
contribution of the base-link motion). Algorithms for the
computation of the matrices Ĵtk(p), Ĵ base

rk , Ĵ local
rk , also known

as geometric or kinematic Jacobian matrices, are widely
available in the kinematics literature [11] [12]. We show in
the sequel how these matrices can be used to compute the
less common matrices Jtk(p), J

global

rk , J local
rk . First we have, for

the translational Jacobian matrix

Jtk(p) = [ 13×3 | − (xk+Rkp−x0)×R0J
base
ω0
| R0Ĵtk(p) ]

(14)
Remark 1: If we denote p0 = RT0 (xk + Rkp − x0) as
the base-link-frame-expressed position of p, which does not
depend on θ0, then we can show that

−(xk +Rkp− x0)×R0J
base
ω0

= −[R0p
0×]J global

ω0

= ∂R0p
0

∂θ0

=
[
∂R0

∂θ0,i
p0
]
i=1,...,d

(15)

This gives as an alternative scheme for computing the d
middle columns in eq.(14).

We also have, for the rotational Jacobian matrices,

J local
rk = [ 03×3 | RTkR0J

base
ω0
| Ĵ local

rk ] (16)

J global

rk = RkJ
local
rk = [ 03×3 | J global

ω0
| R0Ĵ

base
rk ] (17)

Remark 2: Expression (17) is consistent with the composi-
tion rule of angular velocities

ωglobal

k = J global

rk q̇ ,

= J global
ω0

θ̇0 +R0(Ĵ
base
rk

˙̂q) ,

= ωglobal
0 +R0ω

base
k/base

,

(18)

where ωbase
k/base

is the base-link-frame-expressed rotational ve-
locity of the body k with respect to the base link.

Remark 3: We can easily verify that the two following
transport formulas are consistent with the above derivations
of the translational and rotational Jacobian matrices:

Jtk(a) = Jtk(b)−Rk[(a− b)×]J local
rk , (19)

Ĵtk(a) = Ĵtk(b)−RT0 Rk[(a− b)×]Ĵ local
rk . (20)

To conclude this notation section, we denote ck the body-
frame-expressed center of mass of the body k, mk its mass,
and Ik(p) its inertia matrix expressed at the body-frame-
expressed point p. We recall that

Ik(ck) = Ik(03)−mk

(
(cTk ck)13×3 − ck ⊗ ck

)
. (21)

Let g denote the gravity vector, and u ∈ Rm denote our
torque control input acting on the actuated joints of the
mechanism (i.e. internal joints, dim(u) = dim(q̂) = m).

III. GAUSS’ PRINCIPLE WITH MANIFOLD EQUALITY
CONSTRAINTS

Following [1], we apply Gauss’ principle of least con-
straint [13] (also used in robotics for redundant robots
in [14], or for simulation in [15]) which states that at a
given state of the system (given position and velocity), the
acceleration of a constrained articulated system deviates the
least from the acceleration it would have in the absence of
any constraints induced by the presence of the joints linking
the bodies. The deviation is measured through the following
quantity

(22)
D =

n∑
k=0

1

2
(ẍk − ẍk)Tmk(ẍk − ẍk)

+

n∑
k=0

1

2
(ω̇body

k − ω̇
body

k )T Ik(ck)(ω̇
body

k − ω̇
body

k ) ,

where the underlined quantities are the accelerations of the
bodies if they were not linked together.



Without the equality constraints that stem from the param-
eterization of the orientation of the base link θ0, this principle
would translate into the following optimality condition

∂D

∂q̈
= 0 , (23)

which can be rewritten in the form (see [1] for details of the
derivation 2),

M(q)q̈ +N(q, q̇)q̇ =M(q)

 g

0d

0m

+

03

0d

u


+

n∑
k=0

nk∑
i=1

Jtk(ak,i)
T fk,i , (24)

where the expressions of the matrices M and N are given
as

M(q) =
n∑
k=0

Jtk(ck)
TmkJtk(ck) + J local

rk
T
Ik(ck)J

local
rk , (25)

(26)
N(q, q̇) =

n∑
k=0

Jtk(ck)
TmkJ̇tk(ck) + J local

rk
T
Ik(ck)J̇

local
rk

− J local
rk

T
(Ik(ck)J

local
rk q̇)× J local

rk .

However, the choice of a particular manifold (algebraic
variety) parameterization of the rotation group SO(3) brings
along a set of equality constraints

C(q) = 0 , (27)

that act on the set of parameters θ0, C : R3+d+m →
Rd−dim(SO(3)) being a mapping of dimension dim(C) =
d − dim(SO(3)) = d − 3 , see Table II (note: in the last
row we did not remove redundant (symmetric) constraints
for the sake of notation, we also do not take into account
det(θ0) = +1 given that the initial state satisfies this latter
condition and that we stay throughout the continuous motion
in the same connected component of O(3) ).

TABLE II
EQUALITY CONSTRAINTS ACTING ON θ0

θ0 dim(C) C

Euler angles (roll-pitch-yaw) 0 -

Unit quat. (Euler parameters) 1 C(q) = θT0 θ0 − 1

Rotation matrix 6 C(q) = θT0 θ0 − 13×3

For instance, let us consider the case of the unit quaternion
parameterization. In that case C takes the form

C(q) = qTSTSq − 1, (28)

where S is a selection matrix that selects the θ0 component
in q

S =
(
0d×3 1d×d 0d×m

)
. (29)

2noting that mkẍk =
∑nk

i=0 fk,i, Ikω̇
body
k − (Ikω̇

body
k ) × ω̇body

k =∑nk
i=0 ak,i × fk,i, ẍk = Jtk(ck)q̈ + J̇tk(ck)q̇, ω̇body

k = J local
rk q̈ + J̇ local

rk q̇.

We then time-differentiate eq.(27) twice to get a constraint
on the variable q̈

C̃(q̈) = qTSTSq̈ + q̇TSTSq̇ = 0 . (30)

The optimality condition eq.(23) becomes now, taking into
account the constraint eq.(30),

∂D

∂q̈
− ∂C̃

∂q̈

T

λ = 0 ,

C̃(q̈) = 0 ,

(31)

where λ ∈ Rd−3 is the Lagrange multiplier associated with
the constraint eq.(30). The equation of motion eq.(24) thus
becomes:

M(q)q̈ +N(q, q̇)q̇ =M(q)

 g

0d

0m

+

03

0d

u


+

n∑
k=0

nk∑
i=1

Jtk(ak,i)
T fk,i + STSqλ , (32)

where the matrices M and N keep the exact same forms as
in eq.(25) and eq.(26) respectively, and where we can solve
for the Lagrange multiplier λ by pre-multiplying eq.(32) by
qT as follows [16]:

λ = qT

[
M(q)q̈ +N(q, q̇)q̇ −M(q)

 g

0d

0m

+

03

0d

u


−

n∑
k=0

nk∑
i=1

Jtk(ak,i)
T fk,i

]
. (33)

Let us define the following matrix

A = 1(3+d+m)×(3+d+m) − STSqqT . (34)

By re-injecting eq.(33) into eq.(32) we get our final dynamics
equation of motion expression

A [M(q)q̈ +N(q, q̇)q̇] = A

[
M(q)

 g

0d

0m

+

03

0d

u


+

n∑
k=0

nk∑
i=1

Jtk(ak,i)
T fk,i

]
. (35)

It is worth pointing out that in eq.(35), q̈ = (ẍ0, θ̈0, ¨̂q) is the
actual second time-derivative of q. In particular, θ̈0 is simply
obtained by time-differentiating twice the parameters in θ0.

IV. DYNAMICS ALGORITHM

The proposed algorithm here consists simply in car-
rying out the computations presented in the two previ-
ous sections in the order outlined in the following algo-
rithm:

1: Compute eq.(10) then eq.(13)



2: Compute Ĵtk, Ĵ base
rk , Ĵ local

rk using standard kinematic Jaco-
bian matrices computation algorithms (also known by
some authors as geometric Jacobian matrices) [11] [12]

3: Compute eq.(14), eq.(16), and eq.(17)
4: Compute eq.(21)
5: Compute eq.(25) and eq.(26)
6: Apply eq.(35) for forward or inverse dynamics purposes

V. APPLICATION TO WHOLE-BODY CONTROL OF
HUMANOID ROBOT

In [17] we presented in simulation a control scheme
for free-floating-base humanoid robot in general contact
configuration with the environment by solving at each time
step of the simulation the following quadratic program [18]
[19],

min
q̈,u,f

∑
i

||τ̈i − τ̈ desired
i ||2

subject to


u ∈ U
f ∈ K
∀k, i : Jtk(ak,i)q̈ + J̇tk(ak,i)q̇ = 0

Eq. (24) .

(36)

where τi are a set of control tasks (position of a point of one
of the bodies, position of the center of mass of the robot,
whole configuration of the robot, etc.), U are the bounds
on the actuation torques, and K are the linearized Coulomb
friction cones at the contact points a.

Taking now into account the new equation of motion
eq.(35) along with the constraint eq.(30) that happens to be
a linear constraint in q̈, we still have a quadratic program
formulation, and eq.(36) becomes now

min
q̈,u,f

∑
i

||τ̈i − τ̈ desired
i ||2

subject to



u ∈ U
f ∈ K
∀k, i : Jtk(ak,i)q̈ + J̇tk(ak,i)q̇ = 0

Eq. (35)

qTSTSq̈ + q̇TSTSq̇ = 0 .

(37)

Remark 4: Without need of analytically solving for the
Lagrange multiplier in eq.(32), we can still formulate an
equivalent quadratic program as follows:

min
q̈,u,f,λ

∑
i

||τ̈i − τ̈ desired
i ||2

subject to



u ∈ U
f ∈ K
∀k, i : Jtk(ak,i)q̈ + J̇tk(ak,i)q̇ = 0

Eq. (32)

qTSTSq̈ + q̇TSTSq̇ = 0 .

(38)

VI. EXAMPLES

We improved the motions demonstrated in [17] by apply-
ing the new control scheme eq.(37) to the humanoid robot
HRP-2 [20] with unit-quaternion-parameterized waist link
(the base link) in simulation. Motions on different contact
configurations (feet/hands) were dynamically simulated with-
out needing to re-parameterize the configuration of the robot
depending on the current contact state. See the attached video
and Figs. 2, 3, and 4.

In this video, the sequence of static postures used as input
and displayed before each motion is autonomously planned
offline using the multi-contact stance planning algorithm
in [21] after the user have specified an initial and goal posture
or initial and goal set of contact locations. The tasks τi are
decided online by a finite-state machine as described in [17],
these tasks track the position of the CoM and the overall
posture of the robot in the next static posture whenever a
static posture of the sequence is reached, and an additional
task tracks the position of the limb being moved to a new
contact location.

As for computation time, the problem eq.(37) is solved at
every simulation step, of 1ms, in an average of approximately
7ms, on a 3.06GHz Intel Pentium IV system with 1Gb of
RAM memory.

VII. CONCLUSION

We presented a simple algorithm for the computation
of the dynamics equation of motion of free-floating-base
mechanisms using arbitrary manifold parameterization of the
SO(3) group in which the free-floating base of the mecha-
nism evolves rotationally. We instantiated our derivations for
the example singularity-free low-dimensional unit-quaternion
parameterization of this rotation manifold.

The derivation of the equation of motion followed Gauss’
principle of least constraint, taking into account, when writ-
ing the optimality condition for this principle, the additional
equality constraints acting on the parameters of the chosen
manifold coordinate chart. These equality constraints resulted
in the emergence of Lagrange multipliers that were solved
for and eliminated from the new equation of motion.

As an application, we incorporated this equation, together
with the manifold equality constraints, as linear constraints
in a quadratic program formulation used for the control
and simulation of humanoid robot in various contact con-
figurations between the robot links and the environment.
Example motions on single and double-support stances and
on handstand were achieved.

The same framework can be used to handle spherical
joints (ball-and-socket joint) that are commonly used in the
modeling of virtual human characters in computer graphics,
prototyping simulation, and biomechanics modeling applica-
tions. Future work can investigate this possibility.

Finally, another promising direction for further research
building on these results is the modeling of manipulation
systems with free-floating manipulated objects using the



same common formulation for the dynamics of the system
made of the manipulator and the object.

APPENDIX: NOTATION TABLE
n+ 1 Number of bodies
k = 0 Base link
m Number of Joints
q Configuration vector
q̂ Internal (actuated) joint vector
θ0 Orientation of the base link
d dim(θ0)
xk position of the body k
ωk Angular velocity of the body k
Rk Orientation matrix of the body k
•local expressed in the body frame
•base expressed in the base-link frame
•global expressed in the inertial (global) frame
Jω0 Mapping from θ̇0 to ω0

ρ Mapping from θ0 to R0

Jtk Trans. Jac. Mat. of the body k with resp. to q
Jrk Rot. Jac. Mat. of the body k with resp. to q
Ĵtk Trans. Jac. Mat. of the body k with resp. to q̂
Ĵrk Rot. Jac. Mat. of the body k with resp. to q̂
fk,i Contact forces applied on the body k
ak,i Application point of the contact force fk,i
D Deviation from the unconstrained motion

M,N Dynamics quantities
C Constraint on q (on θ0)
C̃ Constraint on q̈
λ Lagrange multiplier
S Selection matrix (of the θ0 component in q)
u Actuation torques (control input)
g Gravity vector
ck local-frame expressed CoM of the body k
mk Mass of the body k
Ik Inertia matrix of the body k
τ Control task (objective, feature)
U Torque limits
K Linearized Coulomb friction cone
A Matrix accounting for the equality constraint
0 Zero vector or matrix
1 Identity matrix
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Fig. 2. Motion on single-support and double-support stances on feet.

Fig. 3. Motion on single-support and double-support stances on hands.

Fig. 4. Motion on single-support and double-support stances on feet.


